3,070 research outputs found

    Cognitive modeling of social behaviors

    Get PDF
    To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual mind as ways of carrying out activities. This requires for the psychologist a shift from only modeling goals and tasks —why people do what they do—to modeling behavioral patterns—what people do—as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). To illustrate these ideas, this article presents an extract from a Brahms simulation of the Flashline Mars Arctic Research Station (FMARS), in which a crew of six people are living and working for a week, physically simulating a Mars surface mission. The example focuses on the simulation of a planning meeting, showing how physiological constraints (e.g., hunger, fatigue), facilities (e.g., the habitat’s layout) and group decision making interact. Methods are described for constructing such a model of practice, from video and first-hand observation, and how this modeling approach changes how one relates goals, knowledge, and cognitive architecture. The resulting simulation model is a powerful complement to task analysis and knowledge-based simulations of reasoning, with many practical applications for work system design, operations management, and training

    Representational Similarity Analysis – Connecting the Branches of Systems Neuroscience

    Get PDF
    A fundamental challenge for systems neuroscience is to quantitatively relate its three major branches of research: brain-activity measurement, behavioral measurement, and computational modeling. Using measured brain-activity patterns to evaluate computational network models is complicated by the need to define the correspondency between the units of the model and the channels of the brain-activity data, e.g., single-cell recordings or voxels from functional magnetic resonance imaging (fMRI). Similar correspondency problems complicate relating activity patterns between different modalities of brain-activity measurement (e.g., fMRI and invasive or scalp electrophysiology), and between subjects and species. In order to bridge these divides, we suggest abstracting from the activity patterns themselves and computing representational dissimilarity matrices (RDMs), which characterize the information carried by a given representation in a brain or model. Building on a rich psychological and mathematical literature on similarity analysis, we propose a new experimental and data-analytical framework called representational similarity analysis (RSA), in which multi-channel measures of neural activity are quantitatively related to each other and to computational theory and behavior by comparing RDMs. We demonstrate RSA by relating representations of visual objects as measured with fMRI in early visual cortex and the fusiform face area to computational models spanning a wide range of complexities. The RDMs are simultaneously related via second-level application of multidimensional scaling and tested using randomization and bootstrap techniques. We discuss the broad potential of RSA, including novel approaches to experimental design, and argue that these ideas, which have deep roots in psychology and neuroscience, will allow the integrated quantitative analysis of data from all three branches, thus contributing to a more unified systems neuroscience

    Basic Classes in Conceptual Modeling: Theory and Practical Guidelines

    Get PDF
    Since the 1970s, many approaches to representing domains have been suggested. Each approach maintains the assumption that the information about the objects represented in the information system (IS) is specified and verified by domain experts and potential users. Yet, as more IS are developed to support a larger diversity of users such as customers, suppliers, and members of the general public (e.g., in the case of many multiuser online systems), analysts can no longer rely on a stable single group of people for the complete specification of domains; therefore, prior research has questioned the efficacy of conceptual modeling in these heterogeneous settings. This paper aims to address this problem by providing theoretical foundations rooted in psychology research supporting the existence and importance of special classes that are termed basic-level categories. Based on this research, we formulate principles for identifying basic classes in a domain. These classes can guide conceptual modeling, database design, and user interface development in a wide variety of traditional and emergent domains

    Model driven design and data integration in semantic web information systems

    Get PDF
    The Web is quickly evolving in many ways. It has evolved from a Web of documents into a Web of applications in which a growing number of designers offer new and interactive Web applications with people all over the world. However, application design and implementation remain complex, error-prone and laborious. In parallel there is also an evolution from a Web of documents into a Web of `knowledge' as a growing number of data owners are sharing their data sources with a growing audience. This brings the potential new applications for these data sources, including scenarios in which these datasets are reused and integrated with other existing and new data sources. However, the heterogeneity of these data sources in syntax, semantics and structure represents a great challenge for application designers. The Semantic Web is a collection of standards and technologies that offer solutions for at least the syntactic and some structural issues. If offers semantic freedom and flexibility, but this leaves the issue of semantic interoperability. In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering (MDWE) method Hera. MDWEs allow designers to create data centric applications using models instead of programming. Hera-S especially targets Semantic Web sources and provides a flexible method for designing personalized adaptive Web applications. Hera-S defines several models that together define the target Web application. Moreover we implemented a framework called Hydragen, which is able to execute the Hera-S models to run the desired Web application. Hera-S' core is the Application Model (AM) in which the main logic of the application is defined, i.e. defining the groups of data elements that form logical units or subunits, the personalization conditions, and the relationships between the units. Hera-S also uses a so-called Domain Model (DM) that describes the content and its structure. However, this DM is not Hera-S specific, but instead allows any Semantic Web source representation as its DM, as long as its content can be queried by the standardized Semantic Web query language SPARQL. The same holds for the User Model (UM). The UM can be used for personalization conditions, but also as a source of user-related content if necessary. In fact, the difference between DM and UM is conceptual as their implementation within Hydragen is the same. Hera-S also defines a presentation model (PM) which defines presentation details of elements like order and style. In order to help designers with building their Web applications we have introduced a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio also provides some additional functionality like model checking and deployment of the models in Hydragen. Both Hera-S and its implementation Hydragen are designed to be flexible regarding the user of models. In order to achieve this Hydragen is a stateless engine that queries for relevant information from the models at every page request. This allows the models and data to be changed in the datastore during runtime. We show that one way to exploit this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us to dynamically inject functionality that pervades the entire application. Another way to exploit Hera-S' flexibility is in reusing specialized components, e.g. for presentation generation. We present a configuration of Hydragen in which we replace our native presentation generation functionality by the AMACONT engine. AMACONT provides more extensive multi-level presentation generation and adaptation capabilities as well aspect-orientation and a form of semantic based adaptation. Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even opens up the possibility for data integration at the back end, by using an extendible storage layer in our database of choice Sesame. However, even though theoretically possible it still leaves much of the actual data integration issue. As this is a recurring issue in many domains, a broader challenge than for Hera-S design only, we decided to look at this issue in isolation. We present a framework called Relco which provides a language to express data transformation operations as well as a collection of techniques that can be used to (semi-)automatically find relationships between concepts in different ontologies. This is done with a combination of syntactic, semantic and collaboration techniques, which together provide strong clues for which concepts are most likely related. In order to prove the applicability of Relco we explore five application scenarios in different domains for which data integration is a central aspect. This includes a cultural heritage portal, Explorer, for which data from several datasources was integrated and was made available by a mapview, a timeline and a graph view. Explorer also allows users to provide metadata for objects via a tagging mechanism. Another application is SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and enriched with semantically structured data from several sources. Recommendations are computed by exploiting the underlying semantic structure. ViTa was a project in which several techniques for tagging and searching educational videos were evaluated. This includes scenarios in which user tags are related with an ontology, or other tags, using the Relco framework. The MobiLife project targeted the facilitation of a new generation of mobile applications that would use context-based personalization. This can be done using a context-based user profiling platform that can also be used for user model data exchange between mobile applications using technologies like Relco. The final application scenario that is shown is from the GRAPPLE project which targeted the integration of adaptive technology into current learning management systems. A large part of this integration is achieved by using a user modeling component framework in which any application can store user model information, but which can also be used for the exchange of user model data

    Visualization and user interactions in RDF data representation

    Get PDF
    The spreading of linked data in digital technologies creates the need to develop new approaches to handle this kind of data. The modern trends in the information technology encourage usage of human-friendly interfaces and graphical tools, which helps users to understand the system and speeds up the work processes. In this study my goal is to develop a set of best practices for solving the problem of visualizations and interactions with linked data and to create a working prototype based on this practices. My work is a part of a project developed by Fail-Safe IT Solutions Oy. During the research process I study various existing products that try to solve the problem of human-friendly interactions with linked data, compare them and based on the comparison develop my own approach for solving the problem in the given environment, which satisfies the provided specifications. The key findings of the research can be grouped in two categories. The first category of findings is based on the existing solution examinations and is related to the features I find beneficial to the project. The second category is based on the experience acquired during the project development and includes environment-specific and project-related findings

    International Conference on Education

    Get PDF
    UBT Annual International Conference is the 11th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: Art and Digital Media Agriculture, Food Science and Technology Architecture and Spatial Planning Civil Engineering, Infrastructure and Environment Computer Science and Communication Engineering Dental Sciences Education and Development Energy Efficiency Engineering Integrated Design Information Systems and Security Journalism, Media and Communication Law Language and Culture Management, Business and Economics Modern Music, Digital Production and Management Medicine and Nursing Mechatronics, System Engineering and Robotics Pharmaceutical and Natural Sciences Political Science Psychology Sport, Health and Society Security Studies This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBT UBT – Higher Education Institutio
    corecore