66 research outputs found

    The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    Get PDF
    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis

    Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR

    Get PDF
    Airborne scanning LiDAR is a promising technique for efficient and accuratebiomass mapping due to its capacity for direct measurement of the three-dimensionalstructure of vegetation. A combination of individual tree detection (ITD) and an area-basedapproach (ABA) introduced in Vastaranta et al. [1] to map forest aboveground biomass(AGB) and stem volume (VOL) was investigated. The main objective of this study was totest the usability and accuracy of LiDAR in biomass mapping. The nearest neighbourmethod was used in the ABA imputations and the accuracy of the biomass estimation wasevaluated in the Finland, where single tree-level biomass models are available. The relativeroot-mean-squared errors (RMSEs) in plot-level AGB and VOL imputation were 24.9%and 26.4% when field measurements were used in training the ABA. When ITDmeasurements were used in training, the respective accuracies ranged between 28.5%–34.9%and 29.2%–34.0%. Overall, the results show that accurate plot-level AGB estimates can beachieved with the ABA. The reduction of bias in ABA estimates in AGB and VOL wasencouraging when visually corrected ITD (ITDvisual) was used in training. We conclude that itis not feasible to use ITDvisual in wall-to-wall forest biomass inventory, but it could provide acost-efficient application for acquiring training data for ABA in forest biomass mapping.JRC.H.3-Forest Resources and Climat

    The use of dual-wavelength airborne laser scanning for estimating tree species composition and species-specific stem volumes in a boreal forest

    Get PDF
    The estimation of species composition and species-specific stem volumes are critical components of many forest inventories. The use of airborne laser scanning with multiple spectral channels may prove instrumental for the cost-efficient retrieval of these forest variables. In this study, we scanned a boreal forest using two channels: 532 nm (green) and 1064 nm (near infrared). The data was used in a two-step methodology to (1) classify species, and (2) estimate species-specific stem volume at the level of individual tree crowns. The classification of pines, spruces and broadleaves involved linear discriminant analysis (LDA) and resulted in an overall accuracy of 91.1 % at the level of individual trees. For the estimation of stem volume, we employed species-specific k-nearest neighbors models and evaluated the performance at the plot level for 256 field plots located in central Sweden. This resulted in root-mean-square errors (RMSE) of 36 m3/ha (16 %) for total volume, 40 m3/ha (27 %) for pine volume, 32 m3/ha (48 %) for spruce volume, and 13 m3/ha (87 %) for broadleaf volume. We also simulated the use of a monospectral near infrared (NIR) scanner by excluding features based on the green channel. This resulted in lower overall accuracy for the species classification (86.8 %) and an RMSE of 41 m3/ha (18 %) for the estimation of total stem volume. The largest difference when only the NIR channel was used was the difficulty to accurately identify broadleaves and estimate broadleaf stem volume. When excluding the green channel, RMSE for broadleaved volume increased from 13 to 26 m3/ha. The study thus demonstrates the added benefit of the green channel for the estimation of both species composition and species-specific stem volumes. In addition, we investigated how tree height influences the results where shorter trees were found to be more difficult to classify correctly

    Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy

    Get PDF
    Abstract This paper aims to provide general considerations, in the form of a scientific review, with reference to selected experiences of ALS applications under alpine, temperate and Mediterranean environments in Italy as case studies. In Italy, the use of ALS data have been mainly focused on the stratification of forest stands and the estimation of their timber volume and biomass at local scale. Potential for ALS data exploitation concerns their integration in forest inventories on large territories, their usage for silvicultural systems detection and their use for the estimation of fuel load in forest and pre-forest stands. Multitemporal ALS may even be suitable to support the assessment of current annual volume increment and the harvesting rates. Keywords: Airborne laser scanning, area-based approaches, individual tree crown approaches, forest management, timber volume estimation, multitemporal ALS surveys. Introduction Information about the state and changes to forest stands is important for environmental and timber assessment on various levels of forest ecosystem planning and management and for the global change science community [Corona and Marchetti, 2007]. Standing volume and above-ground tree biomass are key parameters in this respect. Actually, fine-scale studies have demonstrated the influence of structural characteristics on ecosystem functioning: characterization of forest attributes at fine scales is necessary to manage resources in a manner that replicates, as closely as possible, natural ecological conditions. To apply this knowledge at broad scales is problematical because information on broad-scale patterns of vertical canopy structure has been very difficult to be obtained. Passive remote sensing tools cannot help for detailed height, total biomass, or leaf biomass estimates beyond early stages of succession in forests with high leaf area or biomass [Means et al., 1999]. Over the last decades, survey methods and techniques for assessing such biophysical attributes have greatly advanced [Corona, 2010]. Among others, laser scanning techniques from space o

    Forest inventory attribute prediction using airborne laser scanning in low-productive forestry-drained boreal peatlands

    Get PDF
    Nearly 30% of Finland’s land area is covered by peatlands. In Northern parts of the country there is a significant amount of low-productive drained peatlands (LPDPs) where the average annual stem volume growth is less than 1 m ha. The re-use of LPDPs has been considered thoroughly since Finnish forest legislation was updated and the forest regeneration prerequisite was removed from LPDPs in January 2014. Currently, forestry is one of the re-use alternatives, thus detailed forest resource information is required for allocating activities. However, current forest inventory practices have not been evaluated for sparse growing stocks (e.g., LPDPs). The purpose of our study was to evaluate the suitability of airborne laser scanning (ALS) for mapping forest inventory attributes in LPDPs. We used ALS data with a density of 0.8 pulses per m, 558 field-measured reference plots (500 from productive forests and 58 from LPDPs) and nearest neighbour (-NN) estimation. Our main aim was to study the sensitivity of predictions to the number of LPDP reference plots used in the -NN estimation. When the reference data consisted of 500 plots from productive forest stands, the root mean square errors (RMSEs) for the prediction accuracy of Lorey’s height, basal area and stem volume were 1.4 m, 2.7 m ha and 13.7 m ha in LPDPs, respectively. When 30 additional reference plots were allocated to LPDPs, the respective RMSEs were 1.1 m, 1.7 m ha and 10.0 m ha. Additional reference plot allocation did not affect the predictions in productive forest stands.3–12kkk2–13–12–13–1</ja:p

    Individual tree detection using template matching of multiple rasters derived from multispectral airborne laser scanning data

    Get PDF
    Multispectral airborne laser scanning (MS-ALS) provides information about 3D structure as well as the intensity of the reflected light and is a promising technique for acquiring forest information. Data from MS-ALS have been used for tree species classification and tree health evaluation. This paper investigates its potential for individual tree detection (ITD) when using intensity as an additional metric. To this end, rasters of height, point density, vegetation ratio, and intensity at three wavelengths were used for template matching to detect individual trees. Optimal combinations of metrics were identified for ITD in plots with different levels of canopy complexity. The F-scores for detection by template matching ranged from 0.94 to 0.73, depending on the choice of template derivation and raster generalization methods. Using intensity and point density as metrics instead of height increased the F-scores by up to 14% for the plots with the most understorey trees

    Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery : quantifying the improvement in estimation accuracy

    Get PDF
    The aim of this study was to investigate the capabilities of two date satellite-derived image-based point clouds (IPCs) to estimate forest aboveground biomass (AGB). The data sets used include panchromatic WorldView-2 stereo-imagery with 0.46 m spatial resolution representing 2014 and 2016 and a detailed digital elevation model derived from airborne laser scanning data. Altogether, 332 field sample plots with an area of 256 m(2) were used for model development and validation. Predictors describing forest height, density, and variation in height were extracted from the IPC 2014 and 2016 and used in k-nearest neighbour imputation models developed with sample plot data for predicting AGB. AGB predictions for 2014 (AGB(2014)) were projected to 2016 using growth models (AGB(Projected_2016)) and combined with the AGB estimates derived from the 2016 data (AGB(2016)). AGB prediction model developed with 2014 data was also applied to 2016 data (AGB(2016_pred2014)). Based on our results, the change in the 90(th) percentile of height derived from the WorldView-2 IPC was able to characterize forest height growth between 2014 and 2016 with an average growth of 0.9 m. Features describing canopy cover and variation in height derived from the IPC were not as consistent. The AGB(2016) had a bias of -7.5% (-10.6 Mg ha(-1)) and root mean square error (RMSE) of 26.0% (36.7 Mg ha(-1)) as the respective values for AGB(Projected_2016) were 7.0% (9.9 Mg ha(-1)) and 21.5% (30.8 Mg ha(-1)). AGB(2016_pred2014) had a bias of -19.6% (-27.7 Mg ha(-1)) and RMSE of 33.2% (46.9 Mg ha(-1)). By combining predictions of AGB(2016) and AGB(Projected_2016) at sample plot level as a weighted average, we were able to decrease the bias notably compared to estimates made on any single date. The lowest bias of -0.25% (-0.4 Mg ha(-1)) was obtained when equal weights of 0.5 were given to the AGB(Projected_2016) and AGB(2016) estimates. Respectively, RMSE of 20.9% (29.5 Mg ha(-1)) was obtained using equal weights. Thus, we conclude that combination of two date WorldView-2 stereo-imagery improved the reliability of AGB estimates on sample plots where forest growth was the only change between the two dates.Peer reviewe
    corecore