1,146 research outputs found

    Towards more accurate real time testing

    Get PDF
    The languages Message Sequence Charts (MSC) [1], System Design Language1 (SDL) [2] and Testing and Test Control Notation Testing2 (TTCN-3) [3] have been developed for the design, modelling and testing of complex software systems. These languages have been developed to complement one another in the software development process. Each of these languages has features for describing, analysing or testing the real time properties of systems. Robust toolsets exist which provide integrated environments for the design, analysis and testing of systems, and it is claimed, for the complete development of real time systems. It was shown in [4] however, that there are fundamental problems with the SDL language and its associated tools for modelling and reasoning about real time systems. In this paper we present the limitations of TTCN-3 and propose recommendations which help minimise the timing inaccuracies that would otherwise occur in using the language directly

    Concurrent Specification and Timing Analysis of Digital Hardware using SDL (extended version)

    Get PDF
    Digital hardware is treated as a collection of interacting parallel components. This permits the use of a standard formal technique for specification and analysis of circuit designs. The ANISEED method (Analysis In SDL Enhancing Electronic Design) is presented for specifying and analysing timing characteristics of hardware designs using SDL (Specification and Description Language). A signal carries a binary value and an optional time-stamp. Components and circuit designs are instances of block types in library packages. The library contains specifications of typical components in single/multi-bit and untimed/timed forms. Timing may be specified at an abstract, behavioural or structural level. Timing properties are investigated using an SDL simulator or validator. Consistency of temporal and functional aspects may be assessed between designs at different levels of detail. Timing characteristics of a design may also be inferred from validator traces. A variety of examples is used, ranging from a simple gate specification to realistic examples drawn from a standard hardware verification benchmark

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    Practical Model Checking of a Home Area Network System: Case Study

    Get PDF
    The integrated communication infrastructure is the core of the Smart Grid architecture. Its two-way communication and information flow provides this network with all needed resources in order to control and manage all connected components from the utility to the customer side. This latter, named the Home Area Network or HAN, is a dedicated network connecting smart devices inside the customer home, and using different solutions. In order to avoid problems and anomalies along the process life cycle of developing a new solution for HAN network, the modeling and validation is one of the most powerful tools to achieve this goal. This paper presents a practical case study of such validation. It intends to validate a HAN SDL model, described in a previous work, using model checking techniques. It introduces a method to translate the SDL model to a Promela model using an intermediate format IF. After the generation of the Promela model, verification is performed to ensure that some functional properties are satisfied. The desired properties are defined in Linear Temporal Logic (LTL), and DTSPIN (an extension of SPIN with discrete time) model checker is used to verify the correctness of the model

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    • …
    corecore