21,885 research outputs found

    Vacuum mechatronics

    Get PDF
    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed

    An advanced telerobotic system for shuttle payload changeout room processing applications

    Get PDF
    To potentially alleviate the inherent difficulties in the ground processing of the Space Shuttle and its associated payloads, a teleoperated, semi-autonomous robotic processing system for the Payload Changeout Room (PCR) is now in the conceptual stages. The complete PCR robotic system as currently conceived is described and critical design issues and the required technologies are discussed

    Spartan Daily, October 19, 1981

    Get PDF
    Volume 77, Issue 33https://scholarworks.sjsu.edu/spartandaily/6809/thumbnail.jp

    Towards an Architecture for Semiautonomous Robot Telecontrol Systems.

    Get PDF
    The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself

    Averting Robot Eyes

    Get PDF
    Home robots will cause privacy harms. At the same time, they can provide beneficial services—as long as consumers trust them. This Essay evaluates potential technological solutions that could help home robots keep their promises, avert their eyes, and otherwise mitigate privacy harms. Our goals are to inform regulators of robot-related privacy harms and the available technological tools for mitigating them, and to spur technologists to employ existing tools and develop new ones by articulating principles for avoiding privacy harms. We posit that home robots will raise privacy problems of three basic types: (1) data privacy problems; (2) boundary management problems; and (3) social/relational problems. Technological design can ward off, if not fully prevent, a number of these harms. We propose five principles for home robots and privacy design: data minimization, purpose specifications, use limitations, honest anthropomorphism, and dynamic feedback and participation. We review current research into privacy-sensitive robotics, evaluating what technological solutions are feasible and where the harder problems lie. We close by contemplating legal frameworks that might encourage the implementation of such design, while also recognizing the potential costs of regulation at these early stages of the technology

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Methodological Flaws in Cognitive Animat Research

    Get PDF
    In the field of convergence between research in autonomous machine construction and biological systems understanding it is usually argued that building robots for research on auton- omy by replicating extant animals is a valuable strategy for engineering autonomous intelligent systems. In this paper we will address the very issue of animat construction, the ratio- nale behind this, their current implementations and the value they are producing. It will be shown that current activity, as it is done today, is deeply flawed and useless as research in the science and engineering of autonomy

    Spartan Daily, March 19, 2007

    Get PDF
    Volume 128, Issue 30https://scholarworks.sjsu.edu/spartandaily/10344/thumbnail.jp

    Spartan Daily, March 19, 2007

    Get PDF
    Volume 128, Issue 30https://scholarworks.sjsu.edu/spartandaily/10344/thumbnail.jp

    Spartan Daily, March 14, 2005

    Get PDF
    Volume 124, Issue 32https://scholarworks.sjsu.edu/spartandaily/10104/thumbnail.jp
    corecore