8,331 research outputs found

    The Safe-Port project: an approach to port surveillance and protection

    Get PDF
    SAFE-PORT is a recently started project addressing the complex issue of determining the best configurations of resources for harbour and port surveillance and protection. More specifically, the main goal is to find, for any given scenario, an adequate set of configuration solutions — i.e., number and type of sensors and equipments, their locations and operating modes, the corresponding personnel and other support resources — that maximize protection over a specific area. The project includes research and development of sensors models, novel algorithms for optimization and decision support, and a computer-based decision support system (DSS) to assist decision makers in that task. It includes also the development of a simulation environment for modelling relevant aspects of the scenario (including sensors used for surveillance, platforms, threats and the environment), capable to incorporate data from field-trials, used to test and validate solutions proposed by the DSS. Test cases will consider the use of intelligent agents to model the behaviour of threats and of NATO forces in a realistic way, following experts’ definitions and parameters

    Autonomous navigation with constrained consistency for C-Ranger

    Get PDF
    Autonomous underwater vehicles (AUVs) have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM), are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF) SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC) is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency

    Controlling rigid formations of mobile agents under inconsistent measurements

    Get PDF
    Despite the great success of using gradient-based controllers to stabilize rigid formations of autonomous agents in the past years, surprising yet intriguing undesirable collective motions have been reported recently when inconsistent measurements are used in the agents' local controllers. To make the existing gradient control robust against such measurement inconsistency, we exploit local estimators following the well known internal model principle for robust output regulation control. The new estimator-based gradient control is still distributed in nature and can be constructed systematically even when the number of agents in a rigid formation grows. We prove rigorously that the proposed control is able to guarantee exponential convergence and then demonstrate through robotic experiments and computer simulations that the reported inconsistency-induced orbits of collective movements are effectively eliminated.Comment: 10 page

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version
    • …
    corecore