
 Eindhoven University of Technology

MASTER

Description of parallel processes in hardware using SDL (The CCITT specification and
description language)

Hulzebos, R.M.

Award date:
1990

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/948ad3f7-11b4-4b6d-bf4f-465e19c23c89

.. ,~.""" .

Eindhoven University of Technology
Department of Electrical Engineering

Digital Systems Group (EB)

............................_._._.-•.....,

Description of parallel processes
jn hardware using

SDL
(The CCITT Specification and

Description Language)

by R.M. Hulzebos

report of graduation project by R.M. Hulzebos

Coaches: Prof. Ir. M.P.J. Stevens

lr. A.C. Verschueren

Eindhoven, The Netherlands, August 1988.

The department of Electrical Engineering of the Eindhoven University

of Technology does not accept any responsibility regarding the contents

of student projects and graduation reports.

. .

ABSTRACT

SOL, the Specification and Oescription Language, IS developed to

describe the concurrent behaviour of processes in telecommunication

systems. It has a textual and graphical representation with a one to

one transla tion in both ways.

This report describes the way SOL can be used for description of

parallel processes in hardware.

First, reasons are given why a formal description/specification

language is needed. Here, we see tha t the main reason is the

system complexity possible in current VLSI design.

Preceding the SOL-syntax description, a comparison is made be­

tween SOL and other description techniques Statecharts, ESTELLE,

LOTOS and Petri-nets. At comparing the concurrent-, data descrip­

tion-, control-, formal definition- and human orientation- aspects

of these techniques, certain needed constructs for description of

parallel processes in hardware are defined.

Following the SOL-syntax description including an example descrip­

tion, the implementation of the SOL model and certain SOL con­

structs are discussed. At this point special attention is given to the

asynchronous communication model and its implementation into syn­

chronous communication.

In the last part of this report, a design methodology is given for

the use of SOL in the specification phase of VLSI design.

SOL is a human friendly specification technique which can be used

to set up a behaviour model of a digital system. This behaviour

model must be rewritten into a hardware oriented behaviour de­

scription by refining certain parts of the behaviour model using an

expert system.

CONTENTS

INTRODUCTION. 4

1.

2.

Why do we need a description/specification language? .

Statecharts, ESTELLE, LOTOS, Petri-nets and SDL
2.0.1. Statecharts .
2.0.2. ESTELLE
2.0.3. LOTOS.
2.0.4. Petri nets
2.0.5. SDL ..

5

8
8

10
II
12
13

2.1. Comparison of SDL, Statecharts, ESTELLE, LOTOS and
Petri nets..

2.1.1. Concurrent aspects
2.l.2. Data description aspects
2.1.3. Control aspects
2.1.4. Formal definition aspects
2.1.5. Human orientation aspects

2.2. Conclusions

14
14
15
16
17
18
18

3. SDL syntax and structuring (Dining Philosophers problem) . 20
3.1. System definition. 22

3.1.1. SYSTEM DINING PHILOSOPHERS. . . 22
3.2. Block definition 25

3.2.1. BLOCK PHILOSOPHERS and BLOCK FORKS 26
3.3. Process definition. 31

3.3.1. PROCESS Philosopher, BIRTH, INPUT, P, V
and TABLE 34

3.4. Other SDL constructs . . . 49

4. SDL and hardware implementation 58
4.1. The communication model . 59

4.1.1. Message handling 61
4.1.2. Channel structuring 68

4.2. The state machine model. . . 69
4.3. The SDL timer model 72
4.4. The SDL create process model. 74
4.5. SDL example description of a universal asynchronous

receiver transmitter (UART) 77
4.4. Conclusions 95

5. SDL design methodology towards hardware 97
5.1. Setting up a behaviour model. . . . 100

5.1.1. Functional decomposition (SYSTEM and
BLOCK level) 101

5.1.2. Process definition (PROCESS level) . 103
5.2. Evaluation of the behaviour model 104

5.2.1. Verification of the behaviour model. 105
5.2.2. Refinement of the behaviour model 107

5.3. Rewriting the bahaviour model 109

_________________________2 _

6. Conclusions and suggestions III

LITERATURE 113

APPENDIX A:
LIST OF ABBREVIATIONS USED IN THE UART DESCRIPTION 1] 5

________________________,8 _

INTRODUCTION

The increasing complexity of digital systems due to the possibilities

of current VLSI design asks for new design techniques. To reduce

the time needed for designing a VLSI chip we need a structured

design approach. This means that the design process must be divi­

ded in small steps and every step must be followed by verification

of tha t step.

To describe the concurrent behaviour of communicating extended fi­

nite state machines we need special techniques. SDL, the Specifi­

cation and Description Language developed by the CCITT, is especi­

ally developed to describe the concurrent behaviour of telecommu­

nica tion processes.

In this report a methodology is given for the use of SDL in the

specification phase of VLSI design.

First, some related description techniques are described followed by

a comparison between these techniques.

Then, the syntax and structure of SDL is described. This descrip­

tion is clarified by the description of the Dining Philosophers pro­

blem in SDL.

In chapter 4, the implementation of certain SDL constructs and the

SDL model is discussed. Here, special attention is given to imple­

men ta tion of commu nica tion, comm unica tion-chan nels, tasks, timers

and process creation.

In the last chapter a specification system is described. This system

is built of an expert system which translates the SDL behaviour

description in a hardware oriented behaviour description in interac­

tion with the designer.

1. Why do we need a description/specification language?

A design-process of a digital system is a communication-process

between several designers. In order to understand each other they

have to speak at least the same language. But when a system

becomes more complex, the designer will soon need a pen and paper

to write down what he/she means. At writing down the designer

has to use symbols which are common to all the other designers. In

other words: the designers must use some formal language to know

what they are talking about.

Digital system design can be split into three levels:

I Specifica tion level

2 Design level

3 Implementation level

Formal languages used at the design-process can also be split into

the same three levels. At the design level (2) the structure of the

system is described using a design-language. At level 3 the system

is described at port-level. At the specification level the system­

behaviour is described using a specification-language.

of complex digital systems has to be done in a

to avoid lengthy and ambiguous descriptions in

The description

formal language

natural language.

A formal specification

functional behaviour no

language describes

matter what the

a system in

implemen ta tion

terms of

technique

is.

Advantages of a formal specification:

a] No relevant details are forgotten

b] Only one interpretation is possible

c] Computer aided specification (tools)

d] Possibility to simulate

e] Possibility for automated implementation

f] Possibility to prove equivalence of specifications
___________________________,6 _

_____1. Why do we need a description/specification language?

more precisely:

a] Using a formal-language, the designer has to give a

complete specification. He or she is forced to describe all

relevant details, otherwise a syntax error is indicated by a

syntax-checker.

b] A formal-language does not allow any ambiguities due to

its formal character. Any designer knowing the formal­

language has the same interpretation of the formal­

description.

c] Already pointed at a] is the use of a syntax-checker to

check if the specification is complete.

d] The formal-description can be used to simulate the

specification. Using simulation, the designer can compare

the behaviour of the specification with the wanted

behaviour (validation) Or with its refinement (verification).

The formal-description allows simulation of all possible

combination of states and inputs, thus check on deadlock­

free design is provided.

e] By defining an interface between the specification-

language and a hardware description-language, it is

possible to automate the design-process towards an

implemen ta tion.

f] A formal language based on a solid mathematical theory

can be used to prove equivalence of a specification and

its refinement That is, prove whether the behaviour of

the specification is the same as the behaviour of its

refinemen 1.

When designing complex digital systems built out of several pa­

rallel-working state machines, the formal specification-language has

to cope with concurrent actions. Describing such systems has to be

done in a formal-language to get a clear presentation of its

behaviour. Using the well known state-diagrams for describing

parallel-working state machines, is only useful for very small

systems.

____________________________,6, _

______1. Why do we need a de8cription/8pecification language?

Concl usion:

To describe complex digital systems built of parallel-working

extended finite state machines we need a formal language to cope

with complexity, concurrency, ambiguity, validation, verification and

simulation.

_____________________________7 _

2. Statecharts, ESTELLE, LOTOS, Petri-nets and SOL

At first sight SDL looks like a good formal language fit to describe

parallel processes in hardware. But to get an objective look at the

properties of SDL, we have to compare it with some other formal

description-languages.

When comparing, we especially have to keep in mind our appli­

cation area, parallel processes in hardware. Before we compare

some of the properties of Statecharts, ESTELLE, LOTOS, Petri-nets

and SDL, we will give a brief description of these languages.

2.0.1. Statecharts

Statecharts is a description technique developed at the Weizmann

Institute of Science in Israel [Harel]. This technique gives a

presentation of the dynamic behavioral aspects of a system, rather

than its physical or functional ones.

This technique is developed to cope with complex digital real-time

systems.

Sta techarts are based on the well-known sta te-diagrams extended

wi th possi bili ties to describe differen t levels of abstraction, pa rallel

working state-machines and a means of communication between

those state-machines. In short:

statecharts=state-diagrams + depth + orthogonality + broadcasting

Depth is introduced by the clustering of states to one (super) state

and refinement of one state in several sub states (fig 1).

Orthogonality means that several state-machines can simultaneous­

ly and independently of each other change state. Synchronization

between state machines is possible by means of the implicit

broadcast mechanism. Orthogonality in statecharts is described by

dashed lines between parallel working state-machines (fig 2).

__________________________8 _

_____2.0.1. Statecharts

o

fig]: example of clustering in statecharts.

y

fig 2: example of orthogonality in statecharts.

In addition statecharts have constructs for conditional state

transitions, delays and time-outs. Delay and time-out constructs use

implicit defined timers. To specify a whole system the behavioral

view described by statecharts is not enough. Therefore a structural

view and a functional view are provided to make the system

description complete. The structural view describes the physical

structuring in modules and channels. The functional view describes

data-flow and activities of the system-parts.

Above description of statecharts is far from complete but gives a

general idea how concurrency is structured. The main advantage of

sta techarts is tha t it gives a clear graphical represen ta tion of

concurrency.

__________________________9 _

2.0.2. ESTELLE

Estelle is developed by the International Standards Organization

(ISO) [ISO ESTELLE]. The syntax of Estelle is close to that of

PASCAL. Estelle introduces a kind of structuring and a means of

describing the dynamic behaviour of a system. It only supports a

textual representation of a system.

The Estelle system is called a module. This module can have a

substructure of modules which communicate with each other using

channels by receiving and sending interactions. A module can also

be defined by an extended finite state-machine or the combination

of state-machines and substructures.

Estelle has a tree structure where the root is the system and each

leaf is an extended finite state-machine called a Process. The

branches in the tree represent the substructuring of the system in

modules. The Estelle-Process is modelled by states, input

interactions, output interactions, transitions and other topics

related to the description of an extended finite state machine.

Declaration of variables is done the same way as in PASCAL except

that they may be defined at several (visibility) levels. Interactions

between processes take place by means of interaction points. Each

interaction point can be assigned to a common Queue or can use an

own Queue containing the interactions received.

____________________________1o _

_____2.0.2. ESTELLE

....\ODULE Rec I_Type PR.OCESS (i_I, t2 List) L,st4

List6: List6 Id(Reeeiver) INDIYIDlJ(\L QUEUE;

PARA~1 Port Nr.: Port_Type);

BODY Reel_Body FOR Reel_Type;

TR,A,NS

FRO:,l Transfer TO SAME

WHE:" list6. Dar

PRO'dDED R Nr t Y R + I- -
BEGL'I OUTPUT List). Rej(Y_ R); E\D

PROYIDED R NT = Y R + I- ...
BEGIN Y_R:= Y_R + I;

OUTPUT List). Rr(Y R + I, 5 ;--;r);

OUTPUT List2. U_ Dat(l)i

END

FRO~I Transfer TO Diseon

WHEN List6. Dis

BEGIN END

fig 3: example of a part of a Estelle-module without substructure

2.0.3. LOTOS

LOTOS stands for Language Of Temporal Ordering Specification

[ISO LOTOS]. It is strongly based on process algebra like CCS, a

Calculus for Communicating Systems [Milner]. This means that the

system is specified by defining the temporal relationship between

the interactions that constitute the externally observable behaviour

of a system. LOTOS is a functional description technique generally

applicable to distributed, concurrent information processing systems.

LOTOS has been especially developed for OSI standards.

_____________________________11 _

_____2.0.3. LOTOS

Design principles of LOTOS:

Processes are described by ordering the units of their observable

behaviour called events. Events are atomic instances of synchro­

nized interaction between two or more processes. A LOTOS expres­

sion that defines an ordering of events is called a behaviour

expression. Behaviour expressions may be combined in a new

behaviour expression by the use of operators defined in LOTOS.

For example, Bl []B2, means the combination of the processes B I

and B2 to one process containing a choice between the two

processes.

The definition of abstract data types IS done in the same way as in

SDL. This means that a type is defined by its operators and the

domain/range the operators work on.

Until now LOTOS has only a textual form, but the CCITT X/3

group has the intention to develop a graphical syntax for LOTOS

and a proper tool for it. They will use the experience with the SDL

graphical representation as basis and possibly bridge the gap

between SDL and LOTOS.

2.0.4. Petri nets

There are all kind of description languages based on Petri nets. In

these languages the basic principle of Petri nets has some

extensions to handle spedfjc problems in describing systems.

Some of these extensions are:

introduction of timing constructs

queues for asynchronous message handling

use of predicates

combination with state-diagrams.

However it seems that Petri nets and related forms are only useful

for description of small concurrent systems. When the system to be

described is big or is built out of more than two parallel working

state-machines, it is very hard to give a clear representation using

Petri nets.

____________________________12 _

2.0.5. SDL

SDL stands for Specification and Description Language. SDL is

based on the model of Communicating Extended Finite State

Machines (CEFSM). SDL has evolved from an informal language to a

formalized language defined in Rec.ZlOO of the CCITT [CCITT]. SDL

supports a graphical and a textual presentation with a one to one

transla tion in both wa ys.

An SDL SYSTEM has a set of BLOCKS. Blocks are connected to

each other and to the ENVIRONMENT by CHANNELS. Within each

block there are one or more PROCESSES. These processes

communicate with one another by SIGNALS and are assumed to

execute concurrently. The Processes are defined by extended finite

state machines.

In SDL there are three levels of abstraction:

system level

block level

process level

Detailing in the block level is possible by BLOCK SUBSTRUCTURES

and CHANNEL SUBSTRUCTURES. At process level detailing is

possible using SIGNAL REFINEMENT.

Every SDL Process has one input·Queue for all signals defined in a

signal definition. Signals received by a process not defined in the

signal definition are discarded. Consumption of input messages can

only take place starting from a state. When the first message to be

consumed is not defined in a particular state as an INPUT or a

SAVE, the message is lost.

SDL has the same abstract data typing as mentioned in the LOTOS

description. A more exact description of SDL constructs will be

stated in the next chapter.

__________________________13 _

2.1. Comparison of SDL, Statecharts, ESTELLE, LOTOS and

Petri nets.

Every description technique has its major advantages and disad­

vantages. When comparing different techniques we can define some

idealized language which has all the advantages. The problem is

that formalization of a description competes with a good human

interface. A good specification/description language will be a

compromise between certain demands.

In the following an evaluation is given of some features we need

and how those features are implemented by some of the specifi­

cation/description languages. This evaluation is partially based on

[SOL '87] where SOL, LOTOS and ESTELLE are compared.

2.1.1. Concurrent aspects

Communication between processes can be described asynchronously

or synchronously. From an implementation point of view the easiest

way to let two state-machines communicate is synchronous. The

description of communication between processes is easier when done

asynchronous. Asynchronous communication between processes does

not bother about (unspecified) delays, a state-transition occurs

when a message arrives. When we want to synchronize certain

actions to a clock-signal, it is easier to describe communication

synchronously.

Another aspect of concurrency is the way different processes are

synchronized to each other. Again, from an implementation point of

view it is easier to synchronize two (or more) state-machines to a

common system-clock. In a system description however it is often

not important whether two processes (running in parallel) are

synchronized or not.

____________________________14 _

_____2.1.1. Concurrent upec:t&

The easiest way to cope with concurrent aspects is to base the

specification language on asynchronous communication/parallelism

with specia I constructs for synchronous communica tion/parallelism.

None of the languages stated cover all concurrent aspects. SOL and

ESTELLE only implement the asynchronous model. Petri nets and

Statecharts are based on the synchronous model. LOTOS is based

on asynchronous parallelism with synchronous communication.

2.1.2. Data description aspects

To describe a digital system at a high level the language must

contain a well structured data typing. The visibility of data has to

be easy to define either explicit or implicit. This means that the

visibility of data is defined by structuring of the system or by

means of exporting/importing data between processes.

A good mathematical based data typing is necessary for simulation

purposes and prove of deadlock-free design. On the other hand a

strong mathematical base must not lead to difficult to make

descriptions. For instance, a shift operation on a register must be a

simple data operation rather than operations on all bits of a

register.

The standard form of Petri nets has no data typing. Statecharts

(and related views) are not formalized yet towards data typing.

ESTELLE uses the same (weak) data typing as in Pascal. LOTOS

and SOL are based on almost the same (strong) abstract data

typing. The difference between LOTOS and SOL is that LOTOS is

developed on this abstract datatyping, and SOL is formalized by

introducing abstract data-typing later on.

The visibility of data in ESTELLE is based on free access of data

inside the 'parent-relationship'. This means that child-processes of

the same parent can access each others data. Inside a SOL-BLOCK

data owned by one process can be made visible by a REVEALEO

____________________________15 _

_____2.1.2. Data description aspects

mechanism to other processes using a VIEW mechanism. A process

can access data from a process outside a SDL-BLOCK using an

IMPORT action containing the identifier of the owning process

(data has to be EXPORTed first before it can be imported). LOTOS

does not know visibility constructs. All interactions in LOTOS are

based on explicit actions. This means that the only way to make

data visible elsewhere, is to use explicit parameter passing.

2.1.3. COD trol aspects

To describe state-transitions at process level in an easy way, the

language needs conditional and case statements. These statements

should base their decisions upon input conditions as well as the

contents of variables. Also conditional loops based on variable

conditions are very useful to describe a process on at high level.

Especially in hardware design the language needs a natural way to

describe system reset mechanisms and reset-state definitions.

This means that the language needs constructs for general control

of all processes in the system. Priority constructs are very useful

in this context, for instance to describe interrupt handling.

ESTELLE, LOTOS, SDL and Statecharts all implement a kind of

conditional statements/loops. However general control of all

processes is not possible using a simple construct. The only way to

implemen t general control, is to describe in every state of every

process how to react on general control messages.

____________________________16 _

2.1.4. Formal definition aspects

It is only possible to prove the correctness of a specification

(description) if the specification (description) language has a

formalized semantics based on a solid mathematical theory. During

the specification stage it must be possible to prove whether the

specification is equivalent with its refinement or not. To prove

equivalence between two specifications means proving whether the

observable behaviour is the same for the two specifications.

To automate implementation of the description it is also very useful

to have a strong formal base. Tha tis: it is easier to translate a

strong formal based language into a high level hardware

implementation language like [HHDL].

ESTELLE is based on Pascal but is not formalized yet. Until now

the formalization of ESTELLE is not towards a strong mathematical

base. so prove of equivalence of refinement is not possible.

However ESTELLE stands very near to an implementation language

because in ESTELLE many details have to be specified.

SOL is not formalized completely towards a strong mathematical

base. However there are possibilities to translate SDL descriptions

in CCS [Koomen].

LOTOS is based on CCS. so it has a good formal base. For automa­

tion of implementation SDL and LOTOS will need a library of

certain objects.

Petri nets are common to use in searching for deadlocks in

communication protocols between two devices. However Petri nets

are not very useful (at least the standard form is not) in describing

more than two state machines.

____________________________17 _

2.1.5. Human orien ta tion aspects

In chapter one we already pointed out that we need a specifi­

cation (description) language to handle things like system

complexity, concurrency, ambiguity, validation and simulation. In

other words we need a way to describe these things in a human

friendly way.

The language therefore not only has to be easy to use but also

easy to read. For readability purposes the language therefore needs

a graphical representation. However this graphical representation

must have a one to one representation in text for simulation and

transla tion purposes.

An aspect which is closely related to the ease of using of the

language is that the implementation has to be as independent of

the specification as possi ble.

LOTOS and ESTELLE only have a textual form. Therefore it is not

easy to get an overview of the system in a short time. Because of

the closeness of ESTELLE towards implementation, ESTELLE also is

not easy to use (to many details have to be specified).

Statecharts, SDL-GR and Petri nets are easy to read because their

graphical representation. SDL-GR has an (almost) one to one

representation in textual form (SDL-PR).

2.2. Conclusions

Before the strong and weak aspects of the different languages are

given let us summarize the fields the languages are developed for.

Statecharts is the only language which is especially developed for

describing complex systems built of parallel working state machines.

ESTELLE, SDL and LOTOS all are based on a (state) machine

model. LOTOS is developed especially for formal description of

protocols in the OSI environment. ESTELLE is developed for

specification of data communication protocols. SDL is developed for

specification and description of telecommunication-standards,
____________________________18 _

_____2.2. Conclusions

processes and systems especially those related to switching and

signalling.

Statecharts is strong because of its graphical representation. But

the technique is weak because of its closeness to implementation in

sta te machines.

ESTELLE is strong because it is based on the Pascal language

which is used by many design languages. However ESTELLE (Pascal)

does not have abstract data typing and is weak because of its

closeness to implementation.

SOL has grown to a formal description language from a human

oriented description technique. The main advantage of SOL is the

formal use of graphical description with one to one translation to a

tex tua I form.

LOTOS is a strong language because of its mathematical base

(CCS). But LOTOS is to close to CCS to be a user friendly

language. When a graphical form of LOTOS is provided, the

language will be far more popular.

Petri nets are easy to read but only 'useful for very small systems.

Extended forms of Petri nets are more user friendly towards bigger

systems.

____________________________19 _

3. SDL syntax and structuring (Dining Philosophers problem)

In this chapter the syntax of SDL will be described with an

example description of the Dining Philosophers problem [Dijkstra].

The Dining Philosophers problem is used to describe semaphore

operation and avoidance of starvation. The exact problem definition

is as follows:

There are n philosophers whose lives consist of alternately thinking

and eating. The philosophers eat at a large circular table with a

preassigned plate for each. Between two plates is a fork, which

may be used by either adjacent philosopher. In order to eat, a

philosopher must have two forks (one on his left and the other one

on his right).

al'oid deadlock and stanation:

• deadlock will occur when all philosophers have one fork waiting

to get the other one.

• starvation will occur when the neighbours of a philosopher

get their common fork first.

model:

processes:philosophers

resources:forks

Philosopher(i): begin

Think;

claim_forks;

Eat;

release_forks;

end

LEFT.FORK(i)=RIGHT.FORK(i+ I)

initial: all forks on table -> all semaphores=}

endmodel

In trying to show many constructs in SDL the decomposition of the

Dining Philosophers problem into different processes may be

exaggerated (or inefficient). In the following paragraphs the SDL
__________________________2.0. _

_____,8. SDL syntax and structuring

description of the Oining Philosophers problem will be given. After

the SOL description some other SOL-constructs (not used in the

Oining Philosophers problem) will be presented.

Before we look at the SOL-syntax, let us see how SOL is structu­

red. SOL has three abstraction levels: system level, block level and

process level. System level is the top level of the SOL description.

The system contains one or more block definition(s). Oifferent

blocks can communicate through channels by signals. Communication

with the environment of the system also take place using channels

which are connected between the system boundary and a block.

The block definition can be split in one or more block defini­

tion(s) by means of substructuring or in one or more process

definition(s). Processes can communicate using signalroutes.

Processes may be split in one or more service definition(s). The

bottom level definition of a process (service) is called the process­

body (service-body). This process-body (service-body) defines the

actual behaviour depending on input messages and conditions using

a kind of flow-chart.

A schematic overview of SOL-structuring is given in the following

figure.

ISYSTEMI
,

BLOCK ! BLOCK iBLOCK

:....-._._._ - .- .. _._---_ '

, BLOCK

,/"_._..- -'" ". I

!PROCESS

,
<PROCESS BODY>SERVICE

.•........
-

II BLOCK I-

<SERVICE BODY>

fig 4: structuring in SOL

__________________________21 _

____-.:3. SDL syntax and structuring

3.1. System definition

A system-definition is the SDL representation of a specification or

description of a system. A system is separated from its envi­

ronment by a system boundary and contains a set of blocks.

Communication between the system and the environment or between

blocks within the system can only take place using signals. Within

a system, these signals are conveyed on channels. The channels

connect blocks to one another or to the system boundary.

The use of block references in a system-definition gives a better

overview when named properly. A block reference is similar to a

macro call except that it can only be used once using a reference

to a remote block definition (a block definition given separately).

Besides channel-, block- and signal-definitions, the system defi­

nition may contain select-, macro- and data-definitions. The select­

definition is used to insert optional system parts depending on

conditional values outside the system. Macro-definitions contain

system parts which are grouped together to form a logical

subsystem which can be inserted using a macro call. Data-defini­

tions contain type definitions used for signal- and select­

definitions. Note: definitions of variables owned by the system are

not allowed at system level so it is not possible to define global

variables visible for all system parts using a variable declaration.

3.1.1. SYSTEM DINING PHILOSOPHERS

Graphical representation (fig SA)

The system-definition is contained by a frame symbol which forms

the system boundary. The system name (DINING_PHILOSOPHERS) is

placed in the upper left corner of the frame symbol. The system­

definition needs one page (with number I) which is stated in the

upper right corner of the frame symbol. The text symbol (optio­

nal) contains a textual description of the system between the note-

____________________________22 _

____--'3.1.1. SYSTEM DINING_PHILOSOPHERS

symbol U·<note>· /) and a signal-definition. The messages

claim_forks and release_forks are of type integer (they carry an

integer value with them). This integer value is used for iden­

tification of the philosopher. The message forks free contains no

explicit value, this message only has a synchronization (control)

function. All messages contain implicitly the identifier of the

process (PJD) they come from.

Note: In general the text-symbol is used for all kinds of

definitions which can not be described graphically.

The system is build of two blocks, one BLOCK FORKS and one

BLOCK PHILOSOPHERS. Channel CI can carry the messages

claim forks and release forks from PHILOSOPHERS to FORKS.

Channel C2 can carry the message forks free from FORKS to

PHILOSOPHERS. The only thing the philosophers 'see' are the

forks, they do not communicate with the environment through

channels.

Textual representation (fig SB)

The textual representation is a one to one representation of the

graphical represen ta tion.

__________________________23 _

SYSTEM DINING PHILOSOPHERS 1(1)

1* There are 10 philosophers whose lives consist of alternately

thinking and eating. The philosophers eat at a large circular

table with a preassigned plate for each. Between two plates is a fork,

which may be used by either adjacent philosopher. In order to eat, a

philosopher must have two forks (one on his left and the other one on his

right)·/

SIGNAL claim_forks(i n teger),release_forks(i n teger),farks_free;

j:laim forksl
LeleaSe_fork.:J

.......
FORKS CI PHILOSOPHERS

C2......

fig SA: graphical representation SYSTEM DINING_PHILOSOPHERS
__________________________24 _

_____.8.1.1. SYSTEM DINING_PHILOSOPHERS

SYSTEM Dining_Philosophers;

r There are 10 philosophers whose lives consist of alternately
thinking and eating. The philosophers eat at a large circular table
with a preassigned plate for each. Between two plates is a fork,
which may be used by either adjacent philosopher. In order to eat,
a philosopher must have two forks (one on his left and the other
one on his right) ./

SIGNAL claim_forks(in teger),release_for ks(in teger),forks_free;

CHANNEL Cl
FROM PHILOSOPHERS TO FORKS
WITH claim forks,release forks;

ENDCHANNEL C 1; -

CHANNEL C2
FROM FORKS TO PHILOSOPHERS
WITH forks free;

ENDCHANNEL C2;

BLOCK PHILOSOPHERS REFERENCED;
BLOCK FORKS REFERENCED;

ENDSYSTEM Dining_Philosophers;

fig 5B: textual representation SYSTEM DINING_PHILOSOPHERS

3.2. Block definition

A block definition is a container for one or more process defi­

nitions of a system and/or a block substructure. Purpose of the

block definition is the grouping of processes that as a whole

perform a certain function, either directly or by a block

substructure. A block substructure is a partitioning of a block

definition into a set of subblock definitions, channel definitions and

subchannel definitions. A channel substructure is a partitioning of a

channel definition into a set of block definitions, channel defini­

tions and subchannel definitions. A subblock definition is a block

definition, and a subchannel definition is a channel definition. This

means that a subblock (subchannel) may be partitioned in subblocks

(subchannels) any number of times.

__________________________25 _

_____8.2. Block definition

The partitioning of the system in subblocks can be clarified by an

auxiliary diagram containing a block tree. In this tree the subblock

definitions are one level lower than the originating block definition.

That is, the branches of the tree visualize the way a block is

partitioned into subblocks. Only leaf blocks in the tree contain

process definitions.

Note: This diagram is not part of the SDL syntax.

3.2.1. BLOCK PHILOSOPHERS and BLOCK FORKS

Graphical representation PHILOSOPHERS (fig 6A)

The block definition is contained by a frame symbol which forms

the block boundary. The block name (PHILOSOPHERS) is placed in

the upper left corner of the frame symbol. The text symbol con­

tains a textual description of the block.

The block PHILOSOPHERS is build of two process definitions repre­

sented by special process symbols. Process Philosopher has at

system crea tion zero instances and a maximum of ten instances

stated by (0,10) in the process symbol. Process BIRTH has at

system creation one instance and a maximum of one instance stated

by (I, 1) in the process symbol. Process BIRTH can create a process

philosopher visualized by a create line symbol (dashed line plus

arrowhead). Process Philosopher is connected with channel Cl and

C2 by signalroute R 1 and R2 respectively. The arrowhead of a

signalroute is connected to a frame symbol to visualize the dif­

ference with a channel where the arrowhead is not connected to a

frame symbol.

Textual representation PHILOSOPHERS (fig 6B)

The textual representation is a one to one representation of the

graphical representation except that the create relation between

BIRTH and Philosopher has no textual counterpart.

___________________________26 _

BLOCK PHILOSOPHERS

r At system-creation the BIRTH-process creates 10

I (I)

Philosopher-processes. The name of a philosopher is an

integer value [0..9]. Philosopher i sits between Philosopher

(i-l) and Philosopher (i+l). */

CI
--

Rl

f:1aim forksl
~eleaSe_forkJ

I

C2

Philosopher (0,10) -C .. __

fig 6A: graphical representation BLOCK PHILOSOPHERS

BIRTH (\,1)

_________________________27 _

_____.3.2.1. BLOCK PHILOSOPHERS and BLOCK FORKS

BLOCK PHILOSOPHERS;

/* At system-crea tion the
processes. The name of a
Philosopher sits between
*/

CONNECT CI AND RI;
CONNECT C2 AND R2;

BIRTH-process crea tes 10 Philosopher­
philosopher is an integer value [0..9].

Philosopher (i-I) and Philosopher (i+ I).

SIGNALROUTE RI FROM Philosopher TO ENV
WITH release_forks,claim_forks;

SIGNALROUTE R2 FROM ENV TO Philosopher
WITH forks_free;

PROCESS Philosopher (0,10) REFERENCED;
PROCESS BIRTH (1,1) REFERENCED;

ENDBLOCK PHILOSOPHERS;

fig 6B: textual representation BLOCK PHILOSOPHERS

Graphical representation FORKS (fig 7A)

The text symbo~ contains apart from a textual description of the

block a signal definition. The signal definition contains the signals

carried by the internal signal routes. The signal test_and_set has a

second type PID. Type PID is used here to identify the source

process (one of the instances of process P). The input process can

create P and V processes with a maximum of ten instances each.

To keep track of which philosopher has claimed or released the

forks the input process creates a P or V process with a formal

parameter corresponding to the value of claim forks or

release_forks respectively.

Note: The use of these particular formal parameters is not stated in

the block definition but is described at process level. The create

action has an implicit value passing causing the updating of the

values OFFSPRING In the creating process and PARENT in the

created process. After successful process creation OFFSPRING has

the PID value of the last crea ted process and PARENT has the PID

value of the creating process (the "parent" process). When the
__________________________28 _

BLOCK FORKS I (I)

r Claim_forks(name) causes the input-process to

create a P-process. Release_forks(name) causes

to create a V-process. The P-process looks to the TABLE

to look jf the claimed forks are free, and claimes them when

they are free. The V-process frees the forks at the TABLE. • /

SIGN AL test_a nd_set(integer,PID),reset(in teger),

fork_free;

P (0,10)
~ ------ --

....

RI

f:laim forkS]
L.:eleaSe_forks

"~"" -I C I
....

R2

input (1,1)

-0oס1 ..' C2

~orkurJr
V (0,10)

R5

R4

TABLE (1,1)

fig 7A: graphical representation BLOCK FORKS
_________________________2,9 _

_____,8.2.1. BLOCK PHILOSOPHERS and BLOCK FORKS

process creation has not been successful (the maximum allowed

number of processes was already created) the value of OFFSPRING

will be null.

Textual representation FORKS (fig 7B)

The textual representation is (as usual) a one to one represen­

tation except for the create line symbols.

BLOCK FORKS;

1* Claim forks(name) causes the input-process to create a P­
process. Release_forks(name) causes to create a V-process. The p.
process looks to the TABLE to look if the claimed forks are free,
and claims them when they are free. The V-process frees the forks
at the TABLE. • /

SIGN AL test_and_setOn teger,PID),reset(in teger),fork_free;

CONNECT CI AND RI;
CONNECT C2 AND R2;

SIGNALROUTE Rl FROM ENV TO input
WITH claim_forks,release_forks;

SIGNALROUTE R2 FROM P TO ENV
WITH forks_free;

SIGNALROUTE R3 FROM P TO TABLE
WITH test_and_set;

SIGN ALROUTE R4 FROM V TO TABLE
WITH reset;

SIGNALROUTE R5 FROM TABLE TO P
WITH fork_free;

PROCESS input (I, 1) REFERENCED;
PROCESS P (0,10) REFERENCED;
PROCESS V (0,10) REFERENCED;
PROCESS TABLE (I,1) REFERENCED;

ENDBLOCK FORKS;

fig 7B: textual representation BLOCK FORKS

_________________________,80 _

3.3. Process definition

As stated in [CCITT] the semantics of a process are:

A process definition introduces the type of a process which is

intended to represent a dynamic behaviour.

In the number of instances the first value represents the number of

instances of the process which exist when the system is created,

the second value represents the maXImum number of simultaneous

instances of the process type.

A process instance is a communicating extended finite state

machine (CEFSM) performing a certain set of actions, denoted as

transitions, accordingly to the reception of a given signal,

whenever it is in a state. The completion of the transition results

in the process waiting in another state, which is not necessarily

different from the first one.

The concept of a finite state

the state resulting after a

nating the transition, may be

variables known to the process.

machine

transition,

affected

has been extended so that

besides the signal origi­

by decisions taken upon

Process

can be

Several instances of the same process type may exist at the same

time and execute asynchronously and in parallel with each other,

and with other instances of different process type in the system.

When a system is created, the initial processes are created in a

random order. The ini tial processes are those actions described

between the start state of a process and the first (waiting) state.

The signal communication between processes commences only when

all the initial processes have been created. The formal parameters

of these initial processes are initialized to an undefined value so

they have no meaning at system creation.

instances exist from the time that a system is created or

created by create request actions which start the proces-
_____________________________31 _

_____,ll.ll. Process definition

ses being interpreted. Their interpretation starts when the start

action is interpreted. They may cease to exist by performing stop

actions on themselves.

Signals received by process instances are denoted as input signals,

and signals sent to process instances are denoted as output signals.

Signals may be consumed by a process instance only when it is in a

state. The complete valid input signal set consists of those signals

in all signal routes leading to the process together with all signals

defined local to the process, the implicit signals and timer signals

(timer signals are signals which are placed in the input Queue by a

timer which has expired).

One and only one input port is

instance. When an input signal arrives

the input port of the process instance.

associated with each process

a t the process, it is pu t in to

The process is either waiting in a state or active performing a

transition. For each state, there can be a save signal set. When

waiting in a state, the first input signal whose identifier is not in

the save signal set is taken from the Queue and consumed by the

process. When the signal consumed in a state is listed as input

action, the corresponding transition takes place, otherwise the

signal is deleted and the next signal in the Queue not defined in

the save signal set will be consumed.

The input port may retain any number of input signals, so that

several input signals are Queued for the process instance. The set

of retained signals are ordered in the Queue according to their

arrival time. If two or more signals arrive on different paths

"simultaneously", they are arbitrarily ordered.

When the process is created, it is given an empty input port, and

local variables are created with undefined values assigned to them.

The formal parameters are variables which are created either when

the system is created (but no actual parameters are passed to them

____________________________32 _

_____8.8. Process definition

and therefore they are not initialized) or when the process instance

is dynamically created.

To all process instances four expressions yielding a PID (Process

Identifier) value may be used: SELF, PARENT, OFFSPRING and

SENDER. They give result for:

a) the process instance (SELF);

b) the creating process instance (PARENT);

c) the most recent process instance created by the process

(OFFSPRING);

d) the process instance from which the last input signal has been

consumed (SENDER);

For all process instances present at system initialization, the

PARENT expression always has the value NULL. For all newly

created process instances the predefined SENDER and OFFSPRING

expressions have the value NULL.

The Process description has two means of abstraction. The first one

is the use of procedure definitions. The procedure is invoked in the

process by means of a procedure call referencing the procedure

definition. Parameters are associated with a procedure call: these

are used both to pass values, and also to control the scope of

variables for the procedure execution. Which variables are affected

by the interpretation of a procedure is controlled by the parameter

passing mechanism.

Another use of abstraction in a process definition is the use of

decomposition of the process definition in services as stated in the

beginning of this chapter. Service definitions have almost the same

syntax as process definitions. The major differences are:

A service instance can not run in parallel with other service

instances of the process instance. Within a process instance only

one service instance can perform a transition at anyone time.

Only one service definition is allowed to have a start containing a

transition string (an initializing process).

____________________________88, _

_____,3.3. Process definition

Procedure definitions called by a service must not have states.

Special priority input and output signals can be used between

services and to a service itself (using TO SELF).

Note: Service definitions in a process can be merged to one pro­

cessbody with all possible combinations of service states repre­

sented as a state-vector (with the same number of elements as the

number of services). All possible combinations of service states

means all combinations within the restriction that only one ser­

vice instance can perform a transition at anyone time. At a

transition only one element in the state-vector may change. If in a

service a transition leads to a STOP, then the resulting process

will also lead to a STOP: the process ceases to exist.

3.3.1. PROCESS Philosopher, BIRTH, INPUT, P, V and

TABLE

Graphical representation Philosopher (fig 8A,8B)

In the upper left corner behind the process name (Philosopher) the

use of a formal parameter: name (type integer) is stated. This

parameter receives at process creation the value identifying the

philosopher's place at the table. In the upper right corner is stated

that the process definition takes two pages.

The text symbol contains a timer definition and a variable

declaration stated by TIMER an DeL respectively. There are two

timers named HUNGRY and FULL respectively. When timer HUNGRY

(FULL) is expired, a message HUNGRY (FULL) is placed in the

input queue of the process. The variable declaration defines a

variable random duration of type duration. Type duration is a

special type especially for setting timers and related time

expressions.

___________________________-'34 _

_____,3.3.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

Although not formally stated the access of variable random du­

ration will return a random value of type duration.

The process begins at the start symbol followed by two initia-

lizing tasks before it enters the wait state THINK. The first task

gives an informal action description GO THINK. The second task

sets timer HUNGRY with the value NOW+random duration (NOW

returns the value of the actual system time).

When the timer HUNGRY expires (causing a message HUNGRY) the

following transition takes place. The message claim_forks containing

the value of name is put out by the process and the process enters

in the nex t sta te WAIT.

When the message forks_free is received, the philosopher starts to

eat, the timer FULL is set and the process enters state EAT.

When the timer FULL expires, the message release_forks(name) is

put out, the timer HUNGRY is set, the Philosopher goes thinking

again and goes back to state THINK.

____________________________35 _

PROCESS Philosopher FPAR name integer

GO THINK

SET(NOW+random

duration,HUNGRY

GO EAT

1(2)

\
TIMER HUNGRY ""-

FULL;

DCLrandom duration

duration;

fig 8A: graphical representation PROCESS Philosopher (p.l)

________________________-'36 _

PROCESS Philosopher FPAR name integer

SET(NOW+random

dura tion,FULL)

release

SET(NOW+random

duration,HUNGRY

GO THINK

2(2)

THINK

fig 8B: Graphical representation PROCESS Philosopher (p.2)
________________________87 _

_____8.8.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

PROCESS Philosopher (0, I0);

FPAR name integer;
DCL random duration duration;
1* random duration is assumed to give a random figure of type
duration when called */
TIMER HUNGR Y,FULL;

START;
T ASK GO THINK;
TASK SET(NOW+random dura tion,HUNGR V);

NEXTSTATE THINK; -

STATE THINK;
INPUT HUNGR Y;
OUTPUT claim_forks(name);

NEXTSTATE WAIT;

STATE WAIT;
INPUT forks free;
TASK GO EAT;
TASK SET(NOW+random duration,FULL);

NEXTST ATE EAT; -

STATE EAT;
INPUT FULL;
OUTPUT release forks(name);
TASK SET(NOW+random dura tion,HUNGR Y)
T ASK GO THINK; -

NEXTSTATE THINK;

ENDPROCESS Philosopher;

fig 8C: textual representation PROCESS Philosopher

Graphical representation BIRTH (fig 9A)

Process BIRTH creates ten Philosopher processes wi th different

formal parameter values (0..9). This process has no waiting states,

all actions take place at system creation ending with a STOP

ca using the process to cease to exist.

The start symbol is followed by a task which initializes i. After

that process Philosopher is created with formal parameter set to

the value of i. The next task increments the value of i followed by

a decision whether i equals 10 or not. Upon false the process

creates the next Philosopher process. When i equals 10, process
_________________________88 _

PROCESS BIRTH

i:=O DCL i integer;

1(l)

Philosopher(i)

i:=i+ I

(false) (tr ue)

rig 9A: graphical representation PROCESS BIRTH
________________________89. _

_____8.8.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

BIRTH ceases to exist visualized by the stop symbol.

N.B. STOP causes the immediate halting of the process instance

issuing it. The signals in the input port are discarded and the

variables, timers, input port and process all cease to exist.

Textual representation BIRTH (fig 9B)

The conditional loop is described by the use of a label (#A) and a

JOIN statement describing the jump back (to #A).

The DECISION description has a special syntax for describing

complex decisions upon any number of values or informal text. The

decision-answers (stated in parentheses) must be mutually exclu­

sive. Other ways to describe the decision in the process would be:

DECISION i;
(i=IO): STOP;
(i< I0): JOIN #A;

PROCESS BIRTH (1,1);

DCL i in teger;

START;
TASK i:=O;

#A: CREATE Philosopher(i);
TASK i:=i+l;
DECISION i=10;
(true): STOP;
(false): JOIN #A;

ENDPROCESS BIRTH;

DECISION i;
(i= 10): STOP;
ELSE: JOIN #A;

fig 9B: textual representation PROCESS BIRTH

___________________________40, _

_____,3.3.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

Graphical representation INPUT (fig lOA)

Process INPUT uses the implicit updating of the PID value SENDER

at the consumption of a signal. To identify the source process (one

of the Philosophers) at the creation of P and V processes, the

value of SENDER is given to the first formal parameter. The value

of name is given to the second formal parameter of P or V when

crea ted.

The state symbols including the bar (-) are an alternative repre­

sentation for the preceding state. After the transition the process

enters the same state where it started from (here the input state).

PROCESS INPUT (1,1);

DCL name integer;

START;
NEXTSTATE input;

STATE input;
INPUT c1aim_forks(name);
CREATE P(SENDER,name);

NEXTSTATE -;
INPUT release forks(name);
CREATE V(SENDER,name);

NEXTSTATE -;

ENDPROCESS INPUT;

fig lOB: textual representation PROCESS INPUT

Graphical representation P (fig IIA)

Process P is created by the input process, it puts out test_and_ set

messages to process TABLE. These messages contain an identifier of

the wanted fork (place) and the PID of the process P itself (SELF)

to be used by process TABLE when sending back the message

fork free.

Testing and setting of the forks is done one fork at a time to

avoid deadlock and starvation. To avoid deadlock the philosopher

__________________________41 _

PROCESS INPUT I (l)

for ks(name)

P(SENDER,name)

DCL name integer;

release

forks(name)

V(SENDER,name)

- -

fig lOA: graphical representation PROCESS INPUT
_________________________(2 _

PROCESS P FPAR PHILO PID,PLACE integer 1(1)

TO PHILO

(FALSE)

est and set

(TRUE)

a,SELF)

fig II A: graphical representation PROCESS P
_________________________.3, _

_____3.3.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

sitting at place 10 gets his forks in reverse order (so the situation

of all philosophers having one fork waiting for the other one is not

possible).

When both forks are available the process P sends forks_free to

the waiting philosopher identified by the value of PHILO and the

process P ceases to exist.

PROCESS P (0,10);

FPAR PHILO PID,PLACE integer;

START;
DECISION PLACE.. I0;
(true): OUTPUT test_and_set(PLACE-I,SELF);

NEXTSTATE B;
(false): OUTPUT test and set(PLACE,SELF);

NEXTSTATE A; - -

STATE A;
INPUT fork free;
OUTPUT test and set(PLACE-I,SELF);

NEXTSTATE C; - -

STATE B:
INPUT fork free;
OUTPUT test and set(O,SELF);

NEXTSTATE C; - -

STATE C;
INPUT fork free;
OUTPUT forks free TO PHILO~

STOP; -

ENDPROCESS P;

fig lIB: textual representation PROCESS P

_________________________44 _

PROCESS V FPAR PLACE integer

reset(PLACE_

modlO)

reset(PLACE-I)

1(1)

fig 12A: graphical representation PROCESS V
_________________________45 _

_____,8.8.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

PROCESS V;

FPAR PLACE integer;

START;
OUTPUT reset(PLACE mod 10);
OUTPUT reset(PLACE-I);

STOP;

ENDPROCESS V;

fig 12B: textual representation Process V

Graphical representation TABLE (fig 13A,13B)

The first page of the process definition of TABLE shows the

initializing of the flags corresponding with the availability of the

forks (setting all flags because no fork is in use).

The second page shows the test and set mechanism and the reset

mechanism. When a test and set message is consumed, the decision

upon the availability of the fork is taken. When the fork is already

taken (when fork[id]=O) the test and set message is put back in

the input Queue of process TABLE. When the fork is free, the

corresponding flag is set to zero and a message fork free is put

out by the process to src (that is to the source P process of the

message test_and_set).

N.B. the explicit value passing of the PID value of the P process

would not be necessary when the message test_and_set is only put

once in the input Queue. Because then it would be possible for

process TABLE to use the value of SENDER after reception of

test_and_set.

__________________________.6, _

PROCESS TABLE 1(2)

DCL id,i integer,src PID,

fork array[O..9] of integer

i:=O

(FALSE) (TRUE)

fork[i]:=l

i:=i+l

START

2

fig 13A: graphical representation PROCESS TABLE (p.l)
________________________47 _

PROCESS TABLE 2(2)

START

reset(id)

(FALSE ..,.....,;,.,(T...RUE)
fork[id]:=l

-fork[id]:=O

fork free

TO src
-

test and set

-

fig 13B: graphical representation PROCESS TABLE (p.2)
________________________48 _

_____.3.3.1. PROCESS Philosopher, BIRTH, INPUT, P, V and TABLE

PROCESS TABLE;

DCL id,i integer,src PID,fork array[0..9] of integer;

START;
TASK i:=O;

#A: DECISION i= 10;
(true):

NEXTSTATE START;
(false): TASK fork[i]:=l;

TASK i:=i+l;
JOIN #A;

STATE START;
INPUT test and set(id,src);
DECISION fork[id]=l;
(true): TASK fork[id]:=O;

OUTPUT fork free TO src;
NEXTSTATE -; -

(false): OUTPUT test and set(id,src) TO SELF;
NEXTSTATE -; - -

INPUT reset(id);
TASK fork[id]:=l;

NEXTSTATE -;

ENDPROCESS TABLE;

fig l3C: textual representation PROCESS TABLE

3.4. Other SDL constructs

SOL constructs not mentioned in the preceding paragraphs are:

save

asterisk- state, save and input

enabling condition and continuous signal

procedure call, procedure start and procedure return

exported and imported value

revealed and viewed value

NEWTYPE

Except for the last construct (NEWTYPE) all other constructs are

used in the SOL process definition. Let us see how they can be

used.

_________________________49 _

_____,3.4. Other SDL constructs

save

A save specifies a set of signal identifiers (a save list) whose

instances are not relevant to the process in the state to which the

save is attached, and which need to be saved for future processing.

Graphical representation (fig 14)

A parallelogram containing a save list.

Textual representation:

SAVE <save list>;

<sovelist>

fig 14: the save symbol

asterisk- state, sa\'e and input

The asterisk notation is used to combine states or signals to

specify their common beha viour.

Asterisk state is used to describe a transition which is the same

for all states contained in the asterisk state list (e.g. a reset

action). The asterisk state list is transformed to a state list

containing all state names of the process definition in question,

except for those state names mentioned in the asterisk state list in

parentheses.

Graphical representation:

A state symbol containing the asterisk state list

Textual representa tion:

The asterisk state list is an asterisk (*), possibly followed by a list

in parentheses of one or more states (separated by commas) which

are excepted.

_____________________________5o _

_____,3.4. Other SDL constructs

In BNF format:

<asterisk state list>::=

<asterisk> [«sta te name> {,<state name>}*)]

<asterisk>::= *

Note: All state descriptions in a process definition having the same

name are joined into one state having the same name, so the actual

state description is the composition of all separate state

descriptions with the same name.

Asterisk input is used to describe a transition which is the same

for all inputs contained in the asterisk input list.

E.g. a number of Sources sending signals to one process. The

signals have different names for source identification but

will start the same transition. Then use of an asterisk

input list is useful to visualize the common functionality

of the different signals.

An asterisk input list is transformed to a signal list containing the

complete valid input signal set of the process definition, procedure

definition, or service definition in question, except for signal

identifiers contained in other input lists and save lists of the state.

Graphical represen ta tion:

An input symbol containing an asterisk.

Textual representation:

An asterisk instead of an input signal name.

Asterisk save will cause the saving of all signals not mentioned as

input signals of the attached state. The transformation of an

asterisk save list to a signal list is done in the same way as the

transformation of the asterisk input.

Note: It is only allowed to use either one asterisk input list or

one asterisk sa ve list in a sta teo

____________________________51 _

_____8.•. Other SDL constructs

enabling condition and continuous signal

Until now a transition in a SDL process was initiated only by an

input signal. The continuous signal construct allows a transition to

be initiated directly when a certain condition is fulfilled. A related

construct, the enabling condition, allows signal reception only when

the enabling condition is fulfilled (when it's value equals True).

Both constructs use the same symbol containing a boolean expres­

sion. The difference between the two is visualized by the position

of the symbol. A continuous signal is connected to a state symbol,

an enabling signal is connected to an input symbol.

enabling condition

The enabling condition is evaluated before entering the state in

question, and any time the state is re-entered through the arrival

of a stimulus through the input port (this stimulus is generated at

the arrival of input or generated by the model itself). A signal

denoted in the input list which precedes the enabling condition can

start a transition only if the value of the boolean expression is

True. If this value is False, the signal is saved instead.

Graphical representation (fig 15)

The enabling condition symbol contains the boolean expression.

Textual representation:

PROVIDED <boolean expression>;

continuous signal

The boolean expression in the continuous signal is evaluated upon

entering the state to which it is associated, and while waiting in

the state, any time no stimulus of an attached input list is found

in the input port. If the value of the boolean expression is True,

the transition is initiated when the input queue is empty. When the

value of the boolean expression is True in more than one of the

continuous signals, then the transition to be initiated is determined

____________________________52 _

_____,8 .•. Other SDL constructs

by the continuous signal having the highest priority (the lowest

value for <integer literal name>, see below).

Graphical representation (fig 15)

The enabling condition symbol contains the boolean expression and

an optional PRIORITY <integer literal name> part.

Textual representation:

PROVIDED <boolean expression>;

[PRIORITY <integer literal name>;]

<transition>

<
<E.C.>

or
<C.S.> >

fig 15: the enabling condition symbol

procedure reference and procedure call (fig 16A)

SDL uses special symbols to call a procedure and to reference to a

procedure definition.

The procedure reference visualizes that a procedure is used in a

process definition. It refers to a procedure definition elsewhere (on

another page). The name of the referenced procedure is stated

inside the reference symbol.

Interpretation of a procedure call is replacing the call by the

actual procedure graph defined in the corresponding procedure

definition. The procedure call symbol contains the procedure name

optionally followed by an actual parameters in parentheses. The

actual parameters definition is used to pass values to the proce­

dure's formal parameters.

____________________________,58, _

______3.4. Other SDL constructs

There are two kinds of formal parameter attributes In the

procedure definition. The IN formal variable parameter is a local

variable to which a value can be assigned to when the procedure is

called. The IN/OUT formal variable parameter is a synonym name

for a variable defined outside the procedure. That is, an IN/OUT

variable takes over the value of a global variable at procedure start

and the (altered) value is assigned back to the same global variable

at procedure return.

When no formal parameter attribute is given, the IN parameter is

taken as default.

procedure variables are local variables

variables can not be revealed, viewed,

are created at procedure start, and

return.

< procedure-

nome>

procedure reference

within

exported

cease to

the procedure. This

or imported. They

exist at procedure

<procedure
-nome>

procedure call

fig 16A: the procedure- reference and call symbols

procedure start and procedure return (fig 16B)

As already stated, the procedure definition is almost the same as a

process definition. To emphasize the difference, the procedure

definition has its own start symbol and stop symbol (the proce­

dure return symbol).

Other (already mentioned) differences with a process definition are:

(trivial:) the identifier PROCEDURE instead of PROCESS,

the use of IN an IN/OUT attributes in the formal parameter

definition,

_____________________________54 _

_____.8.4. Other SDL constructs

and related to the attributes, the special properties of the local

variables.

CJ D
procedure start procedure return

fig 16B: the procedure- call, start and return symbols

exported and imported value

If a process instance needs to access the value of a variable owned

by another process in a different block, a signal interchange with

the process instance owning the variable is needed. In this case the

export/import construct can be used as a shorthand notation for

this particular signal interchange without the need to specify a

communication path between the processes. However the importing

process needs to know the PID value of the exporting process,

updating of this PID value has to be done by an ordinary signal

interchange before importing is possible!

export operation

exported variables have the keyword EXPORTED in their variable

definition, and have an implicit copy to be used in import ope­

rations. An export operation is the execution of an EXPORT by

which the implicit copy is updated according to the current value

of the exported variable.

Graphical representation:

A task symbol con taining an EXPORT expression.

Textual representation:

EXPORT«variable identifier> {,<variable identifier>}·);

____________________________.65 _

____~8.4. Other SDL constructs

import operation

For each import definition in an importer there is a set of implicit

variables, all having the name and sort given in the import

definition. These implicit variables are used for the storage of

imported values. An import operation is the execution of an

IMPORT by which the implicit variable is updated according to the

implicit copy of the exported variable owned by the process with

PID specified in the import expression. The association between the

exported- and implicit- variable is specified by having the same

identifier in the EXPORT and IMPORT expression. In addition, the

exported variable and the implicit variable must have the same sort.

Graphical representation:

A task symbol containing an IMPORT expression.

A text symbol containing an IMPORTED definition.

Textual represen ta tion:

<import definition>::=

IMPORTED <import name> {,<import name>}· <sort>

{,<import name> {,<import name> }. <sort>}· ;

<import expression>::=

IMPORT «import identifier>,<PID expression»;

revealed and viewed value

Normally the value of variables are only known by the owning pro­

cess. However using the revealed construct it is possible to allow

processes in the same block to view a varia ble using a viewed

construct. Viewed variables are continuously updated as if the

variable was locally defined. However a viewed variable can not be

modified by the viewing process. The variable is still owned by one

process.

The REVEALED attribute is put in front of variable names which

are to be revealed in the variable definition. In BNF format:

DeL REVEALED <variable name> {,<variable name>}· <sort>

____________________________56, _

____---'8.4. Other SDL conBtructs

Note:

preceding variable definition emphasizes the use of REVEALED

Le. it is not a complete variable definition.

The viewed definition is as follows:

VIEWED <variable identifier> {,<variable identifier>}· <sort>;

Note:

The viewed definition may contain more variable identifiers of

different sorts. The variable identifier is different from a

variable name in case of more variables of different processes

carrying the same name, the identifier then has to carry a

qualifier identifying the owning process.

NEWTYPE

NEWTYPE is part of the SDL abstract data definition. The keyword

NEWTYPE introduces a partial type definition which defines a

distinct new sort. A sort can be created with properties inherited

from another sort, but with different identifiers for the sort and

operators. The definition contains the name of the sort, the

opera tors defined on the sort and (optional) properties of the sort.

For exact definition see [CCITT].

Note:

Definition of data is allowed at any level of a SDL description.

____________________________57 _

4. SOL and hardware implementation

SDL is a specification/description language based on communica­

ting extended finite state machines (CEFSM). A specification in

SDL is a behaviour description of a system based on the CEFSM

model.

In this report it was already stated that a formal specification

language describes a system in terms of functional behaviour no

matter what the implementation technique is. At first glance this

would mean that a SDL description does not impose restrictions on

the implementation form. If we want to use SDL as a description

language towards hardware implementation however, we need to

impose some restrictions upon the use of SDL. In other words: the

implementation form puts restrictions upon the use of SDL. These

restrictions are mainly based on the fact that large input buffers

are unwanted and the need for synchronization of state machines

to a void races, spi kes etcetera.

Before we give a methodology to use SDL towards hardware imple­

mentation (in the next chapter), let us take a closer look at the

SDL model and its implementation in hardware. The SDL model is

presented in two parts. In the first part the communication model

including message handling and channel structuring will be given.

In the second part we will look at the implementation of the SDL

processes, the state machine model.

Next the description of two implementation forms of the SDL timer

model is given followed by an implementation model of the SDL

crea te process model.

In the last part of this chapter an example description of a

universal asynchronous receiver transmitter (DART) is given. In this

example some specific problems arise on the use of SDL towards

hardware.

In the conclusions of this chapter a summary is given of wanted

constructs and methods we need to use SDL for hardware specifica­

tion.

____________________________58 _

4.1. The communication model

Communication between processes IS asynchronous because the pro­

cesses are not synchronized to eachother and because of the use of

input queues. In related literature this communication model

sometimes is called half-synchronous because the receiving pro­

cess is synchronized on message reception. The name asynchronous

communication is in this case reserved for interrupt driven input

handling.

The model does not provide some inherent communication protocol,

putting out a message by a process means putting it in the queue

of the destination process. There is no control on buffer-over­

flow, the input queue is assumed to have infinite length. Of course

a physical implementation of such a buffer is not possible.

The question arises if this model itself can be simulated using

finite queues. Taking a closer look to a set of communicating

processes, we see that in most cases processes have duplex

signalrou tes. That is, there are states of both processes where a

process waits for input of the other process. The effect will be

that those processes must have some maximum buffer length given

by the possible output actions to the process between the wait

states for input of that particular process. In this view processes

without output actions are dangerous regarding to their needed

input buffer length.

Another way to look at the question of infinite queues is:

If a particular process in a system specification would need an

infinite queue, then this would mean that this process could never

finish its job causing a deadlock because other processes can not

continue at a certain moment.

In general:

A system specification does not need infinite input buffers unless

the specification is wrong (deadlock).

____________________________59 _

_____4.1. The communication model

Still this does not mean that there is no need for buffers, but only

that the needed buffer-length in the model is finite and in most

cases large.

The advantage of the asynchronous communication model is that it

imposes almost no restrictions on the description of processes. So

all attention is concentrated on the actual process tasks not

bothering about signal communication. Asynchronous communication

implies that processes only have wait states for input, not for

output as synchronous communication has. Therefore asynchronous

communication provides an easier to understand description model

because transitions are triggered by input actions the same way as

in state-diagrams.

Asynchronous communication needs much more hardware to

implement than synchronous communication does. Therefore

synchronous communication is chosen as implementation form.

Synchronous communication means that a receiving process waits to

receive a message, and a sending process waits for the message to

be received. Thus, the sender and receiver synchronize to exchange

a message. The major drawback of this kind of communication is

that the actual processing per time interval is lower than with

asynchronous communication. This could be a problem for real-time

processes. One way to solve this problem is the use of special

protocols which use deadline information of source and destination

process [Copper]. Deadlines specify how long processes are willing

to wait for successful communication. When the deadline of a

communicating process is reached, the process must decide whether

the communication was successful or not. This decision must be

equal for both processes in communication (which is taken care of

by the protocol). When communication was unsuccessful the process

will continue with a (specified) exception handling task.

Note:

Another solution to counter this loss in performance is the use of

a separate buffer process to be described in par. 4.1.1.

_____________________________60 _

_____4.1. The communication model

The advantage of synchronous communication is that there is no

need for extra buffers for communication. But this is not the only

reason why synchronous communication is chosen. Later on we will

see that the processes are implemented as state machines synchro­

nized to a common system clock. It is therefore logical to choose

for synchronous communication not only to avoid use of buffers but

also to avoid problems with propagation delay and input clocking.

The description of the implementation of synchronous communica­

tion will be treated in the next paragraph together with the

description of message handling.

4.1.1. Message handling

SDL messages can be split in two different kind of messages, con­

trol messages and data messages. Both kinds have a control func­

tion but only data messages contain data to be processed by the

destination process. Identification of the source process in SDL is

arranged by the implicit value passing, causing the updating of the

SENDER value at message reception. Implementation of this parti­

cular value passing can be done either by vectored inputs or by

space division (using separate signallines for different sources).

It is almost natural to split every SDL process at implementation in

a control-unit and an operational-unit. This splitting is done the

same way as proposed in [VLSI.l], where the processes are split in

an information processing part (TASKs) and a control part (INPUTs,

DECISIONs, EN ABLING CONDITIONs, etcetera).

The same way we split processes, messages will be split in a

control and data part visualized in figure 17 on the next page.

The control part of the message will start a transition as described

in the SDL process definition. The data (if any) will be clocked in

a register of the operational unit and will be available for further

processing.

____________________________61 _

_____4.1.1. Monge handling

SOL SiGNAL: CONTROL (DATA)

CONTROL

i '
I :

~7
status

CONTROL

-JNiT

DATA

OPERAT!Oi'-JAl

UI\j IT

CONTROL

control

DATA

SOL SIGI~Al: CONTROl(DATA)

fig 17: splitting of SOL SIGNAL in data and control

The output process is very much the same as the input process. An

output message contains a control part indicating that the data part

(if any) is set ready to be received by the destination process.

The choice for synchronous communication implies output signals to

be Moore type, so the signals are only a function of the process'

state. In general Mealy output can cause unwanted oscillations or

large settling times when several state machines are connected

together.

_________________________62. _

_____4.1.1. Message handling

Note:

The acknowledge signal back to the source process is Mealy

type. This type is chosen because the acknowledge has to be an

instantaneous signal not connected to a state but to one single

signal reception (to avoid mis-interpretation by the source

process). In this case Mealy output causes no problems related

to propagation delays because the signal is expected by the

source process.

Furthermore we state that produced outputs cause inputs plus

specified actions (TASKs) to occur within a single clock period. So

at specif ica tion level propaga tion dela y is neglected.

The implementation of synchronous communication in its basic form

is visualized in figure 18 on the next page.

We see that synchronous communication introduces an extra (wait)

state in the sending process, causing loss in performance. When

this loss is not wanted, a solution could be introduction of an

extra output process. This process receives the output message

anytime, putting it in a buffer. Now the contents of the buffer is

put out by the output process using synchronous communication (in

parallel with the original process). The original process only needs

an extra test on buffer overflow.

Another advantage of an extra output process is that the behaviour

of the resulting process is very much the same as the original

process using the asynchronous communication model.

The implementation of the extra output process is illustrated by

figure 19 on the next page.

In many cases the extra output process only needs a queue of

length one for buffering a control message. Implementation of such

a 'queue' is done by a flip-flop which can be tested and set by the

sending process and reset by the receiving process (i.e. the flip­

flop is the hardware implementation of a semaphore).

____________________________63 _

_____4.1.1. Message handling

Imess(dat9
I

ockmess *

SUBSTATE/mess,data

ackmess

STATE

STATE

(STATE 1)

STATE 1

mess(dota)/
ackmess

Note: STATE 1=STATE2 IS allowed'

-)

C S_T_A-_rE_2__)

ackmess

STATE 1

STATE2

fig 18: implementation of synchronous communication

I \

Ir-,JG OFLOW \
\ /

I PROCESS OUTPUT

I

*

(ST~TE)

/
QUEUE \

r-,JOT
\ EMPTY /

1 (1)

--~
----/

Imess(dat9
I

(STATE)

SUBSTATE

ockmess

(STATE)

fig 19: the model of an extra output process

__________________________64 _

_____".1.1. Message handling

Note: In this case a counting semaphore is implemented by repla­

cing the flip-flop by a up/down counter.

The situation where several processes are sending the same signal

to the single destination, can be model:ed in SDL in a rather

elegant way. The only thing that has to be added in the synchro­

nous communication model, is the destination of the signal ack­

mess, so ackmess is replaced by ackmess TO SENDER. The order

the processes are serviced, is modelled by the implicit Queue of the

process, which means a first come first served order. When this

kind of ordering is not wanted, for instance when some processes

have higher priority, an extra input process is needed. The two

models of this particular communication form are given in the

figures 20A and 20B.

one of N- processes

(SUBSTATE)
i

(STATE~)
I

1 ock«1es~

ockmessl

TO SUmEF:j

STATE STATE2

fig 20A: communication based on first come first served order

Note: The restriction that all processes send the same signal can be

deleted by replacing the input action, mess(data), by an

asterisk input action.

____________________________65 _

_____4.1.1. Message handling

PROCESS INPUT 1 (1)

IMPLEMENTATION FOR TWO SOUFCC:S

(mess2(do1c:)
---, m.=>ss1 (d·~·O\'\ /I I _ I '-'. j -"

ockn',ess=-

STATE 1

STATE2

2 mess 1 has highest priority

Note: 1 STATE 1=STATE2 is allowed!

(mess 1(doto»/

ockmess 1

SUBSTATE

ockmess

(STATE)

(~
\~

/
QUEUE \

NOT

\ EMPTY /*

fig 20B: communication based on priority order

In the preceding example we used the implicit process queue for

model.ling the order processes are serviced. This kind of explicit use

of the queue model not only must be allowed, when SDL is used

towards hardware implementation, but must be promoted to get an

easy to read (and write) SDL description. Other examples of expli­

cit use of the queue model are to be found in the Dining-Philoso­

phers description of the preceding chapter (in the TABLE and input

process descriptions).

The save construct in SDL is used when in a certain state a par­

ticular input has to be handled first, causing the other signals to

be saved. At the hardware implementation of a process using the

save construct, this explicit saving is not necessary when the

____________________________66 _

the saved signals

signals attached to

takes care of the

_____4.1.1. Message handling

processes communicate synchronously and when

have another source than the specified input

the same state. The synchronous communication

saving itself by waiting for an acknowledge.

Note:

Saving of signals from the same source as specified inputs in a

particular state must be implemented in hardware using

separate buffers to avoid "communication" deadlock.

The SDL model allows receiving of one input signal per transiti­

on, taking one signal at a time from the input queue. It is al­

lowed to specify different input signals attached to a single state,

giving interesting possibilities at hardware implementation. Under

certain circumstances it is possible to react on more than one

signal when implemented in hardware.

Those circumstances are:

1. The different input actions must start a transition leading

to the same next state .and

2. The concurrent behaviour of the following tasks must lead

to the same result as the (sequential) combination of

separate tasks. That is, the tasks must not have

operations on same variables or results that can affect

their common behaviour.

Another possibility is to specify the common behaviour at recep­

tion of a combination of input signals. That is we must specify

some sort of exception handling. This specification is easier to give

in a later stage because in SDL this kind of exception handling is

difficult to specify.

Note:

In CCS [Milner] this kind of exception handling is modelled by

axioms stating that certain combinations of state and queued

inputs can be replaced by other states with some or all queued

inpu ts deleted.

____________________________67 _

4.1.2. Channel structuring

Broadcasting is not

signal can not be

Broadcasting is only

with their destination

SDL signals are to be carried between blocks by channels and

between processes by signal routes. In this paragraph we will speak

of channels meaning both channels and signalroutes.

Channels have a message structure, they carry only the signals

defined in the corresponding signal list. Channels may split In

several channels, meaning that signals travel a certain direction

depending on the signal lists of the divergent channels or depen­

ding on the TO/VIA constructs when a signal is defined on more

than one divergent channel. Because channels can carry signals in

both directions, channel splitting can also mean that at a certain

point signals from different directions travel ahead together in the

same direction.

possible using only the channel structure, a

split in two (or more) identical signals.

possible by explicitly defining output actions

for every single destination. But broadcasting

is usually used to update values owned by the destination processes,

so it is better to use the EXPORT or REVEALED construct. Now

updating of the common values is done in one central point which

can be accessed by the destination processes. The latter way of

broadcasting is in some cases more realistic towards the

implementation in hardware. In hardware the value is contained by

one register controlled by one process with output lines to the

destination processes for testing.

Note:

The broadcasting mechanism using signals is still useful when

the latter solution takes to much outputlines for testing.

Channels act like FIFO's, a signal can not be passed by another on

the same channel. Simultaneously putting two signals on one chan­

nel will result in a random ordering of those two signals. Channel

conflicts are not possible. Implementing channels one to one in
_____________________________68 _

_____4.1.2. Channel structuring

hardware, means connecting state machines by control- and data­

busses including an arbitration algorithm. This algorithm only needs

the control signals to decide upon which process may use the data

bus.

A one to one implementation of every channel is not realistic,

because channels are rarely used. Therefore fOllowing evaluation of

the system, signals will be assigned to central busses (including a

bussharing algorithm) or to signallines only carrying that particular

signa 1.

When deciding what implementation form the communication path

between processes must have, we need to know facts about signal­

rate, allowed bus integration area, relative placing of communi­

cating state machines, needed performance and other related para­

meters. Therefore this implementation choice will be postponed to a

later design stage. At specification the only function channels have,

is visualizing the set of input and output signals a process or block

has. At rewriting the behaviour model in a model with specified

queue use (synchronous communication, for instance), we will state

that every signal has its own channel avoiding collisions.

4.2. The state machine model

other clock related problems of synchronous state

the implementation will be based on master/slave

combined with a two phase clock as described in

machines,

operation

[VLSI.2].

We had already decided that all processes must be synchronized to

one system clock to avoid races. With the introduction of synchro­

nous communication, the transitions upon input signals already im­

posed a kind of synchronization. But now all transitions will be

synchronized to eachother by using the same clock.

Note:

To avoid

____________________________69 _

_____4.2. The state machine model

Because certain tasks between states take more time than one clock

period, the state will not always change within a clock period. This

means that the SOL process description is not the same as an ASM

chart [VLSI. I] where every active clock transi tion causes the

change from present state to next sta teo Another difference

between a SOL process description and an ASM chart is that a

transition in SOL can only take place upon reception of certain

(defined) input signals or upon True condition of certain variable

expressions (continuous signal).

So states in SOL must be seen as super states containing a sequ­

ence of substates (without input signal consumption) leading to a

next super state. This kind of abstraction is very useful in

describing/specifying complex digital systems because in describing

the behaviour only the results of tasks are important.

Note: The same kind of abstraction is used in many hardware

description languages e.g. Statecharts mentioned in chapter two.

When tasks are described in a program language (C, Pascal etcete­

ra) it is possible to automate the implementation using compilation

of algorithms into hardware. This kind of compilation sometimes

causes an overhead in hardware but on the other hand it saves a

lot of time in designing. Regarding this, it might be useful to

examine all tasks within a process to see if some hardware can be

shared. The choice of an implementation form of a task then might

depend on other tasks to be implemented.

In general the implementation of separate processes (without the

communication part) into state machines is relatively easy when all

tasks are formally described. Therefore how separate tasks are

exactly implemented using ALU's, registers, counters, logic etcetera,

is not described in this report, but can be found in [VLSI.1,

VLSI.2, Klemann] and numerous other texts.

We will now examine which parts of the SOL process will be imple­

mented in the operational unit and which are implemented in the

____________________________70 _

_____4.2. The state machine model

control unit.

Communication between processes is controlled by the control unit.

The data part of a message is clocked in/out by the operational

unit under control of the control unit via the control lines between

control unit and operational unit. Control messages do not use the

operational unit.

Enabling conditions, continuous signals and decisions all use the

status lines between control unit and operational unit. At an

enabling condition or continuous signal the status lines will be read

when the control unit is in a super state. When the status line

values give a True result for the enabling condition or continuous

signal, the control unit will enter a new state. Otherwise the

control unit will stay in its superstate. A decision is also taken

using the status line values, but can take place in any state, and

causes to enter a state depending on the decision value.

Tasks operating on data will take place in the operational unit and

are controlled/started by the control unit. When a task takes more

than one clock period, the task is split in subtasks each taking one

clock period. Subtasks are controlled by substates of the control

unit.

Service and

definitions

begins.

procedure definitions

before rewriting of

are

the

rewritten to/filled in process

SDL behaviour description

Start is implemented by a Master Reset state possibly fOllowed by a

start up routine controlled by the control unit (using substates) and

done by the operational unit (initializing of register values, flags

etcetera). The final substate of the start up routine leads to the

first superstate (the first state in the SDL process description).

When there is not a start up routine, the Master Reset state equals

the first super state.

____________________________71 _

4.3. The SDL timer model

The SOL TIMER model makes use of the implicit process queue.

The signal indicating that the timer is expired is placed in the in­

put queue together with all other signals to be processed. Reset­

ting the timer wiIJ cause the removal of all associated signals in

the queue.

In hardware time is related to the amount of clock ticks between

two events. Therefore use of timing in certain processes will be

implemented as counters with preset and reset possibilities.

The SOL TIMER model will be rewritten as follows:

l. The TIMER definition will be replaced by a process definition

containing a counter model.

2. The SET statement will be replaced by an output signal

PRESET(time). {time integer}

3. The RESET statement will be replaced by an output signal

RESET.

Note:

It is possible to let the counter process be created by the

process which uses it. In this case, use of process creation

visualizes the fact that a counter can be shared by more than

one process.

The process definition of the created-counter model differs

from the original definition in the fact that creating the

process means starting the counter. In this case the preset

value is given by a formal parameter at process creation.

Resetting the counter will cause the process to cease to exist.

When the time is expired, the process also ceases to exist after

putting out the expired signal.

The control of multiple access of the counter is provided by

the SOL model. In this case the number of counter process

instances has an initial number of zero and a the maximum

number equals the number of hardware implemented counters.
____________________________72 _

_____4.8. The SDL timer model

PROCESS COUNTER 1 (1)

count·=O;

>RESET

DCl T.count ;nteg~

count:=T;

(false)

I

<count<>O)

>CLOCK
j

-)clock; ~
integer;

I TIMER
I

i DCl t

(t rue)

coun~er>
---_/

SET(t,COUNTER)

RESET(COU~

""'. IPRESET(T) > OR I COUNTER(T)
/

) IRESET >
fig 21: rewriting the SDL TIMER model in the counter model

Note:

1. The identification of the clock (when more than one is used) is

done by adding TO <PID counter> to the PRESET and RESET

signal.

2. The counter model is an asynchronous behaviour model using an

asynchronous clock signal, so it has to be rewritten towards

implementation in synchronous state machines.

___________________________78 _

until process creation is

exception handling upon

4.4. The SDL create process model

In the preceding paragraph we used the create construct to visu­

alize the fact that a counter can be shared by more than one pro­

cess. In general the create process construct is very useful to

describe the sharing of resources by several processes.

The create model can be implemented in different ways depending

on the number of parent processes, the creation rate and the

maximum allowed number of created processes.

When the number of parent processes does not exceed the maximum

allowed number of created processes (provided that the parent

processes can create only one process per parent process at a

time), the simplest implementation form is one process per parent

process. That is, in this case we do not have to bother about the

implementation of the updating of PARENT and OFFSPRING values.

In many cases the maximum allowed number of created processes

will be kept small when these processes are implemented in hard­

ware. In this hardware implementation we need a process to con­

trol the process creation. This control process takes care of

identification of the parent process, the number of created

processes and acknowledgement of successful process creation.

Special care must be taken tha t process creation in the SDL model

does not guarantee successful process creation. The creation is not

successful when the maximum allowed number of created processes

is reached, causing the OFFSPRING value set to NULL and continu­

ation of interpretation of the process graph. To be sure that the

process will be created, the create symbol must be followed by a

decision upon OFFSPRING=NULL. When this decision gives a True

value, process creation will be tried again, otherwhise interpre­

tation of the process graph continues.

Note: an alternative for waiting

successful is specifying an
____________________________74 _

_____4.4. The SDL create process model

OFFSPRING=NULL giving the same result as successful

process crea tion.

When the create process model is implemented using a separate

control process, the process graph will be rewritten as follows:

The create symbol with the decision upon OFFSPRING=NULL

attached will be replaced by an output create_process followed

by a substate with input successful_creation(pc) (pc is the PIO

value of the created process). (see fig 22 on next page)

value

direct

Note:

The contents of the signal successful_creation (the PIO

of the crea ted process) can be used for specifying

control (for instance resetting) of the created process.

Communication between created process and parent can be

implemented using a data switch controlled by the separate

crea te con trol process.

signal

atta-

output

symbol

an

stop

by

the

The description of the created process will be rewritten in a

process description with initial number and maximum number of

instances set to the maximum allowed number of created processes.

The first input action of this process will be start_process(PA­

RENT) from the control process. The PARENT value can be used to

communicate directly with the parent process.

The process stop symbol will be replaced

process_stop (to the control process) with

ched to it.

Note:

The create line symbol in the block level description will be

replaced by a signalroute carrying the signals:

crea te_process and successful_crea tion.

The process symbol of the created process will be split in a

control process and the actual (rewritten) process. A signalrou­

te between these processes carries the signals:

start_process and process_stop.

____________________________75 _

______4.4. The SDL create procell model

L=====::::;::::=======J

OFTSPRING=NULL
(lrue)

(fBlse)

crecleprocess

----""-
----//

success:ul
crealion(pc)

PROCESS CREATECONTROL

prQcesscounl

<
processmcx

I
i processco'Jnl'=
I processcoan l + 1

I

I PC'=F(pr0u:~::counl)
I

j

!slarlproc;;;-s--­

I(SENDER) TO pc

su ccessful
crealion(pc)
TO SENDER

C__)

1(1)

Iprocesscoun l: =,0

iprocessmax=N

WAlT

I
IprDcessslQp

processcoan"t: =

processcounl-l

C~~)
r--
'I i\lTIctlon f
l~ans]ales

,;n'ocesscounl in

I~h~ P1D value of

~ crealed process

fig 22: the implementation model of the SDL create process model

_____________________________76 _

4.5. SDL example description of a universal asynchronous

receiver transmitter (UART)

In this paragraph a SOL description is given of the UART design

described in [Verschie}. This description is made following the

functional decomposition and gate level description of the UART.

Tha t is, this SOL description is not a behaviour description

(without implementation knowledge) as first step of the design. But

this description must be seen as an example of using SOL for

description and functional decomposition of a digital system.

Therefore, some parts (the testfacilities and internal loopback) of

the UART design are not given in the SOL description and some

parts are not described at process level.

A UART is an interface between parallel data and serial data

transmission. It is used for communication between CPU's via a

serial link. The UART takes care of the message format, buffering

of messages, error detection, modem control, interrupt handling and

other interface tasks.

Note: The UART design described in [Verschie] is a re-design of

the ic 8250.

SYSTEM UART (fig 23)

Let us see what is in the text symbol.

First it is stated that the input mr (master reset) is defined as a

variable visible for all processes in the UART system. This is an

informal description of a variable which is owned by some process

(possibly a special input process), and exported by that process to

all other processes. This description is done informally because. the

formal description using export mechanisms, signals, an extra

process and extra channels/signalroutes takes to much room and

makes the description difficult to read.

____________________________77 _

_____4.5. SDL example description of a UART

The second informal description about mr says that when mr is true

all processes will be initialized. Meaning that mr is a boolean

variable causing to reset all processes (starting them from process

start) when its value is true. This is an informal way to define

that every process, in every state, has a transition upon mr=true to

its start state.

SDL is not bit oriented, the datatypes bit and byte are not stan­

dard. Therefore bit and byte are defined as (referenced) NEW­

TYPEs. The actual type definition is not given because it is dif­

ficult to do this properly within the abstract data typing and

because at this point the exact definition is of less importance.

The SIGNALLIST definitions are used to combine different (rela­

ted) signals to a set of signals identified by the signallist name.

Use of signallists is very useful to save room in the signal

definitions connected to channels/signalroutes.

The abbreviated signal names in the signallists and signal defi­

nitions are explained in Appendix A.

The last informal definition saying that a change of a signal value

automatically causes a signal to be placed in a queue is given to

cope with the level driven nature of the environment in the

message driven SOL model. Regarding this, a clock signal must be

seen as a continuous stream of messages, one message per clock

change. The latter may seem unnatural but emphasizes the fact that

transitions are driven by the event 'clock change'.

The UART_BLOCK has three channels. Channel CI is the channel

connected to the CPU, with the data bus, control bus and interrupt

line. Channel C2 is the channel connected to the environment of

the CPU system, with the duplex serial line and the control bus

connected to the modem. Channel C3 carries all clock signals

important for synchronization.

____________________________78, _

SYSTEM UART

/. Input mr is a variable visible for all processes in

the UART system • /

/. When mr is true all processes will be initialized • /

NEWTYPE bit REFERENCED; ENDNEWTYPE bit;

NEWTYPE byte REFERENCED; ENDNEWTYPE byte;

SIGNALLIST cont_in=dostr.distr.cs.abus.ads;

S IGNAL LI ST cont_out=csout,ddis;

SIGNALLIST mod_in=ncts,ndsr,nrlsd,nri;

SIGNALLIST mod_out=nrts,ndtr,noutO,noutl;

SIGNAL dat in (byte),dat out(byte),ser in(bit),ser out(bit),- - - -
abus (integer) .intrpt.osc,rclk,baudout;

1(1)

/.All other signals in the signallists are of type bit. • /

/. Change of the value of a signal will automatically cause a message

to be placed in a queue • /

~t in ~ ~r in ~
Cl (cont_in) (mod_in)

C2.. .. UART BLOCK ...
" ... -

,..... - 1- ~SCJ ~r out ~dat out-
.. ~I rclk(cont_out) (mod_out)

intrpt ~audou~~'C31.00- -

fig 23: SOL description: SYSTEM UART
____________________19, _

_____4.5. SDL example description of a UART

BLOCK UART BLOCK (fig 24)

The UART_BLOCK is divided in 4 blocks (substructuring).

The bus interface distributes data from/to the CPU to/from the

other blocks depending on the control messages from the CPU.

The interrupt_control handles all interrupts from other blocks

depending on the interrupt mask which can be read/written via the

bus interface.

The transceiver is the main part of the U ART BLOCK which takes

care of the message forma t, buffering of messages and error de­

tection. Only this part's decomposition will be described.

Note:

Write actions take only one signal

combined) and read actions take two

read (control) and a data signal back.

(the data and control is

signals, namely a request to

The abbreviated signalnames in the signallists are explained in

Appendix A.

BLOCK TRANSCEIVER (fig 25)

in the text

line control

The first comment

con ta ined by the

EXPORTED variables.

The second comment speaks for itself.

symbol

and

says that

line status

the variables

register are

BLOCK TRANSCEIVER is divided in 4 blocks:

TRANSMITTER, TRANSCEIVER CONTROL, RECEIVER and

BAUDRATE GENERATOR

The functions of the different blocks are at this point suffici­

ently described by their names.

Only the decomposition of the transmitter block and transceiver

control block will be described.

__________________________80 _

BLOCK UART BLOCK 1(1)

SIGNALLIST trscvreg wr=(controlreg wr),(baudreg wr);- - -
SIGNAL LIST trscvreg_rd= (controlreg_rd), (baudreg_rd);

SIG NAL LIST rd_trscvreg= (rd_controlreg), (rd_baudreg);

SIGNALLIST trscv_int=trans_int,recv_int,lstat_int;

/* All other SIGNALLISTs REFERENCED */

~ B2 INTERRUPT_--1 B9 MODEM__
C1......_-.-......... ...-....................

- CONTROL .. CONTROL
~trPtJ ITmod_inI]

~od_in~

fdat out l Q:r:c:r~g_r~ B7 ~er_ou~
L.!cont_ou~ _--_ B3

B4 - - C2- -
Cl BUS ;;-,

.. .. -- dat_wr TRANS_ ~er_i~

Cat in ~ INTER_ (trscvreg_wr) CEIVER
(cont_in) FACE r;: :I(rd_trscvreg) ~audou:J

- - C3

n ~--...... '~:I:I Bio
~intreg_r~~~ ~ J

~~ITmodreg_rd!J

f(intreg w;j'1 ,~rsc"_in~ rTmodreg w~
lJrd_intreg!..J'· B8 B6'r~d_mOdreg~

B4 ITn10d_ou~
.... C2
". ..

fig 24: SDL description: BLOCK UART_BLOCK
__________________,81. _

BLOCK TRANSCEIVER

/. All bits of line_control and line_status_register

owned by transceiver-control are visible at BLOCK

level • /
/. The signallists trans-status/recv-status contain messages to

update the line-control-register by the transmitter/receiver • /

1(1)

~at_w~ Tl T7
Ger_ou~

B7 B3..
TRANS

~rans_i~
-

T2 MITTER
88-

~, ~rans_statu~~ontrolreg_W~
(rd_controlreg) Tl0

~ TRANS87
~~ntrolreg_r~ .. T3

-
CEIVER--

88 ~
CONTROL

~stat_in~ T9 ~ [kecv_statu~
Tll

B7 -...
T4

Ger_i~~at_r~
RECEIVER T8

~ B3
88 ~ -

~ecv_in~ T5 ~ Bl0..
T12

~clkJ
~au~reg_rdQ T6 BAUD GscJ ~audoutJ

87 ... -...o ·DRATE
~ ... Bl0baudre wr -- - -

(g-) GENERATOR T13
(rd_baudreg)

fig 25: SOL description: BLOCK TRANSCEIVER
___________________,82, _

_____4.5. SDL example description of a UART

BLOCK TRANSCEIVER_CONTROL (fig 26)

The only process contained by the block TRANSCEIVER_CONTROL

is the process TRANSCEIVER CONTROL. This process owns the

variables of the line_control and line_status register visible to all

other processes in block TRANSCEIVER. Updating of the status­

register by the TRANSMITTER and RECEIVER is done via the

signalroutes TC3 and TC4 respectively.

BLOCK TRANSMITTER (fig 27)

The fjgure speaks for itself.

PROCESS TRANSCEIVER_CONTROL (fig 28A, 28B)

The Iine con trol register is represented by the lcr va ria ble of type

STRUCT. This type has almost the same format as a record type in

Pascal except for some special operations defined upon the

STRUCTed variable type.

The line status register is also based on a STRUCTed variable.

The first page of the process definition describes the transitions

upon reception of signals from the bus_interface. These signals are

caused by read/write requests of the control- and status- register

by the CPU.

The second page describes the

signals from the receiver and

tically update the status register

every input action.

transitions upon the reception of

transmitter. These signals automa­

varia bles stated in parentheses of

__________________________,83 _

BLOCK TRANSCEIVER CONTROL 1(1)

SIGNALLIST trans_status=THRE,TSRE;

SIGNAL LIST recv_status=DRDY,OERR,PERR,FERR,

BI;

/. TH RE: transmitter holding register empty;

TSRE: transmitter shift register empty;

DRDY: data ready; OERR:overrun error;

PERR: parity error; FERR: framing error;

BI: break interrupt; • /

SIGNALLIST rd_controlreg=rd_lcr,rd_lsr;

SIGNALLIST controlreg_wr=lcr_wr,lsr_wr;

SIGNALLIST controlreg_rd=lcr_rd,lsr_rd;

/. Icr: line control register;

Isr: line status register; • /

TC3 ~rans_statuj
Tl\J

rrd_controlreg~

Qcontrolreg_rd~ ~controlreg_w~

-----~
T3 "'~r---------------"""TRANS_

TCl CEIVER

~stat_in~ TC2 CONTR-O-L(-l,l)

T9 fIII~r----------------"'-__---~t .4~

TCll ~ecv_statu~

Tl1~

fig 26: SDL description: BLOCK TRANSCEIVER_CONTROL
___________________,84 _

BLOCK TRANSMITTER

/* The TRANSMIT_BUFFER process saves

the message (dat wr) to be transmitted

in theTransmitter Hold Register when

THRE=HI. The message is sent to the

TRANSMIT_SHIFTER process when TSRE=HI.

The TRANSMIT_SHIFTER process shifts out the

message (ser_out) in the wanted message-format. */

1(1)

~at ~
Tl - ... TRANSMIT TRANSMIT

TMi BUFFER TMS SHIFTERTM2 T7p ..
T2 ~ (1,1) (1,1)

~er_o~...
~sr_~~rans_i~

TM3 TM4

~SR~Tlr"W-__.....

fig 27: SOL description: BLOCK TRANSMITTER
___________________85 _

PROCESS TRANSCEIVER CONTROL

NEWTYPE Icr STRUCT WLSO,WLS1,STB,PEN,

EPS,SPAR,SETBRK,DLAB bit; ENDNEWTYPE Icr;

/* WLSO,WLS1: wordlength-selection;

STB: stopbit-selection; PEN: parity enable;

EPS: even parity select; SPAR: set parity;

SETBRK: setbreak; DLAB: counter-register selection; */

1(2)

NEWTYPE Isr STRUCT DRDY,OERR,PERR.FERR,BI,

THRE,TSRE,b7 bit; ENDNEWTYPE Isr;

DCL controlreg Icr, statusreg Isr;

SIGNAL Icr_wr(byte) ,Isr_wr(byte) ,rd_lcr,rd_lsr,lcr_rd (byte) ,

Isr_rd (byte);

INIT

reset
error flags

A
1,2

rig 28A: SOL description: PROCESS TRANSCEIVER_CONTROL(pagel)
___________________,86 _

PROCESS TRANSCEIVER CONTROL 2(2)

SIGNAL 81 (bit) ,OERR (bit) ,PERR(bit) ,FERR(bit),

DRDY (bit) ,TH RE(bit),TSRE(bit) ,Istat int;

C~A__)

1,2

A

fig 28B: SDL description: PROCESS TRANSCEIVER_CONTROL(page2)
__________________---:87 _

_____4.5. SDL example description of a DART

PROCESS TRANSMIT_BUFFER (fig 29)

The process graph shows two transition strings. The left transi­

tion is started upon reception of a message to be sent provided

that the transmitter holding register is empty.

The right transition is started when the transmitter holding register

contains a message and the transmitter shift register is empty. The

transition will put the contents of the transmit buffer into the

shift register.

PROCESS TRANSMIT_SHIFTER (fig 30A, 30B, 30C, 30D)

The first page describes the initializing of the process (TASK INIT)

and the beginning of the shifting, including the updating of

statusbits, wordlength and parity after reception of a message to be

sent. The second transition is triggered by the positive edge of

baudout (Note: this is not a formal description of a positive edge).

The second page first shows the generation of a startbit. The third

transition is triggered on clockcoun t= 16. Triggering on this

particular clockcount value is caused by the implementation of the

UART using a '16 times clock'. This means that one output bit

takes 16 baudout clock ticks.

Depending on the word length a bit is taken from the shift register

variable at a different place (tsr_reg!b<place». After putting out

the databit, the parity value is updated.

____________________________88 _

PROCESS TRANSMIT BUFFER t(t}

/* THRE and TSRE bits owned by the tranceiver_ ~

control process are visible */
SIGNAL TH RE(bit) .tsr_wr(byte) .TSRE(bit) .trans_int;

DCl thr_reg byte;

IN IT

TRANSMITTER
SHIFT
REGISTER
EMPTY AND
TRANSMITTER
HOLD
REGISTER
FULL

>

-

THRE(HI)

tsr wr

(thr_reg)

<
TSRE=HI

and
THRE=LO

TRANSMITTER
HOLD
REGISTER
EMPTY

~HRE-HI

fig 29: SOL description: PROCESS TRANSMIT_BUFFER
_____________________89 _

PROCESS TRANSMIT SHIFTER 1(4)

/. Variables which are visible are:

baudout owned by BAUDRATE_GENERATOR;

EPS,WlS1,WlSO,PEN and STB owned by the

TRANSCEIVER_CONTROL process;

clockcount owned by a counter_process. • /

SIGNAL tsr wr(byte) ,ser out (bit) ,TSRE(bit);- -
DCl bitcount,wordlength integer, parity,sout bit;

INIT

A

(tsr _reg)

TSRE(LO)

~
TATUSBITS

ARE IMPORTED
----- FROM TRSCV _ CTRLupdate statusbits -

bitcount:=

.....-.w_:_;i_~ ...1e_::-i~_t:_~....r:~pREDNL:
1
%~T:; 5.. 8

~LSO AND WLSI

fig 30A: SOL description: PROCESS TRANSMIT_SHIFTER (page 1)
____________________90. _

PROCESS TRANSMIT SHIFTER

1

reset clockcouot

reset clockcouot

2(4)

CLOCKCOUNT IS
POS. EDGE
TRIGGERED BY
BAUDOUT

wordleogth=5

wordleogth=6

wordleogth=8

wordleogth=7

sout:=
tsr _reg!b4

sout:=
tsr _reg!bS

IOU.t:=
tsr _reg!b6

pari ty:=pari ty
exor sout

sout:=
tsr _reg!b7

3

rig 30B: SDL description: PROCESS TRANSMIT_SHIFTER (page 2)
________________________91 _

_____4.5. SDL example description of a UART

PROCESS TRANSMIT_SHIFTER (fig 30A, 30B, 30C, 30D)

The third page describes the counting of the number of data bits

put out by the shift process. When this number equals the word­

length, the process proceeds by putting out a stopbit or parity bit

depending on the Parity Enable flag.

The last page describes the putting out of an extra stopbit de­

pending on the stopbit flag. When wordlength=5, the extra stopbit

is only 8 clockticks long (transition on clockcount=8). After putting

out the last stopbit, the Shift Register Empty flag is set before

returning to the startstate (A).

__________________________9,2 _

PROCESS TRANSMIT SHIFTER
2

SHIFT TSR

bitcount:=

bitcount-l

reset c1ockcount

3(4)

(false)

(true)

<oCkcount=}

reset clockcount

ser _out(HI)

F

STOPBI~

~[STOPBIT

4

(false)

fig 30e: SDL description: PROCESS TRANSMIT_SHIFTER (page 3)
________________________93 _

PROCESS TRANSMIT SHIFTER

reset clockcount

4(4)

(true) (false)

TSRE(HI)

fig 30D: SDL description: PROCESS TRANSMIT_SHIFTER (page 4)
_______________________94 _

4.4. Conclusions

In this chapter it became clear that SOL can not be used as a

hardware description language which can automatically be trans­

lated in a hardware implementation. But SOL must be seen as a

behaviour description of which some parts must be evaluated be­

fore an implementation form is chosen.

Without notice we used another approach to describe state machi­

nes. That is, we introduced the concept communicating extended

finite state machines to define state machines as processes and

their interactions as communication. So we did not describe state

machines as one big state machine defining all combinations of

states, but actually synchronized the different state machines by

their communication.

It became clear that in some way we have to avoid the implicit

process Queue use to get an economic use of hardware. Therefore

we introduced synchronous communication upon the asynchronous

communication model. However, we showed that sometimes the

Queue model must be used to get a clear behaviour description.

To avoid the loss in performance due to long wait periods at syn­

chronous communication we introduced separate buffer processes.

Especially the communication between processes has to be evalua­

ted before an implementation form is chosen, to see if separate

buffer processes are needed.

The message structure of SOL and the level driven nature of digital

hardware differ in the way the communication path is structured.

For instance, splitting of a channel in a message driven model does

not mean splitting the message in two same messages as in a

physical channel, like a signalline or bus. Therefore the decisions

for the implementation of SOL-channels are postponed to a later

design stage.

____________________________95 _

_____4.4. Conclusions

In some cases it IS possible to react on more than one signal at a

time in hardware in contrary to the restriction of one signal per

transition in SDL. To specify these multiple input actions we need

some kind of exception handling description not provided by SDL.

The implementation of the actual processes described in SDL is

chosen to take place via splitting the process actions in a control

and information processing part. The same functional splitting will

take place on SDL signals. Implementation of process TASKs are

assumed to take place automatically. That is, we will not bother

about the implementation of the state machine part of the SDL

process.

____________________________96 _

5. SOL design methodology towards hardware

In this chapter a guide is given on how to use SOL in the design

process of VLSI circuits containing several hardware implemented

parallel processes.

SOL is used in the specification phase of the design process for

setting up a behaviour model.

In [VLSI.2] the specification phase is split in:

Requirementelabora tion

Requirement specification

System attributes

Process definition

Verifica tion

During requirement elaboration a set of requirements is defined

after thorough investigation and evaluation of the user needs.

The requirement specification can be split in:

System requirements

Functional requirements

Performance req uiremen ts

The System requirements are those requirements imposed by the en­

vironment upon the design. These requirements are given as a set

constraints which limits the final shape of the design. Some con­

straints are: maximum power dissipation, maximum input/output

voltage, maximum signal rate, etcetera..

The functional requirements are a description of the systems input­

/output relations. At this point SOL will be introduced to

formalize the description of these input/output relations.

Performance requirements define the (mini mum) ra tings required for

the dynamic behaviour of the system. Some performance require­

ments are: input rate, output rate, response time, etcetera.

____________________________97 _

_____,5. SDL design methodology towards hardware

System attributes have their influence

strategy. Some system attributes are: cost,

flexibility, etcetera.

on the overall design

reliability, availability,

The process definition gives the definition of system processes,

required resources by the processes and the interaction between

processes. At this point a decomposition into functional blocks

takes place. This decomposition is based on the knowledge of the

designer and the problem definition. The functional blocks not

necessarily have their counterpart in hardware that is the

functional decomposition at specification level does not force the

same decomposition in hardware.

The process definition will be given in SDL. Decomposition is

described by SDL using decomposition of the system into blocks,

blocks into substructures, blocks into processes and processes into

services.

Verifica tion

specification

quirements.

is done

to see

by

if

simulation and evaluation

the specif ica tion sa tisf ies

of the formal

the user re-

requirements,

be rewritten

entering the

The SDL behaviour description together with system

performance requirements and system attributes must

in a hardware oriented behaviour description when

next phase, the design phase (see fig 31 on the next page).

Note: We state that, when implementation of the hardware

ted behaviour description can be automated completely, that

description is the beginning of the implementation phase.

orien­

this

The rewriting of the SDL behaviour description can be done using

an expert system with a knowledge base. This knowledge base must

contain implementation facts regarding different communication

forms between processes. The choice which communication form is

taken, depends on performance requirements, communication rate

and other related facts. These facts must be extracted from the

SDL description using tools like CCS.

____________________________9,8 _

_____5, SDL design methodology towards hardware

'I---- informal ideo/specification

1
r equi 1- emen t S Pe c if icot ion

systfrT! requirements perform a nce req u irements

functional requirements

described In SOL
_1

i
j

process definition

\---....'

(j)

attributes

7
L

i-­
i

1
(I
"~,

, I
L.U

en
<:
I
Cc-

z

V)
W
o

I EXPERT SYSTEI/
,I I,----c-I~-c-· -ic-e-f-o-r-·,-------,

1 communication
message handling
channel structuring

impiementation of:
timer model
create process model

Hardware or-iented behaviour description

i jmp\en~lentation of:
,I
/1t c sk sl fun ct ion slproced ures

I ~\,1 PLE~v1 E~~ Tp,T I0 r~

fig 31: the use of SDL in the specification phase of VLSI design

__________________________99 _

[[
W

5.1. Setting up a behal'iour model

Defining a SDL design methodology

lization of the specification phase

formalization is not possible nor

is/has to be a creative activity.

towards hardware means forma­

in the design process. Complete

wan ted beca use design partially

In "The science of programming" [Gries], about formalizing the

reasoning associated with system design is said:

"be assured that complete attention to formalism is neither

necessary nor desirable. Formality alone is inadequate, be­

cause it leads to incomprehensible detail; common sense and

intuition alone are inadequate. because they allow too many

errors and bad designs"

In practice it is very difficult to give a specification without use

of design knowledge of later design phases. For the same reason it

is difficult to give a standard method for setting up a behaviour

model.

But when we restrict ourselves to the constructs allowed in SDL, it

is possible to define some way to decompose the problem without

use of (much) implementation knowledge.

In the next paragraphs some basic rules are given for setting up a

behaviour description in SDL. First we give some rules for

functional decomposition which takes place in the first two levels

of the SDL description, the SYSTEM and BLOCK levels.

Second, some rules are given to set up the actual behaviour de­

scription, the PROCESS definition.

____________________________10o _

5.1.1. Functional decomposition (SYSTEM and BLOCK level)

SYSTEM LEVEL

•

•
•

•
•

•

•

•

The SYSTEM definition shows the signals between the

environment and the single system block.

The signals are grouped by functionality using signallists.

For functional grouping of signals it might be useful to define

message sequences (visualizing causal relations between input

and output signals) and to give informal descriptions of actions

upon those signals.

Use clear naming of signallists and separate signals.

Build signallists of several signallists to show functional

spli tting at lower levels (tha tis, splitting of chan nels and

blocks).

Give a signallist definition just bef.ore it is split in signals or

signa llists at cha nnel or signa lrou te spli tting.

Channels can also be used to visualize differences in functiona­

lity of carried signals, or can be used to visualize different

interface points (in the UART description different channels

were used for the CPU-interface and the serial-interface). The

latter reason for channel splitting must be avoided when this

leads to too many channels causing unclear specifications (and

messy drawings).

Define basic signals like clock and master-reset as global varia­

bles at system level informally. Formalization of this kind of

signals by implementing extra input processes and export

mechanisms can be automated when a complete description for

simulation is needed.

Note:

In general some specific hardware related signal definitions

best can be done informally regarding the SDL syntax, but for­

mally regarding predefined specific constructs with their trans­

la tions to the SDL syntax in an expert system. Then the trans­

lation to a complete formalized SDL description is possible

anytime we need.
____________________________101 _

•

_____,5.1.1. Functional decomposition

Data type definitions like bit, byte and register only have to

be defined once using the NEWTYPE construct, in order that

we can use these types as any other standard data types.

BLOCK LEVEL

•

•

•

•

•

•

•

At system level functional decomposition was prepared by the

definition of signallists and especially those signallist

definitions built out of several signallists connected to channels

which can be split at block level.

Functional decomposition is a tool to split a problem in mana­

geable parts. Although not necessary, the decomposition mostly

leads to the same decomposition in hardware. The latter must

be avoided in the specification phase (the behaviour descrip­

tion).

Decomposition of the system In several blocks (block substruc­

turing) implies that the functions contained in different blocks

are highly independent and may act concurrently. One of the

critera for functional decomposition is that the communication

rate between blocks must be low and most communication

actions must have a data transfer function, not a mere

synchronization (control) function.

Block substructuring must be used to emphasize concurrency of

functionality, not of actions. The latter will be done during a

later stage when a block definition is split in process

definitions.

Use clear naming of blocks/processes. If possible give an

informal description of the blocks/process' functionality.

Do not split channels between blocks/processes in functiona­

lity, allow a maximum of one channel between every

block/process pair to keep the description clear.

Sharing of one process by other processes in the same block

can be visualized by the create construct. Shared processes

usually will contain specific functions which are used by

several hardware implemented processes.

____________________________102 _

5.1.2. Process definition (PROCESS level)

PROCESS LEVEL

on input

of inputs

must be

transition

•

•

•

•

•

•

The process definition is a sequential decomposition of the

problem.

In the model, states are synchronization points

signals, tests on variable conditions, or combination

and variable condition tests. The latter combination

used carefully because the SDL model only starts a

on a True condition when the input queue is empty.

States must be used as a framework for sequential decomposi­

tion. That is, we must keep in mind that the state machine

model is a tool for decomposition, not for state assignment.

Service decomposition must be used carefully because at first

sight it looks the same as process decomposition. But because

the service model is restricted to one single service transition

at a time, services can not act concurrently.

In most cases, use of procedure decomposition is better than

service decomposition.

Use procedure definitions to group a set of related actions to

one (virtual) action.

Procedures are useful for a clear specification and for sets of

actions which return at different points in the process descrip­

tion.

•

•

Note:

Possi ble implemen ta tion of a proced ure is a micro

subroutine in a micro programmed controller.

Use procedures for specific hardware related functions like

register-shifting, initializing, etcetera. These specific procedures

must be defined as an extension of standard SDL (procedure

library).

Use informal task descriptions only to postpone formalization

of certain tasks. Do not use them for large transition

sequences. Use clear naming of these tasks, and connect com­

ments to them with description of the effects upon variables.
____________________________103, _

_____,5.1.2. Process definition

the scope

within a

assignments within

rela ted opera tors or

Formal task descriptions contain

of the SDL data types and

NEWTYPE definition.

Define common variables as revealed by the process owning the

varia bles. The choice which process owns a particular varia ble

is based on functional decomposition of the processes in the

same block.

Note:

Only the owning process can change the value of a

revealed variable.

Change of the value of a variable by a process not

owning the variable is modelled by write signals

containing the new value sent to the owning process.

The owning process updates the value of a variable at

receiving a corresponding write signal.

Write actions to a memory like environment do not need a

write (request) signal but use the synchronization inherent to

the (data) signal. Read actions do need a read request before

da ta is pu t ou t by the process.

•

•

•

5.2. Enluation of the behuiour model

At this point we state that we have a complete SDL description, all

informal parts are formalized by hand or automatically giving a

syntacticly correct description.

This description has to be evaluated in two different directions.

First we look if the described behaviour is the same as the beha­

viour we want (verification). When the SDL description is complete,

verification can be automated. That is, we can use tools to evaluate

the described behaviour and systems performance.

Second we must evaluate the description towards hardware imple­

mentation (refinement). Here the evaluation results are used to

decide what communication form between processes is chosen.

____________________________104 _

5.2.1. Verification of the behaviour model

Not only the functional requirements and process definition must be

checked but also the performance requirements.

The system description must be checked on:

a causal behaviour of signals

b causal behaviour of process' states

c needed queue length

d utiliza tion of processes

f deadlocks

a: A systems behaviour partly is defined by its message sequences.

That is, one way to check this behaviour is to determine the

ca usali ty rela tions between signals.

For a single process description it is obvious which input signal

preceeds a certain output signal. But for several processes

communicating within a block the causality relations between

input and output signals of the block are not described.

The causality relation of input/output signals at the block

interface can be determined by parallel composition of the

processes in the block.

We could use the expansion algorithm [Milner] with restric-

tion of the internal signals of the block (after translating SOL

to CCS). In this case we must use the expansion algorithm with

value passing because the causal bahaviour can be influenced by

variable values (we are not interested in synchronization only).

Another way to determine the causality relation between

input/output signals at the block interface is simulation. That

is, we define possible input sequences and evaluate the

corresponding ouput sequences found by simulation. The latter

is dangerous beca use the designer may forget some of the

possible input sequences.

We can use the same approach to the system description to

evaluate the overall causal behaviour at the environmental

interface.
____________________________105 _

_____5.2.1. Verification of the behaviour model

b: Closely related to causality relations between input and output

signals are the causal relations between states of different

processes.

These relations arc important to see how communicating pro­

cesses are synchronhcd and to check their behaviour.

Later we will see that the way processes are synchronized,

influences the choice how communication is implemented.

simulate thec: When we

monitor queue lengths

behaviour

to check

description, it's useful to

for specif ica tion errors,

performance and choice of communication method.

it is obvious that when some queue length keeps growing du­

ring simulation, the specification is wrong (deadlock). Likewise

when a queue is large, the specification might be wrong or at

least Dot optimal in performance.

When certain signals are in the queue more than once, but are

expected by the process in only one state, unbuffered

synchronous communication might be bad or even impossible.

The dynamic behaviour of the queue length of different pro­

cesses is a measure for the performance of the system. For

instance, if a certain process queue grows to some maximum

before signals are taken from it, then the process might have a

negative influence on the overall performance (bottleneck).

d: Evaluation on thc utilization of processes might lead to

splitting of busy processes in smaller ones to get a higher

performance. A measure for utilization of a process is the ratio

of active transitions and wait states per clock tick.

e: Deadlocks mostly are caused by a wrong specification.

Because the SDL model has no restrictions on the queue length,

"communica tion" deadlocks can only occur when two processes

are waiting for each other's input signal causing the rest of

the system to halt.

Another cause for deadlock is when one process waits on a

true condition of a variable owned by another process while

_____________________________106 _

_____5.2.1. Verification of the behaviour model

the rest of the system is halted.

Unsuccesful process creation might also lead to a deadlock.

Checking possible deadlocks can

tion, checking the queue length

composition of the processes (CCS).

be done by extensive simula­

during simulation or parallel

5.2.2. Refinement of the behaviour model

The other direction in which the behaviour model must be evalua­

ted, is towards a hardware oriented behaviour description. In this

description the communication- form and path between every pro­

cess is chosen and specific SDL constructs like process creation

and the SDL timer are rewritten into a hardware model.

The choice which communication form is chosen depends on:

a synchronization of process' states of different processes

b needed queue length

c communica tion ra te

d performance requirements

a: When different processes are tightly coupled, in most cases

introduction of synchronous communication hardly affects the

performance of all, because wait times for succesful commu­

nication will be small.

When different processes are loosely coupled, in most cases

choice for buffered communication will give a better perfor­

mance.

When an input action is a ca usal action of the preceeding

transition (the process is expecting a particular input and

nothing else), then there is no need for an input queue nor a

comm u nica tion protocol.

b: When monitoring the needed queue length at simulation, not

only the length is important but also the contents of the queue

____________________________107 _

_____5.2.2. Refinement of the behaviour model

and the dynamic behaviour of the Queue length.

It is possible that introduction of synchronous communication

without buffering can cause deadlock in case that the needed

queue length is always larger than one.

When the queue contains several identical messages from the

same source, synchronous communication without buffering

causes loss in performance of the source process or even

deadlock.

c: When the communication rate

implementation of a separate

better performance because it

straints upon processes.

between processes is high, the

input/output process gives a

relaxes synchronization con-

d: Introduction of synchronous communication in general will

affect the performance of the system but saves hardware. When

the performance requirements are high, we must choose for

buffered communication, thus extra hardware.

When several processes

single signal bus), an

which process uses the

arbitration depends on

communication form.

must use the same communication path (a

arbitration algorithm/process must decide

path. The implementation form of this

the same points as the choice for the

In general the implementation form of communication path together

with an arbitration algorithm must be chosen to get the best

performance given the communication rate, process synchronization

and communication form.

_____________________________108 _

5.3. Rewriting the bahaviour model

In chapter 4 implementation models were given of communication,

message handling, the SDL timer and process creation. These models

were given in their general forms.

exact implemen ta tion of

facts mentioned in prece-

model, the

evalua tion

At rewriting the behaviour

these models depends on the

ding paragraph.

This rewriting will be done in an interactive way given the eva­

luation facts, a knowledge base with implementation models and the

knowledge of the designer.

Some choices for implementation still have to be made by the de­

signer when the evaluation of the behaviour model gives several

solutions or no solution at all. Still the expert system can help the

designer by giving particular (estimated) effects of implementation

choices or even by restricting the possible set of solutions.

The expert system must avoid "the re-inventing of the wheel".

behaviour model, the hardware

in terprocess communication is

against the behaviour model

is verified against user requi­

behaviour model is not enough

are contained in the behaviour

In the final form of the rewritten

orien ted beha viour description, all

made explicit.

This description has to be verified

provided that the behaviour model

rements. Verification against the

because not all user requirements

model.

Not only introduction of synchronous communication but

introduction of clock synchronization and time consumption

can affect the specified behaviour.

also the

of tasks

_____________________________109 _

_____5.3. Rewriting the behaviour model

The hardware oriented behaviour description still has tasks, de­

cisions and procedures defined as no time-consuming actions. The

states in this description are synchronized to a system clock. In

this case a more realistic beha viour description would be, a de­

scription with estimated time consumption of tasks expressed in the

amount of clockticks needed by a task.

For simple expressions estimation of the time needed can be done

automatically. The time consumed by complex expressions is depen­

dent on the implementation. So in the latter case the consumed

time must be given by the designer (if necessary with support from

by the expert system).

_____________________________110 _

for specification of com­

Especially the design of

description technique that

6. Conclusions and suggestions

We need a formal description technique

plex digital systems in VLSI design.

parallel processes in hardware needs a

copes with concurrency in a clear way.

The description technique must be formal to allow only one inter­

pretation of the described behaviour

The technique must have a strong mathematical base to make auto­

mated specification, simulation and verification possible. But the

mathematical base must not make the specification technique user

unfriendly or difficult to read.

It must be possible to describe the behaviour in an abstract way

without knowing implementation facts.

SOL is a good compromise for our purpose, the description of

parallel processes in hardware. SOL has the advantage of two

representation forms, a graphical and textual representation. The

graphical representation gives a better human interface and the

textual representation can be used as input for simulation-,

verification- and evaluation- programs.

SOL is based on the extended finite state machine model providing

an easy to use structure for decomposition of the description and a

first step towards the implementation in hardware, in the form of

state machines.

The asynchronous communication model between SOL processes

using one common input buffer per process, makes specification of

inter process communication easy. But the implementation of inter

process communication must be synchronous to avoid errors due to

races and to get an economic use of hardware.

Channels and signalroutes in the specification are implemented in

hardware by busses, signallines and bus-arbiters.

____________________________111 _

_____6. Conclusions and suggestions

The actual processes are implemen ted by splitting them in a con-

trol part and an information processing part and implementing these

parts in a control unit and an operational unit respectively. The

same functional splitting must be done on signals, where the data

part is handled by the operational unit and the control/synchro-

nization part is handled by the control unit.

SDL can not be used as a hardware description language, but must

be used to set up a behaviour model of a system to be designed.

The first two levels, SYSTEM and BLOCK level, are used for func­

tional decomposition of the problem. At PROCESS level, the sequ­

ential decomposition is given.

Setting up the behaviour model in SDL must be supported by tools

for setting up a SDL description, a SDL syntax checker and a li­

brary containing particular hardware constructs described in SDL.

When the behaviour model is proven to be correct by verification,

the next step must be the translation to a hardware oriented be­

haviour description done by the designer in interaction with an

expert system.

The expert system

communication form

must help the designer in deciding which

a particular process uses, how channels are

structured and how specific SDL constructs like TIMER and

CREATE are implemented. These decisions must be based on

evaluation facts upon synchronization of processes, needed queue

length, communication rate and performance requirements.

____________________________112 _

LITERATURE

CCITT: SPECIFICATION AND DESCRIPTION LANGUAGE

(SDL),

CCITTjRec. Z.100, January 1987.

Copper:

Dijkstra:

Gries:

REAL-TIME DISTRIBUTED CONTROL

ASYNCHRONOUS MESSAGE RECEPTION,

Albert N. Copper III, John P. Kearns

Proc. of the Real-Time Systems Symposium,

(Cat No.85CH2220-2), San Diego, 1985.

"COOPERATING SEQUENTIAL PROCESSES",

Programming Languages, F. Genuys ed.

pp. 43-112, Academic Press, New York, 1968.

THE SCIENCE OF COMPUTER PROGRAMMING,

D. Gries

Springer, New York, 1984.

WITH

Harel:

HHDL:

STATECHARTS: A VISUAL APPROACH TO COMPLEX

SYSTEMS,

David Harel

Department of Applied Mathematics, The Weizmann

Institute of Science, Rehovot, Israel, March 1986.

HIERARCHICAL HARDWARE DESCRIPTION LANGU­

AGE,

SILVAR LISCO

condensed manual given in VLSI.l

ISO ESTELLE: A FORMAL DESCRIPTION TECHNIQUE BASED ON

AN EXTENDED STATE TRANSITION MODEL,

ISOjTC97jSC21(DP 8806), Februari 1985.

________________________113. _

ISO LOTOS:

Klemann:

Koomen:

Milner:

Schie:

VLSI.l:

VLSI.2:

SDL '87:

_____LITERATURE

A FORMAL DESCRIPTION TECHNIQUE BASED ON

THE TEMPORAL ORDERING OF OBSERVATIONAL

BEHAVIOUR,

ISO/TC97/SC21(DP 8807), Februari 1985.

IMPLEMENTATION OF ALGORITHMS INTO HARD­

WARE,

O.M.R. Klemann

Eindhoven University of Technology, Department of

Electrical Engineering, August 1988.

CCS AS A POSSIBLE SEMANTIC BACKGROUND FOR

SDL,

Cees J. Koomen

Technical note nr. 172/82

Philips Research Laboraties, 1982.

A CALCULUS FOR COMMUNICATING SYSTEMS,

Robert Milner

Springer, New York, 1980.

UART IN TOP DOWN DESIGN,

A.L.D. v. Schie,

Eindhoven University of Technology, Department of

Electrical Engineering, 1987.

STRUCTURED VLSI DESIGN COURSE, WEEK I

Eindhoven University of Technology, Department of

Electrical Engineering, 1987.

STRUCTURED VLSI DESIGN COURSE, WEEK 2

Eindhoven University of Technology, Department of

Electrical Engineering, 1987.

SDL '87: STATE OF THE ART AND FUTURE TRENDS

R. Saracco and P.AJ. Tilanus

Elsevier Science Publishers, North Holland, 1987.

_________________________114 _

APPENDIX A:
LIST OF ABBREVIATIONS USED IN THE UART DESCRIPTION

cont in
dostr
distr
cs
abus
ads

con tout
csout
ddis

mod in
ncts
ndsr
nrlsd
nri

mod out
nrts
ndtr
noutO
nout I

dat_in(byte)
da t ou t(byte)
ser_in(bit)
ser_out(bit)

in trpt
osc
rclk
baudout

trscvreg_wr
trscvreg_rd
con trolreg_wr
controlreg_rd
baudreg wr
baudreg=rd

trscv int
trans int
recv int
Istat-int

control in
da ta ou tpu t strobe
data input strobe
chip select
address bus
address strobe

control out
chip select out
driver disable

modem in
not clear to send
not data set ready
not received line signal detect
not ring indica tor

modem out
not request to send
not da ta terminal read y
not out 0 (programmable output 0)
not out I (programmable output 1)

data in (type byte)
data out (type byte)
serial in (type bit)
serial out (type bit)

interrupt
oscillator
receive clock
baudrate generator out

transceive register write
transceive register read
con trol register wri te
con trol register read
baudrate generator register write
baudrate generator register read

transceiver interrupt
transmi tter in terru pt
receiver interrupt
line status interrupt

__________________________115 _

	Voorblad
	Abstract
	Contents
	Introduction
	1 Why do we need a description-specification language?
	2 Statecharts, ESTELLE, LOTOS, Petri-nets and SDL
	3 SDL syntax and structuring (Dining Philosophers problem)
	4 SDL and hardware implementation
	5 SDL design methodology towards hardware
	6 Conclusions and suggestions
	Literatuur
	Appendix A

