5,072 research outputs found

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Language Identification Using Visual Features

    Get PDF
    Automatic visual language identification (VLID) is the technology of using information derived from the visual appearance and movement of the speech articulators to iden- tify the language being spoken, without the use of any audio information. This technique for language identification (LID) is useful in situations in which conventional audio processing is ineffective (very noisy environments), or impossible (no audio signal is available). Research in this field is also beneficial in the related field of automatic lip-reading. This paper introduces several methods for visual language identification (VLID). They are based upon audio LID techniques, which exploit language phonology and phonotactics to discriminate languages. We show that VLID is possible in a speaker-dependent mode by discrimi- nating different languages spoken by an individual, and we then extend the technique to speaker-independent operation, taking pains to ensure that discrimination is not due to artefacts, either visual (e.g. skin-tone) or audio (e.g. rate of speaking). Although the low accuracy of visual speech recognition currently limits the performance of VLID, we can obtain an error-rate of < 10% in discriminating between Arabic and English on 19 speakers and using about 30s of visual speech

    An Application of SVM to Lost Packets Reconstruction in Voice-Enabled Services

    Get PDF
    Voice over IP (VoIP) is becoming very popular due to the huge range of services that can be implemented by integrating different media (voice, audio, data, etc.). Besides, voice-enabled interfaces for those services are being very actively researched. Nevertheless the impoverishment of voice quality due to packet losses severely affects the speech recognizers supporting those interfaces ([8]). In this paper, we have compared the usual lost packets reconstruction method with an SVM-based one that outperforms previous results

    Recurrent kernel machines : computing with infinite echo state networks

    Get PDF
    Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks
    corecore