Un1vers1ty
Qf Glasgow

Sinnott, R.O. (2006) Towards more accurate real time testing. In: 12th
International Conference on Information Systems Analysis and Synthesis,
16-19 July 2006, Orlando, Florida.

http://eprints.gla.ac.uk/7323/

Deposited on: 17 September 2009

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Towards More Accurate Real Time Testing
Prof. Richard O. Sinnott
National e-Science Centre
University of Glasgow, Glasgow G12 8QQ
ros@dcs.gla.ac.uk

Abstract

The languages Message Sequence Charts (MSC) [1], System
Design Language' (SDL) [2] and Testing and Test Control
Notation Testing? (TTCN-3) [3] have been developed for the
design, modelling and testing of complex software systems.
These languages have been developed to complement one
another in the software development process. Each of these
languages has features for describing, analysing or testing the
real time properties of systems. Robust toolsets exist which
provide integrated environments for the design, analysis and
testing of systems, and it is claimed, for the complete
development of real time systems. It was shown in [4] however,
that there are fundamental problems with the SDL language
and its associated tools for modelling and reasoning about real
time systems. In this paper we present the limitations of TTCN-
3 and propose recommendations which help minimise the
timing inaccuracies that would otherwise occur in using the
language directly.

1. Introduction

MSC, SDL and TTCN-3 are international standardsduse

for capturing requirements, for design and analysisl testing
of systems respectively. The languages themselses heen
developed explicitly to work together and toolsats available
supporting, at least in principle, a complete emwinent for
requirements capture, design/analysis and tesfisgstems.

MSC is an international standard that providesaplgical
2-D language often used for the capture of requergm
through description of interaction scenarios. Oftdrese
scenarios are used to define the properties (frdlcasa given
system should satisty The MSC standard is maintained and
updated every four years by ITU-T. Similarly, SD& an
international standard updated every four yearsThyT. SDL
supports the specification of complex software eyst and has
been extensively applied across a broad array wiadts from
telecommunications, automotive through to geneddtwsre
development. SDL and MSC have evolved over an ee@n
period of time and advanced toolsets now exist #fiatv for
the automatic verification of MSC against SDL madel

TTCN-3 has been put forward by ETSI and is the only

internationally standardised testing language. TIXONovides
numerous structures that facilitate a broader egpility than
for example was the case with earlier versionshef TTCN
standard — which was primarily focused upon conforoe
testing of OSI protocols. Toolsets are now avaddbl TTCN-
3 such as [5,6,7,8].

MSC, SDL and TTCN-3 all have features for descgbin
real time properties of systems. The need to haisedhe real
time features of these languages is thus esséot@aisure that
real time requirements can be expressed and showet
satisfied (or not) by given models, and ideallytttests that
might be generated from those models capture bbth t
functional and real time information needed to testh

! Formerly known as Specification and Descriptiomgiaage.

2 Formerly known as Tree and Tabular Combined Narati

® Depending on the semantics, MSC can be used tareapaces that
should always be satisfied, never be satisfiethatrthere exists at least
one system execution which can generate the trace.

systems. Similarly, changes in design or requirémear
new information established about the real timepprtes of
the system being tested should be fed into the mspde
designs or tests to investigate their impact. Kamgple, real
time requirements might not be realistic when tesin a live
environment is undertaken, or it might be the cted a
given model has timing properties that can be shimicause
erroneous behaviours in under certain conditiomactéble
real time between the languages and supported évytotbl
sets is thus highly desirable.

Diagrammatically the inter-relationship between sthe
three languages is depicted in Figure 1. In tlipep we
focus in particular on the language TTCN-3. To aataly
capture the real time properties of a given testesy and to
ensure that requirements and models are used teragen
realistic and enforceable timing information, it essential
that the language itself (TTCN-3) has a well untberd and
semantically sound model of time.

RT-requirements
(MSC)

RT-models/designs

statel

Verification

Complete RT
language/tool

state2

Test case generation
and co-simulation

Test case generation

timer myT;

A.send(X); myT.start(5E-3);

alt { [] A-receive(Y); ...
[l myT.timeout; ...}

RT-tests
(TTCN)
Figure 1: Relation Between MSC, SDL and TTCN

We note that testing is in general a difficult aityi, but
one that is fundamental to relate implementations t
specifications (and vice versa). Real time tesngven more
difficult to achieve. To understand why this sholle the
case, consider the following pseudo-code in Figure
SomeFunction()

{ Switch (...){

Case 1(...) onaverage takes T1s

Case 2(...) onaverage takes T2s

Case 3(...) onaverage takes T3s

B
Figure 2: Real Time Pseudo-Code

If we need a reliable real time system then we need
understand that each of theSase statements will take some
time. In testing a system containing (perhaps ivatity) such
a function call, several possibilities exist. Foample, the
average time taken by tisemeFunction() operation might be
used. However, iSBomeFunction() was doing some sorting of
a file, then the length of time needed to sort fileswould be
dependent upon the size of the file, whether it mattxes

already built etc. In short, the context in whidfistfunction
was to be called needs to be established. Note ithat
engineering real time systems, to ensure religbilitis often
the case that such choices of functionality arecifipally
engineered to have similar timing constraints.

2 Background to TTCN-3

TTCN-3 is a flexible language applicable to the
specification of all types of reactive system testsr a variety
of communication interfaces. Typical areas of agtion are
protocol testing (including mobile and Internet toaols),
service testing, module testing, API testing etoliké earlier
version of TTCN which were primarily focused upon
conformance testing, TTCN-3 can be used for marherot
kinds of testing including interoperability, robnsss,
regression, system and integration testing, as efeiburse as
conformance testing.

From a syntactical point of view TTCN-3 is veryfdifent
from earlier versions of the language as definedS@/IEC
9646-3 [9]. However, much of the basic functioryatf TTCN
has been retained, and in some cases enhanced. -3TCN
includes a core notation which is textual in nat(aed used
throughout this paper), and numerous presentationdts. For
example, there are presentation format based oabalar
representation (as per TTCN, TTCN-2) [17], and apbical
MSC-like notation [18].

The TTCN-3 language
characteristics:

e the ability to specify dynamic concurrent
configurations;
operations for
communication;
the ability to specify encoding information and eth
attributes (including user extensibility);
the ability to specify data and signature templaigth
powerful matching mechanisms;
type and value parameterization;
the assignment and handling of test verdicts;
test suite parameterization and test case selection
mechanisms;
combined use of TTCN-3 with ASN.1 [10] (and potehti
use with other data typing languages);
well-defined syntax, interchange
semantics;

TTCN-3 also offers a precise operational semarftids.
Through TTCN-3, abstract test suites can be deeelaphich
offer a generic, i.e. primarily implementation ipégadent, way
for expressing the functional tests for arbitrary
systems/implementations.

These abstract test suites will then typically benpiled
into executable test suites, potentially includirgher
information needed for the specific system undest. tén
addition to the TTCN-3 language description and agins
itself, the TTCN-3 standards included the desaiptf a Test
Runtime Interface [12] and a Test Control InterfddS].
Conceptually, a TTCN-3 test system can be thoughs@ set
of interacting entities where each entity corregjsorio a
particular aspect of functionality in a test system
implementation. These entites manage test exatutio
interpreting or executing compiled TTCN-3 code, lizea
proper communication with the system under tesplement
external functions, support functions for the logpi of
information on the test execution itself, and harglof timer
operations.

We note that TTCN-3, whilst being a major enhanagme
to earlier versions of TTCN-2 has the same featQnéih the

itself includes the following

testing

procedure-based and message-based

format and static

same semantics) for describing, testing and evalyaeal
time aspects of systems. These are based upowrept of
the timer and the notion of the snapshot semantics.

3 Real Time Featuresof TTCN-3

The TTCN-3 language has certain features whichbean
applied for the testing of real time systems. Theatal
feature used in TTCN-3 for dealing with timing aspef a
given system under test is ttiemer. TTCN-3 has operations
to start, stop, read or check if a timer is runrésgshown in
Figure 3.

aTimerlstart; aTimerXtart(2E-3);

[/ltimer values of typél oat
aTimerlstop; all timerstop;

IIstopping inactive timer has no effect
var float avar, aVar := aTimeread;

/lassign to aVar time elapsed since aTimer starnted
if (@aTimerrunning) {...}

llreturns true / false if timer is running or not

Figure3: Timersin TTCN-3

Timers are declared, started and either stopped or
timeout. When a timer times out, eglimer.timeout, the
expired timer is placed in a timeout list. Thig is checked
when the next snapshot (described below) is talénote
that there are no global timers in TTCN-3 (nor gloBata),
that is timers may only exist in functions, tessesor in the
control part of a test suite. Examples of timer gesan
TTCN-3 are shown in Figure 4.
timer T1 :=10;
execute testCasel();
Tlstart;
T1timeout;
execute testCase2();

Il pause before executing nextdase
execute (testCase3(), 5E-3) -> returnVal,

Il returnVal typeverdictType = error if result not returned in 5ms
Pcall(X,5E-3); /I can also put timeout valuepsacedure call

{[1P.getreply(X);
[1 Pcatch(timeout); { verdict.set(fail); ... }

while (T.running or x<10) {execute testCase4(); x:= x + 1; }

Figure4: Timer Usagein TTCN-3

3.1 Snapshot Semantics

TTCN-3 has same snapshot semantics as TTCN-2. That
is, when a message is sent from a test systermsystam or
implementation under test and a set of alternatiternatives
are possible, the possible responses (messages tfrem
system under test to the test system) are processtubir
order of appearance. Each time around a set aghattees a
snapshot is taken of which events have been retevel
which timeouts have fired. Only those identified tine
snapshot can match on the next cycle through the
alternatives. This “snapshot” taking effectivelyedres the
environment whilst alternatives are processed, #ndo
match occurs, a new snapshot is taken. Whilst stipgo
consistent testing, this approach causes problenes weal-
time testing is needed.

3.2Key Issueswith TTCN-3 for Real Time Testing
There are several key problems with current appresc
for real time testing with TTCN-3 and the usagetiofers.
These are: the speed of the tester and the assbpiatblems
of the snapshot semantics and its impacts on angwh

timing information as well as the need to allow &ustraction
from test hardware/software properties; dealinghwitme
critical testing information; the problems of time
synchronisation of distributed test configurations.

3.2.1 Problemswith Snapshot Semantics on Speed of Tester

The simple timer concept is intended to catch Ierga
timeouts and as such is not powerful enough to déal hard
real-time. Since the standard snapshot semanticy ma
summarize time-critical events into one snapshwiportant
timing or ordering information might get lost. This in
contrast to the TTCN standard which statasTést Case or
Test Sep should not contain behaviour where the relative
processing speed of the MOT (Means of Testing) could impact
theresults’. In this case, it is not decidable, whether dation
of real-time constraints occurred or not. We ndiat texactly
such behaviour is needed to describe real-timectests. The
verdict itself will rather depend on the questiohnhow the
alternatives are ordered in the TTCN behaviour iietson.

To overcome this, the TTCN-3 semantics assumes that
taking a snapshot is instantaneously, i.e. hasunatidon. The
TTCN-3 standard also describes the evaluationswfagshot as
a series of indivisible actions of a test componkrdtates that:
the semantics do not assume that the evaluation of a snapshot
has no duration. During the evaluation of a snapshot, test
components may stop, timers may timeout and new messages,
calls, replies or exceptions may enter the port queues of the
component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot
evaluation. As we will show, this causes errors in the accyra
of real time testing.

It is a fact that if the test executor equipmehe (ineans of
testing) is not fast enough, it can not communicaiid the
implementation under test properly so the testiegoimes
meaningless. The most important advantage of reatdisting
in contrast to log analysis is that the testerexgulicitly control
the behaviour and state transitions of the impldatemn under
test in order to achieve better coverage. The pedoce
bottleneck, for example, can be the delay betwesn t
successive send events or the reaction time (the tietween
receiving a message and sending the response)néicessary
to determine whether a means of testing is fastgmdor a
certain test case.

3.2.2 Problemswith Assignment of Test Verdicts

In TTCN-2 a verdict of a test could only have thuedues
PASS, FAIL and INCONCLUSIVE without further
qualification. TTCN-3 extends these values to alldar
ERROR and NONE values also. However, when it cotoes
time critical measurements, it may be necessaexpdoit more
information. For example, if an event has to happéhin a
time interval, it may be interesting or importaatknow how
well it is within the interval, e.g. the time whean event
happens has to be recorded in the test report.

3.2.3 Problems with Time Synchronisation of Distributed
Test Configurations

A test system itself may consist of many ParallestT
Components (PTCs) and a main test component (MTC).
order to be able to test for timed behaviour spreaér
different PTCs, a time synchronisation mechanism is
necessary, i.e. each PTC has to be able to asthéoexact
absolute time at any moment in order to relate ¢@shts to
this time.

There are several ways in which these problemsbgan
addressed. One way to address or at least minithisge

problems is through general guidelines on the usafge
TTCN-3 for real time testing. Another more direcaywis
through language enhancements that specificallyreadd
these problems. Currently no language enhancenieavs
been made completely overcoming the problems ifngm
caused by the snapshot semantics.

4 Using TTCN-3for Real Time Testing

We note that the language usage aspects presested h
are given in TTCN-3 syntax but the general prirespl
presented also apply to TTCN-2 usage for real systems
testing. We begin with a summary of the existingtdiees of
TTCN-3 that can be used for real time testing.

With regard to these first of the bullet points a®attion
3.2.1 given above, the most important questionghatild be
asked for real time testing is, is the tester émtugh to test
the specific implementation under test? That ighes time
needed to send/receive messages, access/modify
ports/timeout lists etc much less than real timepprties of
implementation under test to be checked, i.e. gdd? If
the test system is too slow then real time tesforgthis
implementation under test with this test systemnist
possible. However, even in the case where thesyesém is
fast enough, the tester should be aware of thedtap the
speed of the test system on the test results.

As an example of this consider the following scemar
where we want to check that a tester sendiigo an
implementation under test can result Ap B or C being
received. Further suppose we want to check thathef
implementation under test responds vitin <=0.05ms then
the tester should send otherwise if the implementation
under test does not respond bef@é&ms then the tester
should send. The simplified MSC 2000 for this scenario is
shown in Figure 5.

Teste UT
X
il £--
! [alt
T1(0.1ms) | R "
©oosmd| | e -
1. c
Y
> Z
= (B

Figure5: M SC 2000 Scenario Representation

The corresponding TTCN-3
scenario is depicted in Figure 6.

representation of this

var float t; timer T1:=0.1ms;
Testersend(X); Tl.start;
alt {[] Testerreceive(A);

[] Testem.eceive(B);

[1 Tester.eceive(C); t:=T1lread;

if(t <=0.05) { Testesend(Y);...} else{...}
[] T1timeout; { Testersend(2); ... }
}

Figure 6: TTCN-3 Scenario Representation

At first glance there does not appear to be anylpros
with this representation. However, for successfully
performing the real time test, certain informatia not
present. For example, tester timing issues argiven, e.g.

how long does it take to: start a timer; take gshat; check a
port and try to match alternative; check a timelsit do an

assignment; check a Boolean expression etc? Irt #oreal

time test should be based on the real time prasedi the
implementation under test being tested and notrdége upon
the speed of the test system itself. Hence infaonakegarding
the speed of the test system itself has to be gedvi

In addition, the previous scenario states nothingué the
transit delays associated with the testing, egtithe taken for
the network transit delay in sending/receiving @ specified,
or depending on the implementation under test'digoration
with the test system, the time taken for messagesaivel
through lower protocol layers through which the
implementation under test is accessible. We natetttis is not
really in description of the requirements, buthbsld be, if
want accurate real time measurements, i.e. accueatetime
tests of the implementation under test.

A further problem with this scenario representati®rthe
likelihood of inaccurate time measurements causgdthe
snapshot semantics. That is, as a result of thetimgi TTCN
snapshot semantics, the actual value of the timisdntorrect.
Specifically, Z is sent at time equal to the time of the last
snapshot plus the time to check for (match alteres}A/B/C
plus the time to check the timeout list itself. igladditional
delay in sending could be important! The value recorded in
the reading of the timefL.read) is also affected. The TTCN-3
standard currently states thahé read operation is used to
retrieve the time that has elapsed since the specified timer was
started and to store it into the specified variable” which
implies that this value is read there and then,iisscurrent
value. However, there are situations for exampla Boolean
guard on an alternative statement where the valubeoread
will be the value of the timer when the last snapstas taken.
This latter case, addresses the possible diffesuiti Figure 7.

timer T1l:=1s;

alt {[T1.read>1] Testemeceive(A);
[T1lread<=1] Testemeceive(B);
[] Tltimeout; }

Figure 7: Potential Timing Problems

Here it is possible that the first two qualifierse anever
satisfied since the firskl.read alternative might be false, then
by the time the second alternative is evaluated, after the
time to access th&l value again, the second qualifier might
evaluate to false also, which would of course bgeeslly
counterintuitive. Whilst making the test case dabld, it is
clear that the actual value of the timer that vad used in
evaluating these Boolean guards - as prescribedthey
standard! - will be wrong. Specifically, it will bearlier than
the current real time (since it records the valti¢giroe at the
previous snapshot).

5 Guidelines on TTCN-3 Usage for More

Accurate Real Time Testing

To address these problems we produce general medel
on TTCN-3 usage for real time testing. Through ¢hes
guidelines specific timing aspects of the testeestér
benchmarking) should be taken into account. Funpheposals
on language usage to aid in addressing the timnitgrad
aspects related to transit delays and recordingtirafng
information are illustrated. Finally examples afig@mage usage
which help improve test component synchronisatiae a
presented.

5.1 Guidelinesto Establish the Speed of the Tester

The basic idea behind this proposal to establistsfieed
of the tester is based upon exploiting the TTCNu3gliage
itself to provide some form of minimum benchmarkofghe
test system itself. For example, to test the rie@ faspects of
a particular implementation under test it mightrigseessary
to establish that the tester is capable of perfogma
particular number of sends in a given time period.
Establishing this form of additional information ncebe
achieved through specific functions represented TCN-3
which should be called before the real time tedtshe
implementation under test itself are made. We tiwté such
additional information is typically provided in TTNG2 test
suites via a Protocol Implementation ConformanaeBtent
(PICS) or Protocol Implementation Extra Informatifor
Testing (PIXIT) statement [19]. These contain &adddl
information such as the physical set up and commect the
test system, e.g. test hardware description. Amel& of
one such function call is given in Figure 8.

module testExecf(oat maxExecTime)
{ /I definitions of data types, test data tempatports, etc
function testExecutor(yuns on myMTCTyper etur n ver dicttype
{ var float timeTaken;
timer T:= 5*maxExecTime; ®art;
/I note timer includes a scaling factor
Pl1send(aType);
/I or mor e complex behaviour with
/I multiple sends/assignments
timeTaken := Tread;
if (timeTaken>maxExecTime)rfetur n fail;}
/I could use timeout if no scaling factor
else{ return pass;} };

control {var verdicttype execVerdict :9pass;
execVerdict := testExecutor();
if (execVerdict ==pass)
{execute(theRealTimeTestCasesNotSpecifiedHere()) }
else {myMTCType.stop}}

Figure 8: Tester Benchmarking via TTCN-3 Functions

Here the test suite parametemxExecTime has to be
provided and is subsequently used to ensure tlatteht
system is fast enough, i.e. functitestExecutor() evaluates
to pass. Other possibilities such as lower timing bounais,
parameters to deal with system load or performanoee
generally, can also be used to parameterise astést and
subsequently used in function calls to evaluatethdrethe
test system is suitable for testing the given imm@atation
under test. In addition to testing that the tesstay is
capable of performing a sufficient number of semdthin
some upper time limit, more complex interactionnsc®s to
establish the speed of the tester can also belishith For
example, it is possible to perform benchmarkingends and
receives of individual components as shown in Fedur

function testSpeedofTester ¢ ynson myPTCTypereturn integer
{var addressthePTCid :=self;

var integer ¢:=0; timer T:= 10;

connect(self:P1, self:P2);

Tstart;

while(T.running)

{ P1send(someType: * Yo thePTCid;

P2receive(someType: * ¥rom thePTCid;
c:=c+1; // other time consuming bébar here?

Jreturnc;
}, 1/ then in control part should make surettba= some value

Figure9: Extended Tester Benchmarking

Through this approach of connecting the tester tselfi
(connect(self:P1,self:P2)) and sending representative
messages and associated data sets, details repatdin

timing for performing sends/receives, taking snapsh
performing assignments etc can be obtained. Imtsktois
possible to obtain precise measurements aboufpgexsof the
tester which can subsequently be used in evaludhiagreal
time behaviour of the implementation under testusTHor
example, the time taken to perform sends/receitesveuld
typically be subtracted from the response timesnfrthe
implementation under test.

5.2 Guiddines on Establishing Time Critical
Information

It is often the case that additional timing infotioa on
verdicts than jusPASS, FAIL, INCONC, ERROR, NONE are
required. This is especially the case when testeg time
systems where for example it is often necessaegtablish the
time inside/outside some threshold or the time nakeaccess
the implementation under test itself. Consider M@C 2000
interaction scenario given in Figure 10.

Tester uT

v.
< When r1 <= 0.1 E

Figure 10: M SC 2000 Scenario With Transit Delays

Here the requirement is that the transit delay betwthe
sending of messag& from the tester to the implementation
under test should b¥ms and the transit delay due to message
D being sent from the implementation under testhto tester
should beYms. This MSC interaction scenario also requires
that if the value of the time betwed’s consumptiofi by the
implementation under test afids consumption at the tester is
less than0.1ms then messag& should be sent. This can be
represented through the TTCN-3 depicted in Figdre 1
timer T1:= 0.2ms-Xms-Yms;

Testersend(A); Tl.start;
alt { [] Testerreceive(B); ...
[] Tester.eceive(C); ...
[Tester.eceive(D);
{rl := Tlread,
if (r1-Xms-Yms <=0.1ms) { Testeend(E); ...

else { // do something else here not specified hefe

}
.}
[] T1.timeout;...}

Figure11: TTCN-3 Transit Delay Representation

Here it should be noted that the necessary trafediys
incurred can be represented directly through inciusf the
necessary offsets in the setting of the tifigr We also note
that if time critical information such as “the ammbwf time
messageD was received inside of thd-Xms-Yms limit” can
be extracted simply through reading the time assediwith

“ Note that MSC does not have the notion of buffedngvith other
languages such as SDL. A message sent betweenstamces
corresponds to two events: the sending of the rgedsya producer
and the consumption of the message by a consumer.

the T1 timer and storing its value in a test case vaeidbf
type float), e.g. by including a statement such as
varT:=T1.read before theTester.send(E) event in Figure 11.
Hence to summarise, the TTCN-3 language is expessi

enough to allow to express transit delays and ¢orcetime
inside thresholds etc. Provided this informatiom cae
established in some way, the language itself candeel to
express them.

5.3 Guidelines on Time Synchronisation between
Distributed Test Configurations

One existing problem with using TTCN for testing
distributed real time systems is with the need éofgym
timed synchronisation between distributed test cumepts.
As stated previously, TTCN-3 does not allow forlglbtest
data or for global timers. There are two main wiaya/hich
time synchronisation can be addressed within TTCN-3
Firstly either the language itself can be extendétth the
necessary features to support different synchrbaisa
possibilities. Alternatively, guidelines can be gwuoed which
show how the problem related to time synchronisatian be
minimised. To understand the problem we consider a
distributed test architecture based on concurrel€N as
depicted in Figure 12.

Synchronised? Synchronised?

N
Figure 12: Concurrent TTCN Test System Architecture

Here the implementation under test is to be tebied
test system comprising two parallel test componé@RT<l
and PTC2) and a main test compone¥TC). These test
components have the necessary coordination pogfised?
and are thus able to communicate with one anoffiee.
components all have their own individual clocksdjse.g.
cpl is the clock oPTC1, cP2 is the clock ofPTC2 andcM is
the clock ofMTC.

In addition, this test system requires that to tibw
implementation under test successfully, the testpmments
(PTC1, PTC2 and MTC) need to be synchronised with one
another.

Improved time synchronisation for this test systam be
achieved through guidelines on the usage of caatitin
messages for the test components. That is, it $siple to
support a certain level of time synchronisationotigh
restrictions on the ports used for transferringetigritical
information, e.g. messages used for synchronisaifothe
separate clocks. As an example of this considarEig3.

function synchronisePTCCheck(uns on PTC1Type
{timer T;

var address theSysid :=system; var address theMTCid :=mtc;

T2start(10);

PCO1send(myType: *)to theSysid;

alt {[] P1M.receive(float: *) from theMTCid ->value newTimerValue
{stop; T:= newTimerValue; ®art; ...}

[Tread<=5] P1receive(aType: *)from theSysid { ... }
[Tread>5] P1receive(anotherType: *from theSysid { ... }
... Il timeout case and other behaviour

11
Figure 13: Guidelines on Improved Time Synchronisation

® although we note that co-ordination points andhisodf control and
observation are both represented as ports in TTCN-3

Here we use an explicit pof®IM) which is only used for
time updates to avoid problem of queuing timing sages.
These time-critical ports are then placed at tigldst level of
alternative, i.e. they will be evaluated first whéme next
snapshot is taken. In this example, the first altéve (at port

P1M) allows for co-ordination messages to update clock

(timer) used for synchronising tests. We note hba this
function assumes negligible time for the sendirandit delay,
port access, stopping of timer, assignment of valtegting of
timer associated with the receive event. Howevdmowledge
of the latency caused by these things is known, lelaged on
some form of tester benchmarking, then appropoétets can
be used when setting the associated timer.

We note here that this guideline only offers a gahe
improvement for time synchronisation aspects andoisthe
general solution to the problem. Thus for examphés t
guideline still suffers from the existing snapshsgmantics
problem, i.e. the co-ordination message used foctapnising
the clock is “assumed” to arrive instantaneouslyhattime of
the next snapshot. In reality of course, the messaight arrive
immediately after a given snapshot and hence wilbdblayed
by however long it takes to evaluate the otherr@adtives in
this snapshot; to take the next snapshot and finalmatch on
the first clock synchronisation event.

6. Conclusions

This paper has shown the limitations of the exgstin
treatment of time within TTCN-3. The language daksw for
the specification of real time tests however itlsar thatreal
time testing will always be wrong due to the existing snapshot

semantics. It is of course, possible to try to enhance the
language to overcome the issues caused by the hotaps

semantics. This would be a radical change howeweth¢
language and one that would break the existingsj@aluse the
language to be much more complex to use, and paltgnt
allow for tests to be developed that were incoasist
depending upon the real time performance of théremment
of both the test system and implementation undsr be short,
it is unlikely that such a radical change would relbe fully
accepted. A far better approach is to support gemgeridelines
which, whilst not giving absolute accuracy to testdl at least
give some clear ideas of the boundaries for theellef
accuracy in real time testing, and hence a moresrate
measurement of the real time!

We note that other approaches have been presertietht w
offer a less radical proposal to enhancements édahguage
[14,15]. These approaches rely upon time-stampimgl a
logging of timed events. Whilst addressing some tloé
challenges in real time testing, this approachHilklisnited by
the snapshot semantics of TTCN. It also assumesdtibaest
execution system is fast enough to test the deseabtime
properties of the system under test.

One of the problems in using guidelines insteadhafing
real time features correctly realised within theglaage, is the
difficulties this imposes when relationships betw¢lee MSC,
SDL and TTCN-3 languages are considered. Thus tihils
possible to generate tests in numerous ways agilokeddn
[16], real time information generation will typitalnot be
supported. It is worth noticing that the automagmeration of
TTCN tests from SDL models typically does not imtgureal
time information anyway. The relationships betwette
languages as defined in the standards are ill-eéfand often
left to tool vendors to decide (in how they rediisplement
their toolsets [5]). For example, tool vendors ofteffer
choices when dealing with MSC and TTCN timers ao& h
they should be interpreted in relation to SDL. T@bichoices
include options that allow to: ignore such timingormation;

if a timer event exists in MSC/TTCN then a matchtimger
event must exist in the explored SDL path, buneetievent
in the explored SDL path is accepted even if ther@o
corresponding timer event in the MSC/TTCN; or
alternatively all MSC/TTCN timer events must mateh
corresponding timer event in the explored SDL pattd vice
versa, where here a corresponding timer event @slitimer
with the same name and same timeout value. Sudiusion
will of course adversely influence the wider uptakethese
languages and the general goal of a complete tgpested
environment for the requirements capture, desigmlyais
and subsequent testing of real time systems.

7. References

[1] ITU-T, Rec. Z.120, Message Sequence Charts (MSGCM
2000, Geneva Switzerland.

[2] ITU-T, Rec. Z.100, Specification and Descriptiombaage
(SDL), SDL 2000, Geneva Switzerland.

[3] ETSI - Methods for Testing and Specification (MTShe
Tree and Tabular Combined Notation version 3, DEEM
00063-1 v1.0.9, Sophia Antipolis, France.

[4] R.O. Sinnott,The Formal, Tool Supported Development of
Real Time Systems, Proceedings of International Conference on
Software Engineering and Formal Methods, 26-30 &eper
2004, Beijing, China.

[5] Telelogic toolsethttp://www.telelogic.com

[6] Danet TTCN Toolbox — TTCN-3
http://www.danet.de/index.php?id=425&L=2004.
[7] Testing Technologiesyww.testingtech.de

[8] Da Vinci Communications Terzo toolsvww.davinci-
communications.com/produ¢t3002.

[9] ISO/IEC 9646-3: Information technology - Open Sysie

toolbox,

Interconnection - Conformance testing methodologgd a
framework - Part 3: The Tree and Tabular combinedabbn
(TTCN).

[10]ITU-T Recommendation X.680: Information technology
Abstract Syntax Notation One (ASN.1): Specificatiohbasic
notation.

[11]ETSI ES 201 873-4 V2.2.1 (2003-02), Methods fortihes
and Specification (MTS) - The Testing and Test @unt
Notation version 3, Part 4: TTCN-3 Operational Setica.
[12]ETSI ES 201 873-5 V1.1.1 (2003-02), Methods fortihes
and Specification (MTS) - The Testing and Test @unt
Notation version 3, Part 5: TTCN-3 Test Runtimestface.
[13]ETSI ES 201 873-6 V1.1.1 (2003-02), Methods fortihes
and Specification (MTS) - The Testing and Test @unt
Notation version 3, Part 6: TTCN-3 Test Controkhfiace.

[14]Z.R. Dai, J. Grabowski, and H. Neukirchen. TimedCNF3

— A Real-Time Extension for TTCN-3. In |. Schiefeoder, H.
Koenig, and A. Wolisz, editors, Testing of Commuticg
Systems, volume 14, Berlin, March 2002. Kluwer.

[15]H. Neukirchen, Z.R. Dai, J. GrabowskiCommunication
Patterns for Expressing Real-Time Requirements Using MSC
and their Application to Testing. Proceedings of the 16th IFIP
International Conference on Testing of Communicaystems
(TestCom2004), Oxford, United Kingdom, March 2004.
[16]R.0O. SinnottArchitecting Specifications for Automated Test
Case Generation, Proceedings of International Conference on
Software Engineering and Formal Methods, pages 424-3
September 2003, Brisbane Australia.

[17]ETSI ES 201 873-2 (V2.2.1): Methods for Testing and
Specification (MTS); The Testing and Test Contrabt&tion
version 3; Part 2: TTCN-3 Tabular Presentation FarfliFT).
[18]ETSI TR 101 873-3 (V1.1.2): Methods for Testing and
Specification (MTS); The Tree and Tabular Combih&tation
version 3; Part 3: TTCN-3 Graphical Presentatiomfat (GFT).
[19] ISO/IEC 9646-1: Information technology - Open
Systems Interconnection - Conformance testing nuetlogy
and framework - Part 1: General concepts.

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/7323/

