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Abstract 

Since the 1970s, many approaches to representing domains have been suggested. Each approach 

maintains the assumption that the information about the objects represented in the information 

system (IS) is specified and verified by domain experts and potential users. Yet, as more IS are 

developed to support a larger diversity of users such as customers, suppliers, and members of the 

general public (e.g., in the case of many multiuser online systems), analysts can no longer rely on a 

stable single group of people for the complete specification of domains; therefore, prior research has 

questioned the efficacy of conceptual modeling in these heterogeneous settings. This paper aims to 

address this problem by providing theoretical foundations rooted in psychology research supporting 

the existence and importance of special classes that are termed basic-level categories. Based on this 

research, we formulate principles for identifying basic classes in a domain. These classes can guide 

conceptual modeling, database design, and user interface development in a wide variety of traditional 

and emergent domains. 
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1 Introduction 

Although conceptual modeling has a long history 

(Borgida, 1985, p. 1; Brodie, 1984; Hirschheim & 

Heinz, 2010; Peckham & Maryanski, 1988), until 

recently, it has been predominantly conducted in 

internal organizational settings (e.g., to develop 

transaction processing systems). Greater control in 

organizational environments has made it relatively 

feasible to reach and engage domain experts and future 

users of a system to collect complete, consistent, 

stable, and agreed upon information requirements 

(Checkland & Holwell, 2006; Hirschheim, Klein, & 

Lyytinen, 1995). 

However, dramatic changes in the information systems 

(IS) landscape have occurred over the last decade, 

including developments such as “big data” and big data 

technologies (e.g., NoSQL databases, Hadoop), social 

media and rapid content creation online by regular 

users, mobile and ubiquitous computing, business 

analytics, sensors, internet of things, and artificial 

intelligence. These changes have dramatically altered 

the ways in which IS are designed and used, 

necessitating innovative approaches to conceptual 

modeling to better support these developments 

(Jabbari Sabegh et al., 2017; Rai, 2016, 2017; Recker, 

2015; Storey & Song, 2017).  
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In this paper, we focus on one major development: the 

explosive growth of information created by ordinary 

people (as opposed to organizational employees), 

known as user-generated content (UGC). As of 2015, 

more than two-thirds of smartphone users report using 

their devices to create digital content online (Gantz & 

Reinsel, 2012; Melumad, Inman, & Pham, 2019; A. 

Smith & Page, 2015). UGC takes on many forms, 

including forums, chats, product reviews, social 

networking (e.g., Facebook, Twitter, Instagram), as 

well as custom content creation platforms (e.g., 

YouTube, Flickr, WordPress, GalaxyZoo, Amazon’s 

Mechanical Turk, Slack) (Brynjolfsson, Geva, & 

Reichman, 2015; Johnson, Safadi, & Faraj, 2015; 

Levina & Arriaga, 2014; Luo et al., 2013; Susarla, Oh, 

& Tan, 2012; Wattal et al, 2010). 

The contextual environment for UGC differs from 

traditional corporate settings, which challenges some of 

the assumptions of conceptual modeling (Jabbari 

Sabegh et al., 2017). One difficulty is finding 

appropriate domain structures that are natural and 

familiar to all users in open and anonymous settings like 

UGC. Major conceptual modeling grammars like UML 

and ER rely on domain structures such as classes (also 

known as concepts, categories, kinds, or entity types).1 

Classes distill essential features of objects for storage 

and use in an IS (Borgida, 1985; Parsons & Wand, 

1997). Once specified, classes constrain the user input 

that can be captured and used, directly impacting IS 

objects such as database tables, data collection fields, 

user interface options, and reports (Hirschheim et al., 

1995; Teorey, Yang, & Fry, 1986). The identification of 

classes is traditionally one of the most important steps 

in IS development: 

The first step in designing a database, a 

knowledge base, or an object-oriented 

system is to select [an] appropriate 

collection of ontological categories … the 

selection of categories determines 

everything that can be represented in a 

computer application or an entire family of 

applications. Incompleteness, distortions, 

or restrictions of the framework of 

categories must inevitably limit the 

flexibility and generality of every program 

and database that use those categories 

(Sowa, 1995, p. 670). 

Compared with traditional corporate environments, 

class selection may be even more critical in UGC 

settings. Online usage is often volitional—i.e., not 

mandatory—and thus users may abandon an online 

 
1 Following research practice, we use the terms (e.g., classes, 

attributes) based on the domain of discourse. Conceptual 

modeling research typically uses terms such as (1) classes, 

sets, or entity types, (2) objects, members, entities, or 

instances, (3) attributes or properties; whereas psychology 

system at any time for any reason without giving 

advance warning to project owners. In UGC settings, 

if the classes chosen in the model do not match those 

preferred by users, uncommitted users may produce 

low-quality data (e.g., because of low domain expertise 

or difficulty interpreting the classes) (He & Wiggins, 

2015; Kosmala et al., 2016; Lewandowski & Specht, 

2015; Lukyanenko, Parsons, & Wiersma, 2014b) or 

may become less engaged with the project 

(Lukyanenko, Parsons, & Wiersma, 2014a; Nov, 

Arazy, & Anderson, 2011; van Kleek et al., 2011), thus 

limiting the effectiveness of UGC. 

In this paper, we propose a novel approach in 

conceptual modeling and IS development that, while 

generally applicable, is especially tailored to UGC. 

Following theoretical foundations in psychology on 

basic-level categories (BLCs), we suggest selecting 

basic classes (BCs) during conceptual modeling. In the 

context of information management and IS 

development, we define basic classes as labeled sets of 

attributes of objects or events that are most familiar to 

and shared among all system users regardless of the 

users’ backgrounds, knowledge, and domain expertise.  

BCs are classes for which user consensus on both the 

label and the attribute set is likely to be high regardless 

of the diversity of the user base. For example, most 

people are familiar with the class “bird” and have 

similar conceptions of common bird attributes (e.g., 

has wings, has beak, lays eggs, has feathers, most can 

fly). This contrasts with more specialized classes, such 

as “greater yellowlegs,” which require specialized 

domain knowledge that may not be common in the 

general population. The idea of basic, preferred, or 

universal classes is not new, but despite arguments and 

evidence supporting the benefits of such classes 

(Lukyanenko et al., 2019; Lukyanenko et al., 2014b), 

no work in IS has deeply investigated the nature of 

these classes or provided guidelines for their 

identification and application. Our work adds a novel 

perspective to existing IS development research that 

has sought to support specialized tasks and thus has 

mainly focused on determining appropriate, typically 

specialized, classes. In our work, we explore 

unchartered territory for conceptual modeling and IS 

development—selecting generic classes maximally 

familiar to all users. As we discuss and show in our 

paper, such classes of maximal agreement can be 

beneficial in a wide range of applications, such as 

UGC, mobile apps, and even the design of traditional 

software. 

prefers terms such as (1) concepts, categories, or kinds, (2) 

objects, individuals, or members, and (3) features, 

characteristics, attributes, or properties, respectively 

(Murphy, 2004; Parsons & Wand, 1997; Sowa, 1995) 
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The rest of the paper is organized as follows: In the 

next section, we provide a motivating example to 

elucidate the challenges of UGC without BCs. We then 

survey state-of-the-art literature in conceptual 

modeling and psychology and use it as a foundation to 

formulate principles for identifying BCs in a domain. 

We develop practical guidelines for the identification 

and use of BCs and evaluate these guidelines. 

2 Motivating Example and 

Problem Formulation 

To better understand conceptual modeling challenges 

in UGC and potential applications of BCs, consider a 

case of citizen science—a type of UGC that harnesses 

contributions of ordinary people for scientific research 

(Burgess et al., 2017; Kosmala et al., 2016; Levy & 

Germonprez, 2017). Many citizen science projects 

have three characteristics that are common in UGCs: 

purpose-driven information collection, project 

openness, and lean user profiles. We briefly discuss 

each of these characteristics below. In addition, we 

provide a list of existing UGC projects in Appendix A 

and categorize them based on these three 

characteristics. 

• Purpose-driven information collection: 

Although many uses of UGC come from mining 

existing sources such as Twitter, organizations 

are rapidly developing specialized UGC 

platforms to harness its power. Examples 

include BeingGirl.com (by Procter & Gamble), 

eBird.org (by Cornell University), and FEMA 

Disaster Reporter App (by the US Federal 

Emergency Management Agency). This type of 

organization-sponsored UGC promises to 

deliver targeted and less noisy data that are 

better aligned with organizational information 

needs (Brynjolfsson et al., 2015; Deng, Joshi, & 

Galliers, 2016; Lukyanenko et al., 2017). 

• Project openness: Many UGC platforms are 

completely open and invite anybody to join and 

participate. This results in a need to model a 

system that is (ideally) capable of collecting 

data from users with vast differences in domain 

views and expertise and varying levels of 

motivation to contribute information. Because 

of the prevalence of mobile devices, such users 

are often on the go and may be prone to short 

attention spans. Citizen science projects are one 

example that broadly upholds the ideal of open 

participation (Hand, 2010; Philippoff & 

Baumgartner, 2016). 

• Lean user profile. Many UGC environments 

are anonymous or semianonymous. Citizen 

science projects often deliberately avoid 

maintaining persistent user profiles to comply 

with ethics protocols and to avoid placing 

participation barriers for people that do not want 

to provide personal information (Burgess et al., 

2017; Louv & Fitzpatrick, 2012). Likewise, 

many mobile UGC projects choose not to 

collect extensive profile data, as doing so is 

viewed as a usability barrier (Hosseinmardi et 

al., 2014; Van Kleek et al., 2011; Wiggins & 

He, 2016). This suggests that IS developers 

must assume that an IS has little information 

about each user and that it will be difficult to 

mine data to predefine data structures 

appropriate for every user. 

Consider a high-profile example of the citizen science 

project iSpot (www.ispotnature.org) run by The Open 

University in the UK (Clow & Makriyannis, 2011; 

Scanlon, Woods, & Clow, 2014; Silvertown, 2010). 

The objective of iSpot is to expand scientific 

knowledge by asking people to observe plants, 

animals, and other taxa across the globe and report 

these sightings on their custom online platform. 

Selecting classes for an open, purpose-driven 

application such as iSpot can be challenging. The open 

nature of participation means there are no established 

guidelines for ensuring that all potential users can be 

engaged for requirements elicitation and analysis. 

Since iSpot is designed to deliver data for scientific 

research, analysts may elicit a list of species from 

scientists together with higher-level classes to group 

the species. Representing these structures using 

conventional conceptual modeling grammars (e.g., 

UML) may produce a model (i.e., script) akin to the 

modeling fragment presented in Figure 1. 

As seen from the script, the focal data collection class 

on iSpot is the species level of classification (e.g., 

brown bear, sugarbag bee, spotted sandpiper) as these 

are standard units of conservation and measurement in 

biology (Crall et al., 2011; Mayden, 2002). Based on 

scripts similar to that of Figure 1, developers can then 

create database tables and user interfaces. 

Existing research has focused on the problem of 

ensuring that distributed, nonexpert online users are 

able to report information using specific classes 

needed by data scientists (e.g., biological species). For 

example, research has been investigating innovative 

means for training online volunteers or collecting data 

without forcing users to identify objects at the species 

level (Kosmala et al., 2016; Lukyanenko et al., 2017). 

Figure 2 shows a sample online quiz on iSpot that 

trains online volunteers to identify species of interest 

to the project. 
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A major challenge that has received considerably less 

attention is organizing specialized categories (e.g., 

species in Figure 2) into higher-level classes. The list 

of specialized classes can be extremely long—

researchers estimate that there are 8.7 million (±1.3 

million SE) eukaryotic species globally that fall in the 

domain of iSpot (Mora et al., 2011). A natural way of 

handing specialized classes is by organizing data 

collection around more general classes so that 

navigational elements, menus, tutorials, and other 

interface choices can be presented and filtered by these 

more general classes.  

The problem of effective organization of data 

collection and other design elements is becoming even 

more pressing for projects in which developers face 

severe space limitations and constraints—for example, 

Figure 1. Fragment of a Candidate Script for iSpot 

Figure 2. Online Quiz on iSpot that Trains Online Volunteers to Identify Species of Interest 

(https://www.ispotnature.org/quiz) 
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mobile or miniaturized environments (Melumad et al., 

2019). Generally, this requires using classes at higher 

taxonomic levels (e.g., in Figure 1, these include 

raptor, bird, mammal, vertebrate, invertebrate, marine 

mammal, shore bird, land mammal, bee) but, in most 

domains, there can be hundreds of more general 

classes. Developers are provided with limited guidance 

on how to select the best generic classes. 

Requirements elicitation and conceptual modeling 

activities are typically used to understand how 

application domains should be structured. Since not all 

potential users are involved in the development of the 

IS, these techniques may not work for UGC. It is 

possible that some nonexpert users may prefer (or be 

only familiar with) classes other than those presented 

in Figure 1. For instance, the fact that polar bears are 

bears and spend considerable amount of time on land 

may lead nonexperts to incorrectly (from the point of 

view of the project sponsors) conceptualize them as 

land mammals (Kaufman, 1999); likewise, some users 

may fail to classify spotted sandpipers as shorebirds. 

Furthermore, seeing ospreys near shores, nonexperts 

may consider them to be a type of shorebird—an 

incorrect classification from the point of view of 

scientific taxonomy and one incongruent with the 

script in Figure 1. Previous research has found that 

misalignments between the chosen classes and those 

preferred by users have an impact on data quality and 

effective system use (Burton-Jones & Volkoff, 2017; 

Lukyanenko et al., 2019). The success of a project 

might be threatened because some users may not be 

able to navigate structures of the project, contribute 

observations, or find desired information.  

Prior research in conceptual modeling has shown that 

there are instances in which user agreement for classes 

may be very high (Lukyanenko et al., 2014b; 

McGinnes, 2011). Previous work has suggested that 

these conceptual modeling classes correspond to basic-

level categories proposed in the reference discipline of 

psychology (Rosch et al. 1976). Recently, Lukyanenko 

et al. (2019) experimentally showed that when 

nonexpert observers were able to use basic-level 

categories to describe both familiar and unfamiliar 

objects, the resulting accuracy was nearly 100%. 

However, despite the strong empirical evidence of 

their effectiveness, no work in IS has deeply 

investigated the nature of these classes or, more 

importantly, how to identify and select these classes. 

With this motivation, our research questions are: (1) 

Which classes are the most appropriate to all potential 

users in a UGC project? (2) How can IS developers 

and researchers identify and select these classes? 

3 Existing Conceptual Modeling 

Approaches and UGC 

We begin by considering prior research in IS related to 

our work. Existing studies in areas dealing with the 

diversity of users, difficulties in eliciting information 

requirements, and variable user needs lay the 

groundwork for our research. Research in conceptual 

modeling and related fields (e.g., human-computer 

interaction, computer-supported cooperative work, 

and social computing) has long recognized the value of 

selecting classes appropriate for the intended users’ 

levels of domain familiarity and expertise (Sowa, 

1995). However, it is commonly assumed that 

selecting these classes requires potential users to be 

directly involved in requirements elicitation and 

conceptual modeling (Dobing & Parsons, 2006; 

Erickson, Lyytinen, & Siau, 2005; Gemino & Wand, 

2004), which is a prominent approach in the 

participatory design research tradition in IS 

(Björgvinsson, Ehn, & Hillgren, 2012; Bødker, 1996; 

Ehn, 1988; Kyng, 1995; Robertson & Simonsen, 

2012). 

Participatory design has been applied to development 

challenges in distributed, multiuser and open settings, 

including UGC (Gumm, 2006; Lukyanenko, 2016; 

Obendorf, Janneck, & Finck, 2009). Acknowledging 

the difficulties of developing IS in these settings, 

researchers have suggested leveraging innovative 

communication technologies and continuous system 

improvements and seeking frequent user feedback and 

the use of user surrogates (e.g., usability experts) as 

potential solutions (Anand & Mobasher, 2003; Le 

Dantec et al., 2015). Practical constraints in the real 

world have limited the efficacy of these solutions, as 

projects tend to effectively engage only a handful of 

prospective users (typically those most readily 

accessible to the development team) (Bratteteig & 

Wagner, 2014).  

Researchers and developers have also conceptualized 

average users (also called “personas”) whose attributes 

best represent the average attributes (e.g., personality, 

domain expertise, and model of the world) of the user 

population (Ehn, 1988; Iivari, 2011; Muller, Millen, & 

Strohecker, 2001). In practice, “politically 

representative users” are common (Muller et al., 2001, 

p. 102)—i.e., users who are delegates of established 

organizational units (e.g., trade unions, functional 

units, team leaders, managers) (Baskerville, de Marco, 

& Spagnoletti, 2013; Ehn, 1988; Kraft & Bansler, 

1994). In general, no ideal solution has emerged and 

researchers have increasingly called for more work on 

adapting participatory design approaches to UGC 

settings (DiSalvo & DiSalvo, 2014; Lukyanenko, 

2016). 
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Another emerging solution that has shown early 

promise is skipping conceptual modeling entirely and 

avoiding traditional domain representations (as shown 

in Figure 1). The resulting “lightweight” or “no 

conceptual modeling” approach then simply selects a 

flexible data model (e.g., a schemaless noSQL 

database) and presents users with an interface that 

allows them to suggest any attributes or classes they 

wish to report in a free-form manner (Jabbari Sabegh 

et al., 2017; Kaur & Rani, 2013). Yet, even when data 

collection is flexible, projects may wish to partition 

interfaces and navigational structures and provide 

tutorials organized by subjects, suggesting that even 

these types of projects may benefit from identifying 

effective higher-level classes. 

Finally, a promising approach is to generate classes 

that match a user profile or varying user preferences 

“on demand.” This work is particularly active in the 

human-computer interaction community (with the 

focus on interface design) but has also been pursued in 

conceptual modeling contexts (Ho, Davern, & Tam, 

2008; Mobasher, Cooley, & Srivastava, 2000). Of 

particular relevance to our paper is TAXIS, a design 

language developed by Mylopoulos and colleagues 

(Mylopoulos & Wong, 1980; Nixon et al., 1987). 

TAXIS has the capability to detect user expertise, 

facilitating matching the most appropriate class to a 

user. These approaches are powerful and, in many 

situations, can be an adequate solution for constructing 

models (and corresponding user interfaces) that are 

appropriate to different users. However, for on-

demand approaches such as TAXIS to be effective, the 

system needs to have a vast amount of prior data about 

a particular user (e.g., user domain views, expertise, 

abilities), which is challenging in cases where user 

participation is open and largely anonymous. 

In general, dynamic on-demand solutions presuppose 

that the classes vary from one user to another. 

However, we also believe there is merit in keeping 

some conceptual structures unchanged and static. This 

may become useful when analyzing data for scientific 

purposes because drawing inferences from UGC 

projects may require that conditions under which 

observations were made by online crowds (including 

data collection interface choice) be as similar as 

possible. The static conceptual structure can also 

become valuable when building the static elements of 

a project—e.g., navigation menu, help items, process 

flow, etc. 

Motivated by the limitations of existing approaches, 

we develop an alternative method that selects classes 

for which the interuser agreement is maximized before 

IS development. Prior conceptual modeling research 

suggests the existence of such classes following 

theoretical work in psychology on basic-level 

categories. Seeing promise in such categories, this 

research has called for practical guidelines to leverage 

these categories as potential classes (Lukyanenko et 

al., 2014b; Lukyanenko & Samuel, 2017; McGinnes, 

2011).  

We heed the recommendation made by prior research 

and, in the next section, turn to psychology research in 

search of theoretical guidance. We then develop 

guidelines for the identification and application of 

basic-level categories as basic classes (BCs).  

3.1 Theoretical Foundations for the 

Guidelines 

The special status of basic-level categories is rooted in 

its position within a cognitive knowledge hierarchy. 

Before addressing relevant theories in psychology, we 

briefly consider the notion of levels or hierarchies of 

classes in conceptual modeling (Borgida, 1985; Purao 

& Storey, 1997; Smith & Smith, 1977). Conceptual 

models use the notion of hierarchy extensively with 

grammars such as the ER or UML, object-oriented 

database design, and supporting class hierarchy 

representations (e.g., via relationships of 

generalization/specialization, property inheritance) 

(Storey, 1993). Moreover, many scripts contain 

hierarchical structures (Dey, Storey, & Barron, 1999; 

Storey, 1993; Ullrich, Purao, & Storey, 2000; Wand, 

Storey, & Weber, 1999). Despite the centrality of 

hierarchies to scripts, the assumption was that there are 

no special classes since the classes are subject to 

someone’s perceived reality, which reflects different 

user needs. In contrast, psychology research since the 

1970s has begun to consider whether certain classes in 

a hierarchy have innately privileged standings.  

According to psychology research, humans routinely 

form class hierarchies based on the need to maintain 

classes at different levels of abstraction since these 

levels perform fundamental functions of classification 

differently. Specifically, classes support cognitive 

economy and inferential utility (Lakoff, 1987; Roach 

et al., 1978; Smith & Medin, 1981)—two vital 

functions of organisms and one of the defining 

mechanisms of human cognition and behavior (Corter 

& Gluck, 1992; Roach et al., 1978). These functions 

compete for the same limited cognitive resources of 

human memory, attention, and processing power.  

Cognitive economy is achieved by maximally 

abstracting from individual differences among objects 

and then grouping objects in classes of larger scope 

(Fodor, 1998; Murphy, 2004; Smith & Medin, 1981). 

In a biology domain, such classes could be animals and 

plants. By storing only a few classes, humans can 

easily memorize identifying characteristics of different 

class members (e.g., objects). Having only a few 

classes in the vocabulary maximizes the likelihood that 

two different people would have the same classes, 

which promotes communication efficiency and social 

interaction (Murphy, 2004). Cognitive economy 
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becomes increasingly vital because the environment 

continuously supplies organisms with massive 

amounts of unique sensory data. Thus, having fewer 

classes helps people cope with the changing diversity 

of the world. Strictly focusing on the benefit of 

cognitive economy therefore suggests that the best 

candidates for maximal agreement classes are those 

classes with the broadest scope—those at the top of the 

classification hierarchy. 

Overemphasizing cognitive economy, however, comes 

at the expense of ignoring certain individual 

characteristics of objects that may be vital for the 

organism’s function and survival via inductive 

inference (inferential utility). For example, suppose we 

are interested in a particular property of an object we 

encounter (e.g., we wish to discern if a mushroom is 

poisonous or edible). Classifying this object as a 

fungus (a high-level class) versus a Clitocybe rivulosa 

(a particular lower-level kind of poisonous mushroom) 

is associated with different probabilities of this object 

having the property of interest. The probability that a 

Clitocybe rivulosa is poisonous is substantially higher 

than the probability of any fungus being poisonous.2 

Thus, the ability to predict attributes of instances of a 

class, or the inferential power, increases as the scope 

of the class decreases. It follows that to maximize 

predictive power, humans should prefer classes with a 

narrower scope. While classes with a narrower scope 

are useful in many ways, memorizing, organizing, and 

communicating these categories require more 

cognitive and social effort.  

Based on the tradeoff between cognitive economy and 

inferential utility, psychology research hypothesizes 

that humans favor (e.g., learn, communicate) those 

classes that maximally exploit both predictive power 

of classes and their cognitive economy. For example, 

Rosch et al. (1976) argued that in the world of “infinite 

number of discriminately different stimuli” and facing 

the tradeoff between cognitive economy and 

inferential power, humans favor classes that are most 

capable of supporting these competing objectives of 

classification. Based on converging evidence from 

anthropology and psychology (Berlin, Breedlove, & 

Raven, 1973; Raven, Berlin, & Breedlove, 1971; 

Rosch et al., 1976), Rosch et al. (1976) proposed that 

there is a set of “privileged” classes that they coin 

basic-level categories, which have become the subject 

of active research in psychology and cognitive 

sciences and have generated a considerable amount of 

 
2 This example also demonstrates why many UGC projects 

are interested in finer levels of classification (e.g., specific 

product categories, biological species). Knowing that a 

phenomenon is Clitocybe rivulosa affords greater inferences 

and action than knowing it is a fungus. This is the key reason 

why many biologically focused UGC projects would insist 

on collecting information at the species level, despite 

obvious difficulties this may create for amateur data 

evidence, making the concept of basic-level categories 

one of the most established ideas in modern 

psychology (Lassaline, Wisniewski, & Medin, 1992; 

Murphy, 2004).  

We review conclusions regarding basic-level 

categories generated by forty years of psychology 

research (Lassaline et al., 1992; Murphy, 2004). We 

organized these conclusions about basic-level 

categories into theoretical propositions that lay a 

foundation for their use in conceptual modeling (see 

Appendix B for references to specific papers 

supporting each proposition). 

3.1.1 Theoretical Proposition 1: The 

Taxonomic Middle  

As follows from the special function of basic-level 

categories of optimizing the tradeoff between 

cognitive economy and inferential utility, the basic 

level tends to be the taxonomic middle. Concepts that 

belong to this level tend to reside between the highest 

and lowest level in a conceptual hierarchy (e.g., dog is 

higher than collie and lower than animal). Basic-level 

categories tend to be common words such as bird, tree, 

fish, cup, chair, and house (Table 1 shows examples of 

basic-level categories identified by prior research) that 

occupy middle levels in the respective domain 

taxonomies. 

3.1.2 Theoretical Proposition 2: Entry 

Category 

 Psychologists argue that a basic-level category is often 

an entry category—i.e., the first concept thought by a 

user when encountering a phenomenon (Jolicoeur et 

al., 1984). Murphy and Brownell (1985) called it the 

“necessary first step” of identification (p. 72). As entry 

categories, they tend to be retrieved from memory 

extremely quickly and accurately (Lukyanenko et al., 

2014b; Zhou et al., 2010). In contrast, more precise and 

greater inference-bearing subcategories (e.g., 

dachshund) are contingent on expertise (e.g., dog 

experts may bypass the basic-level category and think 

of a specific breed but are still quite aware of the basic-

level dog). An entry category may be different in 

situations when a phenomenon is an atypical 

representative of its basic class (e.g., subordinate 

chicken of the basic-class bird) (Murphy & Brownell, 

1985).3 

contributors (Kosmala et al., 2016; Lewandowski & Specht, 

2015). 
3 This raises the question that there might be multiple basic-

level categories (e.g., bird, duck; bird, chicken) within the 

same taxonomic tree. We contemplate this for future research 

opportunities. 
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Table 1. Some Examples of Basic-Level Categories from Psychology Studies 

Basic-level category Reference 

Bird, dog Tanaka & Taylor (1991)  

Bear, rhino, pig, seal, bug, cat, turtle, crab, dog, fish, elephant, rabbit, horse, 

lizard, hippo, duck, snake, frog 

Waxman & Klibanoff (2000) 

Horse, rhino, lizard, pig, hippo, bug, duck, turtle, snake Klibanoff & Waxman (2000)  

Tree, fish, bird Rosch et al. (1976) 

Flower Mervis et al. (1994) 

Dog, duck, cat Rhemtulla & Hall (2009)  

Mouse, fish, butterfly, bird, rabbit, beetle, dolphin, horse, dog, tree, monkey, 

chicken 

Op de Beeck & Wagemans (2001)  

Apple, pear, orange, lime, coconut, pineapple, carrot, peas, corn, pepper, 

pumpkin, avocado, bird, dog 

Jolicoeur et al. (1984) 

Birds, dogs, fish, other common animals Johnson & Mervis (1997) 

Apple, melon, berry Wales et al. (1983) 

Horse, spider, chicken, fish, dog Mandler & Bauer (1988) 

Cat, dog, horse, bird, bat Younger & Fearing (2000) 

Bush, tree, flower Murphy & Wisniewski (1989) 

Cow, sheep Zhou et al. (2010) 

Cat, dog, horse, cow, apple, pear, daffodil, sunflower Bowers & Jones (2008) 

Dog, tree Rorissa (2008) 

Bird, flower, tree Barr & Caplan (1987) 

3.1.3 Theoretical Proposition 3: Frequently 

Used Words  

Basic-level categories are words that occur most often 

in ordinary daily discourse, as communication is 

driven by the pragmatic need to exchange more 

information with the least effort. These findings 

originate in the work of Zipf (1935), who found that 

the length of a word is inversely related to its frequency 

of use (e.g., there is a small number of short words that 

are used frequently, while most long words are used 

less frequently). Shorter words tend to be the most 

frequently used words (Lassaline et al., 1992). 

Frequently used words indicate a balance of predictive 

power and cognitive economy and are thus uniquely 

suited for efficient communication. 

3.1.4 Theoretical Proposition 4: Cohesion 

and Coupling 

Compared to other levels, subcategories within basic-

level categories are perceived as being the most similar 

to each other (Rhemtulla & Hall, 2009), i.e., having 

cohesion, while two neighboring basic-level categories 

have many psychologically relevant differences 

(Markman, 1991), i.e., exhibit coupling. In general, the 

basic level maximizes “both within-category similarity 

and between-category dissimilarity” (Mandler & 

Bauer, 1988, p. 247). Basic-level categories are 

generally the most differentiated (Murphy & Brownell, 

1985). Thus, by knowing that a canary is a bird, we can 

confidently generalize to items with similar 

characteristics (e.g., other kind of birds) but not with 

items that are dissimilar (e.g., other kind of animals) 

(Patterson, Nestor, & Rogers, 2007). Individual dogs 

are all represented using very similar patterns, whereas 

other kinds of animals (e.g., pigs, goats, birds) are 

represented using somewhat different patterns, and 

nonanimals are represented using dramatically 

different patterns.  

3.1.5 Theoretical Proposition 5: Object 

Visualization  

Basic-level categories are the most inclusive categories 

that allow for the construal of a visual gestalt (i.e., an 

organized whole that is perceived as greater than the 

sum of its parts), which is an image of a category 

schema compatible with most category members. For 

example, the outer shapes of most members of the 

category dog are so similar that it is possible to imagine 

a picture of a dog “as such.” This is clearly impossible 

for superordinate categories (e.g., animal) because 

their members’ outer shapes are too divergent (e.g., 

dog vs. bird). Considering psychological mechanisms 

of object visualization is especially important, as 

vision is perhaps the most important sensory organ for 

humans (O’Callaghan, 2017). 

3.1.6 Theoretical Proposition 6: Simplest 

Words  

Likely because of frequent use, words in the basic 

taxonomic level are generally morphologically simple 

(Craig, 1986). These words are known as primary 

lexemes (e.g., dog, home, food) (Brown, 1958; Rosch 

et al., 1976), whereas subordinate terms tend to be 

secondary lexemes that are formed from the basic level 
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term and a modifier (e.g., stray dog, family home, tasty 

food) (Berlin et al., 1973). While, in general, basic-

level categories tend to be short, this proposition 

stresses the lexical complexity, thus explaining why 

some relatively long words such as lizard or elephant 

are also basic-level categories. 

3.1.7 Theoretical Proposition 7: Original 

Words  

Psychologists have further demonstrated that children 

learn basic-level categories first (Mervis et al., 1994). 

Mervis and Crisafi (1982) suggest that children’s 

categorization ability is acquired in this order: basic, 

superordinate, and subordinate. This is partially based 

on the children’s unsupervised way of discovering the 

world and partially driven by the influence of the 

adults. Adults have notions about the kind of language 

appropriate for use with children (e.g., long names are 

troublesome for children). Thus, adults do not 

necessarily provide a child with the name that is at the 

level of usual utility in the adult world (e.g., they might 

refer to an object as a coin rather than a dime since the 

monetary value of the coin is of little relevance to 

young children) (Brown, 1958). 

3.1.8 Theoretical Proposition 8: General 

Predictive Utility  

Inferences are one of the fundamental functions of 

categories, and the basic level disproportionally 

contributes to inferences. Rosch et al. (1976) 

hypothesized that because of their exceptional 

familiarity to humans and high frequency of usage, 

basic-level categories contain a large number of 

attributes that people think of when they think of a 

basic level (e.g., many attributes for birds—can fly, has 

feathers, lays eggs, builds nests, etc.—versus few 

additional attributes for shorebirds, for example). 

Corter and Gluck (1992) expanded Rosch et al.’s 

(1976) hypothesis by adding a base rate frequency of 

categories (see Appendix C for more details). They 

reasoned that while a subordinate class, such as 

chickadee necessarily has more attributes (and 

inferences) than the basic bird, chickadee is used much 

less frequently than bird. This means that in the 

absence of much knowledge about an object, 

inferences to basic-level attributes are sound as a 

cognitive strategy. Thus, while basic inferences are 

cruder (e.g., lays eggs vs. lays blue eggs), they are 

more reliable in most daily situations.  

To summarize, classification theory in psychology 

amasses considerable evidence for the existence of 

classes that maximize agreement among people with 

different backgrounds, education, and functional 

needs. So-called basic-level categories have been 

shown to carry a multitude of benefits resulting in a 

significant cognitive bias toward these categories. In 

the next section, we use and expand upon the 

theoretical foundations from basic-level categories to 

develop guidelines for identifying what we call basic 

classes (BCs) in conceptual modeling. 

4 Guidelines for Identifying Basic 

Classes in Conceptual Modeling 

A natural application of the theoretical propositions in 

psychology is to construct a set of design guidelines for 

conceptual modeling—as has been done in other 

design science studies (e.g., Evermann & Wand, 2005; 

Parsons & Wand, 2008; Soffer, Wand, & Kaner, 

2015). As demonstrated above by the discussion of 

basic-level categories in psychology research, no claim 

will be definitively diagnostic for identifying BCs and 

there will be exceptions to the propositions. Some 

claims made about the basic-level categories lack 

operational precision (e.g., it may be unclear how to 

determine the middle among even levels in a 

taxonomy).  

Table 2. Guidelines for Identifying Basic Classes of a Domain in Conceptual Modeling 

Guideline name Guideline description 

G1: Middle Level Identify classes in a domain in the middle of the conceptual hierarchy. 

G2: Entry Category Elicit entry classes from a sample of potential users for objects of interest. 

G3: Frequently Used Words Identify the most frequently used domain words used in a typical discourse. 

G4: Cohesion and Coupling Find a domain taxonomic level, for which sibling domain classes have maximal difference and 

their respective children have maximal similarity. 

G5: Object Visualization Find the highest class in the domain taxonomy for which class members can be easily 

visualized. 

G6: Simplest Words Among the classes in a domain, identify shortest and morphologically simple words. 

G7: Original Words Identify the first words or concepts in the domain learned by children or used by mothers to 

talk to children. 

G8: General Predictive Utility Identify classes in the domain with the greatest general predictive utility. 
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This difficulty in operationalizing theoretical ideas 

from reference disciplines into IS design principles is 

common (Arazy, Kumar, & Shapira, 2010; Hevner, 

2007; Iivari, 2007). To overcome the lack of definitive 

guidance from psychology, we suggest using all eight 

propositions to intentionally introduce overlap and 

increase the likelihood of finding all relevant BCs in a 

domain. At the same time, we introduce additional 

precision in order to support a more consistent 

operationalization of the propositions (Chandra Kruse, 

Seidel, & Gregor, 2015; Chandra Kruse, Seidel, & 

Purao, 2016). 

Paralleling the eight conclusions about basic-level 

categories in psychology research, we propose eight 

modeling guidelines (see Table 2) that an analyst (or 

agent) could follow to identify the basic classes (BCs). 

We illustrate the application of each guideline with at 

least one example to aid in their use (as done, for 

example, in Soffer et al., 2015). 

4.1 Guideline 1: Middle Level 

Knowledge about objects in the world can be 

organized hierarchically (de Beeck & Wagemans, 

2001; Rosch et al., 1976). Indeed, the conceptual 

model in Figure 1 depicts classes that are organized in 

a hierarchy proceeding from more abstract (e.g., 

animals) to more specific (e.g., osprey). Psychology 

research predicts that the basic level should be in the 

middle of a taxonomy. Incorporating the notion of 

basic-level categories in the taxonomic middle leads to 

the following conceptual modeling guideline. 

Guideline 1: Identify classes in a domain in the middle 

of the conceptual hierarchy. 

To apply this guideline, analysts could arrange classes 

in a domain as a hierarchy (e.g., similar to the one in 

Figure 1) and select classes in the middle. Much human 

knowledge is already organized hierarchically, thus 

analysts could also leverage many existing repositories 

(e.g., research databases, wikis, books) to identify core 

concepts within a particular domain. This process 

could also be automated with an ontology as input to 

an algorithm that outputs classes in the taxonomic 

middle. For example, in the Catalogue of Life 

(www.catalogoflife.com), a comprehensive index of 

species containing information on names and 

relationships for over 1.6 million species, each object 

includes a taxonomic hierarchy whose range includes 

the most abstract (e.g., kingdom), the middle (e.g., 

class, order, family), and the most specific (e.g., genus, 

species, and subspecies).  

Psychology research does not offer precise guidance 

on determining which classes should be selected when 

the hierarchy is deep (e.g., contains more than three 

levels). It is also unclear how to select the middle class 

when the number of levels is even. Hence, to ensure 

consistent application of the guideline, we refine 

Guideline 1 by introducing the following heuristics. 

Heuristic 1.1: Select the class in the middle of the 

hierarchy when the number of taxonomic levels is 

greater than or equal to three and odd. 

Heuristic 1.2: Select the two classes in the middle of 

the hierarchy when the number of taxonomic 

levels is greater than two and even. 

For example, we propose that if the number of classes 

in the vertical axis of the hierarchy is odd and greater 

or equal to three—e.g., animal, bird, and osprey (n = 

3)—the basic class would be that of the taxonomic 

middle, in this example bird. Similarly, if the number 

of classes in the vertical axis of the taxonomy is even 

and greater than two—e.g., animal, vertebrate, bird, 

osprey (n = 4)—the middle two classes should be 

chosen, both vertebrate and bird. We realize the 

number of classes may become unwieldy following 

this guideline alone; however, this conservative 

practice prevents prematurely eliminating BCs as 

candidate classes, which will be further refined 

through subsequent guidelines.  

4.2 Guideline 2: Entry Category 

Basic-level categories often become the first concepts 

(entry category) thought of by a user when 

encountering a phenomenon. As discussed above, 

entry-level effects are contingent on a user’s domain 

expertise and the typicality of the exemplar. However, 

even experts readily relate to the basic-level categories 

(in contrast to lower levels that require familiarity and 

expertise) (Tanaka & Taylor, 1991). In addition, 

expertise rarely spans an entire domain. For example, 

a person who owns a collie might be considered a 

“collie expert,” but not an expert in other dog breeds 

(Tanaka & Taylor, 1991). Thus, entry-level effects 

offer a strong diagnostic for identifying BCs, leading 

to the next guideline:  

Guideline 2: Elicit entry classes from a sample of 

potential users for the domain objects of interest. 

A natural way to apply Guideline 2 is to elicit entry 

classes from potential users. In doing so, analysts 

should be aware that some responses might not be 

basic (because of the confounding effects of typicality 

and expertise). We suggest retaining all responses 

regardless of their perceived BC status and refinement 

among candidate BCs can occur after all the guidelines 

are considered together. The entry category also 

considers the effectiveness of the BC as way of 

organizing information (e.g., on a user interface). 

Guideline 2 provides a mechanism to elicit relevant 

classes from users, including nonexpert users. The 

entry categories can be easily crowdsourced online, 

especially with the use of crowdsourcing platforms, 

such as Amazon’s Mechanical Turk or CrowdFlower 
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(Deng et al., 2016; Ipeirotis, Provost, & Wang, 2010) 

and further refined by the analyst. Figure 3 shows a 

prototype interface we built to elicit a nonexpert’s 

(e.g., a citizen who lives in the geographical region of 

interest) classes of instances observed.  

To determine a stopping point, we suggest applying 

stopping rules suggested in previous conceptual 

modeling research (Browne, Pitts, & Wetherbe, 2007; 

Browne & Ramesh, 2002). Stopping rules describe 

how individuals make a judgment of sufficiency when 

searching for information in order to move to the next 

stage in a problem-solving or decision-making 

process. Generally, a person will invoke a heuristic, or 

a stopping rule (Browne & Pitts, 2004b; Browne et al., 

2007; Nickles, Curley, & Benson, 1995). Examples of 

some of the stopping rules that apply are outlined in 

Table 3 (based on Browne & Pitts, 2004a). 

4.3 Guideline 3. Frequently Used Words 

BCs are typically the most frequently used words in a 

language, making word-use frequency a convenient 

diagnostic feature of the basic level. 

Guideline 3: Identify the most frequently used domain 

words used in a typical discourse. 

A natural application of this guideline would involve 

mining existing sources of data and selecting the most 

frequently used words in a domain based on a 

threshold. For the citizen science example in Figure 1, 

for example, one could parse information from 

scientific publications, biology ontologies, or UGC 

(e.g., social media sources, such as Twitter) to identify 

common words that may suggest potential basic 

classes. 

 

 

Table 3. Stopping Rules in Support of Guideline 2 

Stopping rule Application 

Difference threshold Using the difference threshold stopping rule, developers assess the marginal value of the latest 

piece of information acquired (Nickles et al., 1995). Developers then stop eliciting entry-level 

classes when they determine they are no longer learning anything new.  

Mental list Developers have a mental list of items that must be satisfied before they stop collecting 

information. For example, a developer’s mental list could include a minimal number of classes, 

types of classes, category of classes that must be covered. As each entry-level class is obtained, 

arguments are made for or against using each piece of information to fulfill requirements on his 

or her mental list. Once the developer reasons that all of the items contained on the list or set 

have been attained, the gathering of additional entry-level class ceases.  

Representational stability The developer elicits information until her or his mental model stops shifting and stabilizes, with 

the focus being the stability of the representation. When a new entry-level class is obtained, the 

developer either decides that this new class supports the use of this class to modify the 

representation or rejects the use of the new entry-level class. When the developer’s mental 

representation of the problem is no longer being developed, he or she ceases collecting additional 

entry-level classes. 

Figure 3. Prototype Interface for Eliciting Entry-Level Categories 
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Psychology research does not offer guidance on the 

frequency threshold when identifying the most 

frequently used words. Following previous research 

investigating distribution frequencies, we suggest 

identifying an inflection point—a point that separates 

exponential and uniform distribution in a frequency 

plot (Friedman, 1967; Reynolds, Scott, & Nussbaum, 

1980). To ensure consistency in application, we refine 

Guideline 3 by introducing the following heuristic. 

Heuristic 3.1: Identify the most frequently used 

domain words used in a typical discourse by using 

the inflection point in the distribution frequencies 

as a frequency threshold. 

To illustrate a possible implementation for Guideline 

3, we used basic text mining techniques to parse an 

electronic document in the biology domain, which 

could be helpful in designing an application to collect 

UGC (Feldman & Dagan, 1995; Vequist & Licht, 

2013; Weller, 1999)—specifically, visitors’ sightings 

of wildlife in a national park. Toward this end, we 

mined a relevant source, the popular book Wildlife 

Watching in America’s National Parks (Vequist & 

Licht, 2013), employing standard natural language 

processing techniques to identify the most frequently 

used words (Kao & Poteet, 2007). The general process 

involved transforming words into lower case, 

tokenizing (i.e., extruding basic linguistic units such as 

words, punctuation, and numbers), filtering stop words 

(i.e., common words that do not add value to the 

analysis such as the, as, for), and counting the term 

occurrences in each of the documents. Figure 4 shows 

the outcome of this process—a list of the most 

common words ranked by their frequency of use. As 

expected, a handful of words (candidate BCs) appeared 

more often than others (e.g., 10% of distinct nonstop 

words account for 50% of all words in the corpus). 

Then, we applied Heuristic 3.1 to identify which words 

were used most frequently by finding an inflection 

point. We used common statistical software to obtain 

the equation for the frequency distribution and solved 

the equation for the inflection point, resulting in a cut-

off at 204 words. Our process allowed us to reduce the 

corpus of almost 10,000 words to 204 candidate BCs. 

Examining this list more closely reveals numerous 

categories that psychology research (surveyed in Table 

1 above) previously identified as basic (e.g., park, 

turtle, desert, north, bird, photo, beach, nest, night, 

bat, water, bear). It is also entirely possible that some 

of the words among the 204 retained are BCs not 

previously addressed in psychology research. This 

demonstrates a robust potential of Guideline 3 

operationalized through the Heuristic 3.1 to uncover 

relevant BCs for the domain, including the potential to 

discover new BCs. 

 

 

Figure 4. The Most Frequently Used Words in the Wildlife Watching in America’s National 

Parks Corpus (Vequist & Licht, 2013). 
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4.4 Guideline 4: Cohesion and Coupling 

Psychologists often suggest that basic-level categories 

carve the world at its natural joints (Gangestad & 

Snyder, 1985). Likewise, we expect BCs to contain 

members that are highly similar to one another, and 

highly dissimilar to members of other BCs.  

Guideline 4: Find a domain taxonomic level, for 

which sibling domain classes have maximal 

difference and their respective children have 

maximal similarity. 

To apply this guideline, analysts could interview 

prospective users of a system (e.g., sample of citizens) 

and ask them which classes in a domain are most 

dissimilar from one another. Alternatively, this 

guideline could be applied computationally if relevant 

data are available for mining and analysis. A common 

technique that could be leveraged here is cluster 

analysis, whereby a list of known attributes of objects 

of interest could be clustered using unsupervised 

learning techniques (e.g., k-means) to discover 

potential BCs. The resulting clusters could then be 

shown to domain experts (or prospective users) to 

validate and label the clusters.  

4.5 Guideline 5: Object Visualization 

Much of human experience is shaped by visual signals. 

Basic-level categories are particularly easy to 

visualize, leading to the following guideline. 

Guideline 5: Find the highest class in the domain 

taxonomy for which class members can be easily 

visualized. 

Following the citizen science taxonomy from Figure 1, 

an analyst could list the classes at the bottom of the 

hierarchy and ask users to identify a single visual 

object that represents that class. For instance, in Figure 

1, the classes at the bottom of the hierarchy would be 

spotted sandpiper, osprey, polar bear, brown bear, and 

sugarbag bee. The task for the user would be to 

identify the highest class in the taxonomy for which 

class members could be visualized uniquely from other 

classes. For example, for a polar bear, the highest class 

the user may think of is bear. If the user chose a more 

abstract class (e.g., animal) it would be difficult to 

derive a shared visual image for all members of the 

class because animal also refers to birds, snakes, and 

bees, for example, which are very different from each 

other visually.  

4.6 Guideline 6: Simplest Words 

Basic-level categories are commonly short and 

morphologically simple words, offering a convenient 

diagnostic for BCs. 

Guideline 6: Among the classes in a domain, identify 

the shortest and morphologically simple words. 

To implement these guidelines, analysts could leverage 

text mining techniques to parse a domain-specific 

corpus and derive candidate BCs. The process is 

similar to the one followed to derive the most 

frequently used words (see Guideline 3) but we add an 

additional constraint to retain only tokens that are 

morphologically simple (i.e., single words such as 

chair rather than bachelor’s chair) and short (e.g., low 

number of characters) before using an inflection point 

cut-off. As word length varies by language, analysts 

might consider the average length of words in a 

language (which can be obtained by computing an 

average on the words from a dictionary for the 

language of interest) and select words below the 

average. For example, in the English language, the 

average number of letters in words is between four and 

five (Welsh, 1988). Setting five letters as a threshold 

we would retain words—such as bird, tree, fish, snake, 

home, dog, food, shop, new, old—that psychology 

research identifies as basic-level categories based on 

the same data used in Guideline 3.  

4.7 Guideline 7: Original Words 

Reflecting the special psychological status of basic-

level categories, these words are typically the first to 

be learned by children. When possible, this could be 

used as a diagnostic feature for BCs: 

Guideline 7: Identify the first words or concepts in the 

domain learned by children or used by mothers to 

talk to children. 

This guideline could be applied by interviewing 

children, parents with children, or mining existing 

sources. Following the citizen science taxonomy in 

Figure 1, analysts could parse the content from 

children’s books relevant to their project and perform 

statistical analysis (e.g., term frequency-inverse 

document frequency, latent semantic analysis) to 

identify common words and or concepts and build a 

dictionary of these words used in children’s books. An 

inflection point threshold (see Heuristic 3.1) could be 

applied to narrow the list to the most common words. 

4.8 Guideline 8: General Predictive 

Utility 

Often people reason about objects in the world not in 

terms of classes, but rather using attributes. This is a 

preferred strategy when reasoning and communicating 

about unknown objects or objects that may be difficult 

to definitively classify (e.g., due to an obscured image 

or when learning new objects) (Lukyanenko et al., 

2017).  

The world is not an unstructured total set of 

equiprobable co-occurring attributes. Rather, objects in 

the world are perceived as possessing high 

correlational structure (e.g., wings co-occur with 

feathers more than with fur). Words in basic-level 
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categories contain many learned associations (e.g., 

builds nests and lays eggs), which, combined with the 

higher use-frequency of words in basic-level 

categories, results in a unique advantage of having the 

most generally predictive attributes (Corter & Gluck, 

1992). This property of basic-level categories may be 

used to identify BCs based on attributes. 

Guideline 8: Identify classes in the domain with the 

greatest general predictive utility. 

While this guideline may be implemented by asking 

stakeholders to reflect on the classes and attributes that 

are most predictive in general situations, the category 

utility (CU) proposed by Corter and Gluck provides an 

established quantitative procedure for identifying 

classes with the most general predictive utility (see 

Appendix C for more details). This is applicable in 

cases where domain information can be mined from 

existing data sources and thus may serve as a 

supplement or substitute for traditional requirements 

elicitation from individuals. 

To demonstrate application of the CU function, 

consider the iSpot example above and the hierarchy 

animal—bird—osprey depicted in Figure 1 (for 

simplicity we ignore other classes). Assume the 

corresponding hypothetical feature probabilities 

(attributes) are those given in Table 4. Computing 

these probabilities for each class gives the CU 

measures shown in Table 5. Based on these 

calculations, bird has the greatest CU coefficient. 

According to Corter and Gluck, this result is explained 

by the relative balance between the use-frequency of 

the class bird and its predictive power relative to other 

classes. 

4.9 General Considerations when 

Applying the Guidelines 

Having discussed specific ways to apply each 

guideline, we consider a general strategy for 

implementing them in a project. Based on the lack of 

consensus in psychology research, no procedure can be 

definitive in identifying BCs. We therefore 

recommend attempting to apply every guideline and 

leveraging any overlap between guidelines before 

determining the set of BCs. Rather than viewing these 

guidelines as necessary and sufficient, we consider 

them as cumulative evidence supporting a hypothesis 

for a particular BC. For example, Guideline 3 (G3) 

provides a list of frequently used words for a particular 

domain (e.g., animal, dog, cat, collie, snowshoe, 

siamese). G1 represents a subset of classes that are in 

the middle of the hierarchy (e.g., dog, cat). Here, G1 is 

a subset of G3. Once these guidelines are followed, 

analysts should generate a list of candidate BCs. When 

guidelines create overlap in identified classes, analysts 

should select all classes generated by the guidelines, if 

the goal is to have a comprehensive list of BCs, or 

retain only the classes that are identified by most or all 

guidelines, if they wish to extract the most universal of 

the BCs.  

To illustrate the application of the guidelines in a given 

context, we consider the scenario of building a 

hypothetical Smart City app that collects sightings of 

animals that are seen in urban settings. People are 

increasingly living in urban areas; thus, the 

development of the Smart Cities app could help urban 

planners, managers and decision makers collect a 

range of environmental and human-use data related to 

urban life (Maccani, Donnellan, & Helfert, 2014; 

Purao, Seng, & Wu, 2013; Ranchordás, 2018; 

Sinkonde et al., 2018). 

Table 4. Feature Probabilities to Illustrate the Corter & Gluck Model 

 Base-rate P(k | animal) P(k | bird) P(k | osprey) 

Motile 0.9 1 1 1 

Can fly 0.4 0.5 0.95 1 

Eats fish 0.006 0.007 0.01 0.9 

 

Table 5. Category Probabilities and CU Measures to Illustrate Corter & Gluck Model 

Class Animal Bird Osprey 

Probability of category, 𝑷(𝒄) 0.9 0.33 0.005 

CU measure* 0.25 0.31 0.01 



Journal of the Association for Information Systems 

 

1015 

Table 6. Sample Application of the Guidelines for a Hypothetical Smart City Project 

Guideline name Source of classes  Application of guideline  Potential resulting classes  

G1: Middle Level Structured analysis of 

a domain ontology 

Using an existing ontology (e.g., Catalogue of 

Life) and looking for classes in the taxonomic 

middle by applying Heuristics 1.1 and 1.2 for 

odd and even numbers of classes, respectively. 

Cat, dog, tree, fish, rabbit, 

hare, snake 

G2: Entry 

Category 

Interview with users Design a prototype interface similar to the one 

in Figure 3 to elicit classes from potential users 

(both experts and nonexperts) on objects 

observed. 

Cat, dog, bulldog, chicken, 

bunny, German shepherd, 

lab (Labrador retriever), 

fish, goldfish 

G3: Frequently 

Used Words 

Text-mining of 

relevant domain 

documentation 

Retrieve a corpus of documents related to the 

application domain (e.g., Florida Wetlands). 

Parse the document and derive a frequency plot 

of the most frequently used words (e.g., words 

in the short tail of the distribution), find an 

inflection point to select potential basic classes. 

Cat, dog, tree, German 

shepherd, snake, lab 

(Labrador retriever), fish 

G4: Cohesion and 

Coupling 

Structured analysis of 

a domain ontology 

Calculate the total possible combinations and 

ask users (e.g., Amazon Mechanical Turk users) 

which classes are most dissimilar. 

Tree, fish, snake 

G5: Object 

Visualization 
Interview with users Ask potential users to identify the highest 

category in the taxonomy for which category 

members can be visualized uniquely from other 

classes. 

Canine, feline, rodent, 

snake, tree, fish 

G6: Simplest 

Words 

Text-mining of 

relevant domain 

documentation 

Follow-up analysis of the data used for G1 and 

identify morphologically simple and short 

words specific to the domain. 

Cat, dog, tree, fish, rabbit, 

hare, snake 

 

G7: Original 

Words 

Text-mining of 

relevant children 

books 

Use children books as the corpus look for 

words that are typically used by children. 

Cat, kitty, dog, doggy, 

bunny, fish, fishy, tree, 

snake 

G8: General 

Predictive Utility 

Structured analysis of 

a domain ontology 

Calculate and select classes with the highest 

CU coefficient. 

Tree, snake, fish 

Sensors such as air, noise, water monitoring devices, 

and traffic counters can be deployed to gather data in 

urban spaces. However, the Smart City app would also 

benefit from a different kind of sensor: the human 

sensor (Goodchild, 2007). Human sensors have 

advantages over other types of sensors in that they have 

the capacity to interpret real-world events and act upon 

them, thus making sense of unanticipated phenomena 

that would get coded as “errors” or “outliers” by most 

electronic sensors. As cities bring together people with 

different backgrounds, points of view, and 

perspectives, BCs could be used to create data 

collection interfaces, process flows, menus, 

navigational tools, and tutorials to make smart seeking 

apps accessible to as many people as possible. 

Table 6 provides the details and outcomes of following 

our guidelines in the hypothetical Smart City context. 

As shown in Table 6, in this example, only tree, snake, 

and fish are selected by all eight guidelines, making 

them the maximally universal classes and excellent 

candidates for major navigation elements and other 

highly visible and used project features. In contrast, 

since other classes are selected by some but not all 

guidelines, this suggests that individuals can readily 

relate to the classes but that they may have certain 

limitations. To better understand why such classes 

could have limitations, one might consider why certain 

guidelines do not identify these classes. For example, 

cat and dog are present in five of the eight guidelines 

but are absent from G4, G5, and G8—i.e., the 

guidelines that deal with visual uniqueness—

suggesting that cats resemble dogs much more than 

snakes resemble trees or fish. This does not necessarily 

disqualify these classes from being BCs but may 

indicate that more caution should be taken when 

selecting them as BCs. Indeed, dogs and cats, while 

although often displaying different behavior, share 

many morphological and relational features (e.g., have 

tails, fur, four legs and two ears, snouts, live with or 

close to humans). This means that, in some situations, 

discriminating between them may not be as easy as 

discriminating between the BCs selected by all 

guidelines (i.e., snake vs. tree). This may present an 

issue for certain projects. This information could also 

be used to interpret data generated through such a 

Smart City app (e.g., dogs may be mistaken for cats at 

a distance, thus observations of cats and dogs may not 

be as reliable during poor visibility conditions).  
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It is also possible to automate some or, in extreme 

cases, all of the guidelines. Indeed, with the ongoing 

digitization of human experience (reflected in big data 

phenomena), more and more of human knowledge is 

becoming accessible to computer-based analysis 

(Lazer, Brewer, Christakis, Fowler, & King, 2009; 

Maass, Parsons, Purao, Storey, & Woo, 2018). 

Guidelines G1, G3, G4, G6, G7, and G8 are especially 

conducive to automation, as they rely on an existing 

corpus of data. In contrast, Guidelines G2 and G5 are 

most naturally pursued by interviewing potential user, 

and thus may be more challenging to automate. Maas 

et al. (2018) suggest that domain expertise can help 

refine data obtained through data-driven approaches. 

Likewise, in our context, experts (e.g., domain experts, 

regular users, designers) could review the BCs 

produced by the guidelines (many of which may be 

obtained in a data-driven manner, such as through text 

mining), rank the classes, and select the best candidates 

based on the needs of the application. 

In the end, following these guidelines should result in 

a list of effective BCs for the Smart City app. These 

classes could be used to develop menu items, label 

major sections of the project, organize and design data 

collection processes (e.g., users may be presented with 

the list of BCs and asked to select from it to report what 

they have observed), and even inform promotional 

material about the project. The universality of the BCs 

generated by following the guidelines should make the 

design features and processes informed by these 

classes more readily accessible to large audiences, 

expert and nonexpert alike, which would support wider 

participation and broader engagement with projects, 

facilitate more faithful communication of information, 

and, ultimately, contribute to the success of the 

processes and applications designed using the 

guidelines. 

5 Evaluation of the Guidelines via 

Focus Groups 

In this section, we evaluate the utility of our proposed 

guidelines and assess the usefulness of the guidelines 

in identifying appropriate domain structures familiar to 

users, regardless of the diversity of their backgrounds, 

knowledge, and domain expertise. We chose to 

evaluate our guidelines by engaging with analysts, 

developers, and other practitioners who would 

potentially benefit from using BCs in the design and 

implementation of an IS interface (Myers & Newman, 

2007).  

We chose to use a focus group methodology for our 

evaluation for a number of reasons. First, our research 

is the first to propose the notion of BCs for conceptual 

modeling in UGC contexts. Given the preliminary 

development of BCs, it was imperative to richly 

explore their utility to help us identify where there 

might be a need for more development or clarification 

regarding BC use—something that might be missed 

through other forms of evaluation (Mazza & Berre, 

2007; Prat, Comyn-Wattiau, & Akoka, 2015; Samuel, 

Khatri, & Ramesh, 2018; Tremblay, Hevner, & Berndt, 

2010). Our focus groups allowed us to obtain feedback 

on our BCs using participants’ natural ways of 

expressing themselves without restriction and offered 

us the opportunity to follow-up with them and ask 

questions to further clarify our understanding of any 

issues. As noted by van Aken, Chandrasekaran, and 

Halman (2016), focus groups “can be very informative 

and lead to better and more relevant management 

implications” since they facilitate direct interaction 

with participants.  

Second, focus groups allow researchers to gain 

perspectives on a topic from a set of individuals 

interacting with a moderator and each other. In our 

case, this allowed us to glean perspectives of BCs from 

several individuals simultaneously, based on their 

understanding of the guidelines as well as any 

novel/nuanced perspectives that emerged during 

interactions with the moderator and each other. 

Interaction is a key strength of focus groups, as it 

provides the opportunity to receive feedback that 

might not surface with other evaluation strategies such 

as one-on-one interviews, surveys, or lab experiments 

(Krueger & Casey, 2000). Third, focus groups have 

been used in prior IS research to design and evaluate 

the utility and relevance of design artifacts (Ploesser, 

2013; Prat et al., 2015; Samuel et al., 2018; Stahl, 

Tremblay, & LeRouge, 2011; Tremblay et al., 2010; 

Tremblay, Hevner, & Berndt, 2012). Thus, we 

determined that using focus groups was a viable 

evaluation strategy in the development of our 

guidelines. 

5.1 Focus Group Design 

We followed the approach outlined by Tremblay et al. 

(2010) in the design of our focus groups. In order to 

appropriately design the focus group and identify 

qualified participants, we defined the goals of the focus 

group as follows: (1) Introduce participants to BLCs 

and BCs in the application of the guidelines. (2) 

Evaluate the utility of the BCs obtained from the eight 

guidelines and discuss if BCs would improve the 

design of user interfaces in a UGC application  

Per the advice of Tremblay et al. (2010), we ran 

multiple focus group sessions (hereafter we refer to the 

multiple sessions as focus groups) with different 

individuals of various backgrounds to mitigate 

potential bias in our findings. To ensure consistency in 

our focus groups, we created a moderator protocol with 

the planned procedures (see Appendix D) and detailed 

the tasks performed by participants (see Appendix E). 

Each focus group entailed a welcome, description of 

the procedures that would take place, an introduction 
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to BLCs and BCs, an initial impressions task to provide 

participants a chance to become more familiar with our 

BC guidelines, a design task in which participants 

could use BCs and our guidelines if they deemed them 

useful, and time to allow participants to offer any final 

feedback, thoughts, or comments on the guidelines. 

We utilized think-aloud techniques to maximize 

interaction with participants (Cotton & Gresty, 2006; 

Newell & Simon, 1972; Nielsen, Clemmensen, & 

Yssing, 2002; Stewart & Shamdasani, 2014). 

In the following sections, we describe the focus group 

setting, the training exercise that introduced the 

guidelines to participants, the task in which 

participants used the guidelines to derive a user 

interface for a wildlife citizen science application, and 

the focus group results. 

5.1.1 Focus Group Setting 

The focus groups took place in a conference room at a 

large US urban university. The conference room was 

arranged in a U-shape to encourage collaboration 

between the participants (Krueger & Casey, 2000) and 

allow participants to easily see material used by the 

moderator (e.g., presentation slides to demonstrate the 

guidelines, whiteboard to document participant ideas, 

etc.). The conference room was also equipped with 

audio recording capabilities for later data analysis.  

5.1.2 Participants 

Table 7 describes the demographics of our participants 

across the focus groups. These participants were 

recruited because they had industry experience or 

formal training in systems analysis and design and 

conceptual modeling and were either alumni or current 

graduate students in an intensive master’s degree 

program in analytics at a large US university. There 

was no compensation beyond refreshments during the 

session, which lasted for 1.5 hours. As Table 7 

indicates, our participants represented different age 

groups, females and males were equally represented, 

and, in general, they were experienced professionals 

that could comment on the usability of the BC 

guidelines in practice, as their roles comprised typical 

analysts and application developers at both senior and 

junior levels. Hence, we deemed this sample suitable 

for our focus group goals.  

5.1.3 Focus Group Tasks 

After introducing BLCs, BCs, and our guidelines, the 

first task was an initial impressions task that allowed 

participants to become more familiar with BCs and our 

guidelines by discussing how they impact user 

interfaces and underlying class structures. We 

identified two existing web applications to aid the 

discussion: WebMD and Mayo Clinic’s online 

symptom-checker (see Appendix E). Despite the same 

goal of these two existing web applications (e.g., 

helping a user narrow down potential diagnoses based 

on their symptoms), there are key differentiators 

between the user interface designs that allowed us to 

discuss BLCs, BCs, and our guidelines. For example, 

a key differentiator between the two web applications 

is the application’s entry category (i.e., Guideline 2). 

While the Mayo Clinic symptom checker organizes the 

information based on whether the individual is an adult 

or a child the WebMD symptom checker organizes 

information based on the body part where the symptom 

is located.  

Table 7. Demographics of Focus Group Participants 

IT experience Age Sex Job title 

Focus Group 1 

Less than 5 years 35-44 F Business intelligence consultant 

10-14 years 25-34 M Clinical business technical consultant 

15-19 years 45-54 M Associate fellow 

10-14 years 35-44 F IT manager 

10-14 years 35-44 F IT project manager, information education, IRB 

10-14 years 35-44 F Senior quality assurance analyst 

Focus Group 2 

Less than 5 years 25-34 F Senior software developer 

Less than 5 years 25-34 M Sales associate/systems analyst 

Less than 5 years 25-34 M Test coordinator 

Zero 25-34 F Graduate student in analytics 

Focus Group 3 

15-19 years 45-54 F Business intelligence manager 

Zero 20-24 M Graduate student in analytics 

Less than 5 years 20-24 M Systems engineer 

20-29 years 45-54 M Systems analyst 
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We asked participants to draw parallels from each of 

the proposed BC guidelines to useful/not-useful design 

aspects of the symptom-checker applications 

(Question 1 in Appendix E). We then asked 

participants to discuss whether the BC guidelines 

could have been useful in the process of deriving 

classes for the conceptual model script supporting the 

design of either of these applications (Question 2 in 

Appendix E). This last discussion also served as a 

warm-up activity to help participants become more 

comfortable applying the guidelines to the design task.  

5.2 Focus Group Design Task 

The initial impressions task served to introduce 

participants to BCs and our BC guidelines and expose 

them to connecting them to conceptual modeling and 

interface design. Thus, at this point, the participants 

were ready to evaluate the usefulness of BCs and our 

BC guidelines for designing a new UGC application 

(our research context). The moderator distributed a 

printed version of the guidelines to each participant 

and explained that the goal was to design a conceptual 

structure for a UGC application that would allow 

citizen scientists to report wildlife encounters in the 

Everglades National Park in Florida. To get a sense of 

what the users of such an app might try to classify, we 

showed participants a slideshow with images of 

common wildlife in the Everglades (see Figure E3 in 

Appendix E). We then asked participants to apply the 

guidelines when designing this application (see 

Question 3 in Appendix E). The moderator captured 

ideas on a whiteboard and asked participants to discuss 

the utility of the guidelines and articulate how the 

guidelines might provide guidance in the approach 

they would use to design such an application—in 

particular, which guideline(s) they would apply. 

Finally, the moderator discussed the guidelines’ utility 

and the implications of using them (e.g., quality of 

data, familiarity) (see Question 4 in Appendix E). 

5.3 Data Analysis Approach 

Each focus group audio recording was professionally 

transcribed for subsequent analysis. We conducted the 

analysis using Dedoose version 7.6.17 

(www.dedoose.com), a popular qualitative research 

software (Silver & Lewins, 2014). Several approaches 

are available for analyzing qualitative data, including 

grounded theory (Corbin & Strauss, 1990) and 

interpretive phenomenological analysis (Smith, 1996). 

For our study, we used a template analysis (King, 

1998, 2004), which has fewer defined procedures, 

compared to more formal alternatives, and is adaptable 

to our requirements. We created an initial template 

using our BC guidelines as the higher-order codes. 

These higher-order codes indexed sections of text as 

relating to a theme or issue in the data, which the 

researcher had identified as important to his or her 

interpretation (King, 2004). We developed a coding 

scheme based on the guidelines to identify discussions, 

reactions, comments, or criticisms for each guideline.  

The coding was completed in two rounds. Initially, one 

of the authors and a graduate student (MS student in 

business analytics with experience in systems design) 

independently coded the transcripts and used the 

guidelines as labels for the excerpts. The two coders 

systematically worked through a portion (30%) of the 

focus groups’ transcripts in order to identify sections 

of the transcripts that were relevant to our aim of 

evaluating the utility of the eight design guidelines. 

Initially, any given excerpt could have multiple codes 

attached to it. The two coders discussed the areas of 

initial disagreement to reconcile differences in coding 

interpretation. The rest of the transcripts were then 

coded based on the agreement between the two coders 

(Tremblay et al., 2010). A pooled Cohen’s kappa 

(Cohen, 1960) interrater agreement of 0.64 was 

achieved in the first round, which reflects good 

agreement between the two coders (Miles & 

Huberman, 1994). After discussing the areas of initial 

disagreement and completing the coding of all the 

transcripts, an interrater agreement of 0.88 was 

achieved, which reflects an excellent agreement 

between both coders (Miles & Huberman, 1994).  

In the next section, we discuss the results generated 

from both tasks. We provide a summary table 

(Appendix Table F1) that evidences the utility of each 

guideline and addresses potential challenges that 

analysts may face when applying such guidelines, 

using insights from participants as support. 

5.4 Focus Groups Results  

Overall, our analysis of the data offered evidence for 

the utility of the guidelines. Table 8 illustrates the 

coding support for the guidelines across the three focus 

group sessions. Table 8 shows that Guidelines G1 

(middle level) and G2 (entry category) were the most 

used across the different focus groups. One plausible 

explanation for this is that these guidelines are intuitive 

and require less information processing (e.g., calculate 

a frequency, compare to other guidelines, assess their 

cognitive utility, or realize whether the classes are 

morphologically short). Participants had difficulties 

with G5 (object visualization), likely because they 

were thinking of visual rather than prototypical 

images. Our initial impressions task pinpointed the 

utility of G1, middle level. A participant from Focus 

Group 1 (FG1) suggested that using middle-level 

categories would allow both nonexpert and expert 

users to contribute. A participant in FG2 reasoned that 

neglecting middle-level classes could lead to poor 

design choices due to discrepancies in data entry from 

nonexpert users. 
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Table 8. Code Application in Each of the Focus Groups 

Code Focus Group 1 Focus Group 2 Focus Group 3 Total 

G1: Middle Level 7 9 2 18 

G2: Entry Category 6 6 10 22 

G3: Frequently Used words 1 2 2 5 

G4: Cohesion and Coupling 4 5 2 11 

G5: Object Visualization 3 2 1 6 

G6: Simplest Words -- 5 6 11 

G7: Original Words 3 4 4 11 

G8: General Predictive Utility 7 2 3 12 

Totals 31 35 30 96 

Participants understood the importance of the 

generality of BCs when organizing information for a 

broader audience using different entry categories (G2). 

Participants stated that entry points are fundamental to 

help differentiate and help reduce redundant 

information. One interesting finding is that entry-level 

categories appear to be contextual to the user, leading to 

a variety of valid conceptualizations of entry-level BCs. 

The consensus among participants was that, ultimately, 

it is the role of the analyst to define which entry 

categories are better aligned to their goals.  

Participants identified that words used frequently within 

a context (G3) can help organize information in an 

efficient manner and that basic-level categories are 

generally the most differentiated (G4), providing UGC 

app users with classes capable of helping them traverse 

a knowledge base effectively. Although participants 

noted the utility of our fifth guideline (G5: Object 

Visualization) to identify meaningful BCs, some of the 

participants expressed confusion regarding the 

application of this guideline. The term “visualization” 

made participants think of visual cues (from a UI/UX 

view) rather than whether the BC triggered a mental 

image—i.e., of a prototypical object such as a dog or a 

bird. Thus, we note the importance of stressing that G5 

applies to the classes in the domain rather than to 

interface objects. 

Participants considered the predictive utility (G8) 

guideline to be intuitive because of the products and 

services they use on a regular basis (e.g., Amazon’s 

recommendation system, Netflix’s movie 

recommendation engine). There was a general 

consensus that G8 can help organize information based 

on the likelihood of an event (e.g., the likelihood of a 

bird flying is higher than the likelihood of any animal 

flying). The WebMD symptom checker uses a bar meter 

that determines conditions on the basis of symptoms 

selected by the user. In this interface, conditions are 

listed according to likelihood. The focus group 

participants argued that the likelihood of events (as 

reflected by the bar meter) improved the user experience 

by providing relevant recommendations. However, a 

participant in FG1 suggested that the range of plausible 

diagnoses provided by the Mayo Clinic symptom 

checker was too extreme. Nevertheless, users 

maintained that for the citizen science app, likelihood 

could serve as a way of inferring objects based on the 

object’s characteristics (features). For example, if a 

citizen scientist stated that they saw a white bird with a 

long neck, long legs, and a yellow beak in the Florida 

Everglades, a biologist would most likely infer that a 

great white heron was seen. A participant in FG3 felt 

that interfaces should allow users to enter features 

(attributes) about the object in order to gather 

information about the object. 

A recurrent theme in our FGs was the value of 

considering all the guidelines together. For instance, 

although the word mushroom is not simpler 

(morphologically) (G6) than fungus, it is more likely to 

be learned by children first (G7). Adults are mindful 

about the kind of language that is appropriate for use 

with children (e.g., long names are troublesome for 

children). In general, participants agreed that BCs tend 

to be at a level that is easily relatable to users. A 

participant in FG3 gave an example that went beyond 

our task and highlighted how different organizations can 

leverage the idea of entry categories to organize 

information effectively. Frequently used words derived 

from interactions with existing users can help organize 

information that will be consumed by future users.  

In summary, the focus groups demonstrated the utility 

of the BCs guidelines and the value of the BCs in 

developing and using applications. We are encouraged 

by the reception of the guidelines by our participants. 

We also noted the emergence of rich ideas and concepts 

from the focus group methodology. For example, we 

learned about the importance of both user-context and 

application-context (environment) information. The 

focus group discussions also provided strong support for 

our contention that an overlap exists between guidelines. 

Moreover, participants argued that certain guidelines 

(e.g., G1, G2) were easier to adopt and were thus 

referred to more often (see Table 8 and Table F1), 

suggesting that the totality of evidence should be taken 

into account when selecting the most appropriate BCs 

for a project. 
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6 Implications for Research and 

Practice 

Traditionally, conceptual modeling research has relied 

extensively on users for the identification and selection 

of classes in a domain. Analysts are advised to 

represent views of users no matter how deficient they 

appear (Gemino & Wand, 2004). However, in an 

increasingly expanding range of applications, this 

practice has become problematic. For example, when 

modeling systems to capture UGC, analysts may no 

longer rely on the ability to reach all relevant users. 

Even if each user is reached, these users may not be 

subject matter experts and their requirements may not 

be as accurate and reliable as in traditional settings. In 

online settings, user views may be extremely diverse 

and even change over time—further complicating the 

ability to achieve consensus and generate a common 

unified view of the domain. In each case, traditional 

approaches to conceptual modeling may be limited. 

This paper contributes to the theory and practice of 

conceptual modeling and development of emerging IS 

by proposing a novel approach to conceptual modeling 

in UGC applications based on the notion of basic-level 

categories, a widely researched topic in psychology.  

Having identified basic-level categories as a valuable 

idea for conceptual modeling, this paper proposed 

guidelines for identifying BCs in a domain. These 

guidelines are derived from well-established 

propositions in psychology research that have been 

corroborated in numerous empirical studies. These 

guidelines provide concrete practical procedures that 

analysts could follow when performing conceptual 

modeling. 

As there can be substantial procedural ambiguity when 

applying theoretical design guidelines in practice 

(Chandra Kruse et al., 2015; Gregor & Jones, 2007; 

Chandra Kruse et al., 2016; Lukyanenko & Parsons, 

2013), we took additional steps to further support 

practice (Iivari, 2007). First, we provided operational 

definitions, and when necessary, application heuristics 

to ensure that the application of the theoretical claims 

in psychology weas precise and consistent. Second, we 

provided examples to illustrate the application of each 

guideline and discussed potential pitfalls in 

implementation by referencing the relevant work in 

psychology. Third, we evaluated the utility of these 

guidelines via focus groups and found that, to different 

extents, these guidelines are beneficial when eliciting 

classes from potential users and different knowledge 

bases. Finally, recognizing that the guidelines we 

proposed in this paper can be automated, enabling the 

discovery of BCs in big data sets, we offered 

suggestions for building automatic routines (e.g., 

based on the CU formula in Appendix C). Finally, we 

evaluated the utility of the proposed guidelines in a 

series of focus groups with perspective analysts and 

developers. The focus group evidence shows that 

practitioners appreciated the value of the proposed 

guidelines and found the notion of the basic level 

useful in identifying classes. Taken together, we 

believe that the proposed guidelines and application 

strategies constitute an important novel addition to the 

conceptual and practical toolbox in IS development. 

Grounded in established research in psychology, we 

believe that the guidelines for identifying and applying 

BCs constitute a powerful tool for design and action. 

Our primary motivation in this paper was the need to 

support UGC. We suggest that BCs may safely be 

relied upon as starting points of data collection, as they 

can help narrow design possibilities (e.g., filter lists of 

more specialized classes from which online users can 

select to report on observed or experienced 

phenomena). These types of classes may be also used, 

for example, in the development of major sections of a 

project, for organizing menus, or to create training and 

tutorial elements. However, we do not believe that the 

potential uses of BCs end there. We strongly 

encourage future research to leverage the concept of 

BCs and the guidelines for choosing them in a variety 

of other applications. To motivate this work, we briefly 

suggest some of the possibilities for future research 

and discuss extensions of the notions proposed in this 

paper. 

First, BCs open a novel opportunity to increase rigor in 

IS studies that use classes or categories. For example, 

experimental work in conceptual modeling commonly 

involves giving analysts and users a conceptual 

modeling script that represents a domain (Bodart et al., 

2001; Burton-Jones & Meso, 2008; Burton-Jones, 

Wand, & Weber, 2009; Gemino & Wand, 2003; 

Parsons & Cole, 2005). While such scripts can be 

constructed using meaningless words (Parsons, 2011), 

the scripts often contain meaningful concepts at 

various levels of familiarity to the analysts (e.g., 

(Khatri et al., 2006)). Some of these concepts could be 

deemed BCs. The presence of BCs in such scripts can 

potentially confound experimental findings due to their 

cognitive privilege and people might be attracted to 

those levels in answering questions. Likewise, BCs can 

inadvertently appear in experimental work on human-

computer interaction (e.g., as choices, section headers, 

or data collection or navigational elements). Thus far, 

we are not aware of any work that considers the 

potential confounding effects based on the presence of 

BCs in research.  

Second, we believe our work opens exciting 

opportunities for the development of new theoretical 

concepts in conceptual modeling and knowledge 

management. Conceptual modeling research generally 

does not distinguish classes within a taxonomy (e.g., it 

assumes that all classes elicited from users may be 

equally relevant); however, not all classification levels 

are equally salient for different users. We suggest that 
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some classes in a domain have particularly interesting 

properties. An intriguing theoretical consequence of 

the BC concept is the idea of an information gradient. 

The salience of basic-level categories for individuals 

suggests that classes in a domain can be arranged in the 

order of their category utility, salience, and familiarity, 

rather than taxonomically. For example, using the 

category utility criteria (Appendix C), classes in Figure 

1 can be arranged in descending order of category 

utility, which would result in the sequence of bird, 

animal, osprey. We call such arrangement of classes an 

information gradient (in contrast to the traditional 

generalization and specialization hierarchy that is 

based on property inheritance). The gradient concept 

can be used as an alternative to hierarchical 

representations of knowledge that are based on 

category utility, category salience, or other functions 

derived from research on BCs.  

As taxonomies underlie much of modern science and 

technology, we believe that the concept of information 

gradient has the potential to make a broad contribution. 

Information gradients become a novel form of 

knowledge organization. They can be used to compare 

common knowledge with expert hierarchies, identify 

inconsistencies between intuitive and expert 

knowledge, and suggest potential conflicts. 

Information gradients can provide valuable input for 

information technology design (e.g., by suggesting 

which concepts among many are more and less salient 

for people, potentially affecting information 

collection, search, and retrieval). Gradients may 

naturally differ in their shapes (e.g., some may have 

multiple minima and maxima or sharp vertical 

distances between nodes), leading to different 

outcomes for how people use information and relate to 

the world. We hope that future research will build on 

the intriguing possibilities implied by the special status 

of BCs and expand the notion of the information 

gradient. 

Third, a particularly important potential application of 

BCs is in the design of mobile and wearable devices. 

The challenge when creating mobile, wearable, or 

miniaturized interfaces is the scarcity of visual spaces 

and novel ergonomic restrictions (e.g., smaller screens, 

particular convenient input/output facilities, and lower 

processing capabilities) (Adipat, Zhang, & Zhou, 

2011; Chae et al., 2002; Chittaro, 2006). BCs can help 

develop and manage systems with constrained visual 

spaces by providing natural content and flow content 

partitions that are easy for average users to understand 

and relate to.  

Fourth, as projects are beginning to leverage natural 

language processing and artificial intelligence in 

guiding user input and analyzing user data (Gantz & 

Reinsel, 2012; Kao & Poteet, 2007), the knowledge of 

BCs may be leveraged in the design of artificial 

algorithms. For example, a conversational artificial 

agent can be modeled with the knowledge of BCs and 

this can be leveraged in supporting seamless 

communication with nonexpert users. Another 

promising application of BCs is in enhancing the 

transparency and understandability of complex 

machine learning models (e.g., neural networks) 

(Adadi & Berrada, 2018). It is feasible to posit that the 

intricate paths within a neural network could be 

abstracted to a set of BCs, which would subsequently 

offer a generic, high-level overview of the kinds of 

objects a neural network acts upon that would be 

accessible to nonexpert users. 

Fifth, we hope that future research begins to 

investigate the best usage of BCs in conjunction with 

other classes. Despite the many benefits, it is important 

to underscore that relying on BCs alone for collecting 

or processing information may be insufficient for 

many projects. An IS designed using only BCs will 

collect information that, in most cases, is too general 

for any specialized use of the data. Returning to the 

context of iSpot, for example, the data consumers of 

the project—i.e., scientists and environmental 

agencies—would not likely find contributions 

expressed merely as BCs useful for their typical needs. 

For example, knowing that there are 50 birds and 10 

trees observed does not carry significant utility for 

most projects (because of inferential utility, as 

discussed above). Instead, for most applications, it 

would be important to collect additional information at 

higher levels of specificity or precision (e.g., specific 

species of birds, health symptoms, geographical 

features, product categories). We believe BCs can be 

most useful to organize data collection into sections or 

subsections. For example, a project could provide a list 

of BCs as the first step, which would narrow the 

options down to only birds or only trees. Having 

achieved this narrowing, projects could then apply the 

other principles for collecting information (e.g., ask 

additional questions, allow users to type additional 

attributes of the observed bird or tree, or ask users to 

select from a predefined list of bird species, provided 

contributors have sufficient expertise to perform this 

task—see Lukyanenko et al., 2014b; Wiggins & He, 

2016). Being equipped with the new tool of BCs, we 

call upon researchers and practitioners to find creative 

ways to leverage this tool in conjunction with other 

design solutions. 

Finally, we note the degree of subjectivity in the 

application of the guidelines. In this paper, we adopted 

the notion of basic-level categories from psychology 

research and took numerous steps to enable 

practitioners to operationalize this important concept 

in IS (e.g., we turned theoretical propositions into 

actionable guidelines, added heuristics, provided 

multiple examples on how to apply the guidelines, and 

utilized focus groups to evaluate the ability of 

practitioners to work with the guidelines). Despite 



Basic Classes in Conceptual Modeling  

 

1022 

these efforts, local adaptation and contextual choices 

may be required for practitioners to implement these 

guidelines in their specific projects. For example, our 

guidelines do not inform developers where to obtain 

data sources (e.g., taxonomical hierarchies, ontologies, 

or text corpus), or interviewees. Researchers have 

argued that it is important to avoid overprescribing 

design decisions in order to promote creativity, 

freedom of expression, and increase the applicability 

of design science research to a variety of future 

situations (Chandra Kruse et al., 2016). At the same 

time, as demonstrated in several studies, especially in 

the design science research community in IS, local 

choices on how to follow and implement design 

guidelines can measurably affect project outcomes 

(Tiefenbeck, 2017). We therefore urge practitioners to 

consult other relevant design research and best 

practices to inform the most effective application of 

our ideas in their projects. We also encourage future 

researchers to continue developing the notion and 

identification of basic classes and evaluating their 

boundary conditions and application in real projects 

(Seidel et al., 2018). 
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Appendix A: Sample Projects with Characteristics of Interest to Our Paper 

In Table A1 we present a series of UGC projects classified by industry and our characteristics of interest: 

• Project-purpose-driven information collection: the specific kind of information a project is designed to collect, 

generally to meet organizational information needs) 

• Project openness: projects are open when participation is not restricted to some subgroup in a population or 

domain experts (i.e., when anyone interested can register and participate) 

• Lean user profile: when profile information is insufficient for reliable assessment of an individual user’s level 

of domain expertise, skills, and motivation. 

Table A1. UGC Projects Classified by Scope, Openness, and Lean User Profile 

Organization/industry Project purpose and scope Project openness Lean user profile 

SalesForce  

 

Success community 

Business 

Share and vote for ideas through an 

online forum (“IdeaExchange”) to 

improve the product. 

Available only to 

individuals with 

Salesforce credentials. 

The user profile includes 

picture, description, industry, 

and products used. It also 

allows the user to link other 

social profiles. Providing 

social profile data is optional. 

My Starbucks Idea 

Business 

Help increase the company’s focus on 

customers and their needs. 

Structured (vote on existing ideas) and 

unstructured (submit new ideas). Users 

submit their ideas in 500 characters or 

less together with their contact 

information. Users must choose a 

category for the idea (e.g., store, 

coffee, milks offered). 

Open to anyone. 

Tailored to existing 

customers 

knowledgeable about 

Starbucks products 

and services with ideas 

for improving service. 

Only name and email are 

required to participate. These 

data are required to submit an 

idea. 

Amazon 

e-Commerce 

Crowd-sourced reviews about products 

sold. 

Semistructured (predefined categories) 

and unstructured. Predefined 

dimensions plus text field. 

Anyone can create an 

account. Amazon 

account users can 

register for other 

services provided by 

the company. 

An Amazon account is 

necessary to submit a written 

or video review. For other 

services, more data is required 

(including method of 

payment). 

Yelp 

Business 

Crowd-sourced reviews about local 

businesses. 

Semistructured (predefined categories) 

and unstructured. Predefined 

dimensions plus text field. 

No account needed to 

view reviews. Anyone 

can create an account 

to write a review. 

Registration is required to post 

a review for a local business. 

Name, email, and zip code are 

required to register, birthday is 

optional. Signup via Facebook 

account is also permitted. 

Trip Advisor 

Travel 

Reviews of travel-related content, 

including forums. 

Semistructured (predefined categories) 

and unstructured. 

No account needed to 

view reviews. Anyone 

can create an account 

to write a review.  

Registration is required to post 

a review. Name, email, and zip 

code are required to register, 

birthday is optional. Signup via 

Facebook account is also 

permitted. 

Asteroid Zoo 

 

Astronomy / citizen 

science 

Classify unknown asteroids. 

Semistructured—predefined 

characteristics to identify in an image. 

Within 24 hours of launch, the site was 

receiving almost 70,000 classifications 

per hour. 

Available to anyone 

(citizen scientists). 

No account needed to start 

classifying galaxies. Creation 

of a profile requires username 

and email and is optional. 

Bee Spotter 

Entomology / citizen 

science 

A citizen science project where users 

register, take pictures of bees, and try 

to classify their observations. 

Color pattern, female vs. male, bee 

anatomy. 

Structured—image similarity. 

No account needed to 

view bee spottings. 

Anyone can create an 

account to submit bee 

spottings. 

Name, email, and username are 

required to register. 
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Riskmap.us 

Flood reporting / 

crowdsourcing 

Used for Hurricane Irma via user-

generated reports of flooding. Open 

source initiative to map urban flooding 

and provide real-time information to 

emergency responders and citizens 

posted by citizens. Structured and 

unstructured. Geolocation + depth + 

image + free text. 

Open to anyone. 

Account needed to 

report flooding but 

anyone can view zones 

at risk. 

To input flood reports 

registration is required via 

Facebook, Twitter, or 

Telegram. 

iNaturalist 

Wildlife / 

citizen science 

Records user encounters with other 

organisms and connects users with 

experts who can identify the organisms 

observed. 

Structured (select from list) and 

unstructured (report observations). 

Available to anyone 

(citizen scientists). 

User must create an account to 

participate. Name, username, 

and email are required. 

Fix My Street 

Government 

Sinkhole and pothole mapping by 

citizens. 

Unstructured (forum allowing users to 

discuss findings). 

Available to anyone 

(citizen scientists). 

User must create an account to 

participate. Name, username, 

and email are required. 
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Appendix B: Theoretical Support for Each of the Guidelines 

Table B1. Theoretical Support for Each of the Guidelines 

Theoretical 

underpinnings for 

G1: 

• People consistently use middle-level concepts in speech (Brown, 1958). 

• A hierarchy develops in both directions from the middle level of abstraction (Brown, 1958). 

Objects at the subordinate (lower than basic) levels need higher perceptual processing 

compared to those at the basic level (Jolicoeur et al., 1984). The basic level falls somewhere 

in the middle of taxonomic hierarchies, regardless of how many levels of inclusiveness they 

contain (Ulrich, 1995). 

• Objects are typically identified at a particular level of abstraction that is neither the most 

general nor the most specific possible (Jolicoeur et al., 1984) but an intermediate one called 

basic level (Rosch et al., 1976). 

• “The middle level is the first level where one finds rich prototypes … the features at this 

level are distinctive, as opposed to those of specific categories” (Cantor et al., 1980). 

• The basic level falls somewhere in the middle of taxonomic hierarchies, regardless of how 

many levels of inclusiveness they contain (Neisser, 1987). 

• “the most natural, preferred level at which to conceptually carve up the world. The basic 

level can be seen as a compromise between the accuracy of classification at a maximally 

general level and the predictive power of a maximally specific level (Murphy, 2004).” 

• Middle-level categories are learned most quickly or could be named most quickly after they 

were learned (Corter & Gluck, 1992).  

Derived 

guideline: 

G1 – Middle Level: Identify classes in a domain in the middle of the conceptual hierarchy. 

If the following hierarchy: animal—bird—osprey, the basic-level category would be that of the 

taxonomic middle, in this example, bird. 

Theoretical 

underpinnings for 

G2: 

• It has been suggested that basic-level categories often become an entry-level category—the 

first concept thought of by a user when encountering a phenomenon (Jolicoeur et al., 1984). 

Murphy and Brownell (1985) called it the “necessary first step” of identification (p. 72). 

These classes tend to be retrieved extremely fast, accurately, and efficiently. 

• Jolicoeur et al. (1984) and Murphy and Brownell (1985) introduced the concept of entry-

level category to explain the shorter reaction times found at the subordinate level for some 

atypical members of basic-level categories (e.g., a penguin is categorized faster as a penguin 

than as a bird—since its appearance is distant from the prototypical bird) (Macé, Joubert, 

Nespoulous, & Fabre-Thorpe, 2009). 

• For typical members of basic-level categories, the entry point is usually at the basic level. 

Expertise is likely to shift the entry category toward subordinate levels (Rosch et al., 1976). 

• Entry categories are usually at the basic level but not always. To access categories below the 

entry point, additional information is required (Archambault, Gosselin, & Schyns, 2000). 

• The particular entry point for a given object covaries with its typicality, which affects 

whether or not the object will be identified at the basic level (Jolicoeur et al., 1984). 

• The entry point in the formation of a hierarchical categorization system may be at the 

“unique beginner level” or at the next level down (Berlin et al., 1973). 

• One of the most important features of basic-level concepts consists in the fact that they 

provide us with much information with little cognitive effort (Murphy, 2004; Roach et al., 

1978). 

• Experts should be able to categorize objects at the subordinate level as quickly as objects at 

the basic level because their basic- and subordinate-level categories are equally 

differentiated (Tanaka & Taylor, 1991). 

 

 

Derived 

guideline: 

G2 – Entry Category: Elicit entry categories from a sample of potential users for the domain 

objects of interest. 

Example: a visual stimulus such as a robin first activates the bird category, providing rapid access to 

the name “bird” and other typical bird properties (e.g., has wings and can fly) (Patterson et al., 

2007). A bird expert could verify an object as a robin or as a bird with equal speed. In the novice 

domain, verification times are fastest at the basic level (Tanaka & Taylor, 1991). 
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Theoretical 

underpinnings for 

G3: 

• The more frequently a word is used, the smaller its average length tends to be and the fewer 

synonyms it has (Zipf, 1935). 

• Individual differences of classification can be a function of idiosyncratic life experiences 

and/or culture and, thus, the importance of eliciting entry categories from potential users 

(e.g., tree vs. oak) can be context dependent.  

• Words in basic-level categories tend to be used more frequently in English than words in 

superordinate or subordinate categories (Corter & Gluck, 1992). 

• Boster (1986) found that Aguarana women, who are typically engaged in in cultivating 

manioc, tended to refer to manioc plants with highly specific (species-level) names. Other 

members who interacted less with manioc named these plants at the basic level (Brown, 

1958; Wales et al., 1983). 

 

Derived 

guideline: 

G3 – Frequently Used Words: Identify the most frequently used domain words used in a 

typical discourse. 

For example, people can more quickly categorize a boxing glove as a boxing glove than as a glove, 

even though the latter is the basic-level category (Murphy & Brownell, 1985). People across cultures 

tend to use the same level of concepts in naming animals and plants (B. Berlin, Breedlove, Raven, & 

Hammel, 2013) 

Theoretical 

underpinnings for 

G4: 

• The ratio of within-category to between-category similarity is highest for the middle level 

(Tversky & Hemenway, 1983). 

• One way to characterize categories at a privileged level is in terms of similarity relationships, 

or patterns of common and distinctive properties or features that define the within and the 

between-category similarity. A privileged level is one at which within-category similarity is 

high relative to between-category similarity (Medin et al., 1997). 

• Basic-level categories maximize within-category similarity relative to between-category 

similarity (Murphy & Brownell, 1985). Within-category similarity is maximal for categories 

that are more specific, and between-category similarity is minimal for the most general 

categories (Medin, 1983). 

• A privileged category is one in which category members are very similar to each other and 

not very similar to members of other categories (Murphy & Brownell, 1985). 

Derived 

guideline: 

 

G4 – Cohesion and Coupling: Find a domain taxonomic level, for which sibling categories have 

maximal difference and their respective children have maximal similarity 

In biology, such classes could be animals and plants. By storing only a few classes, humans can 

easily memorize the identifying characteristics of different classes. 

Theoretical 

underpinnings for 

G5: 

• A concept is a mental representation of an object or a class of similar objects (Lakoff & 

Johnson, 2008; Murphy, 2004). Categories can occur as a result of sensory perception and 

the cognitive, conceptual, and emotional processing of objects (Ozcan, van Egmond, & 

Jacobs, 2014). 

• Basic level is the most abstract level at which people are able to form an integrated 

perceptual representation of a category. Basic-level concepts are activated more quickly than 

subordinate concepts because they are perceptually distinctive (Rosch et al., 1976).  

• The basic level is a level of abstraction of visual concepts that maximizes between-category 

distinctiveness and within-category informativeness. Basic-level categories in which objects 

share a characteristic shape have the highest level of abstraction (Rosch et al., 1976). 

• There are exceptions to the finding that people classify images more quickly at the basic 

level than at the subordinate level (Jolicoeur et al., 1984). For example, a picture of a penguin 

is classified more quickly as a penguin than as a bird. 

• Expertise causes categories at subordinate levels to function as basic. As expertise is 

acquired, overall shape also can be used to identify objects at the subordinate level (Johnson 

& Mervis, 1997). 

Derived 

guideline: 

G5 – Object Visualization: Find the highest category in the taxonomy for which category 

members can be easily visualized. 

The outer shapes of most members of the category dog are so similar that it is possible to imagine a 

picture of a dog “as such.” This is clearly impossible for superordinate categories because their 

members’ outer shapes are too divergent. When shown a picture of a sparrow, most people think of 

it as a bird, not a sparrow (subordinate) or animal (superordinate). 

An apple is matched with the name “apple” faster than with “delicious apple” or with “fruit” 

A visual stimulus such as a shorebird first activates the bird node, providing rapid access to the name 

bird and other typical bird properties (e.g., has wings and can fly) (Patterson et al., 2007) 
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Theoretical 

underpinnings for 

G6: 

• Zipf’s law predicts that words belonging to the basic taxonomic level, because of their 

frequent use, will be labeled with shorter, morphologically simpler terms than words 

belonging to superordinate and subordinate levels (Craig, 1986). 

• The shorter names for anything will usually be the most frequently used names for that thing 

(Brown, 1958). 

• Words belonging to basic-level categories tend to be shorter and more frequently used in 

English than names of superordinate or subordinate categories (Corter & Gluck, 1992). 

• Infrequently used object names take longer to name than frequently used object names 

(Oldfield & Wingfield, 1965). 

Frequently used words tend to be short: “The magnitude of words tends, on the whole, to stand in an 

inverse (not necessarily proportionate) relationship to the number of occurrences (Zipf, 1949). 

Derived 

guideline: 

G6 – Simplest Words: Among the classes in a domain, identify the shortest and 

morphologically simplest words. 

The monosyllable dog is used with much higher frequency than boxer. It sometimes happens, 

however, that the frequency-brevity principle makes the wrong prediction. A pineapple is a fruit, yet 

the former word is more frequently used to refer to it. 

Theoretical 

underpinnings for 

G7: 

• The sequence in which words are acquired is not determined by the cognitive preferences of 

children so much as by the naming practices of adults” (Brown, 1958, p. 20). Mothers use 

more general and frequently used terms for their children (Wales et al., 1983). The names 

used to refer to categories at this level tend to be brief. Considerable agreement exists across 

time, languages, and children in the first words children acquire (Clark, 1979). 

• The basic level is the most frequently used in speech, and the first learned by children 

(Downing, Ning, & Shin, 2011). Mervis and Crisafi (1982) suggest that children’s 

categorization ability is acquired in the order basic, superordinate, and subordinate. 

• Categories that are in the middle of the taxonomic hierarchy are learned first; then, children 

work up the hierarchy generalizing and down the hierarchy specializing (Lakoff, 1987). 

• When naming the same object for a child and an adult, adults will sometimes provide the 

child with a different name than the name they use with the adult (Anglin, 1977). 

Derived 

guideline: 

G7 – Original Words: Identify the first words or concepts learned by children or used by 

mothers to talk to children. 

A child might refer to a coin as a coin rather than a dime since children do not necessarily focus on 

the monetary value of the coin) (Brown, 1958). An adult would refer to the abdomen as tummy or 

belly to make it simpler for the child. 

Theoretical 

underpinnings for 

G8: 

• The best categories are those that maximize feature predictability and optimize information 

transfer (Corter & Gluck, 1992). 

• Natural language use is highly nonstationary as word probabilities change depending on their 

context (Piantadosi, Tily, & Gibson, 2011). 

• Mervis and Rosch (1981) found that basic-level categories are those that carry the most 

information about attributes. 

• One critically important function of categories is supporting inductive inferences; categories 

extend knowledge via inferences (Anderson, 1985). 

Derived 

guideline: 

G8 – General Predictive Utility: Identify classes with the greatest general predictive utility. 
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Appendix C: Formal Models of Basic-level categories 

Psychology research has produced a number of formal models of basic-level categories, suggesting the potential for 

automation of the basic-level selection process. 

An early model by Rosch et al. (1976) advocated cue validity, a sum of the conditional probabilities that an object 

belongs to a target class (e.g., fish) given that it possesses a set of attributes (e.g., can swim, has scales). Rosch et al. 

(1976) argued that since basic-level categories hold the greatest number of attributes, cue validity of such classes would 

be maximal. Murphy (1982) refuted this argument by pointing out that the cue validity model lacked constraints (e.g., 

limited cognitive capacity constraint) and was unbounded. To balance cue validity, another measure, category validity 

was proposed (Gregory L. Murphy, 1982). It reversed the conditional probability of cue validity and measured the 

probability of an object having features of interest (e.g., can fly, has wings) given that it is assigned a particular category 

(e.g., bat). 

Combining cue and category validity models appeared to offer a mathematical balance to compensate for the lack of 

binding constraints. The problem, however, is that it is unclear how to combine category and cue validity in such a 

way that their individual contributions genuinely reflect the importance of these functions to humans. Several heuristic 

approaches and algorithms, mainly in artificial intelligence, cognitive science, and economics have been proposed. For 

instance, Jones (1983) developed a collocation model in which cue and category validity are multiplied to produce a 

concave function with a unique maximum. The collocation measure was argued to be maximal for basic-level 

categories (Jones, 1983). While the collocation model resolved the unboundedness issue of cue and category validity, 

it lacked a theoretical rationale for combining the two measures in a particular way (Corter & Gluck, 1992).  

Building on the above theories, a model of classification optimality and category utility was proposed by Corter and 

Gluck (1985, 1992). This model is designed to directly operationalize the trade-off between cognitive economy and 

inferential utility in a way that adheres to the widely held propositions about human cognition in psychology research. 

This model has been applied in artificial intelligence and used as part of more complex algorithms (Gennari, Langley, 

& Fisher, 1989; Nakamura, Medin, & Taraban, 1993); it assumes a class hierarchy (e.g., animal—bird—osprey, as 

presented in Figure 1 above). Corter and Gluck (1985, 1992) argue that the usefulness of a class is rooted in the ability 

to predict unobservable attributes (inferential utility) and optimize information processing and transfer (cognitive 

economy). Corter and Gluck (1992) posit that classes with the highest CU will also be most universal among all 

humans, since knowing and storing them provides the greatest value. They can therefore also be considered basic. The 

category utility function is calculated as follows: 

𝑚𝑎𝑥 𝐶𝑈 = 𝑓(𝑐, 𝐹) = 𝑃(𝑐) ∑[𝑃(𝑓𝑘|𝑐)2 −  𝑃(𝑓𝑘)2

𝑚

𝑘=1

] (1) 

In this formula, some class c is defined by a set of objects o. Each object is characterized by a finite feature (attribute) 

set 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚}. Consider that with no knowledge about a class membership, 𝑓1 (or a set F) can be predicted 

using its base-rate probability 𝑃(𝑓1). This probability, in turn, reflects the occurrence of that feature in reality. Such 

random guesses, will be, on average, correct 𝑃(𝑓1) times, leading to the final probability of correct guessing in the 

absence of a class as the product of the two probabilities, or 𝑃(𝑓1)2. Extending the same rationale to the probability of 

guessing a feature under the assumption of a class membership the correct guess will be 𝑃(𝑓1|𝑐1)2. Thus, the difference 

between 𝑃(𝑓1)2  and 𝑃(𝑓1|𝑐1)2  denotes the additional benefit gained from the class membership. This difference, 

however, needs to be weighted by the probability of a class 𝑐1 occurring, since the guess is made under the condition 

of 𝑐1 identification. 

Category utility ranges between 0 (when predicted frequencies are equal to the base rate) and 1 (if the base-rate 

frequencies are low while conditional probabilities are high). An interesting property of CU is its relationship to the 

communication theory by Shannon and Weaver (Shannon, 1948). CU can be considered as the expected reduction of 

uncertainty due to communication of category information through some cue. The uncertainty is maximal when no 

category is present and is reduced as the category becomes more “informative”; but this is balanced by the use-

frequency of the category. The category utility offers opportunities for computational approaches to conceptual 

modeling and the automatic discovery of basic-level categories in situations where the required parameters are known 

or can be estimated for a domain of interest. 
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Appendix D: Moderator Focus Group Protocol 

Each focus group session adheres to the rolling interview presented below to ensure consistency across sessions 

(Stewart & Shamdasani, 2014). A think-aloud technique was used to collect data (Cotton & Gresty, 2006) while 

emphasizing participant reflection and discussion during the tasks. The moderator spent time listening to the 

discussions while allowing the participants to interact with each other. 

• Welcome (5 minutes) 

o Greet participants as they arrive 

o Give participants consent form to review and sign prior to participation 

o Ask participants to complete demographics questionnaire 

 

• Describe focus group procedures (5-10 minutes): 

o Describe the objectives of the study 

o Describe the goal of the focus group 

 

• Introduce basic-level categories (BLCs) and basic classes (BCs) (15-20 minutes): 

o Provide a description of BLCs and their use as a motivation for BCs in systems analysis and design 

o Present BC guidelines with BC examples generated from the guidelines 

 

• Task: initial impressions of BCs (10-15) minutes) 

o Introduce two different symptom checker applications (Mayo Clinic and WebMD) 

o For each BC guideline, ask if/how the guideline applies to the applications 

o Discuss whether guidelines are useful in the process of deriving classes for the conceptual model 

supporting the applications 

 

• Task: designing a wildlife sighting app (30-45 minutes) 

o Provide a sheet with our BC guidelines to participants 

o Describe task (see Appendix E) 

o Discuss the potential classes a mobile app used for citizen scientists (experts and nonexperts) should 

use in capturing sightings of wildlife 

o Ask participants to discuss how our proposed guidelines could help in modeling such a design (e.g., 

capture relevant information) 

 

• Closing (10-15 minutes) 

o Are the guidelines useful? Is there any guideline that stands out (or needs improvement) when 

deriving useful classes? 

o Do you see yourself using these guidelines in the future? 

o Is there anything we missed? 
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Appendix E: Focus Group Task Details  

Initial impression of BCs task: design decisions when developing a symptom checker application 

Take a look at the following interfaces shown below. Although the goal of both of the following user interfaces is 

similar (e.g., find the cause of a set of symptoms), the experience—how the information is organized, is different in 

both applications. 

User Interface 1: Figure E1 presents the symptom checker developed by Mayo Clinic 

(https://www.mayoclinic.org/symptom-checker/select-symptom/itt-20009075). The symptom checker consists of 

three steps: (1) Choose a symptom: This step is further divided into two categories (adult symptoms and child 

symptoms). Since some of these symptoms exist both for adults and children (e.g., abdominal pain), there are some 

symptoms that are repeated in both lists. (2) Select related factors: Once the user selects a symptom, the second step 

provides one or more factors that apply to the selected symptom. (3) View possible causes: The symptom checker 

provides a list of diseases and conditions that match at least one of the factors selected by the user. 

 

User Interface 2: Figure E2 presents the symptom checker developed by WebMD 

(https://symptoms.webmd.com/default.htm#introView). The symptom checker has a three-step process similar to the 

one designed by Mayo Clinic; however, prior to the first step, users are required to provide both gender and age and 

optionally provide their zip code and email (see Figure E2a below). Based on the gender selected by the user, the first 

step includes a visual cue of a male or female body. The user selects the part of the body where the symptom originates; 

the options are gender specific. 

(a)

 

(b) 

 

  

Figure E1: Symptom Checker Splash Screen – Choose a Symptom (Mayo Clinic) 

Figure E2. Symptom Checker Splash Screen – Choose a Symptom (WebMD) 
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Questions for discussion: 

1. Consider each of the guidelines for identifying basic classes. Do you think the guideline could be applicable 

to the interfaces above? If yes, how? 

2. Do you think the guidelines would be useful in the process of deriving classes for the conceptual model 

supporting the interfaces? 

Focus Group Design Task: designing a wildlife sighting app 

The task is to design an app that can be used by people of diverse backgrounds. The goal of the app is to capture 

information about the wildlife of some region seen by the members of the general public (see examples in Figure E3). 

Good design avoids creating a user interface that lacks effective organization of sections and data collection processes, 

which may hinder participation and thus threaten the success of the project. 

 

 

 

Questions for discussion: 

3. Consider each of the guidelines for identifying basic classes. [For each of the guidelines,] what basic classes 

can we derive that could be useful for both experts and nonexperts using the app? 

4. Which of the guidelines you think is the most useful in deriving classes for the conceptual model supporting 

our citizen science app? 

Subjects participating in these tasks have different domain expertise (e.g., based on the individual’s background and 

experience). We wanted to capture candidate classes from all these individuals and a subgroup of these classes would 

be useful to both experts and nonexperts. We then asked participants to comment on the usefulness of the guidelines. 

  

Figure E3. Common Wildlife Objects Used for Designing a Citizen Science Application                            

(Displayed but Not Distributed to Participants During Focus Group Session) 
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Appendix F: Focus Group Results Details 

We provide details of the interactions between participants in the two focus groups. Overall, participants valued the 

utility of using these guidelines in identifying basic-level categories in a given domain. Our experience was that some 

guidelines were readily understood and subjects were able to apply them naturally to a given context, whereas other 

guidelines needed further clarification and their application led to some counterintuitive evidence. In Table F1 we 

summarize elements that provide evidence and counterevidence of the utility of these guidelines.  

Table F1. Code Application in Each of the Focus Groups 

Guideline name Evidence [of utility] Counterevidence [of utility] 

G1: Middle Level Can be readily identified by a nonexpert 

Allows both experts and nonexperts to 

contribute 

Neglecting middle-level classes could 

lead to misalignment between the 

mental model of the user and that of the 

system. 

G2: Entry Category Entry categories are contextual to the 

user. Thus, applying G2 brings a diverse 

set of candidate BCs. 

It is the role of the analyst to define the 

goal of the application and choose entry 

categories that are better aligned to this 

goal. 

From a user perspective, there may be a 

discrepancy between what a good entry 

category should be. 

G3: Frequently Used Words Within a domain, BCs organize 

information efficiently 

Depending on the domain and source 

data, the BC candidates can be large. 

G4: Cohesion and Coupling Helps to identify BCs that are most 

differentiated from one another 

The most differentiated categories may 

serve as the subject of the chosen BC. 

G5: Object Visualization Mental images of a group of objects can 

help identify BCs. 

May trigger visuals that are less useful 

compared to BCs 

G6: Simplest Words Selects morphologically simpler 

candidate BCs 

Simpler words may exist in the long tail 

of a domain 

G7: Original Words Can help further refine candidate BCs 

(e.g., selecting between two candidate 

BCs) 

Identify BCs that are relatable to 

individuals, regardless of their 

backgrounds. 

G8: General Predictive Utility Helps organize information based on 

likelihood 

May be difficult to assess the likelihood 

of all BCs 

Our initial impressions task pinpointed the utility of Guideline 1 (G1), Middle Level. The WebMD application allowed 

users to select a middle-level body part to arrive at a diagnosis. A middle-level body part lies in the middle of the 

conceptual hierarchy and can be readily identified by a nonexpert to provide more information about the source of a 

symptom than a superordinate class such as “entire body.” Similarly, a nonexpert user can select a part of the body that 

is better recognized and known to guide their use of the interface, as opposed to a subordinate one that is overly detailed 

and possibly unknown e.g., “spleen.” The Mayo Clinic symptom checker interface did not provide a basic-class queue, 

and instead asked participants to select symptoms from a list, which varied in terms of the level of specificity (e.g., 

blood in stool, lower back pain). A participant of Focus Group 1 (FG1) highlights this by stating: 

[In] The application with the images, [referring to the WebMD application—See Appendix D] it’s a lot 

easier for like say nonexpert users, like somebody you know I'm just having a symptom, I know where it 

hurts, I'm going to point it out because when you're interacting with the application you're not talking to 

somebody that can understand your terminology so it’s easier to pinpoint the places where you’re having 

the symptom [part of the body—a basic class] where with the other one if you’re not familiar with the 

correct terminology it might lead you to the wrong diagnosis and you don't have a professional there telling 

you, this I what I'm feeling but it’s not exactly here—you pinpoint areas. 

We also saw evidence of utility of G1 in the design task. A participant from FG1 indicated that when you use middle-

level categories, both nonexpert and expert users could contribute: “I know I took a picture of a bird. I don't know 

what type of bird it is. So, it really gets you in the right place for people who are bird experts to then go and contribute 

what they know is the name of the bird.” 
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In FG2, participants had an interesting insight regarding G1. Neglecting middle-level classes could lead to poor design, 

which in turn results in discrepancies in data-entry from non-expert users. For example, in FG2 two participants 

struggled to differentiate the type of fish (the BC) that was shown to them because they focused below the middle 

level: 

FG2 Participant A said: “That’s a salmon?” Participant B: “I think that’s sea bass.” 

We saw additional evidence of the importance of the generality of BCs when organizing information for a broader user 

base—particularly for entry categories (G2). For example, in the training task, participants in FG1 disagreed with the 

effectiveness of each of the interfaces based on their entry points as first concepts thought of by a user [referring to 

WebMD’s body part entry point and Mayo Clinic’s child vs. adult entry point]. A participant in FG1 stated: “When I 

see adult/child [referring to Mayo Clinic’s interface] to me it doesn't bring much of a difference because we're human 

beings. Male or female would be more distinctive. But I can have a stomach-ache and be an adult and a child could 

also have a stomach-ache so to me it wasn’t very useful to have the child there [as an entry-level category].”  

Another participant in FG2 also pointed out that the adult vs. child classification was not optimal given that there are 

many redundant diagnoses between adults and children (e.g., hay fever is independent of whether the patient is a child 

or an adult): “The categories on the list, are similar for the child versus the adult, which is a bit confusing because 

then you have duplicate items.”  

Notably, a key feature of BCs is their ability to differentiate between objects (i.e., G4); clearly, participants felt the 

adult vs. child distinction in this setting was not achieving a good differentiation. Yet, there was not full agreement on 

which of the two websites had the best entry-level category. Entry-level categories appear to be contextual to the user. 

For example, one of the participants had a child and considered the entry category child vs. adult to be a valid one: “I 

like the child vs. adult. Now that I have a kid, I feel that the diagnosis might be different. I don’t know, the kid might 

be teething versus an adult wouldn’t be teething.” 

As we further investigated the role of user context for G2, we saw a variation of opinion on what the correct entry 

category could be. For the wildlife application design task, a participant in FG1 stated that an entry category could be 

the size of the object—i.e., one can classify objects as being small, medium, or large (e.g., small vs. large breeds of 

dogs)—in reference to how adjectives can serve as descriptors of the entry categories (G2): “Some people think of dogs 

as what you want to go get—people that want a dog as a pet, they tend to say, I want a big dog, or I only want a little 

dog.”  

For both the symptom checker and citizen science application, there were a variety of valid conceptualizations of entry-

level BCs based on the participants’ personal views. In both cases, we did not provide participants with much detail 

concerning the goal of the app to encourage creativity. Ultimately, it will be the role of the analyst to define what the 

goal of the application is and what entry categories are better aligned to this goal.  

While communicating the guidelines, participants were able to identify ways in which an app can derive words that 

are used frequently within a context (G3). In the wildlife app design task, a participant in FG3 stated that it was 

important to know what words are commonly used within the context of interest: “‘Is it a plant?’ Because you’re in 

the Everglades. You’re trying to think of what could be there, what could be present in that environment.” 

This reinforces our notion that BCs are also context-specific to the domain. As the participant above commented, if we 

were to obtain the ontology of species in the Everglades and plot the observation frequency, there might be a subset of 

objects that can be identified by citizen scientists and validated by expert users (e.g., biologists). Within a specific 

context, we seek categories that can organize information in an efficient manner. This supports G4, which states that 

basic-level categories are generally the most differentiated. Providing UGC app users with classes that are highly 

cohesive and loosely coupled can help a user traverse a knowledge base effectively. The participants of our Focus 

Groups agreed. For example, one of the participants in FG2 argued in favor of creating categories that are most 

differentiated from one another: “Try to group things together that are similar underneath the higher-level category 

… a fungus is quite a bit different from a flower but a mushroom might have attributes that are similar.” 

Although some participants noted the utility of our fifth guideline (G5: Object Visualization) to identify meaningful 

BCs, there was confusion from some of the participants when applying this guideline. The term “visualization” 

triggered participants to think of visual cues (from a UI/UX view) rather than whether the BC triggered a mental image 

(e.g., creating a mental image of a prototypical object such as dog or bird). This misconception could have been 

triggered by the fact that one of the training tasks had an image of the human body (with its body parts) whereas the 

other interface did not (see Appendix E). Notwithstanding, some participants understood the value of object 

visualization. For example, a participant from FG1 stated: 
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For me when I said plant/animal that was like the easiest visualization to distinguish that was like very clear 

cut. Now if it would all have been animals in the picture, in the slides, and some were birds and some were 

fish and some were dogs, then the land/air/water would’ve been more appropriate because it would’ve all 

been animals and they would’ve been different types of animals, so that’s kind of the visualization part …  

“I see plants, I see animals, I see different kinds of animals, I see different kinds of plants.” 

Predictive utility (G8) can further help organize information based on likelihood of an event (e.g., the likelihood of a 

bird flying is higher than the likelihood of any animal flying). For example, predictive modeling can be used to find 

patterns and likelihood within ontologies or historical data to provide better associations. The WebMD symptom 

checker has a bar meter that calculates conditions based on symptoms selected by the user. In this interface, conditions 

are listed based on likelihoods. The focus group participants argued that likelihood of events (as reflected by the bar 

meter) improved the user experience of users by providing relevant recommendations. For instance, a participant in 

FG1 claimed that the range of plausible diagnoses in the Mayo Clinic symptom checker was too extreme: “[Once the 

symptoms are selected] you could just have a mild headache or you could have a brain tumor. The idea of likelihood 

kind of solves your issue in a way as far as putting symptoms of different parts of the body then there are certain 

likelihoods.” 

In the citizen science app, users argued that likelihood could serve as a way to infer objects based on the object’s 

characteristics (features). For example, if a citizen scientist states they saw a white bird with a long neck, long legs, 

and a yellow beak in the Florida Everglades, a biologist would most likely infer that they saw a great white heron. A 

participant in FG3 asked whether characteristics (features or attributes) about the object could be entered in the 

interface: “Can we add a feature? [characteristic] Because that particular bird has a black half. So, any features like 

you have a dotted face. That’d be more specific.”  

Similarly, a participant in FG1 hinted to the idea of adding feature or attribute context and made the following 

statement to represent the same idea of likelihood: “I found this feather. What is it? It’s a feather. Oh, it’s got to be a 

bird. Oh, it’s a blue feather. It’s like it’s likely to be a blue jay or something.” 

A recurrent theme in our FGs was the possible overlap between BCs derived from different guidelines. For instance, 

the word mushroom is not necessarily simpler (morphologically) than fungus, but it is more likely to be learned by 

children first (G7): “You would learn about a mushroom before you learned about fungus and [it would] thus be used 

more frequently [G3].”  

Another participant argued that G6 could help break the fungus/mushroom dichotomy: “Fungus is not a simple word 

probably … you would learn about a mushroom before you learned about fungus.” 

Focus group participants found utility in the idea of entry in identifying BCs. In fact, a participant of FG1 indicated 

she found G1 and G2 to be the most useful: 

I think that the entry and middle category are probably the most important ones that are interacting with 

the application because it will target to what you’re looking for. And because I want to go to pull something 

from the Everglades but I don’t really care about plants, I’m interested in animals, I just go directly to the 

animal section instead of having to search for all these things at the top level so that you classify—I mean 

the entry level is really crucial for an application, entry and middle. I think it will take you to where the 

user needs to be to input [or obtain] any information. 

Our participants found G7 useful. A participant in FG3 stated that: “We’re doing a class project right now, and when 

we start making our categories, I pretend I’m talking to my five-year-old son. If I’m explaining this to Frank [the 

participant’s son], how would I do it to a level that he gets it?”  

Adults are mindful about the kind of language appropriate for use with children (e.g., long names are troublesome for 

children). Thus, adults do not necessarily provide a child with names that may be typical in the “adult world.” It is 

about “making things more relatable to people, like how to explain things better as well,” a participant in FG2 

emphasized. An individual in FG2 stated: “Yeah, so just making things more relatable to people, like how to explain 

things better as well. … In User Interface 2, you can see term abdominal, you could use belly or stomach instead,” 

which would thus make it relatable to people.  

Another participant in FG2 suggested that both G1 and G4 were related and that identifying the middle-level categories 

for the wildlife application that are distinct enough from each other can help derive the separation of different groups. 

Identifying objects in terms of their middle level can also help break these dichotomies: “The middle level would be 

the bird, fish, flower, fungus because that has the most diversity I guess, most difference.” 

In general, participants agreed that basic-level categories tend to be at a level that is easily relatable to users. A 

participant in FG2 went beyond our use cases to note that this idea reminds him of some e-commerce sites such as 
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BestBuy.com: “It reminds me of like BestBuy.com where you log in and you start seeing some simple categories, 

computers, TVs, those types of things and then you start drilling down into more specific subcategories, the whole 

concept of segmentation.” One of the participants in FG2 argued that the idea of classification at a basic (middle) level 

applies to everyday tasks: “I’m always thinking, how do you classify things? and it’s —even for my own work sometimes 

I think, how can I organize it so that I can access that information faster.” 

A participant in FG3 gave an example that went beyond our task and highlighted how different organizations can 

leverage on the idea of entry categories to organize information effectively. The participant recently had been looking 

to buy a car and he had a varied experience with different online marketplaces. Different websites had different entry 

categories:  

I want a SUV. Everybody gets that. I want a sedan. I want a compact. There are other categories, but you 

can start there. Then as you start drilling down, at least all the car sites that we have looked at—that happens 

to be our subject—all of them give you the ability to filter—the good ones give you the ability to filter on 

everything or at least sort on anything that you chose. So, you pick sedan. You pick sedan, you pick your 

year range, 2015 to 2017, and then from there all of the options along the side give you the ability to limit 

what has come up. 

Frequently used words derived from the interaction with users can also help organize how information is organized 

and consumed by future users. For example, a participant argued that Google Maps could leverage frequently used 

item sets to organize information: “They have so many categories and like they know what are the most-looked-for 

categories as well when you’re on the road, for example. Where is the closest gas station? Where is the closest coffee 

shop? Things like that that cater towards different things, they don't tell you where’s the closest mocha cappuccino.” 

As closing remarks in the focus group, users found these guidelines useful and by applying them they were able to 

derive a diverse set of potential classes. A subset of these classes (i.e., basic classes) was considered superior, being 

useful for both novice and expert users. Since the users are primed to identify classes by following a set of guidelines, 

there is a possibility that we did not capture every candidate class. A participant in FG1 stated that “some guidelines 

are more relevant than others.” Another participant related the intuitiveness of a guideline to understandability: “I 

think that the entry and middle-level category are probably the most important ones … it will take you to where the 

user needs to be to input or obtain any information.” A participant in FG2 provided an example of utility in a different 

context—navigating websites: “This reminds me of BestBuy.com where I start seeing simple categories, computers, 

TVs, and then you start drilling down into more specific subcategories.” Another participant added “when you are 

presented a new thing you have to categorize that thing into a thing that you already know, which category are you 

going to put that new thing.” 
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