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Controlling Rigid Formations of Mobile Agents
Under Inconsistent Measurements

Hector Garcia de Marina, Student Member, IEEE, Ming Cao, Member, IEEE,
and Bayu Jayawardhana, Senior Member, IEEE

Abstract—Despite the great success of using gradient-based con-
trollers to stabilize rigid formations of autonomous agents in the
past years, surprising yet intriguing undesirable collective motions
have been reported recently, when inconsistent measurements are
used in the agents’ local controllers. To make the existing gra-
dient control robust against such measurement inconsistency, we
exploit local estimators following the well-known internal model
principle for robust output regulation control. The new estimator-
based gradient control is still distributed in nature, and can be con-
structed systematically even when the number of agents in a rigid
formation grows. We prove rigorously that the proposed control is
able to guarantee exponential convergence, and then demonstrate
through robotic experiments and computer simulations that the
reported inconsistency-induced orbits of collective movements are
effectively eliminated.

Index Terms—Distributed calibration, distributed control,
formation control.

I. INTRODUCTION

T EAMS of autonomous robots that work cooperatively are
used more and more widely for a range of robotic tasks

[1], [2]. Robots have been deployed in formations with different
shapes in order to facilitate the adaptive sampling of an unknown
environment [3] or to achieve better cooperation efficiency [4].
As a result, considerable research efforts have been made in the
past few years on designing distributed control laws to stabi-
lize the shapes of formations of autonomous agents [5]–[8]. In
particular, within the research area of developing cooperative
control theory for multiagent systems, a sequence of theoreti-
cal investigations have been made to design formation control
laws using the notion of graph rigidity [9]–[12], and such control
laws are usually based on the gradients of the potential functions
closely related to the graphs describing the distance constraints
between the neighboring agents.

However, it has been recently reported in [13] and [14] that for
such gradient control laws, if agents disagree with their neigh-
boring peers on the measured or prescribed distances between
them, undesirable formation motion might appear. Surprisingly,
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such inconsistency induced motions take peculiar forms: in R2 ,
the agents move collectively in a distorted but rigid formation
following a closed orbit that is determined by a single sinusoidal
signal; in R3 , the orbit becomes helical that is determined by
a single sinusoidal signal and a constant drift. This is rather
unexpected, especially when knowing the robustness as a con-
sequence of the exponential convergence of gradient control;
after all, exponential convergence of a dynamical system usu-
ally implies its robustness against small disturbances. With the
hindsight gained from [13] and [14], one realizes that the expo-
nential convergence takes place for the error signals determined
by the differences of the real and prescribed distances between
neighboring agents, but this does not prevent the ill behavior of
the position or velocity signals of the agents when measurement
inconsistency exists. Such an observation is by no means trivial,
but may affect the application of robotic formations because ro-
bustness issue is particularly relevant in practice, where distance
disagreements may arise for several reasons. First, robots may
have different guidance systems, which may differ in their set-
ting points; second, sensors equipped on robots may not return
the same reading, even if they are measuring the same distance
due to heterogeneity in manufacturing processes; and third, the
same sensor can produce different readings for the same distance
in face of random measurement noises.

In this paper, we focus on dealing with this tricky robustness
issue by proposing to use an estimator-based gradient control.
We are able to show that under mild assumptions, the proposed
control strategy stabilizes formations in the presence of mea-
surement inconsistency eliminating all the reported undesirable
steady-state collective motions and distortion in the formations’
final shapes. It takes full advantage of the strength of the existing
gradient control, especially the exponential convergence speed,
and at the same time, preserves the distributed nature of the lo-
cal cooperative control laws. We have discussed similar ideas in
[15] to install simple local estimators at the chosen estimating
agents. We study more advanced estimator-based control in this
paper that avoids the possible high gains in control and handles
a much broader class of measurement inconsistency. This in-
consistency is in the form of a combination of a constant bias
and a finite number of sinusoidal noise, which arises often in
marine robotic tasks when sea waves perturb sensing [16], [17].

The rest of this paper is organized as follows. In Section
II we describe the formation control problem for rigid forma-
tions in R2 and R3 and the robustness issues associated with
gradient formation control. The estimator-based gradient con-
trol is proposed in Section III following the well-established
internal model principle rooted in robust control. In Section IV

1552-3098 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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we carry out stability analysis and discuss in detail that how to
choose estimating agents systematically in Section V. Finally, in
Section VI, experimental results are demonstrated using
wheeled mobile robots moving in the plane, and simulation
results are discussed for mobile agents maneuvering in the 3-D
space.

II. RIGID FORMATIONS

We consider a formation in Rm , m = 2 or 3, consisting of
n ≥ 2 autonomous agents labeled by 1, . . . , n, whose neighbor
relationships are described by an undirected graph G with the
vertex set V = {1, . . . , n}, and the edge set E ⊆ V × V . We
use |E| to denote the number of edges of G. Let kij denote the
ordered pair (i, j) to label the edge between vertices i and j, and
thus, kij �= kji . Let Ei denote the set of the labels in the form of
kij of all the edges associated with vertex i. To keep a desired
shape of the formation, each agent i is assigned with the task of
keeping some prescribed distance dki j

to every neighbor j. We
assume that such distance constraints dki j

are realizable in Rm .
Corresponding to the formation, G is embedded in Rm by

assigning to each vertex i a Cartesian coordinate xi ∈ Rm . A
framework is a pair (G, x), where x = (xT

1 , . . . , xT
n )T is a mul-

tipoint in Rmn . For every framework (G, x), we define the edge
function fG : Rmn → R|E| by

fG(x) = col
∀ki j ∈E

(||zki j
||2)

where col(·) defines the column vector by collecting all its
arguments as the vector’s components, zki j

= xi − xj is the
relative position vector between vertices i and j for the edge kij

in the framework, and || · || denotes the Euclidean norm.
In order to define rigidity formations, we first review some

basic notions on rigidity.
Definition 2.1 ([18]): A framework (G, x) is locally rigid if

for every x ∈ Rmn there exists a neighborhood X of x such that
f−1
G (fG(x)) ∩ X = f−1

K (fK(x)) ∩ X , where K is the complete
graph with the same vertex set V of G.

Definition 2.2 ([18]): A framework (G, x) is globally rigid
if f−1

G (fG(x)) = f−1
K (fK(x)).

Roughly speaking, a framework (G, x) is rigid, if it is not pos-
sible to smoothly move some vertices of the framework without
moving the rest while maintaining the edge lengths specified by
fG(x). If this property holds only locally in the neighborhood
X of x, then the framework is only locally rigid; otherwise, if
the property holds for the whole space, then the framework is
globally rigid. Most of the existing literature has focused on a
special class of rigid frameworks. We need some more defini-
tions to introduce such frameworks.

Let us take the following approximation of fG(x):

fG(x + δx) = fG(x) + dfG(x)δx + O(δx2)

where dfG(x) denotes the Jacobian matrix of fG(x), and δx is
an infinitesimal displacement of x. The matrix dfG(x) is then
called the rigidity matrix of the framework (G, x).

Definition 2.3 ([18]): A framework (G, x) is infinitesimally
rigid if rank dfG(x) = 2n − 3 in R2 or rank dfG(x) = 3n − 6
in R3 .

Roughly speaking, an infinitesimally rigid framework (G, x)
only admits rotations and translations of the whole framework
in order to satisfy fG(x + δx) = fG(x). The edge function re-
mains constant up to the first order when δx belongs to the
kernel of dfG(x).

Note that an infinitesimally rigid framework is also rigid, but
in general, the converse is not true. In order to state whether both
frameworks are equivalent, we need to introduce the concept of
regular points.

Definition 2.4 ([18]): A multipoint x is a regular point of
(G, x) if

rank dfG(x) = max{rank dfG(x) |x ∈ Rmn}.

Theorem 2.5 ([18]): A framework (G, x) is infinitesimally
rigid if and only if (G, x) is rigid and x is a regular point.

For an infinitesimally rigid framework (G, x), that is embed-
ded in R2 , it has at least 2n − 3 edges. If it has exactly 2n − 3
edges, then the framework is called minimally rigid. For an in-
finitesimally rigid framework (G, x), that is embedded in R3 , if
it has exactly 3n − 6 edges then the framework is also called
minimally rigid.

It is shown by Anderson et al. [9] that the 2-D minimally
rigid graphs on two or more vertices are exactly the graphs that
can be obtained, starting from a single edge, by a sequence of
operations of the following two types:

1) Add a new vertex to the graph, together with edges con-
necting it to two previously existing vertices.

2) Subdivide an edge of the graph, and add an edge connect-
ing the newly formed vertex to a third previously existing
vertex.

The first operation is referred to as the Henneberg insertion
operation.

In the next section, we discuss gradient control for rigid
formations.

III. GRADIENT CONTROL AND ITS ROBUSTNESS ISSUE

Assume that agent i’s motion is described by a first-order
kinematic point model

ẋi = ui, i = 1, . . . , n (1)

where ui ∈ Rm is the control input for the agent i.
In [10], an elegant distributed control law has been presented

utilizing zki j
as

ui = −
∑

ki j ∈Ei

zki j
eki j

(2)

where eki j
is the error between the square of the real distance

d̄ki j
and the square of the prescribed distances dki j

between the
two agents i and j associated with edge kij as

eki j
= ||d̄ki j

||2 − d2
ki j

. (3)

It has been shown in [10] that when d̄ki j
= d̄kj i

and dki j
= dkj i

,
control law (2) causes the solution of the closed-loop n-agent
system to follow the direction of the gradient of the system’s
potential function 1

4

∑
ki j ∈E e2

ki j
. Consequently, it is convenient

to show that the errors eki j
converge exponentially to zero when

the formation is minimally rigid. For this reason, a number of
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research groups have applied this gradient-based control law to
a range of formation control problems under different settings
[11], [12], [19], [20].

However, more recently, intriguing robustness issues of the
gradient formation control have been reported in [13] and [14].
For two neighboring agents i and j, if there is some inconsis-
tency in their measured or prescribed distance between them,
namely d̄ki j

�= d̄kj i
or dki j

�= dkj i
, and thus eki j

�= ekj i
, the

control law (2) does not correspond to the gradient of the po-
tential function constructed in [10] anymore. Indeed, constant
inconsistency leads to two highly undesirable behaviors of the
formation [13], [14].

1) Unknown Distorted Final Shape: When the inconsistency
is small, the errors eki j

converge to some unknown small
but nonzero values, and thus, the shape of the formation
becomes distorted even as t goes to infinity.

2) Steady-State Collective Motion Induced by Inconsistency:
InR2 , the agents move collectively in formation following
a closed orbit that is determined by a single sinusoidal
signal; in R3 , the orbit becomes helical that is determined
by a single sinusoidal signal and a constant drift.

Since measurement errors are ubiquitous in real robotic appli-
cations, this robustness issue inherent to the structure of gradient
control poses urgent demand on designing new robust control
strategies, which preserves the exponential convergence prop-
erty of gradient control and at the same time is robust against
measurement discrepancies. One can show that the effects of
d̄ki j

�= d̄kj i
and dki j

�= dkj i
are equivalent in causing the un-

desired behavior just described. In this paper, to emphasize the
possible measurement errors, we focus on deriving our system
models for the case when d̄ki j

�= d̄kj i
, while similar analysis

carries over to the case when dki j
�= dkj i

.

IV. ESTIMATOR-BASED GRADIENT CONTROL

In this section, we present in detail how local estimators can
be designed for chosen agents, called estimating agents, such
that measurement inconsistencies can be compensated distribu-
tively. Three main challenges are worth pointing out. First, the
estimators’ dynamics should not, if possible, affect the expo-
nential convergence that is associated with the gradient control.
Second, compensation should be done locally, and different es-
timating agents should not give rise to conflicting compensation
goals. Third, the class of discrepancies should be broad enough
to contain at least the constant signals discussed in [13] and
[14]. In view of these challenges, one soon realizes that the
design task is not easy at all. We have made some preliminary
effort along this line in [15], where the estimator deals with only
constant inconsistencies, and may run into high control gains.
In what follows, we propose a novel estimator-based gradient
control based on the well-known internal model principle that
has been used for solving tracking and disturbance rejection
problems [21], [22], and more recently for cooperative control
of multiagents systems [23].

A. Estimating Agents

As we have discussed in the previous section, when there are
distance measurement discrepancies, we have d̄ki j

�= d̄kj i
and,

thus, eki j
�= ekj i

. We introduce the new variables μk for each
edge k = 1, . . . , |E| such that

eki j
= ekj i

− μk . (4)

Obviously, the definition of μk distinguishes the two associated
agents i and j since the indexes i and j are not exchangeable
in (4). We call agent i, whose label is the leading subscript for
edge k on the left-hand side of (4), the estimating agent for edge
k, since we will design an estimator for agent i to estimate μk

later. Then for each edge k, there is only one estimating agent
associated with it. We will discuss in Section VI that how one
chooses the estimating agents systematically. For each agent i,
we use Ki to denote the set of the labels of the edges for which
agent i is chosen to be the estimating agent, and then Ki ⊂ Ei .

B. Modeling Measurement Inconsistency

We assume that the discrepancies μk are in the form of the
superposition of a constant signal and p sinusoidal signals with
known frequencies {ω1 , ω2 , . . . , ωp}, namely

μk (t) = αk +
p∑

i=1

βi sin(ωit + φi) (5)

where αk , βi , and φi are fixed but unknown offset, amplitude,
and phase, respectively. This noise model is widely used for
the formation control when the robots are known to work in
the environment with periodic background noises. For example,
short-term sea waves can be described by a superposition of
periodic waves whose frequencies can be accurately estimated
[17], and thus, the measurement noise for underwater marine
vehicles using floating buoys [16] can be treated as the super-
position of a finite number of sinusoidal signals with known
frequencies.

C. Estimator-Based Control

We first propose the estimator-based gradient control. To ex-
plain the reasoning of the construction of the specific form of
the estimator, we have to wait until we build up the state-space
model for the overall closed-loop system.

We propose to use the following distributed, estimator-based,
dynamic gradient control:

ui = −
∑

ki j ∈Ei

zki j
eki j

+
∑

ki j ∈Ki

zki j
μ̂k (6)

where the first term is the same as the gradient control in (2),
and the second term uses μ̂k ∈ R, which is agent i’s estimate of
the discrepancy μk . This estimator’s dynamics are described by

ξ̇k = Λξk + κBk (eki j
+ μk − μ̂k ) (7)

μ̂k = BT
k ξk (8)

where ξk ∈ R2p+1 is the state of estimator k and it can be
initialized arbitrarily

Λ =

⎡

⎣
0 0 0
0 0 −Ω
0 Ω 0

⎤

⎦ , Bk =
[

b1
b2

]
(9)
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Ω = diag{ω1 , ω2 , . . . , ωp}, the constants b1 ∈ R and b2 ∈ R2p

are such that the pair (Bk ,Λ) is observable, and κ > 0 is the
gain to be designed.

Now the first-order agent dynamics (1), the estimator-based
gradient control (6), and the estimator dynamics (7) and (8)
define precisely the closed-loop dynamics of each agent. To
analyze the collective motion of the n-agent system, we need to
build the state-space model.

D. State-Space Model of the Closed-Loop System

Consider all the kij ∈ ∪Ki . Since for each edge in E , there
is only one estimating agent, we know that there are exactly |E|
such kij . We stack all the corresponding zki j

, eki j
, μk , and μ̂k

together into column vectors to obtain the relative position, error,
inconsistency, and estimation vectors z = col(zT

ki j
) ∈ Rm |E|,

e = col(eki j
) ∈ R|E|, μ = col(μk ) ∈ R|E|, and μ̂ = col(μ̂k ) ∈

R|E|. Define the system’s state x =
[
xT

1 · · · xT
n

]T ∈ Rmn .
Then, the n-agent system dynamics derived from (1) and (6) are

ẋ = −R(z)T e − ST
1 (z)(μ − μ̂) (10)

where R(z) Δ= dfG(x) is the rigidity matrix of graph G,
S1 = ZT J , Z = diag{zkij }, J is obtained by replacing all the
−1 in H ⊗ Im by zero, H being the transpose of the incidence
matrix of G [24].

Now, we are ready to present the state-space model for the
closed-loop n-agent system derived from (7), (8), and (10).
Note that the error system can be easily computed from (10) as
ė = 2R(z)ẋ as discussed in [15]. More precisely, the closed-
loop system can be written in the following compact form:

P :
{

ė = −2R(z)R(z)T e − 2R(z)S1(z)T (μ − μ̂)
y = e

(11)

C :
{

ξ̇ = Mξ + κB(y + μ − μ̂)
μ̂ = BT ξ

(12)

W :
{

ẇ = Mw
μ = BT w

(13)

where ξ = col{ξk} is the state of P, M = diag{Λ, . . . ,Λ},
B = diag{Bk}, and w = col{wk} is the state of the exosystem
W whose output is the discrepancy signal given in (5). Despite
the fact that the variable z appearing in (11) is a function of x
(which is not part of the state equation), it is worth mentioning
that the terms R(z)R(z)T and R(z)S1(z)T can be expressed
solely as a function of e as discussed in [25]. Hence, the state
equations (11)–(13) defines an autonomous system. The initial
estimates of the offset, phase, and amplitude of μk are encoded
in the initial condition w(0). Note that the estimating agents are
measuring e + μ as a whole, while the unknown μ appears in
(12). The signal flow of the closed-loop system is shown in the
block diagram in Fig. 1.

Fig. 1. Plant P corresponds to the common error system e, where its input
and output are perturbed by the discrepancy μ generated by the exosystem W
as in (13). The disturbance rejection is achieved by using the internal controller
C that is a copy of the exosystem.

Fig. 2. Ttriangular formation associated with a cyclic estimating-agent graph,
where the tails of the arrows indicate the corresponding estimating agents.

Using standard framework in robust output regulation prob-
lem, one can take the inconsistency μ to be the disturbances that
directly influence the input and the output signals of the plant
P, and the controller C must contain internal models that are
copies of the exosystem W. One can check that in this case,
the Byrnes–Isidori regulator equation [26] is solvable with the
trivial solution ξ = w and e = 0.

After setting up the mathematical descriptions of the
estimator-based control and the corresponding state-space sys-
tem model, we are ready to show in the next section that the
n-agent system under measurement inconsistency is exponen-
tially stabilized by our proposed control.

V. STABILITY ANALYSIS

In the previous section, we have designed a distributed con-
troller using the key idea of compensating the discrepancy lo-
cally using internal-model-based estimators. Now, we present
our main result showing the performances of the proposed
controller.

Theorem 5.1: For the closed-loop, n-agent formation (11)
and (12) with the measurement inconsistency vector μ driven
by the exosystem (13) and unknown initial condition w(0) ∈
R(1+2p)|E|, if the matrix

Z
Δ= −R(z∗)R(z∗)T + R(z∗)S1(z∗)T (15)

is Hurwitz at the desired relative position z∗ corresponding to
e = 0, then there exist κ∗ > 0 and b∗ > 0 such that for any

⎡

⎣
ė
α̇

θ̇

⎤

⎦ =

⎡

⎣
−2R(z)S2(z)T −2R(z)S1(z)T 0
−2R(z)S2(z)T −2R(z)S1(z)T − κBT B BT M

−κB 0 M − κBBT

⎤

⎦
[ e

α
θ

]
(14)
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Fig. 3. Triangular formation associated with an acyclic estimating-agent graph
where the tails of the arrows indicate the corresponding estimating agents.

κ||Bk ||2 > κ∗ and ||b2 || < b∗, the system admits a locally ex-

ponentially attractive invariant manifold Q Δ= {(w, x, ξ) | e =
0, ξ = w}, and thus, the shape of the formation converges expo-
nentially to the desired shape defined by e = 0, the estimation
μ̂ converges exponentially to μ, and the velocity ẋ converges
exponentially to zero (i.e., the formation eventually stops).

Proof: We take the coordinate transformation α = e +
μ − BT ξ and θ = w − ξ, and then (11)–(13) can be rewrit-
ten into (14), as shown at the bottom of the previ-
ous page, where S2(z) = R(z) − S1(z). We then calcu-
late its Jacobian matrix L at the equilibrium point e =
0, α = 0, and θ = 0. Although the system matrix of (14)
is state dependent, several of its components are func-
tions of the inner products zT

i zj , and thus, their partial
derivatives can be computed straightforwardly. In fact, the
Jacobian matrix is

L =

[
L1 L2

L3 L4

]
(16)

where

L1 =

[
−2R(z∗)S2(z∗)T −2R(z∗)S1(z∗)T

−2R(z∗)S2(z∗)T −2R(z∗)S1(z∗)T − κBT B

]

L2 =

[
0

BT M

]
, L3 =

[
−κB 0

]
, L4 = M − κBBT .

We now prove that L1 is Hurwitz, and this is equivalent to prove
the system

ė = −2R(z)S2(z)T e − 2R(z)S1(z)T α (17)

α̇ = −2R(z)S2(z)T e − 2R(z)S1(z)T α − κBT Bα (18)

is asymptotically stable at the origin e = 0 and α = 0 in which

case μ̂ = μ. Let f(e, α) Δ= −2R(z)S2(z)T e − 2R(z)S1(z)T α,
and we compute

F0
Δ=

∂f(e, 0)
∂e

|e=0 = 2Z (19)

which is Hurwitz, since Z is in the view of the condition in
the theorem. Therefore, there exists a positive definite matrix
P = PT such that

FT
0 P + PF0 = −2I. (20)

Then, for systems (17) and (18), consider the candidate
Lyapunov function

V (e, α) = eT Pe +
1
2
αT α (21)

Fig. 4. Tetrahedron formation where the tails of the arrows indicate the cor-
responding estimating agents.

Fig. 5. Three wheeled E-pucks with data-matrices as markers on their tops
that are used in the experimental setup.

whose time derivative along the system’s solution is

V̇ (e, α) = 2eT Pf(e, α) + αT f(e, α) − κ||B||2 ||α||2

= 2eT Pf(e, 0) + 2eT P (f(e, α) − f(e, 0))

+ αT f(e, α) − κ||B||2 ||α||2

= 2eT P (F0e + g(e) + f̄(e)α) + αT f(e, α)

− κ||B||2 ||α||2 (22)

where g(e) is the Taylor-series residue that satisfies

lim
||e||→0

||g(e)||
||e|| = 0 (23)

and f̄(e) = −2R(z)S1(z)T . In particular, (23) implies that for
any ε > 0, there exists a δ such that ||e|| ≤ δ ⇒ ||g(e)|| ≤ ε||e||.
Taking ε = 1

2||P || with the corresponding δ, since f̄(e) is locally
Lipschitz, we know that for all ||e|| ≤ δ, ||α|| ≤ δ, there exist
p, q > 0 such that

V̇ (e, α) ≤ −2||e||2 + 2||e||||P || 1
2||P || ||e|| + p||e||||α||

+ q||α||2 − κ||Bk ||2 ||α||2 (24)

where the third and fourth terms on the right-hand side are due
to the boundedness of f̄(e) in an open ball. Hence, by choosing
κ||B||2 > 0 such that

q +
p2

2
− κ||B||2 ≤ −1

2
(25)

we have, in view of Young’s inequality, that

V̇ (e, α) ≤ −1
2
(||e||2 + ||α||2) (26)

and thus systems (17) and (18) converges exponentially to
the origin for all the initial conditions e(0), α(0) starting in
the set C := {x, μ̂, μ | λmin(P )||e||2 + 1

2 ||e + μ − μ̂||2 ≤ δ2}.
Therefore, we have proved that L1 is Hurwitz.
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Fig. 6. Experimental results of a 2-D formation with inconsistent measure-
ments, where a standard gradient-based control is used (i.e., without the use of
our proposed estimator), (a) initial configuration, (b) final configuration after
100 s, (c) the robot’s trajectories, (d) the plot of errors ek , where k = 1, . . . , 5,
(e) speeds of the four robots, which show that the robots never stop.

We further observe that L4 is Hurwitz for any κ > 0, which
follows from the asymptotic stability of θ̇ = L4θ since L4 +
LT

4 = −2κBBT , and the pair (B,M) is observable. Thus, if
L2 is zero, i.e., b2 = 0 since BT

k =
[
b1 0

]
is a left eigenvector

for the single zero eigenvalue of Λ, then the eigenvalues of L
are the eigenvalues of L1 and L4 . Therefore, for a sufficiently
small B such that 0 < ||b2 || < b∗, L is still Hurwitz. Hence,
system (14) is locally exponentially stable, which implies that
(w, x, ξ) locally exponentially converges to Q. Since ẋ = 0
in the invariant manifold Q, we conclude also that ẋ(t) → 0
exponentially as t → ∞, i.e., the formation eventually stops. �

Remark 5.2: For the sake of clarity, we have assumed that
M is the same for all the inconsistencies μk . It can be checked
that the result in Theorem 5.1 still holds for having different
sets of frequencies for each inconsistency μk . Note that we have
not only removed all undesired effects induced by the presence
of inconsistency, but with the estimation of μ(t), Theorem 5.1
provides a systematic method to calibrate the offset of the sen-
sors in the estimating agents with respect to the sensors in the
nonestimating agents.

In the next section, we explain how to choose the estimating
agents systematically to guarantee the conditions in Theorem
5.1 to hold.

VI. SELECTING THE ESTIMATING AGENTS

The condition of Z being Hurwitz in Theorem 5.1 is a suf-
ficient condition for the local exponential stability of systems
(11) and (12). To check this condition, one needs to calcu-
late the eigenvalues of an |E| × |E| square matrix. Such com-
putations can be burdensome, and in this section, we are go-
ing to show that for a large class of infinitesimally minimally
rigid formations one can still guarantee the admissibility of the

condition by choosing smartly the estimating agents and, thus,
avoid computing the eigenvalues.

A. Stabilizing a Large Class of Infinitesimally Minimally Rigid
Formations in R2

In this section, we study a class of infinitesimally minimally
rigid formations in R2 that are generated by a sequence of
Henneberg insertion operations starting from triangular forma-
tions, for which we present two ways of picking the estimating
agents. Then, we introduce a systematic way of choosing the es-
timating agents based on the Henneberg insertion described at
the end of Section II. We remark that a range of minimally rigid
formations can be generated through the Henneberg insertion
operation [27].

Proposition 6.1: For any undirected triangular formation,
where each agent acts as an estimating agent for only one edge,
then its associated Z matrix is Hurwitz.

Proof: One can check that in this case R(z)S2(z)T +
S2(z)R(z)T = R(z)R(z)T . In addition, R(z∗)R(z∗)T is posi-
tive definite matrix, since undirected triangular formations are
minimally rigid. Therefore, −R(z)S2(z)T is Hurwitz at z = z∗

or equivalently e = 0, and this in turn is equivalent to Z is
Hurwitz. �

Proposition 6.2: For any undirected triangular formation,
where one agent is the estimating agent for both of the two
edges that it is associated with and exactly one other agent is
the estimating agent for the remaining edge, then its Z matrix
is Hurwitz.

Proof: In this case, we have

R(z)ST
2 (z) =

⎡

⎢⎢⎣

||z11 2 ||2 0 0

−zT
22 3

z11 2 ||z22 3 ||2 −zT
22 3

z33 1

0 −zT
33 1

z22 3 ||z33 1 ||2

⎤

⎥⎥⎦ (27)

which can be rewritten into the block lower-triangular form

R(z)ST
2 (z) =

[
A11 0

A12 A22

]
. (28)

Here, A11 = ||z11 2 ||2 is always positive; the characteristic poly-
nomial of A22 is quadratic, and thus, it is easy to compute that
both of its two eigenvalues live in the open left half-plane when
z22 3 and z33 1 are not parallel, which has to be true since the
formation is rigid. Therefore, the Z matrix itself is Hurwitz. �

The two situations of choosing estimating agents for triangu-
lar formations are illustrated in Figs. 2 and 3, respectively.

Proposition 6.3: For any infinitesimally minimally rigid for-
mations in R2 , that is generated by the Henneberg insertion
operation, its associated Z matrix is Hurwitz if one chooses
the estimating agents following exactly the sequence of the
Henneberg insertions and in addition: 1) for the first three agents,
pick the estimating agents as in Proposition 6.1 or Proposition
6.2; 2) for any new insertion operation that has just added two
edges from a new agent to two existing agents, pick those two
existing agents to be the estimating agents for the newly added
two edges. Note that only those two chosen estimating agents
are involved and the other agents are not affected at all.
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Proof: It suffices to prove that for an n-agent n ≥ 3 mini-
mally rigid formation in R2 whose Z matrix is Hurwitz with
its chosen estimating agents, the new (n + 1)-agent formation
obtained from the n-agent formation by the Henneberg insertion
operation still has a Hurwitz Z matrix, if its estimating agents
are chosen according to the rule stipulated in the proposition.

Let the n-agent formation’s Z matrix be R(z)ST
2 (z), and the

Z matrix for the (n + 1)-agent formation be R̄(z)S̄T
2 (z). Then,

R̄(z)S̄T
2 (z) =

[
R(z)ST

2 (z) 0

� C(z)

]
(29)

where “�” denotes the submatrix of less importance and

C(z) =

[
||zl ||2 −zT

l zl+1

−zT
l+1zl ||zl+1 ||2

]
(30)

where zl and zl+1 are the two vectors pointing from the two
chosen estimating agents’ positions to the (n + 1)th agent’s po-
sition. Then, using the similar argument as proving Proposition
6.2, one can show that R̄(z)S̄T

2 (z) is also Hurwitz. �

B. Stabilizing a Special Class of Infinitesimally Minimally
Rigid Formations in R3

Now, we look at undirected rigid formations in R3 . We start
with simple tetrahedron formations.

Proposition 6.4: For an undirected tetrahedron formation in
R3 , if its estimating agents are chosen as shown in Fig. 4, then
its Z matrix is Hurwitz.

Proof: The Z matrix for the tetrahedron formation with the
estimating agents chosen as shown in Fig. 4 is

R(z)ST
2 (z) =

[
A(z) 0

� G(z)

]
(31)

where A(z) is the same matrix as in (27), and G(z) is the
Grammian matrix z̄T z̄, and z̄ is the stacked column vector of z4 ,
z5 , and z6 . Since the tetrahedron formation is minimally rigid at
z∗, all the vectors in z̄ are linearly independent. Therefore, G(z̄)
is positive definite at z∗, and thus, the Z matrix is Hurwitz. �

Since there is no necessary and sufficient combinatorial con-
ditions for formations’ rigidity properties in R3 yet, we can only
look at a special class of rigid formations in R3 .

Proposition 6.5: Consider the class of infinitesimally min-
imally rigid formation in R3 that can be generated by adding
in sequence new agents to a tetrahedron formation such that
every time the new agent is connected to three existing agents
that form a triangular formation. If in each insertion operation,
the three estimating agents for the three newly added edges are
exactly the three associated existing agents, then the Z matrix
for the overall formation is Hurwitz.

The proof for this proposition is similar to that of Proposition
6.3 and we omit it here.

VII. EXPERIMENTAL AND SIMULATION RESULTS

A. Formation Experiments in R2

We first test the result in Theorem 5.1 using the E-puck mobile
robotic platform [28]. The experimental setup consists of four

wheeled E-puck robots in a planar area of 2.6 × 2 meters. Each
robot is identified by a data-matrix marker on its top as shown
in Fig. 5. Each robot’s reference point is the intersection of
the two solid bars of the marker, and the orientation of the
marker is recognized by a vision algorithm running at a PC
connected to an overhead camera. Since E-pucks are usually
modeled by unicycles, we apply feedback linearization about
their reference points to obtain single-integrator dynamics for
simpler controller implementation. In essence, we control the
formation of the reference points of the robots. The whole image
of the testing area is covered by 1600 × 1200 pixels, where the
distance between two consecutive horizontal or vertical pixels
corresponds approximately to 1.6 mm. The PC runs a real-time
process computing the relative vectors between the robots and
computes the control inputs for the robots. The communication
takes place when sending the commands from the PC to the
E-pucks in order to move their wheels, which gives the required
linear and angular velocities to the robots after being translated
into common (linear velocity) and differential (angular velocity)
commands to the wheels of the robots. The communication is
done via Bluetooth at the fixed frequency of 20 Hz.

We consider the following fixed measurement inconsistency,
that is unknown to the robots

μ =
[
19 16 19.5 10 16

]T
pixels2 . (32)

The magnitude of such inconsistency is carefully chosen to
reflect the possible bias of about

√
16 × 1.6 = 6.4 mm, which

is quite common among acoustic or infrared sensors for this
kind of robots.

When the robots use directly the standard gradient control
strategy, the measurement inconsistency induces the closed or-
bit as shown in Fig. 6, and the shape of the formation is distorted.
In comparison, for the same setup, we also apply the estimator-
based gradient control (6)–(8). We pick the estimating agents
following the rule specified by Proposition 5.3, and as a re-
sult, the transpose of the incidence matrix of the associated
estimating-agent graph is

H =

⎡

⎢⎢⎢⎢⎣

1 −1 0 0
0 1 −1 0
1 0 −1 0
−1 0 0 1
0 0 1 −1

⎤

⎥⎥⎥⎥⎦
. (33)

We choose κ = 1 and BT
k =

[
1 1 0

]
.

In Fig. 7, we show the experimental result of the forma-
tion under the estimator-based gradient control. It is clear that
the robots do not exhibit any undesirable motion induced by
measurement inconsistency. The errors and the robots’ speeds
converge to zero as soon as the inconsistency is effectively esti-
mated by the estimating agents. In experiments, the errors and
the speeds do not converge to zero precisely, since once the
discrepancies approaching are being effectively estimated, the
control inputs become small and can be dominated by friction
forces.
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Fig. 7. Experimental results of a 2-D formation with inconsistent measure-
ments using our proposed estimator-based gradient control. The initial config-
uration in (a) and the final configuration after 20 s in (b) correspond to the
trajectory plot in (c) using dashed-lines and dotted-lines respectively, (d) plot of
errors ek , k = 1, . . . , 5, (e) plots of the robots’ speeds which show that the four
agents eventually stop. (f) plot of the estimated measurement inconsistencies
for the first three edges (shown in solid-line) which asymptotically converge to
the actual ones (shown in dashed line).

B. Formation Simulations in R3

In this numerical setup, we consider a formation of five agents
in R3 . The measurement inconsistency takes the form of the su-
perposition of a constant random offset and a sine wave with
a known frequency. Each inconsistency μk has different fre-
quencies and offsets. We implement control (6)–(8) and choose
the estimating agents according to Proposition 5.5. The five
agents are prescribed to maintain two regular tetrahedrons shar-
ing the same base, where all the edge lengths are d = 5. The
five agents are placed randomly within a volume of 50 cubic
units. We choose κ = 1, BT

k =
[
1 1 0

]
, and the estimators

ξk are initialized to be zero. In Fig. 8, it is clear that the agents’

Fig. 8. Simulation results of a 3-D formation with inconsistent measurements
using our proposed estimator-based gradient control where the inconsistencies
are biased sinusoidal signals. (a) plot of the trajectories where the initial positions
are shown in circles and the final positions are shown in crosses; (b) error ek ,
k = 1, 2, 3, (c) plot of the agents’ speeds, which shows that the five agents
eventually stop, (d) plot of the estimated measurements inconsistencies for the
first three edges (shown in solid-line), which asymptotically converge to the
actual ones (shown in dashed-line).

velocities converge to zero, and the formation shape converges
to the desired one. Moreover, μ̂(t) converges to the periodic
inconsistency μ(t).

VIII. CONCLUSION

In this paper, we have presented an estimator-based gradi-
ent control for stabilizing rigid formations using the internal
model principle. We have effectively dealt with measurement
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inconsistency in the form of the combination of periodic signals
with known frequencies but unknown amplitudes, phases, and
offsets. The proposed distributed control removes the surpris-
ing undesirable steady-state movement reported by some recent
papers. To carry out a key step of choosing estimating agents
in our proposed approach, we have discussed a systematic way
to guarantee the performance of our controller for classes of
infinitesimally minimally rigid formations in R2 and R3 . Ex-
perimental results for four mobile robots have been performed
for formations in R2 , and numerical simulations have been done
for formations in R3 . We are currently working on extending
our control design to more detailed robot models, such as higher
order integrator and unicycle models. We are also interested in
testing the performances of the controllers using outdoor robotic
setups.
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