1,537 research outputs found

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    Formal and efficient verification techniques for Real-Time UML models

    Get PDF
    The real-time UML profile TURTLE has a formal semantics expressed by translation into a timed process algebra: RT-LOTOS. RTL, the formal verification tool developed for RT-LOTOS, was first used to check TURTLE models against design errors. This paper opens new avenues for TURTLE model verification. It shows how recent work on translating RT-LOTOS specifications into Time Petri net model may be applied to TURTLE. RT-LOTOS to TPN translation patterns are presented. Their formal proof is the subject of another paper. These patterns have been implemented in a RT-LOTOS to TPN translator which has been interfaced with TINA, a Time Petri Net Analyzer which implements several reachability analysis procedures depending on the class of property to be verified. The paper illustrates the benefits of the TURTLE->RT-LOTOS->TPN transformation chain on an avionic case study

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    From RT-LOTOS to Time Petri Nets new foundations for a verification platform

    Get PDF
    The formal description technique RT-LOTOS has been selected as intermediate language to add formality to a real-time UML profile named TURTLE. For this sake, an RT-LOTOS verification platform has been developed for early detection of design errors in real-time system models. The paper discusses an extension of the platform by inclusion of verification tools developed for Time Petri Nets. The starting point is the definition of RT-LOTOS to TPN translation patterns. In particular, we introduce the concept of components embedding Time Petri Nets. The translation patterns are implemented in a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN in the format admitted by the TINA tool. The efficiency of the proposed solution has been demonstrated on various case studies

    Slicing Techniques Applied to Concurrent Languages

    Full text link
    In this thesis are presented different program slicing techniques for two concurrent languages: CSP and Petri Nets. As for CSP, two static slices are introduced, using both a new kind of graph. Furthermore, their implementation is also presented and tested. As for Petri Nets, two dynamic slicing techniques are proposed.Tamarit Muñoz, S. (2008). Slicing Techniques Applied to Concurrent Languages. http://hdl.handle.net/10251/13627Archivo delegad
    • …
    corecore