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Abstract 
The languages Message Sequence Charts (MSC) [1], System 
Design Language1 (SDL) [2] and Testing and Test Control 
Notation Testing2 (TTCN-3) [3] have been developed for the 
design, modelling and testing of complex software systems. 
These languages have been developed to complement one 
another in the software development process. Each of these 
languages has features for describing, analysing or testing the 
real time properties of systems. Robust toolsets exist which 
provide integrated environments for the design, analysis and 
testing of systems, and it is claimed, for the complete 
development of real time systems. It was shown in [4] however, 
that there are fundamental problems with the SDL language 
and its associated tools for modelling and reasoning about real 
time systems. In this paper we present the limitations of TTCN-
3 and propose recommendations which help minimise the 
timing inaccuracies that would otherwise occur in using the 
language directly. 
 
1. Introduction 

MSC, SDL and TTCN-3 are international standards used 
for capturing requirements, for design and analysis, and testing 
of systems respectively. The languages themselves have been 
developed explicitly to work together and toolsets are available 
supporting, at least in principle, a complete environment for 
requirements capture, design/analysis and testing of systems.  

MSC is an international standard that provides a graphical 
2-D language often used for the capture of requirements 
through description of interaction scenarios. Often these 
scenarios are used to define the properties (traces) that a given 
system should satisfy3. The MSC standard is maintained and 
updated every four years by ITU-T. Similarly, SDL is an 
international standard updated every four years by ITU-T. SDL 
supports the specification of complex software systems and has 
been extensively applied across a broad array of domains from 
telecommunications, automotive through to general software 
development. SDL and MSC have evolved over an extended 
period of time and advanced toolsets now exist that allow for 
the automatic verification of MSC against SDL models.  

TTCN-3 has been put forward by ETSI and is the only 
internationally standardised testing language. TTCN-3 provides 
numerous structures that facilitate a broader applicability than 
for example was the case with earlier versions of the TTCN 
standard – which was primarily focused upon conformance 
testing of OSI protocols. Toolsets are now available for TTCN-
3 such as [5,6,7,8].  

MSC, SDL and TTCN-3 all have features for describing 
real time properties of systems. The need to harmonise the real 
time features of these languages is thus essential to ensure that 
real time requirements can be expressed and shown to be 
satisfied (or not) by given models, and ideally that tests that 
might be generated from those models capture both the 
functional and real time information needed to test such 

                                                 
1 Formerly known as Specification and Description Language. 
2 Formerly known as Tree and Tabular Combined Notation. 
3 Depending on the semantics, MSC can be used to capture traces that 
should always be satisfied, never be satisfied or that there exists at least 
one system execution which can generate the trace. 

systems. Similarly, changes in design or requirements, or 
new information established about the real time properties of 
the system being tested should be fed into the models, 
designs or tests to investigate their impact. For example, real 
time requirements might not be realistic when testing in a live 
environment is undertaken, or it might be the case that a 
given model has timing properties that can be shown to cause 
erroneous behaviours in under certain conditions. Tractable 
real time between the languages and supported by the tool 
sets is thus highly desirable. 

Diagrammatically the inter-relationship between these 
three languages is depicted in Figure 1.  In this paper we 
focus in particular on the language TTCN-3. To accurately 
capture the real time properties of a given test system and to 
ensure that requirements and models are used to generate 
realistic and enforceable timing information, it is essential 
that the language itself (TTCN-3) has a well understood and 
semantically sound model of time. 
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Figure 1: Relation Between MSC, SDL and TTCN 
 

We note that testing is in general a difficult activity, but 
one that is fundamental to relate implementations to 
specifications (and vice versa). Real time testing is even more 
difficult to achieve. To understand why this should be the 
case, consider the following pseudo-code in Figure 2. 

 SomeFunction() 
  { Switch (…){ 
       Case 1(…)   on average takes T1s 
       Case 2(…)   on average takes T2s 
       Case 3(…)   on average takes T3s 
    }}   

Figure 2: Real Time Pseudo-Code 
 

If we need a reliable real time system then we need to 
understand that each of these Case statements will take some 
time. In testing a system containing (perhaps internally) such 
a function call, several possibilities exist. For example, the 
average time taken by the SomeFunction() operation might be 
used. However, if SomeFunction() was doing some sorting of 
a file, then the length of time needed to sort this file would be 
dependent upon the size of the file, whether it had indexes 



already built etc. In short, the context in which this function 
was to be called needs to be established. Note that in 
engineering real time systems, to ensure reliability, it is often 
the case that such choices of functionality are specifically 
engineered to have similar timing constraints.  
 
2 Background to TTCN-3 

TTCN-3 is a flexible language applicable to the 
specification of all types of reactive system tests over a variety 
of communication interfaces. Typical areas of application are 
protocol testing (including mobile and Internet protocols), 
service testing, module testing, API testing etc. Unlike earlier 
version of TTCN which were primarily focused upon 
conformance testing, TTCN-3 can be used for many other 
kinds of testing including interoperability, robustness, 
regression, system and integration testing, as well of course as 
conformance testing. 

From a syntactical point of view TTCN-3 is very different 
from earlier versions of the language as defined in ISO/IEC 
9646-3 [9]. However, much of the basic functionality of TTCN 
has been retained, and in some cases enhanced. TTCN-3 
includes a core notation which is textual in nature (and used 
throughout this paper), and numerous presentation formats. For 
example, there are presentation format based on a tabular 
representation (as per TTCN, TTCN-2) [17], and a graphical 
MSC-like notation [18].  

The TTCN-3 language itself includes the following 
characteristics: 

• the ability to specify dynamic concurrent testing 
configurations; 

• operations for procedure-based and message-based 
communication;  

• the ability to specify encoding information and other 
attributes (including user extensibility); 

• the ability to specify data and signature templates with 
powerful matching mechanisms; 

• type and value parameterization; 
• the assignment and handling of test verdicts; 
• test suite parameterization and test case selection 

mechanisms; 
• combined use of TTCN-3 with ASN.1 [10] (and potential 

use with other data typing languages);  
• well-defined syntax, interchange format and static 

semantics; 
TTCN-3 also offers a precise operational semantics [11]. 

Through TTCN-3, abstract test suites can be developed which 
offer a generic, i.e. primarily implementation independent, way 
for expressing the functional tests for arbitrary 
systems/implementations.  

These abstract test suites will then typically be compiled 
into executable test suites, potentially including other 
information needed for the specific system under test. In 
addition to the TTCN-3 language description and semantics 
itself, the TTCN-3 standards included the description of a Test 
Runtime Interface [12] and a Test Control Interface [13]. 
Conceptually, a TTCN-3 test system can be thought of as a set 
of interacting entities where each entity corresponds to a 
particular aspect of functionality in a test system 
implementation. These entities manage test execution, 
interpreting or executing compiled TTCN-3 code, realize 
proper communication with the system under test, implement 
external functions, support functions for the logging of 
information on the test execution itself, and handling of timer 
operations. 

We note that TTCN-3, whilst being a major enhancement 
to earlier versions of TTCN-2 has the same features (with the 

same semantics) for describing, testing and evaluating real 
time aspects of systems. These are based upon the concept of 
the timer and the notion of the snapshot semantics. 
 
3 Real Time Features of TTCN-3 

The TTCN-3 language has certain features which can be 
applied for the testing of real time systems. The central 
feature used in TTCN-3 for dealing with timing aspect of a 
given system under test is the timer. TTCN-3 has operations 
to start, stop, read or check if a timer is running as shown in 
Figure 3. 

  aTimer1.start;      aTimer2.start(2E-3);    
 //timer values of type float 

 aTimer1.stop;       all timer.stop;               
 //stopping inactive timer has no effect 

 var float aVar;     aVar := aTimer.read;   
 //assign to aVar time elapsed since aTimer started 

 if (aTimer.running) {…}                         
 //returns true / false if timer is running or not  

  
Figure 3: Timers in TTCN-3 

 
Timers are declared, started and either stopped or 

timeout. When a timer times out, e.g. aTimer.timeout, the 
expired timer is placed in a timeout list. This list is checked 
when the next snapshot (described below) is taken. We note 
that there are no global timers in TTCN-3 (nor global data), 
that is timers may only exist in functions, test cases or in the 
control part of a test suite. Examples of timer usage in 
TTCN-3 are shown in Figure 4. 
 timer T1 := 10; 

execute testCase1(); 
T1.start;  
T1.timeout;                // pause before executing next test case 
execute testCase2(); 

 
execute (testCase3(), 5E-3) -> returnVal;         
    // returnVal type verdictType = error if result not returned in 5ms 
 
P.call(X,5E-3);         // can also put timeout value on procedure call     

{ [ ] P.getreply(X); 
   [ ] P.catch(timeout); { verdict.set(fail); … } 
} 

 
while (T.running or x<10) { execute testCase4(); x:= x + 1; } 

  
Figure 4: Timer Usage in TTCN-3 

 
3.1 Snapshot Semantics 

TTCN-3 has same snapshot semantics as TTCN-2. That 
is, when a message is sent from a test system to a system or 
implementation under test and a set of alternative alternatives 
are possible, the possible responses (messages from the 
system under test to the test system) are processed in their 
order of appearance. Each time around a set of alternatives a 
snapshot is taken of which events have been received and 
which timeouts have fired. Only those identified in the 
snapshot can match on the next cycle through the 
alternatives. This “snapshot” taking effectively freezes the 
environment whilst alternatives are processed, and if no 
match occurs, a new snapshot is taken. Whilst supporting 
consistent testing, this approach causes problems when real-
time testing is needed. 
 
3.2 Key Issues with TTCN-3 for Real Time Testing  

There are several key problems with current approaches 
for real time testing with TTCN-3 and the usage of timers. 
These are: the speed of the tester and the associated problems 
of the snapshot semantics and its impacts on accuracy of 



timing information as well as the need to allow for abstraction 
from test hardware/software properties; dealing with time 
critical testing information; the problems of time 
synchronisation of distributed test configurations.  

 
3.2.1 Problems with Snapshot Semantics on Speed of Tester  

The simple timer concept is intended to catch long-term 
timeouts and as such is not powerful enough to deal with hard 
real-time. Since the standard snapshot semantics may 
summarize time-critical events into one snapshot, important 
timing or ordering information might get lost. This is in 
contrast to the TTCN standard which states “a Test Case or 
Test Step should not contain behaviour where the relative 
processing speed of the MOT (Means of Testing) could impact 
the results”. In this case, it is not decidable, whether a violation 
of real-time constraints occurred or not. We note that exactly 
such behaviour is needed to describe real-time test cases. The 
verdict itself will rather depend on the question of how the 
alternatives are ordered in the TTCN behaviour description.  

To overcome this, the TTCN-3 semantics assumes that 
taking a snapshot is instantaneously, i.e. has no duration. The 
TTCN-3 standard also describes the evaluation of a snapshot as 
a series of indivisible actions of a test component. It states that: 
the semantics do not assume that the evaluation of a snapshot 
has no duration. During the evaluation of a snapshot, test 
components may stop, timers may timeout and new messages, 
calls, replies or exceptions may enter the port queues of the 
component However, these events do not change the actual 
snapshot and thus, are not considered for the snapshot 
evaluation. As we will show, this causes errors in the accuracy 
of real time testing. 

It is a fact that if the test executor equipment (the means of 
testing) is not fast enough, it can not communicate with the 
implementation under test properly so the testing becomes 
meaningless. The most important advantage of reactive testing 
in contrast to log analysis is that the tester can explicitly control 
the behaviour and state transitions of the implementation under 
test in order to achieve better coverage. The performance 
bottleneck, for example, can be the delay between two 
successive send events or the reaction time (the time between 
receiving a message and sending the response). It is necessary 
to determine whether a means of testing is fast enough for a 
certain test case. 

 
3.2.2 Problems with Assignment of Test Verdicts  

In TTCN-2 a verdict of a test could only have three values 
PASS, FAIL and INCONCLUSIVE without further 
qualification. TTCN-3 extends these values to allow for 
ERROR and NONE values also. However, when it comes to 
time critical measurements, it may be necessary to exploit more 
information. For example, if an event has to happen within a 
time interval, it may be interesting or important to know how 
well it is within the interval, e.g. the time when an event 
happens has to be recorded in the test report.  

 
3.2.3 Problems with Time Synchronisation of Distributed 
Test Configurations 

A test system itself may consist of many Parallel Test 
Components (PTCs) and a main test component (MTC). In 
order to be able to test for timed behaviour spread over 
different PTCs, a time synchronisation mechanism is 
necessary, i.e. each PTC has to be able to ask for the exact 
absolute time at any moment in order to relate test events to 
this time. 

There are several ways in which these problems can be 
addressed. One way to address or at least minimise these 

problems is through general guidelines on the usage of 
TTCN-3 for real time testing. Another more direct way is 
through language enhancements that specifically address 
these problems. Currently no language enhancements have 
been made completely overcoming the problems in timing 
caused by the snapshot semantics. 

 
4 Using TTCN-3 for Real Time Testing 

We note that the language usage aspects presented here 
are given in TTCN-3 syntax but the general principles 
presented also apply to TTCN-2 usage for real time systems 
testing. We begin with a summary of the existing features of 
TTCN-3 that can be used for real time testing. 

With regard to these first of the bullet points and section 
3.2.1 given above, the most important question that should be 
asked for real time testing is, is the tester fast enough to test 
the specific implementation under test? That is, is the time 
needed to send/receive messages, access/modify 
ports/timeout lists etc much less than real time properties of 
implementation under test to be checked, i.e. negligible? If 
the test system is too slow then real time testing for this 
implementation under test with this test system is not 
possible. However, even in the case where the test system is 
fast enough, the tester should be aware of the impacts of the 
speed of the test system on the test results.  

As an example of this consider the following scenario 
where we want to check that a tester sending X to an 
implementation under test can result in A, B or C being 
received. Further suppose we want to check that if the 
implementation under test responds with C in <=0.05ms then 
the tester should send Y otherwise if the implementation 
under test does not respond before 0.1ms then the tester 
should send Z. The simplified MSC 2000 for this scenario is 
shown in Figure 5. 
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Figure 5: MSC 2000 Scenario Representation 

 
The corresponding TTCN-3 representation of this 

scenario is depicted in Figure 6. 
 
 var float t; timer T1:=0.1ms; 

Tester.send(X); T1.start; 

alt {[] Tester.receive(A); …. 

       [] Tester.receive(B); …. 

         [] Tester.receive(C); t:=T1.read;  

       [] T1.timeout; { Tester.send(Z); … } …. 
     } 

            if(t <=0.05) { Tester.send(Y);…} else {...} 

 
Figure 6: TTCN-3 Scenario Representation 

 
At first glance there does not appear to be any problems 

with this representation. However, for successfully 
performing the real time test, certain information is not 
present. For example, tester timing issues are not given, e.g. 



how long does it take to: start a timer; take a snapshot; check a 
port and try to match alternative; check a timeout list; do an 
assignment; check a Boolean expression etc? In short the real 
time test should be based on the real time properties of the 
implementation under test being tested and not dependent upon 
the speed of the test system itself. Hence information regarding 
the speed of the test system itself has to be provided. 

In addition, the previous scenario states nothing about the 
transit delays associated with the testing, e.g. the time taken for 
the network transit delay in sending/receiving is not specified, 
or depending on the implementation under test’s configuration 
with the test system, the time taken for messages to travel 
through lower protocol layers through which the 
implementation under test is accessible. We note that this is not 
really in description of the requirements, but it should be, if 
want accurate real time measurements, i.e. accurate real time 
tests of the implementation under test. 

A further problem with this scenario representation is the 
likelihood of inaccurate time measurements caused by the 
snapshot semantics. That is, as a result of the existing TTCN 
snapshot semantics, the actual value of the timeout is incorrect. 
Specifically, Z is sent at time equal to the time of the last 
snapshot plus the time to check for (match alternatives) A/B/C 
plus the time to check the timeout list itself.  This additional 
delay in sending Z could be important! The value recorded in 
the reading of the timer (T1.read) is also affected. The TTCN-3 
standard currently states that “the read operation is used to 
retrieve the time that has elapsed since the specified timer was 
started and to store it into the specified variable” which 
implies that this value is read there and then, i.e. its current 
value. However, there are situations for example in a Boolean 
guard on an alternative statement where the value of the read 
will be the value of the timer when the last snapshot was taken. 
This latter case, addresses the possible difficulties in Figure 7. 

 timer T1:=1s; 
… 
alt {[T1.read>1] Tester.receive(A); …. 
       [T1.read<=1] Tester.receive(B); …. 
       [] T1.timeout; ….  } 

 
Figure 7: Potential Timing Problems 

 
Here it is possible that the first two qualifiers are never 

satisfied since the first T1.read alternative might be false, then 
by the time the second alternative is evaluated, i.e. after the 
time to access the T1 value again, the second qualifier might 
evaluate to false also, which would of course be especially 
counterintuitive. Whilst making the test case decidable, it is 
clear that the actual value of the timer that will be used in 
evaluating these Boolean guards - as prescribed by the 
standard! - will be wrong. Specifically, it will be earlier than 
the current real time (since it records the value of time at the 
previous snapshot). 
 
5 Guidelines on TTCN-3 Usage for More 
Accurate Real Time Testing 

To address these problems we produce general guidelines 
on TTCN-3 usage for real time testing. Through these 
guidelines specific timing aspects of the tester (tester 
benchmarking) should be taken into account. Further proposals 
on language usage to aid in addressing the timing critical 
aspects related to transit delays and recording of timing 
information are illustrated. Finally examples of language usage 
which help improve test component synchronisation are 
presented. 
 
5.1 Guidelines to Establish the Speed of the Tester 

The basic idea behind this proposal to establish the speed 
of the tester is based upon exploiting the TTCN-3 language 
itself to provide some form of minimum benchmarking of the 
test system itself. For example, to test the real time aspects of 
a particular implementation under test it might be necessary 
to establish that the tester is capable of performing a 
particular number of sends in a given time period. 
Establishing this form of additional information can be 
achieved through specific functions represented in TTCN-3 
which should be called before the real time tests of the 
implementation under test itself are made. We note that such 
additional information is typically provided in TTCN-2 test 
suites via a Protocol Implementation Conformance Statement 
(PICS) or Protocol Implementation Extra Information for 
Testing (PIXIT) statement [19]. These contain additional 
information such as the physical set up and connection of the 
test system, e.g. test hardware description. An example of 
one such function call is given in Figure 8. 
 module testExec (float maxExecTime ) 

{  // definitions of data types, test data templates,  ports, etc 
function testExecutor() runs on myMTCType return verdicttype 
{ var float timeTaken; 

timer T:= 5*maxExecTime; T.start;  
 // note timer includes a scaling factor 

P1.send(aType);   
// or more complex behaviour with  
// multiple sends/assignments 

  timeTaken := T.read; 
if (timeTaken>maxExecTime) { return fail;}  

 // could use timeout if no scaling factor 
  else { return pass;} }; 
… 
control {var verdicttype execVerdict := pass; 
    execVerdict := testExecutor(); 
      if (execVerdict == pass) 
           { execute(theRealTimeTestCasesNotSpecifiedHere()) } 
     else {myMTCType.stop}} 

 
Figure 8: Tester Benchmarking via TTCN-3 Functions 

 
Here the test suite parameter maxExecTime has to be 

provided and is subsequently used to ensure that the test 
system is fast enough, i.e. function testExecutor() evaluates 
to pass. Other possibilities such as lower timing bounds, or 
parameters to deal with system load or performance more 
generally, can also be used to parameterise a test suite and 
subsequently used in function calls to evaluate whether the 
test system is suitable for testing the given implementation 
under test. In addition to testing that the test system is 
capable of performing a sufficient number of sends within 
some upper time limit, more complex interaction scenarios to 
establish the speed of the tester can also be established. For 
example, it is possible to perform benchmarking on sends and 
receives of individual components as shown in Figure 9. 
 function testSpeedofTester ( ) runs on myPTCType return  integer 

  {var address thePTCid := self; 
    var integer c:=0;  timer T:= 10; 
    connect(self:P1, self:P2); 
    T.start; 
    while(T.running) 
      { P1.send(someType: * ) to thePTCid;                
         P2.receive(someType: * ) from thePTCid; 
         c := c + 1;   // other time consuming behaviour here? 
      }return c; 
  };   // then in control part should make sure that c >= some value 

Figure 9: Extended Tester Benchmarking  
 
Through this approach of connecting the tester to itself 
(connect(self:P1,self:P2)) and sending representative 
messages and associated data sets, details regarding the 



timing for performing sends/receives, taking snapshots, 
performing assignments etc can be obtained.  In short, it is 
possible to obtain precise measurements about the speed of the 
tester which can subsequently be used in evaluating the real 
time behaviour of the implementation under test. Thus for 
example, the time taken to perform sends/receives etc would 
typically be subtracted from the response times from the 
implementation under test. 
 
5.2 Guidelines on Establishing Time Critical 
Information 

It is often the case that additional timing information on 
verdicts than just PASS, FAIL, INCONC, ERROR, NONE are 
required. This is especially the case when testing real time 
systems where for example it is often necessary to establish the 
time inside/outside some threshold or the time taken to access 
the implementation under test itself. Consider the MSC 2000 
interaction scenario given in Figure 10. 
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Figure 10: MSC 2000 Scenario With Transit Delays 

 
Here the requirement is that the transit delay between the 

sending of message A from the tester to the implementation 
under test should be Xms and the transit delay due to message 
D being sent from the implementation under test to the tester 
should be Yms. This MSC interaction scenario also requires 
that if the value of the time between A’s consumption4 by the 
implementation under test and D’s consumption at the tester is 
less than 0.1ms then message E should be sent. This can be 
represented through the TTCN-3 depicted in Figure 11. 

 timer T1:= 0.2ms-Xms-Yms;  
Tester.send(A); T1.start; 
alt { [] Tester.receive(B); … 
        [] Tester.receive(C); … 
        [] Tester.receive(D); 
             {r1 := T1.read; 
              if (r1-Xms-Yms <=0.1ms) { Tester.send(E); ...     
                  }…  
              else { // do something else here not specified here  
                   } 
          ... } 
         [] T1.timeout;…}  

 
Figure 11: TTCN-3 Transit Delay Representation 

 
Here it should be noted that the necessary transit delays 

incurred can be represented directly through inclusion of the 
necessary offsets in the setting of the timer T1. We also note 
that if time critical information such as “the amount of time 
message D was received inside of the r1-Xms-Yms limit” can 
be extracted simply through reading the time associated with 

                                                 
4 Note that MSC does not have the notion of buffering as with other 
languages such as SDL. A message sent between two instances 
corresponds to two events: the sending of the message by a producer 
and the consumption of the message by a consumer. 

the T1 timer and storing its value in a test case variable (of 
type float), e.g. by including a statement such as 
varT:=T1.read before the Tester.send(E) event in Figure 11. 

Hence to summarise, the TTCN-3 language is expressive 
enough to allow to express transit delays and to record time 
inside thresholds etc. Provided this information can be 
established in some way, the language itself can be used to 
express them. 
 
5.3 Guidelines on Time Synchronisation between 
Distributed Test Configurations  

One existing problem with using TTCN for testing 
distributed real time systems is with the need to perform 
timed synchronisation between distributed test components. 
As stated previously, TTCN-3 does not allow for global test 
data or for global timers. There are two main ways in which 
time synchronisation can be addressed within TTCN-3. 
Firstly either the language itself can be extended with the 
necessary features to support different synchronisation 
possibilities. Alternatively, guidelines can be produced which 
show how the problem related to time synchronisation can be 
minimised. To understand the problem we consider a 
distributed test architecture based on concurrent TTCN as 
depicted in Figure 12. 
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Figure 12: Concurrent TTCN Test System Architecture 
 

Here the implementation under test is to be tested by a 
test system comprising two parallel test components (PTC1 
and PTC2) and a main test component (MTC). These test 
components have the necessary coordination points defined5 
and are thus able to communicate with one another. The 
components all have their own individual clocks used, e.g. 
cp1 is the clock of PTC1, cP2 is the clock of PTC2 and cM is 
the clock of MTC. 

In addition, this test system requires that to test the 
implementation under test successfully, the test components 
(PTC1, PTC2 and MTC) need to be synchronised with one 
another.  

Improved time synchronisation for this test system can be 
achieved through guidelines on the usage of co-ordination 
messages for the test components. That is, it is possible to 
support a certain level of time synchronisation through 
restrictions on the ports used for transferring time critical 
information, e.g. messages used for synchronisation of the 
separate clocks. As an example of this consider Figure 13. 
 function synchronisePTCCheck() runs on PTC1Type 

  {timer T;  
    var address theSysid := system; var address theMTCid := mtc; 
    T2.start(10); 
    PCO1.send(myType: * ) to theSysid; 
        alt {[] P1M.receive(float: *  ) from theMTCid  -> value newTimerValue  
                                            { T.stop; T:= newTimerValue; T.start;  … } 
              [T.read<=5] P1.receive(aType: *) from theSysid { … } 
              [T.read>5] P1.receive(anotherType: *) from theSysid { … }  
              … // timeout case and other behaviour 
    } }  

Figure 13: Guidelines on Improved Time Synchronisation 

                                                 
5 although we note that co-ordination points and points of control and 
observation are both represented as ports in TTCN-3.  



Here we use an explicit port (P1M) which is only used for 
time updates to avoid problem of queuing timing messages. 
These time-critical ports are then placed at the highest level of 
alternative, i.e. they will be evaluated first when the next 
snapshot is taken. In this example, the first alternative (at port 
P1M) allows for co-ordination messages to update clock 
(timer) used for synchronising tests. We note here that this 
function assumes negligible time for the sending, transit delay, 
port access, stopping of timer, assignment of value, starting of 
timer associated with the receive event. However, if knowledge 
of the latency caused by these things is known, e.g. based on 
some form of tester benchmarking, then appropriate offsets can 
be used when setting the associated timer. 

We note here that this guideline only offers a general 
improvement for time synchronisation aspects and is not the 
general solution to the problem. Thus for example this 
guideline still suffers from the existing snapshot semantics 
problem, i.e. the co-ordination message used for synchronising 
the clock is “assumed” to arrive instantaneously at the time of 
the next snapshot. In reality of course, the message might arrive 
immediately after a given snapshot and hence will be delayed 
by however long it takes to evaluate the other alternatives in 
this snapshot; to take the next snapshot and finally to match on 
the first clock synchronisation event.  
 
6. Conclusions  

This paper has shown the limitations of the existing 
treatment of time within TTCN-3. The language does allow for 
the specification of real time tests however it is clear that real 
time testing will always be wrong due to the existing snapshot 
semantics. It is of course, possible to try to enhance the 
language to overcome the issues caused by the snapshot 
semantics. This would be a radical change however to the 
language and one that would break the existing tools, cause the 
language to be much more complex to use, and potentially 
allow for tests to be developed that were inconsistent 
depending upon the real time performance of the environment 
of both the test system and implementation under test. In short, 
it is unlikely that such a radical change would ever be fully 
accepted. A far better approach is to support general guidelines 
which, whilst not giving absolute accuracy to tests, will at least 
give some clear ideas of the boundaries for the level of 
accuracy in real time testing, and hence a more accurate 
measurement of the real time! 

We note that other approaches have been presented which 
offer a less radical proposal to enhancements to the language 
[14,15]. These approaches rely upon time-stamping and 
logging of timed events. Whilst addressing some of the 
challenges in real time testing, this approach is still limited by 
the snapshot semantics of TTCN. It also assumes that the test 
execution system is fast enough to test the desired real-time 
properties of the system under test.  

One of the problems in using guidelines instead of having 
real time features correctly realised within the language, is the 
difficulties this imposes when relationships between the MSC, 
SDL and TTCN-3 languages are considered. Thus whilst it is 
possible to generate tests in numerous ways as described in 
[16], real time information generation will typically not be 
supported. It is worth noticing that the automatic generation of 
TTCN tests from SDL models typically does not include real 
time information anyway. The relationships between the 
languages as defined in the standards are ill-defined and often 
left to tool vendors to decide (in how they realise/implement 
their toolsets [5]). For example, tool vendors often offer 
choices when dealing with MSC and TTCN timers and how 
they should be interpreted in relation to SDL. Typical choices 
include options that allow to: ignore such timing information;  

if a timer event exists in MSC/TTCN then a matching timer 
event must exist in the explored SDL path, but a timer event 
in the explored SDL path is accepted even if there is no 
corresponding timer event in the MSC/TTCN; or 
alternatively all MSC/TTCN timer events must match a 
corresponding timer event in the explored SDL path, and vice 
versa, where here a corresponding timer event implies a timer 
with the same name and same timeout value. Such confusion 
will of course adversely influence the wider uptake of these 
languages and the general goal of a complete tool-supported 
environment for the requirements capture, design, analysis 
and subsequent testing of real time systems. 
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