

Sinnott, R.O. (2006) Towards more accurate real time testing. In: 12th
International Conference on Information Systems Analysis and Synthesis,
16-19 July 2006, Orlando, Florida.

http://eprints.gla.ac.uk/7323/

Deposited on: 17 September 2009

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Towards More Accurate Real Time Testing
Prof. Richard O. Sinnott

National e-Science Centre
University of Glasgow, Glasgow G12 8QQ

ros@dcs.gla.ac.uk

Abstract
The languages Message Sequence Charts (MSC) [1], System
Design Language1 (SDL) [2] and Testing and Test Control
Notation Testing2 (TTCN-3) [3] have been developed for the
design, modelling and testing of complex software systems.
These languages have been developed to complement one
another in the software development process. Each of these
languages has features for describing, analysing or testing the
real time properties of systems. Robust toolsets exist which
provide integrated environments for the design, analysis and
testing of systems, and it is claimed, for the complete
development of real time systems. It was shown in [4] however,
that there are fundamental problems with the SDL language
and its associated tools for modelling and reasoning about real
time systems. In this paper we present the limitations of TTCN-
3 and propose recommendations which help minimise the
timing inaccuracies that would otherwise occur in using the
language directly.

1. Introduction

MSC, SDL and TTCN-3 are international standards used
for capturing requirements, for design and analysis, and testing
of systems respectively. The languages themselves have been
developed explicitly to work together and toolsets are available
supporting, at least in principle, a complete environment for
requirements capture, design/analysis and testing of systems.

MSC is an international standard that provides a graphical
2-D language often used for the capture of requirements
through description of interaction scenarios. Often these
scenarios are used to define the properties (traces) that a given
system should satisfy3. The MSC standard is maintained and
updated every four years by ITU-T. Similarly, SDL is an
international standard updated every four years by ITU-T. SDL
supports the specification of complex software systems and has
been extensively applied across a broad array of domains from
telecommunications, automotive through to general software
development. SDL and MSC have evolved over an extended
period of time and advanced toolsets now exist that allow for
the automatic verification of MSC against SDL models.

TTCN-3 has been put forward by ETSI and is the only
internationally standardised testing language. TTCN-3 provides
numerous structures that facilitate a broader applicability than
for example was the case with earlier versions of the TTCN
standard – which was primarily focused upon conformance
testing of OSI protocols. Toolsets are now available for TTCN-
3 such as [5,6,7,8].

MSC, SDL and TTCN-3 all have features for describing
real time properties of systems. The need to harmonise the real
time features of these languages is thus essential to ensure that
real time requirements can be expressed and shown to be
satisfied (or not) by given models, and ideally that tests that
might be generated from those models capture both the
functional and real time information needed to test such

1 Formerly known as Specification and Description Language.
2 Formerly known as Tree and Tabular Combined Notation.
3 Depending on the semantics, MSC can be used to capture traces that
should always be satisfied, never be satisfied or that there exists at least
one system execution which can generate the trace.

systems. Similarly, changes in design or requirements, or
new information established about the real time properties of
the system being tested should be fed into the models,
designs or tests to investigate their impact. For example, real
time requirements might not be realistic when testing in a live
environment is undertaken, or it might be the case that a
given model has timing properties that can be shown to cause
erroneous behaviours in under certain conditions. Tractable
real time between the languages and supported by the tool
sets is thus highly desirable.

Diagrammatically the inter-relationship between these
three languages is depicted in Figure 1. In this paper we
focus in particular on the language TTCN-3. To accurately
capture the real time properties of a given test system and to
ensure that requirements and models are used to generate
realistic and enforceable timing information, it is essential
that the language itself (TTCN-3) has a well understood and
semantically sound model of time.

 RT-requirements
(MSC)

RT-models/designs
(SDL)

RT-tests
(TTCN)

B A
X

Y
(0,5ms]

timer myT;
A.send(X); myT.start(5E-3);
alt { [] A.receive(Y); …
 [] myT.timeout; …}
 ...

#delay(4
)

state2
Y

''
X

state1

Verification

Test case generation
and co-simulation Test case generation

Complete RT
language/tool

systems
development

Figure 1: Relation Between MSC, SDL and TTCN

We note that testing is in general a difficult activity, but
one that is fundamental to relate implementations to
specifications (and vice versa). Real time testing is even more
difficult to achieve. To understand why this should be the
case, consider the following pseudo-code in Figure 2.

 SomeFunction()
 { Switch (…){
 Case 1(…) on average takes T1s
 Case 2(…) on average takes T2s
 Case 3(…) on average takes T3s
 }}

Figure 2: Real Time Pseudo-Code

If we need a reliable real time system then we need to
understand that each of these Case statements will take some
time. In testing a system containing (perhaps internally) such
a function call, several possibilities exist. For example, the
average time taken by the SomeFunction() operation might be
used. However, if SomeFunction() was doing some sorting of
a file, then the length of time needed to sort this file would be
dependent upon the size of the file, whether it had indexes

already built etc. In short, the context in which this function
was to be called needs to be established. Note that in
engineering real time systems, to ensure reliability, it is often
the case that such choices of functionality are specifically
engineered to have similar timing constraints.

2 Background to TTCN-3

TTCN-3 is a flexible language applicable to the
specification of all types of reactive system tests over a variety
of communication interfaces. Typical areas of application are
protocol testing (including mobile and Internet protocols),
service testing, module testing, API testing etc. Unlike earlier
version of TTCN which were primarily focused upon
conformance testing, TTCN-3 can be used for many other
kinds of testing including interoperability, robustness,
regression, system and integration testing, as well of course as
conformance testing.

From a syntactical point of view TTCN-3 is very different
from earlier versions of the language as defined in ISO/IEC
9646-3 [9]. However, much of the basic functionality of TTCN
has been retained, and in some cases enhanced. TTCN-3
includes a core notation which is textual in nature (and used
throughout this paper), and numerous presentation formats. For
example, there are presentation format based on a tabular
representation (as per TTCN, TTCN-2) [17], and a graphical
MSC-like notation [18].

The TTCN-3 language itself includes the following
characteristics:

• the ability to specify dynamic concurrent testing
configurations;

• operations for procedure-based and message-based
communication;

• the ability to specify encoding information and other
attributes (including user extensibility);

• the ability to specify data and signature templates with
powerful matching mechanisms;

• type and value parameterization;
• the assignment and handling of test verdicts;
• test suite parameterization and test case selection

mechanisms;
• combined use of TTCN-3 with ASN.1 [10] (and potential

use with other data typing languages);
• well-defined syntax, interchange format and static

semantics;
TTCN-3 also offers a precise operational semantics [11].

Through TTCN-3, abstract test suites can be developed which
offer a generic, i.e. primarily implementation independent, way
for expressing the functional tests for arbitrary
systems/implementations.

These abstract test suites will then typically be compiled
into executable test suites, potentially including other
information needed for the specific system under test. In
addition to the TTCN-3 language description and semantics
itself, the TTCN-3 standards included the description of a Test
Runtime Interface [12] and a Test Control Interface [13].
Conceptually, a TTCN-3 test system can be thought of as a set
of interacting entities where each entity corresponds to a
particular aspect of functionality in a test system
implementation. These entities manage test execution,
interpreting or executing compiled TTCN-3 code, realize
proper communication with the system under test, implement
external functions, support functions for the logging of
information on the test execution itself, and handling of timer
operations.

We note that TTCN-3, whilst being a major enhancement
to earlier versions of TTCN-2 has the same features (with the

same semantics) for describing, testing and evaluating real
time aspects of systems. These are based upon the concept of
the timer and the notion of the snapshot semantics.

3 Real Time Features of TTCN-3

The TTCN-3 language has certain features which can be
applied for the testing of real time systems. The central
feature used in TTCN-3 for dealing with timing aspect of a
given system under test is the timer. TTCN-3 has operations
to start, stop, read or check if a timer is running as shown in
Figure 3.

 aTimer1.start; aTimer2.start(2E-3);
 //timer values of type float

 aTimer1.stop; all timer.stop;
 //stopping inactive timer has no effect

 var float aVar; aVar := aTimer.read;
 //assign to aVar time elapsed since aTimer started

 if (aTimer.running) {…}
 //returns true / false if timer is running or not

Figure 3: Timers in TTCN-3

Timers are declared, started and either stopped or

timeout. When a timer times out, e.g. aTimer.timeout, the
expired timer is placed in a timeout list. This list is checked
when the next snapshot (described below) is taken. We note
that there are no global timers in TTCN-3 (nor global data),
that is timers may only exist in functions, test cases or in the
control part of a test suite. Examples of timer usage in
TTCN-3 are shown in Figure 4.
 timer T1 := 10;

execute testCase1();
T1.start;
T1.timeout; // pause before executing next test case
execute testCase2();

execute (testCase3(), 5E-3) -> returnVal;
 // returnVal type verdictType = error if result not returned in 5ms

P.call(X,5E-3); // can also put timeout value on procedure call

{ [] P.getreply(X);
 [] P.catch(timeout); { verdict.set(fail); … }
}

while (T.running or x<10) { execute testCase4(); x:= x + 1; }

Figure 4: Timer Usage in TTCN-3

3.1 Snapshot Semantics

TTCN-3 has same snapshot semantics as TTCN-2. That
is, when a message is sent from a test system to a system or
implementation under test and a set of alternative alternatives
are possible, the possible responses (messages from the
system under test to the test system) are processed in their
order of appearance. Each time around a set of alternatives a
snapshot is taken of which events have been received and
which timeouts have fired. Only those identified in the
snapshot can match on the next cycle through the
alternatives. This “snapshot” taking effectively freezes the
environment whilst alternatives are processed, and if no
match occurs, a new snapshot is taken. Whilst supporting
consistent testing, this approach causes problems when real-
time testing is needed.

3.2 Key Issues with TTCN-3 for Real Time Testing

There are several key problems with current approaches
for real time testing with TTCN-3 and the usage of timers.
These are: the speed of the tester and the associated problems
of the snapshot semantics and its impacts on accuracy of

timing information as well as the need to allow for abstraction
from test hardware/software properties; dealing with time
critical testing information; the problems of time
synchronisation of distributed test configurations.

3.2.1 Problems with Snapshot Semantics on Speed of Tester

The simple timer concept is intended to catch long-term
timeouts and as such is not powerful enough to deal with hard
real-time. Since the standard snapshot semantics may
summarize time-critical events into one snapshot, important
timing or ordering information might get lost. This is in
contrast to the TTCN standard which states “a Test Case or
Test Step should not contain behaviour where the relative
processing speed of the MOT (Means of Testing) could impact
the results”. In this case, it is not decidable, whether a violation
of real-time constraints occurred or not. We note that exactly
such behaviour is needed to describe real-time test cases. The
verdict itself will rather depend on the question of how the
alternatives are ordered in the TTCN behaviour description.

To overcome this, the TTCN-3 semantics assumes that
taking a snapshot is instantaneously, i.e. has no duration. The
TTCN-3 standard also describes the evaluation of a snapshot as
a series of indivisible actions of a test component. It states that:
the semantics do not assume that the evaluation of a snapshot
has no duration. During the evaluation of a snapshot, test
components may stop, timers may timeout and new messages,
calls, replies or exceptions may enter the port queues of the
component However, these events do not change the actual
snapshot and thus, are not considered for the snapshot
evaluation. As we will show, this causes errors in the accuracy
of real time testing.

It is a fact that if the test executor equipment (the means of
testing) is not fast enough, it can not communicate with the
implementation under test properly so the testing becomes
meaningless. The most important advantage of reactive testing
in contrast to log analysis is that the tester can explicitly control
the behaviour and state transitions of the implementation under
test in order to achieve better coverage. The performance
bottleneck, for example, can be the delay between two
successive send events or the reaction time (the time between
receiving a message and sending the response). It is necessary
to determine whether a means of testing is fast enough for a
certain test case.

3.2.2 Problems with Assignment of Test Verdicts

In TTCN-2 a verdict of a test could only have three values
PASS, FAIL and INCONCLUSIVE without further
qualification. TTCN-3 extends these values to allow for
ERROR and NONE values also. However, when it comes to
time critical measurements, it may be necessary to exploit more
information. For example, if an event has to happen within a
time interval, it may be interesting or important to know how
well it is within the interval, e.g. the time when an event
happens has to be recorded in the test report.

3.2.3 Problems with Time Synchronisation of Distributed
Test Configurations

A test system itself may consist of many Parallel Test
Components (PTCs) and a main test component (MTC). In
order to be able to test for timed behaviour spread over
different PTCs, a time synchronisation mechanism is
necessary, i.e. each PTC has to be able to ask for the exact
absolute time at any moment in order to relate test events to
this time.

There are several ways in which these problems can be
addressed. One way to address or at least minimise these

problems is through general guidelines on the usage of
TTCN-3 for real time testing. Another more direct way is
through language enhancements that specifically address
these problems. Currently no language enhancements have
been made completely overcoming the problems in timing
caused by the snapshot semantics.

4 Using TTCN-3 for Real Time Testing

We note that the language usage aspects presented here
are given in TTCN-3 syntax but the general principles
presented also apply to TTCN-2 usage for real time systems
testing. We begin with a summary of the existing features of
TTCN-3 that can be used for real time testing.

With regard to these first of the bullet points and section
3.2.1 given above, the most important question that should be
asked for real time testing is, is the tester fast enough to test
the specific implementation under test? That is, is the time
needed to send/receive messages, access/modify
ports/timeout lists etc much less than real time properties of
implementation under test to be checked, i.e. negligible? If
the test system is too slow then real time testing for this
implementation under test with this test system is not
possible. However, even in the case where the test system is
fast enough, the tester should be aware of the impacts of the
speed of the test system on the test results.

As an example of this consider the following scenario
where we want to check that a tester sending X to an
implementation under test can result in A, B or C being
received. Further suppose we want to check that if the
implementation under test responds with C in <=0.05ms then
the tester should send Y otherwise if the implementation
under test does not respond before 0.1ms then the tester
should send Z. The simplified MSC 2000 for this scenario is
shown in Figure 5.

X
A
B

Tester IUT

C

alt

(0, 0.05ms]

Y

Z

T1(0.1ms)

Figure 5: MSC 2000 Scenario Representation

The corresponding TTCN-3 representation of this

scenario is depicted in Figure 6.

 var float t; timer T1:=0.1ms;

Tester.send(X); T1.start;

alt {[] Tester.receive(A); ….

 [] Tester.receive(B); ….

 [] Tester.receive(C); t:=T1.read;

 [] T1.timeout; { Tester.send(Z); … } ….
 }

 if(t <=0.05) { Tester.send(Y);…} else {...}

Figure 6: TTCN-3 Scenario Representation

At first glance there does not appear to be any problems

with this representation. However, for successfully
performing the real time test, certain information is not
present. For example, tester timing issues are not given, e.g.

how long does it take to: start a timer; take a snapshot; check a
port and try to match alternative; check a timeout list; do an
assignment; check a Boolean expression etc? In short the real
time test should be based on the real time properties of the
implementation under test being tested and not dependent upon
the speed of the test system itself. Hence information regarding
the speed of the test system itself has to be provided.

In addition, the previous scenario states nothing about the
transit delays associated with the testing, e.g. the time taken for
the network transit delay in sending/receiving is not specified,
or depending on the implementation under test’s configuration
with the test system, the time taken for messages to travel
through lower protocol layers through which the
implementation under test is accessible. We note that this is not
really in description of the requirements, but it should be, if
want accurate real time measurements, i.e. accurate real time
tests of the implementation under test.

A further problem with this scenario representation is the
likelihood of inaccurate time measurements caused by the
snapshot semantics. That is, as a result of the existing TTCN
snapshot semantics, the actual value of the timeout is incorrect.
Specifically, Z is sent at time equal to the time of the last
snapshot plus the time to check for (match alternatives) A/B/C
plus the time to check the timeout list itself. This additional
delay in sending Z could be important! The value recorded in
the reading of the timer (T1.read) is also affected. The TTCN-3
standard currently states that “the read operation is used to
retrieve the time that has elapsed since the specified timer was
started and to store it into the specified variable” which
implies that this value is read there and then, i.e. its current
value. However, there are situations for example in a Boolean
guard on an alternative statement where the value of the read
will be the value of the timer when the last snapshot was taken.
This latter case, addresses the possible difficulties in Figure 7.

 timer T1:=1s;
…
alt {[T1.read>1] Tester.receive(A); ….
 [T1.read<=1] Tester.receive(B); ….
 [] T1.timeout; …. }

Figure 7: Potential Timing Problems

Here it is possible that the first two qualifiers are never

satisfied since the first T1.read alternative might be false, then
by the time the second alternative is evaluated, i.e. after the
time to access the T1 value again, the second qualifier might
evaluate to false also, which would of course be especially
counterintuitive. Whilst making the test case decidable, it is
clear that the actual value of the timer that will be used in
evaluating these Boolean guards - as prescribed by the
standard! - will be wrong. Specifically, it will be earlier than
the current real time (since it records the value of time at the
previous snapshot).

5 Guidelines on TTCN-3 Usage for More
Accurate Real Time Testing

To address these problems we produce general guidelines
on TTCN-3 usage for real time testing. Through these
guidelines specific timing aspects of the tester (tester
benchmarking) should be taken into account. Further proposals
on language usage to aid in addressing the timing critical
aspects related to transit delays and recording of timing
information are illustrated. Finally examples of language usage
which help improve test component synchronisation are
presented.

5.1 Guidelines to Establish the Speed of the Tester

The basic idea behind this proposal to establish the speed
of the tester is based upon exploiting the TTCN-3 language
itself to provide some form of minimum benchmarking of the
test system itself. For example, to test the real time aspects of
a particular implementation under test it might be necessary
to establish that the tester is capable of performing a
particular number of sends in a given time period.
Establishing this form of additional information can be
achieved through specific functions represented in TTCN-3
which should be called before the real time tests of the
implementation under test itself are made. We note that such
additional information is typically provided in TTCN-2 test
suites via a Protocol Implementation Conformance Statement
(PICS) or Protocol Implementation Extra Information for
Testing (PIXIT) statement [19]. These contain additional
information such as the physical set up and connection of the
test system, e.g. test hardware description. An example of
one such function call is given in Figure 8.
 module testExec (float maxExecTime)

{ // definitions of data types, test data templates, ports, etc
function testExecutor() runs on myMTCType return verdicttype
{ var float timeTaken;

timer T:= 5*maxExecTime; T.start;
 // note timer includes a scaling factor

P1.send(aType);
// or more complex behaviour with
// multiple sends/assignments

 timeTaken := T.read;
if (timeTaken>maxExecTime) { return fail;}

 // could use timeout if no scaling factor
 else { return pass;} };
…
control {var verdicttype execVerdict := pass;
 execVerdict := testExecutor();
 if (execVerdict == pass)
 { execute(theRealTimeTestCasesNotSpecifiedHere()) }
 else {myMTCType.stop}}

Figure 8: Tester Benchmarking via TTCN-3 Functions

Here the test suite parameter maxExecTime has to be

provided and is subsequently used to ensure that the test
system is fast enough, i.e. function testExecutor() evaluates
to pass. Other possibilities such as lower timing bounds, or
parameters to deal with system load or performance more
generally, can also be used to parameterise a test suite and
subsequently used in function calls to evaluate whether the
test system is suitable for testing the given implementation
under test. In addition to testing that the test system is
capable of performing a sufficient number of sends within
some upper time limit, more complex interaction scenarios to
establish the speed of the tester can also be established. For
example, it is possible to perform benchmarking on sends and
receives of individual components as shown in Figure 9.
 function testSpeedofTester () runs on myPTCType return integer

 {var address thePTCid := self;
 var integer c:=0; timer T:= 10;
 connect(self:P1, self:P2);
 T.start;
 while(T.running)
 { P1.send(someType: *) to thePTCid;
 P2.receive(someType: *) from thePTCid;
 c := c + 1; // other time consuming behaviour here?
 }return c;
 }; // then in control part should make sure that c >= some value

Figure 9: Extended Tester Benchmarking

Through this approach of connecting the tester to itself
(connect(self:P1,self:P2)) and sending representative
messages and associated data sets, details regarding the

timing for performing sends/receives, taking snapshots,
performing assignments etc can be obtained. In short, it is
possible to obtain precise measurements about the speed of the
tester which can subsequently be used in evaluating the real
time behaviour of the implementation under test. Thus for
example, the time taken to perform sends/receives etc would
typically be subtracted from the response times from the
implementation under test.

5.2 Guidelines on Establishing Time Critical
Information

It is often the case that additional timing information on
verdicts than just PASS, FAIL, INCONC, ERROR, NONE are
required. This is especially the case when testing real time
systems where for example it is often necessary to establish the
time inside/outside some threshold or the time taken to access
the implementation under test itself. Consider the MSC 2000
interaction scenario given in Figure 10.

A

B
C

Tester IUT

X ms

D

alt

Y ms

(0, 0.2ms] &r1

E When r1 <= 0.1

Figure 10: MSC 2000 Scenario With Transit Delays

Here the requirement is that the transit delay between the

sending of message A from the tester to the implementation
under test should be Xms and the transit delay due to message
D being sent from the implementation under test to the tester
should be Yms. This MSC interaction scenario also requires
that if the value of the time between A’s consumption4 by the
implementation under test and D’s consumption at the tester is
less than 0.1ms then message E should be sent. This can be
represented through the TTCN-3 depicted in Figure 11.

 timer T1:= 0.2ms-Xms-Yms;
Tester.send(A); T1.start;
alt { [] Tester.receive(B); …
 [] Tester.receive(C); …
 [] Tester.receive(D);
 {r1 := T1.read;
 if (r1-Xms-Yms <=0.1ms) { Tester.send(E); ...
 }…
 else { // do something else here not specified here
 }
 ... }
 [] T1.timeout;…}

Figure 11: TTCN-3 Transit Delay Representation

Here it should be noted that the necessary transit delays

incurred can be represented directly through inclusion of the
necessary offsets in the setting of the timer T1. We also note
that if time critical information such as “the amount of time
message D was received inside of the r1-Xms-Yms limit” can
be extracted simply through reading the time associated with

4 Note that MSC does not have the notion of buffering as with other
languages such as SDL. A message sent between two instances
corresponds to two events: the sending of the message by a producer
and the consumption of the message by a consumer.

the T1 timer and storing its value in a test case variable (of
type float), e.g. by including a statement such as
varT:=T1.read before the Tester.send(E) event in Figure 11.

Hence to summarise, the TTCN-3 language is expressive
enough to allow to express transit delays and to record time
inside thresholds etc. Provided this information can be
established in some way, the language itself can be used to
express them.

5.3 Guidelines on Time Synchronisation between
Distributed Test Configurations

One existing problem with using TTCN for testing
distributed real time systems is with the need to perform
timed synchronisation between distributed test components.
As stated previously, TTCN-3 does not allow for global test
data or for global timers. There are two main ways in which
time synchronisation can be addressed within TTCN-3.
Firstly either the language itself can be extended with the
necessary features to support different synchronisation
possibilities. Alternatively, guidelines can be produced which
show how the problem related to time synchronisation can be
minimised. To understand the problem we consider a
distributed test architecture based on concurrent TTCN as
depicted in Figure 12.

PTC1 PTC2

MTC

IUT cP1 cP2

cM

Synchronised? Synchronised?

mp1

p1m

p1

sp1 sp2

p2

p2m

mp2

 mp3

 sp3

Figure 12: Concurrent TTCN Test System Architecture

Here the implementation under test is to be tested by a
test system comprising two parallel test components (PTC1
and PTC2) and a main test component (MTC). These test
components have the necessary coordination points defined5
and are thus able to communicate with one another. The
components all have their own individual clocks used, e.g.
cp1 is the clock of PTC1, cP2 is the clock of PTC2 and cM is
the clock of MTC.

In addition, this test system requires that to test the
implementation under test successfully, the test components
(PTC1, PTC2 and MTC) need to be synchronised with one
another.

Improved time synchronisation for this test system can be
achieved through guidelines on the usage of co-ordination
messages for the test components. That is, it is possible to
support a certain level of time synchronisation through
restrictions on the ports used for transferring time critical
information, e.g. messages used for synchronisation of the
separate clocks. As an example of this consider Figure 13.
 function synchronisePTCCheck() runs on PTC1Type

 {timer T;
 var address theSysid := system; var address theMTCid := mtc;
 T2.start(10);
 PCO1.send(myType: *) to theSysid;
 alt {[] P1M.receive(float: *) from theMTCid -> value newTimerValue
 { T.stop; T:= newTimerValue; T.start; … }
 [T.read<=5] P1.receive(aType: *) from theSysid { … }
 [T.read>5] P1.receive(anotherType: *) from theSysid { … }
 … // timeout case and other behaviour
 } }

Figure 13: Guidelines on Improved Time Synchronisation

5 although we note that co-ordination points and points of control and
observation are both represented as ports in TTCN-3.

Here we use an explicit port (P1M) which is only used for
time updates to avoid problem of queuing timing messages.
These time-critical ports are then placed at the highest level of
alternative, i.e. they will be evaluated first when the next
snapshot is taken. In this example, the first alternative (at port
P1M) allows for co-ordination messages to update clock
(timer) used for synchronising tests. We note here that this
function assumes negligible time for the sending, transit delay,
port access, stopping of timer, assignment of value, starting of
timer associated with the receive event. However, if knowledge
of the latency caused by these things is known, e.g. based on
some form of tester benchmarking, then appropriate offsets can
be used when setting the associated timer.

We note here that this guideline only offers a general
improvement for time synchronisation aspects and is not the
general solution to the problem. Thus for example this
guideline still suffers from the existing snapshot semantics
problem, i.e. the co-ordination message used for synchronising
the clock is “assumed” to arrive instantaneously at the time of
the next snapshot. In reality of course, the message might arrive
immediately after a given snapshot and hence will be delayed
by however long it takes to evaluate the other alternatives in
this snapshot; to take the next snapshot and finally to match on
the first clock synchronisation event.

6. Conclusions

This paper has shown the limitations of the existing
treatment of time within TTCN-3. The language does allow for
the specification of real time tests however it is clear that real
time testing will always be wrong due to the existing snapshot
semantics. It is of course, possible to try to enhance the
language to overcome the issues caused by the snapshot
semantics. This would be a radical change however to the
language and one that would break the existing tools, cause the
language to be much more complex to use, and potentially
allow for tests to be developed that were inconsistent
depending upon the real time performance of the environment
of both the test system and implementation under test. In short,
it is unlikely that such a radical change would ever be fully
accepted. A far better approach is to support general guidelines
which, whilst not giving absolute accuracy to tests, will at least
give some clear ideas of the boundaries for the level of
accuracy in real time testing, and hence a more accurate
measurement of the real time!

We note that other approaches have been presented which
offer a less radical proposal to enhancements to the language
[14,15]. These approaches rely upon time-stamping and
logging of timed events. Whilst addressing some of the
challenges in real time testing, this approach is still limited by
the snapshot semantics of TTCN. It also assumes that the test
execution system is fast enough to test the desired real-time
properties of the system under test.

One of the problems in using guidelines instead of having
real time features correctly realised within the language, is the
difficulties this imposes when relationships between the MSC,
SDL and TTCN-3 languages are considered. Thus whilst it is
possible to generate tests in numerous ways as described in
[16], real time information generation will typically not be
supported. It is worth noticing that the automatic generation of
TTCN tests from SDL models typically does not include real
time information anyway. The relationships between the
languages as defined in the standards are ill-defined and often
left to tool vendors to decide (in how they realise/implement
their toolsets [5]). For example, tool vendors often offer
choices when dealing with MSC and TTCN timers and how
they should be interpreted in relation to SDL. Typical choices
include options that allow to: ignore such timing information;

if a timer event exists in MSC/TTCN then a matching timer
event must exist in the explored SDL path, but a timer event
in the explored SDL path is accepted even if there is no
corresponding timer event in the MSC/TTCN; or
alternatively all MSC/TTCN timer events must match a
corresponding timer event in the explored SDL path, and vice
versa, where here a corresponding timer event implies a timer
with the same name and same timeout value. Such confusion
will of course adversely influence the wider uptake of these
languages and the general goal of a complete tool-supported
environment for the requirements capture, design, analysis
and subsequent testing of real time systems.

7. References
[1] ITU-T, Rec. Z.120, Message Sequence Charts (MSC), MSC
2000, Geneva Switzerland.
[2] ITU-T, Rec. Z.100, Specification and Description Language
(SDL), SDL 2000, Geneva Switzerland.
[3] ETSI - Methods for Testing and Specification (MTS): The
Tree and Tabular Combined Notation version 3, DES/MTS-
00063-1 v1.0.9, Sophia Antipolis, France.
[4] R.O. Sinnott, The Formal, Tool Supported Development of
Real Time Systems, Proceedings of International Conference on
Software Engineering and Formal Methods, 26-30 September
2004, Beijing, China.
[5] Telelogic toolset, http://www.telelogic.com
[6] Danet TTCN Toolbox – TTCN-3 toolbox,
http://www.danet.de/index.php?id=425&L=3, 2004.
[7] Testing Technologies, www.testingtech.de
[8] Da Vinci Communications Terzo tools www.davinci-
communications.com/products, 2002.
[9] ISO/IEC 9646-3: Information technology - Open Systems
Interconnection - Conformance testing methodology and
framework - Part 3: The Tree and Tabular combined Notation
(TTCN).
[10] ITU-T Recommendation X.680: Information technology -
Abstract Syntax Notation One (ASN.1): Specification of basic
notation.
[11] ETSI ES 201 873-4 V2.2.1 (2003-02), Methods for Testing
and Specification (MTS) - The Testing and Test Control
Notation version 3, Part 4: TTCN-3 Operational Semantics.
[12] ETSI ES 201 873-5 V1.1.1 (2003-02), Methods for Testing
and Specification (MTS) - The Testing and Test Control
Notation version 3, Part 5: TTCN-3 Test Runtime Interface.
[13] ETSI ES 201 873-6 V1.1.1 (2003-02), Methods for Testing
and Specification (MTS) - The Testing and Test Control
Notation version 3, Part 6: TTCN-3 Test Control Interface.
[14] Z.R. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3
– A Real-Time Extension for TTCN-3. In I. Schieferdecker, H.
Koenig, and A. Wolisz, editors, Testing of Communicating
Systems, volume 14, Berlin, March 2002. Kluwer.
[15] H. Neukirchen, Z.R. Dai, J. Grabowski., Communication
Patterns for Expressing Real-Time Requirements Using MSC
and their Application to Testing. Proceedings of the 16th IFIP
International Conference on Testing of Communicating Systems
(TestCom2004), Oxford, United Kingdom, March 2004.
[16] R.O. Sinnott, Architecting Specifications for Automated Test
Case Generation, Proceedings of International Conference on
Software Engineering and Formal Methods, pages 24-34,
September 2003, Brisbane Australia.
[17] ETSI ES 201 873-2 (V2.2.1): Methods for Testing and
Specification (MTS); The Testing and Test Control Notation
version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT).
[18] ETSI TR 101 873-3 (V1.1.2): Methods for Testing and
Specification (MTS); The Tree and Tabular Combined Notation
version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT).
[19] ISO/IEC 9646-1: Information technology - Open
Systems Interconnection - Conformance testing methodology
and framework - Part 1: General concepts.

	citation_temp (2).pdf
	http://eprints.gla.ac.uk/7323/

