3,899 research outputs found

    The History of Our Tribe: Hominini

    Get PDF
    Where did we come from? What were our ancestors like? Why do we differ from other animals? How do scientists trace and construct our evolutionary history? The History of Our Tribe: Hominini provides answers to these questions and more. The book explores the field of paleoanthropology past and present. Beginning over 65 million years ago, Welker traces the evolution of our species, the environments and selective forces that shaped our ancestors, their physical and cultural adaptations, and the people and places involved with their discovery and study. It is designed as a textbook for a course on Human Evolution but can also serve as an introductory text for relevant sections of courses in Biological or General Anthropology or general interest. It is both a comprehensive technical reference for relevant terms, theories, methods, and species and an overview of the people, places, and discoveries that have imbued paleoanthropology with such fascination, romance, and mystery.https://knightscholar.geneseo.edu/oer-ost/1003/thumbnail.jp

    Paleodistribution modeling in archaeology and paleoanthropology

    Get PDF
    abstract: Species distribution modeling (SDM) is a methodology that has been widely used in the past two decades for developing quantitative, empirical, predictive models of species–environment relationships. SDM methods could be more broadly applied than they currently are to address research questions in archaeology and paleoanthropology. Specifically, SDM can be used to hindcast paleodistributions of species and ecological communities (paleo-SDM) for time periods and locations of prehistoric human occupation. Paleo-SDM may be a powerful tool for understanding human prehistory if used to hindcast the distributions of plants, animals and ecological communities that were key resources for prehistoric humans and to use this information to reconstruct the resource landscapes (paleoscapes) of prehistoric people. Components of the resource paleoscape include species (game animals, food plants), habitats, and geologic features and landforms associated with stone materials for tools, pigments, and so forth. We first review recent advances in SDM as it has been used to hindcast paleodistributions of plants and animals in the field of paleobiology. We then compare the paleo-SDM approach to paleoenvironmental reconstructions modeled from zooarchaeological and archaeobotanical records, widely used in archaeology and paleoanthropology. Next, we describe the less well developed but promising approach of using paleo-SDM methods to reconstruct resource paleoscapes. We argue that paleo-SDM offers an explicitly deductive strategy that generates spatial predictions grounded in strong theoretical understandings of the relation between species, habitat distributions and environment. Because of their limited sampling of space and time, archaeobiological records may be better suited for paleo-SDM validation than directly for paleoenvironmental reconstruction. We conclude by discussing the data requirements, limitations and potential for using predictive modeling to reconstruct resource paleoscapes. There is a need for improved paleoclimate models, improved paleoclimate proxy and species paleodistribution data for model validation, attention to scale issues, and rigorous modeling methods including mechanistic models.This is the accepted author manuscript, accepted for publication 12/17/1

    A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China

    Get PDF
    We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra. These features suggest a sister-taxon relationship between L. exquisitus and T. mangas, which indicates the presence of a unique dromaeosaurid lineage in the Late Cretaceous of Asia. A number of cranial and dental features seen in L. exquisitus and T. mangas, and particularly some postcranial features of L. exquisitus, suggest that these two taxa are probably intermediate in systematic position between known basal and derived dromaeosaurids. The discovery of Linheraptor exquisitus is thus important for understanding the evolution of some salient features seen in the derived dromaeosaurids

    Science and Politics in the History of Paleoanthropology

    Get PDF
    Graduate Winner: 1st Place, 2007. 20th Annual Carl Neureuther Student Book Collection Competition

    Humans, geometric similarity and the Froude number: is ''reasonably close'' really close enough?

    Get PDF
    Summary Understanding locomotor energetics is imperative, because energy expended during locomotion, a requisite feature of primate subsistence, is lost to reproduction. Although metabolic energy expenditure can only be measured in extant species, using the equations of motion to calculate mechanical energy expenditure offers unlimited opportunities to explore energy expenditure, particularly in extinct species on which empirical experimentation is impossible. Variability, either within or between groups, can manifest as changes in size and/or shape. Isometric scaling (or geometric similarity) requires that all dimensions change equally among all individuals, a condition that will not be met in naturally developing populations. The Froude number (Fr), with lower limb (or hindlimb) length as the characteristic length, has been used to compensate for differences in size, but does not account for differences in shape. To determine whether or not shape matters at the intraspecific level, we used a mechanical model that had properties that mimic human variation in shape. We varied crural index and limb segment circumferences (and consequently, mass and inertial parameters) among nine populations that included 19 individuals that were of different size. Our goal in the current work is to understand whether shape variation changes mechanical energy sufficiently enough to make shape a critical factor in mechanical and metabolic energy assessments. Our results reaffirm that size does not affect mass-specific mechanical cost of transport (Alexander and Jayes, 1983) among geometrically similar individuals walking at equal Fr. The known shape differences among modern humans, however, produce sufficiently large differences in internal and external work to account for much of the observed variation in metabolic energy expenditure, if mechanical energy is correlated with metabolic energy. Any species or other group that exhibits shape differences should be affected similarly to that which we establish for humans. Unfortunately, we currently do not have a simple method to control or adjust for size–shape differences in individuals that are not geometrically similar, although musculoskeletal modeling is a viable, and promising, alternative. In mouse-to-elephant comparisons, size differences could represent the largest source of morphological variation, and isometric scaling factors such as Fr can compensate for much of the variability. Within species, however, shape differences may dominate morphological variation and Fr is not designed to compensate for shape differences. In other words, those shape differences that are “reasonably close” at the mouse-to-elephant level may become grossly different for within-species energetic comparisons

    Discussing on the origins of symbolism from the latest paleoanthropological research: the case of Homo naledi

    Get PDF
    International audienceFrom an historical-critical comparison of some data and certain results coming from paleoanthropology and neurosciences, we would like to do some possible remarks and putting forward some simple suggestions about the early origins of symbolic function starting from the recent discovery of a new species of the genus Homo, called Naledi

    Molar macrowear reveals Neanderthal eco-geographic dietary variation

    Get PDF
    Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources

    Gorjanovi}-Kramberger\u27s Research on Krapina – Its Impact on Paleoanthropology in Germany

    Get PDF
    This paper attempts to characterize the scientific impact of Karl (Dragutin) Gorjanović-Kramberger’s research on the initiation of German paleoanthropology. The Croatian paleontologist was born in 1856 in Zagreb. His father’s German origins paved the way for his career. Gorjanović-Kramberger started studying in Zürich, but transferred quickly to Munich to study paleontology and geology at Karl von Zittel’s Institute. He earned his doctoral degree in 1879 from the University of Tübingen. Gorjanović-Kramberger curated the Croatian National Museum in Zagreb from 1880 onwards. He was appointed as an assistant professor in 1884 and was promoted to full professor in 1896 in the Faculty of Philosophy at the University of Zagreb. From 1893 until 1923, he headed the Geological Paleontological Department of the Croatian National Museum. Gorjanović--Kramberger’s excavation, description and interpretation of the large Neandertal sample from Krapina earned him international esteem. As Gorjanović-Kramberger published his remarkable findings primarily in German and Austrian periodicals and associated mostly with German-speaking colleagues, it is of scientific-historical interest with which colleagues he had scientific cooperation, alliances and disputes and how his research influenced German paleoanthropology. The bibliographical analysis of the relevant literature demonstrates that the Croatian paleontologist was highly integrated in the German-Austrian scientific community. His intriguing Paleolithic fossils yielded great interest and his conclusions were met with both enthusiastic agreement and fierce objection, since Darwinism was only very skeptically adopted at the time. Gorjanović-Kramberger’s innovative approach triggered paleoanthropological debate in Germany, but did not induce a paradigmatic change

    The Diversity of Ray-finned Fishes (Actinopterygii) in Plio-Pleistocene Java

    Get PDF
    Java has been known in the world of Paleontology as a contributor to the findings of Homo erectus fossils, but there are still other fossil findings that have not been identified until now, especially fossil fishes of the subclass Actinopterygii. This research was conducted to recognize the diversity of the actinopterygians fishes in Plio-Pleistocene of Java and to determine the diagnostic characters of each taxon group of fossils in the Plio-Pleistocene of Java. The study was carried out using comparative anatomical methods with present-day specimens and fossil findings collection of the Laboratory of Bioanthropology and Paleoanthropology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada; Bandung Geological Museum and Sangiran Early Man Site. The research found at least 8 species of fish fossils in Java which belong to three order, i.e., the order Siluriformes with 5 identified species: Bagarius gigas, Hemibragus nemurus, Clarias macrocephalus, family Ariidae with indeterminate genus or species, Plotosus canius, Clarias batrachus, and family Pangasiidae with indeterminate genus or species; the order Perciformes with two identified species: Anabas testudineus and Sphyraena crassidens; and the order Cypriniformes with one identified species: Osteochilus vittatus. Based on the fossil findings showed that the Java Island during the Plio-Pleistocene used to be a marine environment that gradually ascending into a lowland river which closes to mangrove swamps and estuaries while the ancient Bandung lake site was a lacustrine environment with calm currents and is overgrown with riparian vegetation

    INTREPID Tephra-II: - 1307F

    Get PDF
    The INTREPID Tephra project, “Enhancing tephrochronology as a global research tool through improved fingerprinting and correlation techniques and uncertainty modelling”, was an overarching project of the international community of tephrochronologists of the International Focus Group on Tephrochronology and Volcanism (INTAV), which in turn lies under the auspices of INQUA’s Stratigraphy and Chronology Commission (SACCOM). INTREPID’s main aim has been to advance our understanding and efficacy in fingerprinting, correlating, and dating techniques, and to evaluate and quantify uncertainty in tephrochronology, and thus enhance our ability to provide the best possible linking, dating and synchronising tool for a wide range of Quaternary research projects around the world. A second aim has been to re-build the global capability of tephrochronology for future research endeavours through mentoring and encouragement of emerging researchers in the discipline
    corecore