
1

Recurrent Kernel Machines: Computing with In-
finite Echo State Networks

Michiel Hermans, Benjamin Schrauwen1

1Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat

41, 9000 Ghent, Belgium.

Keywords: Reservoir computing, Kernel machines, Echo state networks, Support

Vector Machines, Recurrent neural networks

Abstract

Echo State Networks are large, random recurrent neural networks with a single trained

linear readout layer. Despite the untrained nature of the recurrent weights, they are ca-

pable of performing universal computations on temporal input data, which makes them

interesting for both theoretical research and practical applications. The key to their suc-

cess lies in the fact that the network computes a broad set of nonlinear, spatiotemporal

mappings of the input data, on which linear regression or classification can easily be

performed. One could consider the reservoir as a spatiotemporal kernel, in which the

mapping to a high-dimensional space is computed explicitly. In this paper, we build

on this idea and extend the concept of ESNs to infinite sized recurrent neural networks,

which can be considered as recursive kernels that subsequently can be used to create

recursive SVMs. We present the theoretical framework, provide several practical exam-

ples of recursive kernels, and apply them to typical temporal tasks.
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1 Introduction

Many schemes for training recurrent neural networks have been studied in the past, as

they are powerful computational entities with a wide application domain. Presently,

two main lines of research exist. The first focuses on gradient based techniques to

train all the parameters in the network, of which the most well-known example is

backpropagation-through-time (Rumelhart et al., 1986). Though often powerful, this

approach is limited by problems such as slow convergence, many local optima, bifur-

cations, and high computational costs (Pearlmutter, 1995; Suykens et al., 2008).

The second approach is to use large, randomly initiated neural networks. The internal

parameters remain completely untrained, and instead an instantaneous linear readout

layer is trained to optimally project the hidden state of the network onto the desired

output via linear regression. This approach does not suffer from the problems typically

found in error gradient methods.

Originally, this idea had been separately developed for sigmoid nodes (Jaeger, 2001)

and spiking neurons (Maass et al., 2002), where the respective approaches were called

Echo State Networks (ESN) and Liquid State Machines (LSM), but there are no lim-

itations to the types of networks one could use (Fernando and Sojakka, 2003; Jones

et al., 2007). Indeed, the network does not even have to be a true neural network in the

common sense: any nonlinear, dynamical system with the right properties (most impor-

tantly: ‘fading memory’ (Jaeger, 2001)) can potentially be used in this approach. The

umbrella term that encompasses all variants of this approach is Reservoir Computing

(RC) (Lukosevicius and Jaeger, 2009; Verstraeten et al., 2007), where the dynamical

system is considered a ‘reservoir of rich non-linear dynamics’.

This approach often performs very well on real-life problems such as speech recog-

nition (Skowronski and Harris, 2007; Verstraeten et al., 2006), phoneme recognition

(Triefenbach et al., 2010), robot navigation (Antonelo et al., 2008), time series predic-

tion (wyffels and Schrauwen, 2010), and even yields state-of-the-art performance on

the modeling of a chaotic attractor (Jaeger and Haas, 2004). At first, this was consid-

ered to be surprising, as the networks are random, and as such the neuron responses are

random functions of the history of the input data. Subsequently, a new point of view

emerged which roughly states that if there exists a sufficiently broad set of functions
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on the input data stream, it is always possible to approach the desired output by finding

the optimal combination of those functions. Indeed, as the size of the network goes to

infinity, it has been shown theoretically that all possible functions on the input data can

be approximated arbitrarily well (Maass et al., 2002, 2007; Schäfer and Zimmerman,

2006).

A link has often been made between Reservoir Computing and kernel machines (Schmid-

huber et al., 2007; Shi and Han, 2007), since both techniques essentially map the input

data to a high-dimensional space, called feature-space, in which classification or re-

gression is then performed linearly. In the case of reservoirs, this mapping is performed

explicitly, as the hidden state of the reservoir is mapped directly onto the output. For

kernel machines, such as Support Vector Machines (SVMs) (Boser et al., 1992), this

mapping is not computed explicitly but performed via the so called kernel trick. Here,

it is possible to define a dot product between two representations in feature space as

a function which operates on two data points (called a kernel function). One can then

use certain data points of a training set as so-called support vectors to define a linear

map within feature space. Next, one can use quadratic programming approaches to

find optimal support vectors and their corresponding weights. Interestingly, for certain

simple kernel functions (such as the Gaussian RBF kernel), feature space is infinite-

dimensional. There is a link between this infinite dimensional feature space and ap-

plying infinite-sized neural networks, as specified in Neal (1996) and Williams (1998).

Specifically it is possible to associate a kernel function with an infinite feedforward

neural network. In this work we extend this idea to recurrent networks, and we define

the associated kernel functions.

Usually when one applies SVMs on temporal problems, time is artificially represented

in space by using a sliding time window of the data as input. This technique is related

to the Markov property, which states that temporal dependencies are limited to a finite

history of the time series. One important difference between RC and SVMs is the fact

that the ‘kernel’ in reservoirs is explicitly temporal: the states will depend on the recent

history of the input, and not just the current input. This allows reservoirs to process

information that is explicitly coded in time. In this paper, we shall derive a way to

extend the concept of infinite neural networks to infinite recurrent neural networks. As

such, we shall essentially bridge the gap between two machine learning techniques, and
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define the ‘ultimate’ Echo State Network in the form of a kernel function that operates

recursively on timeseries. We show the connection between the dynamics of ESNs and

the evolution in the recursion in the kernels of the associated infinite neural networks,

and demonstrate this by investigating performance on temporal tasks.

We have structured this paper as follows. In the Sections 2 and 3 we shall respectively

elaborate on ESNs and explain the concept of an infinite recurrent network and its as-

sociated kernel function. Next in section 4, we shall present a method to introduce

recurrence in the previous definition, and give some important examples of recursive

kernels. After this, we investigate the link between known properties of the dynamics

in ESNs, and parameters of the recursive kernels in Section 5. To validate our results,

we test the recursive kernels by applying them on two temporal problems in Section 6.

Finally, in Section 7 we discuss the results and draw overall conclusions.

2 Echo State Networks

One of the most widespread variants of Reservoir Computing are Echo State Networks.

Essentially, a recurrent network with randomly drawn internal connections and ran-

domly drawn connections from input to hidden nodes is constructed, and the hidden

state of the network evolves according to

a(t + 1) = f (Wa(t) + Vs(t + 1)) (1)

y(t + 1) = Ua(t + 1), (2)

where f is the activation function, a is the hidden state vector, s(t) is the input signal at

time t, and W and V are the internal connections and the input-to-network connections

respectively. The output weights U are the only weights that are trained, and used to

project the hidden state onto the output y(t). Typically, the function f is a sigmoid

function like the hyperbolic tangent. In that case it is straightforward to characterize

the dynamics by linearizing equation 2 around the origin. What is found is that the lin-

earized system is asymptotically stable when the largest singular value of W is smaller

than one (Jaeger, 2001). In practice, one rather uses the spectral radius ρ of the sys-

tem, as this gives a better indication of the dynamics of the system. If ρ is greater than

one, the hidden state in the linearized system will start to grow exponentially. In the
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nonlinear version, this growth will be quenched by the saturating parts of the sigmoid

function. Usually the system will either go to a fixed point, start to oscillate, or become

chaotic.

The rule of thumb for initializing reservoir weights is to keep the spectral radius smaller

than or equal to one1. If it is close to one, the network states will only decay to the fixed

point slowly, and as such, they will depend on a relatively long history of the input. If

the spectral radius is significantly smaller than one, the states will only depend on a

short history of the input. When it is greater than one, the states can in principle depend

on the entire history of the input, which is usually considered undesirable.

The property of the network to depend on the recent history of the input signals is collo-

quially called ‘fading memory’ (Boyd and Chua, 1985), and also ‘Echo State Property’

(Jaeger, 2001), and is the key to the success of RC. One can tune the memory depth

of the system by tuning the spectral radius of the connection matrix, where usually a

tradeoff has to be made between precision and the length of memory.

The other two main parameters that are identified as being of importance for ESNs are

the scaling of input weights, and the scaling of an optional bias term (not explicitly

shown in equation (2)). The input scaling will determine how far the hidden states are

pushed away from the linear part of the activation function by the input, in other words:

it will determine the overall nonlinearity of the reservoir. Typically, an increase in non-

linearity is detrimental to the memory depth of the system, as the quenching parts of

the activation function will decrease the ‘effective’ spectral radius (Verstraeten et al.,

2007), i.e., the mean spectral radius of the Jacobian of the system. The bias term is

necessary for certain tasks where the desired output is a not just an odd function2 of the

input.

It should be mentioned that many ESN implementations also include leaky integrators

in each neuron (Jaeger et al., 2007). This allows to tune the inherent time scale of the

dynamics of the reservoir, which is another parameter of importance, but we shall not

discuss this in detail in this paper.

1In fact the optimal value is heavily task-dependent, and in many cases a spectral radius much smaller

than one, or in some cases even much greater than one will be optimal.
2A function f(x) is odd when f(−x) = −f(x). This is the case for hyperbolic tangents, the non-

linearity of choice in ESNs
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Figure 1: Schematic display of a finite versus an infinite neural network.

As we will show, all of these properties have counterparts in recursive kernels associ-

ated with infinite neural networks. Specifically, it is possible to identify a parameter

that has a meaning equivalent to the spectral radius.

In the next section, we will elaborate on the concept of infinite neural networks and give

a formal definition of the associated kernel function.

3 Infinite neural networks

In this section, we first derive the kernel corresponding to an infinite feedforward neural

network. In the next section we shall extend this notion to recursive neural networks by

introducing recursive kernels.

The state of the i-th hidden neuron in a feedforward neural network is typically given

by

ai = f (wi,u) , (3)

in which wi is the vector of input weights for the i-th neuron (optionally including a

bias term, associated with an extra input dimension which remains constant), u is the

input vector, and f is the activation function. In a multi-layered perceptron, f (wi,u) =

f (wi · u), with f usually a sigmoid activation function. For radial basis function net-

works, the equation becomes f (wi,u) = f (||wi − u||2), with f usually an exponential

function.

Extending the hidden layer to an infinite layer is straightforward, as has been shown in

Williams (1998) and Neal (1996): all possible neurons correspond to all possible sets of
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input weights (and bias terms), hence the neurons of the hidden layer will form a con-

tinuum that maps each point in the space of input weights to a neuron state, depending

on the input vector. This concept is depicted schematically in Figure 1.

Obviously, such a mapping can never be performed explicitly. However, it is possible

to define a dot product in the Hilbert-space that corresponds to the infinite-dimensional

hidden state. This dot product is the corresponding kernel function for that type of

network:

k(u,v) =

�

Ωw

dwP (w)f(u,w)f(v,w), (4)

where Ωw is the space in which w is defined and P (w) is the probability distribution of

the input weights. Notice that this kernel is not always well-defined and is not necessar-

ily positive definite. Whether or not this can be a useful kernel function, i.e., whether

it fulfills the Mercer condition (Vapnik, 1995), will depend on P and f . Also, only a

limited number of cases will give an analytically tractable solution.

Notice that equation 4 is similar to the typical procedure used in Gaussian Processes

(Rasmussen and Williams, 2006), where the parameters are integrated out over a cer-

tain prior distribution function.

3.1 Gaussian radial basis function networks

One example of the previously introduced kernel type uses normalized Gaussian radial

basis functions as activation functions, and a ‘distribution’ (which is in this case an

improper prior) P (w) = 1:

k(u,v) =

�
1

2πσ2

�N
2

�

Ωw

dw exp

�
−||w − u||2 − ||w − v||2

2σ2

�
, (5)

which can be shown (Williams, 1998) to be equal to a Gaussian kernel: k(u,v) =

exp(−||u−v||2
4σ2 ).

3.2 Error function networks

Another important example has also been elaborated on in Williams (1998). It is pos-

sible to calculate an analytical solution for equation (4) if the neurons are perceptrons

with an error function: erf(x) = 2√
π

� x

0 exp(−t2)dt, as nonlinearity. The distribution of

the input weights is assumed Gaussian, with a covariance matrix Σ. Bias is taken into
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Figure 2: Shape of the error function compared to that of the hyperbolic tangent. The

argument of the error function has been rescaled to match a slope of one around the

origin.

account by concatenating the input vectors with a constant element equal to one. The

error function has a sigmoid shape similar to the hyperbolic tangent (save for a different

slope around the origin). The shape of both functions is plotted in Figure 2. This kernel

can serve as a scaffold to extend typical ESNs to the infinite domain. The kernel, which

we shall denote as the arcsine kernel throughout the rest of this paper, has the following

expression:

k(u,v) =
2

π
arcsin

�
2

uΣvT

�
(1 + 2uΣuT) (1 + 2vΣvT)

�
. (6)

If we assume that Σ is diagonal, with σ2 on the diagonal and σ2
b as the final element

(corresponding to the variance of the bias distribution), this reduces to

k(u,v) =
2

π
arcsin

�
2σ2uvT + 2σ2

b�
(1 + 2σ2uuT + 2σ2

b ) (1 + 2σ2vvT + 2σ2
b )

�
. (7)

3.3 Linear rectifier function networks

Another important example that is analytically tractable is a feedforward network with

powers of linear rectifier functions as activation functions. First worked out in Cho and

Saul (2010), the setup is the same as the previous one, using a Gaussian distribution of
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weights, and an activation function f(x) = max{0, x}p. The resulting kernel function

is given by

kp(u,v) =
1

π
�u�p�v�pJp(θ), (8)

with

Jp(θ) = (−1)p (sin θ)2p+1

�
1

sin θ

∂

∂θ

�p �
π − θ

sin θ

�
, (9)

and θ is the angle between u and v:

θ = arccos

�
u · v
�u��v�

�
. (10)

It is interesting to mention that these kernels can be ‘stacked’ on top of each other in or-

der to make successively more complex representations of the input data. Interestingly,

this ‘stacking’ is the infinite-dimensional equivalent of a multi-layered neural network.

The work done in Cho and Saul (2010) counts as an important inspiration for the work

in this paper.

4 Recursive kernels

4.1 Definition

To define a recursive kernel that is associated with an infinite recurrent network, we

first mention that, for any kernel function k(u,v) fulfilling the Mercer condition, there

exists an implicit map Φ such that k(u,v) = Φ(u) · Φ(v). In our case, Φ obviously

corresponds to the infinite-dimensional hidden state. We now wish to define a kernel

function that recursively operates on two discrete time series x(n) and y(n), n ∈ Z.

This means that the implicit map Φ will have two arguments: the recursive map of the

timeseries up until the current time step, and the current sample in the time series. To

avoid confusion, we shall use the symbol κ rather than k to denote recursive kernels

throughout this paper. The recursive kernel function at the n-th time step is then given

by

κn(x,y) = Φ (x (n) ,Φ (x (n− 1) ,Φ (· · · ))) · Φ (y (n) ,Φ (y (n− 1) ,Φ (· · · ))) ,

(11)

where we abbreviated the left side of this equation as follows:

κn(x,y) = κ(x(n),x(n− 1),x(n− 2), · · · ,y(n),y(n− 1),y(n− 2), · · · ). (12)
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Often, Φ will map to an infinite dimensional space, and it might seem strange that

there is both a finite and an infinite dimensional argument. However, since the kernel

functions usually depend on norms and dot products, which are well-defined in both

cases, this does not pose any difficulties for the actual mathematical derivation in spe-

cific cases, as we shall see below.

To specify how we define a recursive kernel, we base ourselves again on neural net-

works. Notice that we can rewrite equation (2) as follows3:

f(Wa(t) + Vs(t)) = f



[W|V]



a(t)

s(t)







 , (13)

which means that the ‘input’ of the network in the current time step is the concatenation

of the input signal and the previous hidden state. If we extend this idea to our situation,

we finally arrive at the main realization of this paper that makes the definition of a recur-

sive kernel possible: the input vector of Φ can be chosen to be simply the concatenation

of the current input vector with the previous recursive mapping, i.e:

Φ (x (n) ,Φ (x(n− 1),Φ (· · · ))) = Φ
��

x(n)
��� Φ ([x(n− 1)|Φ (· · · )])

��
. (14)

This will allow us to easily extend the definition of most common kernel functions into

recursive equivalents. Especially, it is possible to find recursive versions of all kernel

functions in which

k(u,v) = f
�
�u− v�2

�
, (15)

or

k(u,v) = f (u · v) . (16)

The first case can be worked out as follows. If u and v are concatenations of two

vectors, i.e u = [u1|u2] and v = [v1|v2], we can write

k(u,v) = f
�
�u1 − v1�2 + �u2 − v2�2

�
. (17)

in our case, when u1 and v1 correspond to the current inputs x(n) and y(n), and u2 and

v2 to the recursive maps, this becomes

κn(x,y) = f
�
�x(n)− y(n)�2 + κn−1(x,x) + κn−1(y,y)− 2κn−1(x,y)

�
. (18)

3This way of thinking of recurrent neural networks can probably be attributed to Elman (Elman, 1990)
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Equivalently, we find that the second case leads to

κn(x,y) = f (x(n) · y(n) + κn−1(x,y)) . (19)

Note that we don’t need to have an explicit infinite-dimensional form of the kernel to

work out its recursive version. All that is necessary is the kernel function.

4.2 Examples

Here we will give a small number of examples of the recursive forms of some of the

most commonly used kernel functions. Later on, we shall find that the parameter σ

in the previously mentioned kernel functions is in fact the parameter that will deter-

mine the dynamics of the recursive kernels. However, we wish to define this parameter

separately from the scaling of the data. Therefore, we will scale the two parts of the con-

catenated vector in equation 14 differently. We shall use σ for the infinite-dimensional

state vector, and σi for the current input.

We provide the following list of recursive kernels for the sake of reference throughout

the rest of this paper.

• Linear kernel

The linear kernel has a trivial recursive extension: k(u,v) = u · v, gives

κn(x,y) = σ2
i x(n) · y(n) + σ2κn−1(x,y). (20)

This kernel is especially useful as the linear approximation of the recursive arc-

sine kernel (see paragraph 6.3). It is also obvious that the scaling term σ will have

to be smaller than one to ensure asymptotic stability. Another property that can

be observed clearly in this kernel is the fading memory property of the recursive

kernels. We can write the kernel as follows:

κn(x,y) = σ2
i

∞�

j=0

σ2jx(n− j) · y(n− j), (21)

which clearly shows how the dependency on the previous input samples drops of

exponentially as they lay further in the past.

• Polynomial kernel

Another example, the polynomial kernel: k(u,v) = (u · v)q, gives

κn(x,y) =
�
σ2

i x(n) · y(n) + σ2κn−1(x,y)
�q

. (22)
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• Gaussian kernel

The Gaussian kernel, which is very important in many applications, is given by

k(u,v) = exp
�
−�u−v�2

2σ2

�
. If we extend this to a recursive kernel function, we

get:

κn(x,y) = exp

�
−�x(n)− y(n)�2

2σ2
i

�
exp

�
κn−1(x,y)− 1

σ2

�
. (23)

Notice that here we use a different definition for the two scaling parameters, more

akin to the regular definition of kernel width.

• Arcsine kernel

More complicated kernels, like the arcsine kernel, require the recursive calcula-

tion of the kernels applied on the time series individually. The recursive version

is given by

κn(x,y) =
2

π
arcsin

�
2 (σ2

i x(n) · y(n) + σ2κn−1(x,y) + σ2
b )�

gn(x)gn(y)

�
, (24)

with

gn(x) = 1 + 2
�
σ2

i ||x(n)||2 + σ2κn−1(x,x) + σ2
b

�
, (25)

and

κn(x,x) =
2

π
arcsin

�
1− 1

gn(x)

�
, (26)

and similar for κn(y,y).

• Linear rectifier kernel

The recursive extension of this kernel is as follows:

κp,n(x,y) =
1

π

�
hn(x)hn(y)

� p
2 Jp(θn), (27)

with

hn(x) = κp,n−1(x,x) + �x(n)�2, (28)

and

θn = arccos

�
κp,n−1(x,x) + x(n) · y(n)�

hn(x)hn(y)

�
, (29)

and

κp,n(x,x) =
1

π
(hn(x))p Jp(0). (30)
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5 Stability analysis of recursive kernels

Before we can continue to practical examples, we need to do a stability analysis on the

recursive kernels previously derived. More importantly, we will have to find a connec-

tion with the property of fading memory, as is known from Reservoir Computing to be

important for good computational performance. In precise terms: when the input of

both time series goes to zero, we wish that the recursive kernel always converges to a

unique fixed point rather than behaving chaotically or going to a limit cycle. If possi-

ble, we also wish to identify the speed (in terms of number of time steps) in which the

kernel function would converge to this fixed point, as this will give an indication of the

memory depth of the system.

Suppose κ0(x,y) is the output value of the kernel at n = 0, which can be any value

within the range allowed by the kernel function. We shall now define the input series

x(n) and y(n) to be equal to zero for n > 0, such that specifically their norms or dot

products no longer change. The recursive kernel then reduces to an iterated function,

which can be analyzed mathematically or visually with a cobweb diagram. We shall use

the Banach fixed point theorem to prove the existence of this fixed point for recursive

Gaussian kernels and recursive arcsine kernels.

5.1 Stability of the recursive Gaussian RBF kernel

Banach’s fixed point theorem (Banach, 1922) states that, given X a non-empty, com-

plete metric space with a distance metric d, the contractive mapping f has one and only

one fixed point c∗ if there exists a number 0 < q < 1 such that

d
�
f(a), f(b)

�
≤ qd(a, b), (31)

with a and b any two elements from X . As a metric, we use d(a, b) = |a − b|. The

space upon which the kernel is defined is [0, 1]. We can then write the condition for the

recursive Gaussian kernel as:
����exp

�
a− 1

σ2

�
− exp

�
b− 1

σ2

����� ≤ q |a− b| . (32)
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The function exp
�

a−1
σ2

�
increases monotonically, so if we assume a > b, we can omit

the absolute value operator. This allows us to rewrite the condition as follows

exp

�
a− 1

σ2

�
− qa ≤ exp

�
b− 1

σ2

�
− qb. (33)

This condition is automatically fulfilled if we can show that the function

exp
�
(a− 1)/σ2

�
− qa

decreases monotonically, or that the derivative is non-positive in [0, 1]:

1

σ2
exp

�
a− 1

σ2

�
− q ≤ 0. (34)

The exponent in this equation is always smaller or equal to one. This means that, as

long as σ > 1, there always exists a q < 1 that fulfills this condition. If σ < 1, the

condition will no longer hold for all a ∈ [0, 1], and the fixed point at a = 1 will become

unstable.

Clearly, for σ > 1 the stable fixed point is a = 1. We are interested in the speed of

convergence asymptotically close to this fixed point, as this will give us an upper limit

to how long a perturbation in the input still influences the kernel function. We find that,

if we linearize around a = 1, the distance between two orbits recedes with a factor

1/σ2. Associating this with an exponential decay time τ gives us a typical time scale

for the kernel. Assuming κn = exp(−n/τ)κ0, we get τ = 1
2 ln(σ) . This means that, for

σ = 1 the fading memory of the system goes to infinity, and the definition no longer

applies when σ < 1.

Figure 3 shows a cobweb diagram of the iterated map for the three situations. For

σ < 1 all orbits still converge to a fixed point, but there is an unstable zone in which

orbits diverge. Notice that σ−1 is equivalent with the spectral radius ρ in Echo State

Networks. When ρ < 1, it will similarly dictate the speed at which the reservoir states

converge to their fixed points. In the linear approximation, (asymptotically close to the

fixed point around the origin), a spectral radius equal to one corresponds to the edge of

stability. When the spectral radius is greater than one, the states will either converge to

another fixed point, start to oscillate or become chaotic. However, another stable region

then exists when the states are pushed into the saturating parts of their nonlinearity,

corresponding with the stable region around the second fixed point in the right panel of

Figure 3.
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Figure 3: Cobweb plots for σ > 1, σ = 1, and σ < 1 associated with the recursive

Gaussian RBF kernel. The gray lines are example orbits that converge to a stable fixed

point. The dashed line in the right panel shows the separation between the stable and

unstable region. Left of the dashed line, all orbits will converge, but on the right, they

will diverge until they reach the stable region.

5.2 Stability of the recursive arcsine kernel

The case of the recursive arcsine kernel is more complicated, since each iteration will

require mapping κn(x,x), κn(y,y), and κn(x,y), i.e. the iterative function is a map-

ping of the form R3 → R3. However, the iterative map κn+1(x,x) = f(κn(x,x)), does

not depend on κn(y,y), and κn(x,y). Therefore we shall first focus on the behavior of

this map, and further on look at the behavior of κn(x,y).

We will again focus on the situation where x(n),y(n) = 0 for n > 0, and, for simplic-

ity we shall assume σb = 0. We need to consider the case where the starting point of the

recursion is in the range [0, 1], since the right side of equation 26 is positive and smaller

than one. The recursive formula can be written as

a → 2

π
arcsin

�
1− 1

1 + 2aσ2

�
. (35)

The same line of reasoning as before applies: this function rises monotonically in [0, 1],

so we only need to look at its derivative. The condition becomes:

2

π

2σ2

√
1 + 4aσ2(1 + 2aσ2)

− q ≤ 0. (36)

This expression reaches the highest value in its range for a = 0, which leads to the

condition that

σ <

√
π

2
. (37)

If this condition holds, the fixed point will be a = 0.

We have now proved that for σ <
√

π/2, the contractive mapping determined by
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Figure 4: Cobweb plots for σ <
√

π/2, σ =
√

π/2, and σ >
√

π/2, associated with

the recursive arcsine kernel. The gray lines are example orbits that converge to a stable

fixed point. The dashed line in the right panel shows the separation between the stable

and unstable region. On the right of the dashed line, all orbits will converge. On the

left, they will diverge until they reach the stable region.

κn(x,x) will have a unique stable fixed point. To prove that this also applies to the con-

tractive mapping of κn(x,y) we start by realizing that κn(x,y) =
�

κn(x,x)κn(y,y) cos(θ),

with θ the angle between the two infinite-dimensional mappings4. As both κn(x,x) and

κn(y,y) converge to zero, so will κn(x,y).

It seems that again, an edge of stability as in RC can be defined. This time it is in

fact defined by the distribution of recursive weights for the infinite-dimensional neural

network. An interesting remark is the fact that the value of
√

π/2 is the inverse of the

amplification of the error function around the origin. If another sigmoid nonlinearity

were to be used to define a recursive kernel, the edge of stability would be given by σ

equal to the inverse of the slope round the origin.

Again, we show cobweb plots for the evolution of κn(x,x). We can see that a = 0 is a

stable fixed point for as long as σ <
√

π/2 and becomes unstable for σ >
√

π/2, and

another stable fixed point forms.

4This equality derives from the property that for any two vectors u and u, the inner product is given by

u · v =
�

||u||2||v||2 cos θ. In the case of the kernel functions, the vectors are the infinite-dimensional

mappings, and the inner product and norms are respectively given by κn(x,y), κn(x,x), and κn(y,y).
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5.3 Spectral radius

We have now analyzed the stability of the recursive kernels by considering them as

iterated functions, but this is not directly related to ESNs. It is possible to formally

link the concept of the spectral radius with the definition given by equation 4, and as

such generalize the definition of spectral radius. We will do this for the case where the

activation function f(u,w) is of the form f(u · w).

To start, we estimate equation (4) by a Monte-Carlo sampling:

k(u,v) ≈ 1

N

N�

i=1

f(u · wi)f(v · wi), (38)

where each wi is randomly drawn from the distribution P (w). Notice that, since we

consider this an approximation of the dot product of two hidden state vectors, we can

write f(u · wi) = ãu
i , which gives us

k(u,v) ≈ 1

N

N�

i=1

ãu
i ã

v
i =

N�

i=1

ãu
i√
N

ãv
i√
N

. (39)

This means we can define finite Monte-Carlo approximations of the infinite dimensional

hidden states. If we wish to make a recurrent equivalent of these sampled Monte-Carlo

states, we get the following equation

ãu
i (t + 1) = f

�
1√
N

N�

j=1

Wij ã
u
j (t)

�
, (40)

with wij signifying the j-th element of the vector wi, or more precisely the element on

the i-th row and j-th column of the matrix W. Notice that this equation is nothing more

than the update equation of a reservoir system. This means that reservoirs indeed can

be considered as finite approximations of infinite sized kernels.

The spectral radius of the connection matrix of this system is given by

ρ =
ρ(W)√

N
, (41)

with ρ(W) the spectral radius of W. Let us now assume that P (w) =
�

i P (wi), i.e.

all elements are drawn independently and from the same distribution, and furthermore

we assume the distribution has zero mean and variance σ2. In that case it can be proved

(Geman, 1986) that

lim
N→∞

ρ(W)√
N

≤ σ, (42)
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such that we find that the corresponding spectral radius for infinite-sized neural net-

works is ρ ≤ σ.

This result confirms our earlier finding that σ is the parameter in recursive arcsine ker-

nels that corresponds to the spectral radius (apart from the factor
√

π/2 which comes

from the slope of the error function).

6 Recurrent kernel machines for applications

6.1 SVMs

Before considering tasks, we shall first explain how we apply recursive kernels in

SVMs. For the first two tasks we considered, we decided to use least squares sup-

port vector machines (LS-SVM) (Suykens et al., 2002). Contrary to the more com-

mon SVM, the LS-SVM uses a quadratic loss-function instead of the hinge loss and

is conceptually easier, as training is reduced to finding the solution to a system of lin-

ear equations. Essentially there are three main reasons we chose LS-SVMs rather than

SVMs:

• Two out of the three tasks we considered are regression tasks, in which the error

metric to evaluate performance is the quadratic error, and this is the error metric

LS-SVMs minimize in the first place with ridge regression in the dual space. For

classification tasks, normal SVMs would be the more natural choice.

• We attempted to use LIBSVM5 for the NARMA-task (specified later), as it allows

to work with precalculated kernels. We examined the two variants for regression

problems; ν-SVR and �-SVR, but neither gave performance that even came close

to that of LS-SVMs. Likely this is due to the L1-norm optimization which is

apparently unsuited for this task.

• Reservoir Computing also uses a quadratic loss function for training the output

weights. This allowed us to compare the performance of recurrent neural net-

works in an RC context to their kernel machine equivalents and truly consider

them to be the dual version of the normal reservoir training algorithm for.

5Freely available from http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.
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• Finally, we also consider a classification task for which normal SVMs would

seem the more natural choice. However, as we have to deal with a very large

dataset, common SVMs render impractical, and we will use the Newton-Raphson

approximation of a quadratic hinge-loss function (more details in paragraph 6.5).

Although not strictly LS-SVMs, their resulting systems of equations are equiva-

lent.

An LS-SVM for regression operates as follows. Given a training set of N input features

xi with corresponding output targets yi, the system outputs a value ỹ(x) for an input

vector x defined as

ỹ(x) =
N�

i=1

αik(xi,x) + β, (43)

where the parameters αi and β are found by solving the system


 0 1T
N

1N K + λI







β

α



 =



0

y



 , (44)

with 1N = [1; · · · ; 1], Ki,j = k(xi,xj) and y = [y1; · · · ; yN ]. A scaled unity matrix is

added to the Gramm-matrix for regularization, with regularization parameter λ.

For recursive kernels, we redefine the SVM as

ỹ(t) =
N�

i=1

αiκt(x(t : t−∞),xi(0 : −∞)) + b, (45)

in which x(t : t − ∞) denotes the full history of the input signal up to a time t and

xi(0 : −∞) is the i-th support vector, in this case also an infinitely long time series.

Obviously, the recursion will for practical reasons need to be cut off at a certain point,

and we need to specify a maximum recursion depth τ . For this we use the following

criterion:

κ0(xi(0 : −τ),xj(0 : −τ)) ≈ κ0(xi(0 : −∞),xj(0 : −∞)), (46)

i.e., there should be only a small relative difference between the ‘correct’ value (with an

infinite recursion depth) and the practically attainable value. This is easily attainable by

choosing a recursion depth which is much larger than the typical timescale τ = − 1
2 ln(ρ) .

However, in reality it seems this criterion is too strict, and shorter recursion depths
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already give reasonable estimates for the asymptotic values. Finally this leads to the

following approximation for SVMs using recursive kernels:

ỹ(t) =
N�

i=1

αiκt(x(t : t− τ),xi(0 : −τ)) + β. (47)

6.2 Relation between ESNs and recurrent kernel machines

Here we explain the relation between a classic ESN readout layer and the LS-SVM with

recurrent kernels. For this it is interesting to first consider the case where we would

train a finite ESN the same way we train an LS-SVM. We select a set of time series

xi(0 : −τ) as support vectors. Calculating the associated kernel function between two

time series can now be done explicitly as an inner product of the hidden states. This has

the following implications:

• First of all, there is no point in storing the support vectors as time series, as the

hidden state of the final time step is known explicitly. If ai is the last hidden

state caused by time series xi(0 : −τ), and a(t) is the hidden state caused by

x(t : −∞), the kernel function between these two is nothing but ai · a(t).

• At any time t the output of the system can be written as

ỹ(t) =
N�

i=1

αiai · a(t) + β

= αTAT
� �� �

uT

a(t) + β

= u · a(t) + β,

where A = [a1, a2, · · · , aN ], the concatenation of the hidden states of the support

vectors. Essentially this show that in the case of a finite ESN a kernel machine

would simply lead to a single linear readout layer as in normal ESN training.

It is possible to show that the readout weights u and bias β obtained in this matter are

exactly the same readout weights which would be obtained by constructing the linear

readout weights in the classic way via ridge regression, and using the support vectors as

training data. This stems from the fact that both training methods solve the same system

of equations. Where classic reservoir training does this directly (in primal space), the
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LS-SVM method does this via the dual representation of the problem. For more details

we refer to e.g. chapter 3 in Suykens et al. (2002) or chapter 6 in Bishop (2006). This

result stays valid for arbitrarily large network sizes, which shows explicitly that LS-

SVMs using recurrent kernels are truly the equivalent of infinite ESNs trained with a

finite training set.

6.3 Fading memory

6.3.1 Memory function and memory capacity

The first property we consider is the so-called memory capacity. This task is fully

academical, and is meant as a way to study fading memory in RC by investigating how

well a certain input signal can be linearly reproduced after a delay. Assume s(t) to be an

i.i.d. variable, drawn from some distribution. Formally, one defines a memory function

(Jaeger, 2001) as

m(k) =
cov (s(t− k), s̃k(t))

2

var(s(t− k))var(s̃k(t))
, (48)

with s̃k(t) the optimal linear reconstruction of the signal s(t − k). The memory func-

tion m(k) is a number between 0 and 1, and essentially indicates the time window of

the past that is ‘visible’ to the network.

To quantify the total memory present in a network one defines the memory capacity

M =
�∞

k=0 m(k). It is a well known fact that this number is bounded by the number

of neurons N in the reservoir (Ganguli et al., 2008; Jaeger, 2001). A linear reservoir

has the best possible memory, whereas any nonlinearity necessarily has a reducing ef-

fect(Ganguli et al., 2008; Jaeger, 2001).

For infinite ESNs, the memory capacity will obviously not be limited by the number

of neurons. However, as mentioned in the introduction, any usable kernel machine will

only have a training set which is limited in size. As kernels are defined on timeseries,

training data in our case will consist of a set of (potentially infinitely long) time series.

An SVM that would reconstruct the signal from k time steps ago will use a construction

as follows:

s̃k(t) =
N�

i=1

α(k)
i κt(s(t : −∞), zi), (49)
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where s(t : −∞) is the input time series up to a time t, zi are (potentially infinitely long)

time series that serve as support vectors, N is the total number of support vectors, and

α(k)
i are optimal weights for reconstructing the signal from k time steps ago. Notice that

we omitted the output bias term β. This is justified as we will assume zero mean for the

input signal, which does not change the overall conclusion of this section. Also notice

that in this setup we wish to optimize covariance, which is equivalent with minimizing

the mean square error and hence using a quadratic loss function is fully justified.

6.3.2 Linear approximation

It is possible to show that, in the case of a linear kernel (as defined in paragraph 4.2), the

memory capacity is equal to the number of support vectors. Notice that if we linearize

the equation for the recursive arcsine kernel around x,y ≈ 0, assuming no bias we

in fact end up with the linear kernel. To see this, we start by examining equation 25.

Since we assume that the time series x and y are infinitesimally small, both ||x||2 and

κn−1(x,x) will be close to zero, and gn(x) ≈ 1. The first order approximation of the

arcsine function around zero is given by arcsin(z) ≈ z, such that we end up with

κn(x,y) =
2

π

�
2σ2

i x(n) · y(n) + 2σ2κn−1(x,y)
�

(50)

Using the same reasoning as in the example of the linear kernel in paragraph 4.2, we

can write this as an infinite sum. For simplicity we take σi = σ and we end up with:

κn(x,y) =
∞�

i=0

�
4σ2

π

�

� �� �
γ

i+1

x(n− i)y(n− i)

= γ
∞�

i=0

γix(n− i)y(n− i),

with γ acting as the square of the ‘spectral radius’ of the system. We now need to

determine the α(k)
i which minimize the mean squared error (in which we assume the

regularisation parameter λ = 0):

Ek =

��
γ

N�

i=1

α(k)
i

∞�

j=0

γjzi(−j)s(t− j)− s(t− k)

�2�

t

(51)

notice that we can write the first term under the square brackets as

γ
N�

i=1

α(k)
i

∞�

j=0

γjzi(−j)s(t− j) = γαk
T
∞�

j=0

γjzjs(t− j),
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in which αk is a column vector associated with elements α(k)
i , zj is a column vector

with elements zi(−j). We can now write

Ek = γ2αk
T

� ∞�

j=0

∞�

l=0

γj+lzjzl
T �s(t− j)s(t− l)�t

�
αk

−2γαk
T
∞�

j=0

zj �s(t− j)s(t− k)�t +
�
s(t− k)2

�
t
.

If we now use the fact that the signal values s(t) are i.i.d. such that �s(t1), s(t2)�t =

ς2δt1,t2 , with ς2 equal to signal variance, we can reduce this expression further to

Ek = ς2γ2αk
T

� ∞�

j=0

γ2jzjzj
T

�

� �� �
Z

αk − 2ς2γk+1αk
Tzk + ς2

= ς2
�
γ2αk

TZαk − 2γk+1αk
Tzk + 1

�

After deriving E w.r.t. the elements of αk, we find that the optimal weights are given

by

αk = γk−1Z−1zk.

Next, we can insert this result in equation 48. We find that

cov (s(t− k), s̃k(t)) = var (s̃k(t)) = γ2kς2zk
TZ−1zk,

which leads to

m(k) = γ2kzk
TZ−1zk.

Summation over k then gives us the memory capacity:

M =
∞�

k=0

γ2kzk
TZ−1zk (52)

= tr

�
Z−1

∞�

k=0

γ2kzkzk
T

�
(53)

= tr (I) = N, (54)

with tr(...) indicating the trace of the matrix.

This result is interesting as it highlights the equivalence of the number of support vectors

with the number of nodes. ESNs have their hidden state as degree of freedom. The fact

that Memory Capacity is fundamentally limited by the number of nodes is a reflection
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of this fact: the total amount of ‘information’ (not used in the information theoretical

sense) that can be coded into the states of n hidden nodes is equal to n. For recursive

SVMs, this role is taken over by the number of support vectors. Each support vector

will correspond to a single ‘node’ in an SVM. Obviously, the advantage of SVMs in this

case is the fact that the support vectors are not random but rather contain meaningful

information of the distribution of the input data.

6.4 Nonlinear auto-regressive moving average

The second task we consider is the so called NARMA-task, or Nonlinear Auto Re-

gressive Moving Average, which has been used for benchmarking in many papers that

consider time-series processing (Atiya and Parlos, 2000; Jaeger, 2003; Steil, 2005). The

task is a single input single output system, with input u(t), i.i.d. numbers drawn from a

uniform distribution between 0 and 0.5. The desired output y(t) is then constructed as

follows:

y(t + 1) = 0.3y(t) + 0.05y(t)
9�

i=0

y(t− i) + 1.5u(t)u(t− 9) + 0.1. (55)

As error metric to evaluate performance on this task we used the Normalized Root Mean

Square Error, or NRMSE, defined as

NRMSE =

�
�y(t)− ỹ(t)�2t

var(y(t))
, (56)

in which ỹ(t) is the output of the trained system.

6.4.1 Experiments and results

To compare different effects and results, we performed four experiments.

• First of all, we used a classic windowed Gaussian RBF kernel as a reference value

to compare our results against. We optimized both the window length and kernel

width by a two dimensional grid search. Using a validation set, we found the

optimal window length to be 27 frames and the kernel width σ = 5, although per-

formance does not change much for a relatively broad range around this optimal

value σ.
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• Secondly, we measured the performance of the recursive Gaussian RBF-kernel in

relation to its corresponding spectral radius ρ = σ−1. We limited the recursion

depth to 50 frames, although a shorter time would likely give very similar results.

• Thirdly we did the same for the arcsine kernel in relation to its corresponding

spectral radius ρ = 2√
πσ. We again used a recursion depth of 50 frames.

• Finally, as arcsine kernels are strongly related to ESNs, we used the opportunity

to compare their performances. We also measured the performance of ESNs with

error function nonlinearities for an increasing number of nodes and in relation to

the corresponding spectral radius.

In all of the above experiments we used a training set of 500 frames, a validation set of

2000 frames used to determine the optimal regularization parameter, and a test set of

5000 frames. For the recursive kernels and the ESNs performance in relation to input

scaling has a broad, shallow optimum (data not shown), but nevertheless the scaling fac-

tors were optimized by a grid search at a corresponding spectral radius of 0.9, leading to

σi = 0.1 for the arcsine kernels and the ESNs, and σi = 0.4 for the recursive Gaussian

RBF. For the arcsine kernels and ESNs, bias did not seem to improve performance and

was therefore set to 0. All results were found by averaging over 100 different trials with

newly generated data and-or reservoirs.

Results of the experiments are shown in figure 5. Optimal performance can be found

around ρ = 0.9. Performance of the ESNs gradually increases with the number of

nodes, converging slowly to the performance of the arcsine kernel. As ρ becomes

greater than one, performance rapidly deteriorates. The recursive Gaussian RBF kernel

performs best, and both recursive kernels perform better than the classic time window

RBF kernel.

6.5 Phoneme recognition

The second task we consider is a speech recognition task in which the goal is to classify

phonemes, which are the smallest segmental unit of sound employed to form meaning-

ful contrasts between utterances. We use the internationally renowned TIMIT speech

corpus (Garofolo et al., 1993) which consists of 5040 English spoken sentences from
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Figure 5: Mean NRMSE of the NARMA-task for different setups in relation to the

corresponding spectral radius ρ. The thin, light to dark grey lines are NRMSEs for

ESNs with increasing numbers of nodes N (specified in the legend). The thick black

line is for the arcsine kernel, i.e. for N → ∞. The dashed line is the performance of

the recursive Gaussian RBF kernel, and the dotted line (independent of ρ) is the mean

NRMSE for optimized windowed Gaussian RBF kernels.

630 different speakers representing 8 dialect groups. About 70% of the speakers are

male and 30% are female.

The speech is labeled by hand for each of the 61 existing phonemes, which was re-

duced to 39 symbols as proposed by Lee and Hon (1989). The TIMIT corpus has a

predefined train and test set with different speakers. The speech has been preprocessed

using Mel Frequency Cepstral Coefficient (MFCC) analysis (S.Davis and Mermelstein,

1980), which is performed on 25 ms Hamming windowed speech frames and subse-

quent speech frames are shifted over 10 ms with respect to each other. Each frame

contains a 39-dimensional feature vector, consisting of the log-energy and the first 12

MFCC coefficients, and their first and second derivatives (the so-called ∆ and ∆∆ pa-
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rameters).

6.5.1 One vs. one classifiers

In order to classify each frame into one of the 39 possible classes, we use a voting

system that starts from a set of 741 one vs. one classifiers. Each of these classifiers is

trained to distinguish between two specific phonemes, and as there are 39 classes there

are (39×38)/2 = 741 one vs. one classifiers. Each one vs. one classifier is only trained

on data labeled with its corresponding phonemes and outputs either 1 or −1 (the sign

of the output value). Final classification is performed by letting the classifiers each cast

a vote.

6.5.2 Training method

One of the difficulties of using SVMs to train on TIMIT is the fact that the dataset is very

large. The training set consists of 1,124,823 frames, and the test set of 353,390 frames.

The number of frames per one vs. one classifier is of the order 104 to 105. Traditional

SVM methods for classification would run into practical computational problems for

such large datasets.

Various methods for handling large datasets exist. We use a technique based on Newton

optimization (Chapelle, 2007). As explaining the algorithm in detail would go beyond

the scope of this paper we shall explain it only briefly and refer to Chapter 2 of Botton

et al. (2007) for specific details.

Classic SVMs use a hinge loss function. Optimizing this system is a convex problem

with a unique solution, and therefore solvable with quadratic programming techniques.

An LS-SVM on the other hand, has the advantage that the solution can be found by

solving a single system of linear equations. There are however two strong downsides of

using a quadratic loss function for classification problems. First of all, a quadratic error

will assign a high loss to some vectors which are in fact classified correctly. Secondly,

all the data in the training set will serve as support vectors, making the end solution

non-sparse. To solve this problem, we use a loss function of the form max(0, 1−yiỹi)2,

with yi the target (−1 or 1), and ỹi the output of the SVM. Essentially this is a quadratic

hinge loss function. If we optimize this system using the Newton-Raphson method, this

comes down to solving the problem using a quadratic loss-function, and next selecting
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datapoints with yiỹi < 1 as support vectors. This process is repeated until the set of

support vectors no longer changes. Next, one can train on successively larger datasets,

and use the previously found set of support vectors as initial values.

We trained each one vs. one classifier on a subset of 104 samples and chose a separate

validation set of 2000 samples, both randomly drawn from the total training dataset

associated with the corresponding labels. If the total amount of samples in the set was

smaller than 12000, we randomly drew 1000 samples as validation set and used the rest

for training.

6.5.3 Subsampling and parameter optimization

We tested on both classic windowed Gaussian RBF kernels, recursive Gaussian RBF

kernels, and arcsine kernels. For both recursive kernels we also investigate the effect

of subsampling the MFCC-data. It was found in Triefenbach et al. (2010) that large

recurrent neural networks perform better on phone recognition if the nodes are leaky

integrators, i.e. when the effective timescale of the network dynamics is slowed down.

Rather than incorporating this into our kernels, we subsampled the data by a factor of

2, 3 and 5. This essentially means that we speed up the data rather than slowing down

the dynamics of our system. For the non-subsampled variants of the data we classify on

the third frame of the time window or recursion depth, i.e. the SVM needs to classify

the phoneme of two frames in the past. For the subsampled versions, we classify on the

second frame (effectively the third, fourth and sixth frame in the respective unsubsam-

pled datasets). Rather than optimizing the parameters for each one vs. one classifier, we

looked for globally optimal parameters by randomly selecting 250 from the 820 classi-

fiers and trained them on a small training, validation, and test set of 1000 samples each,

drawn randomly from the corresponding full training set and measured the average test

error over a relevant range of parameters. The window size of the Gaussian RBF kernel

was determined this way. Recursion depths of the recursive kernels were determined by

making sure the kernel value differed on average less than one percent from its asymp-

totic value. We chose a bias equal to zero for the arcsine kernels to reduce the number

of parameters to optimize.
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Table 1: Results on TIMIT. Results found in literature are listed under the line.
FER Nsv τ σ σi

Windowed RBF 31.5% 1465 9 16

Rec. RBF 30.6% 1386 10 1 22

Rec. RBF 2× subs. 29.4% 1499 10 1 12.5

Rec. RBF 3× subs. 28.7% 1504 10 1 16.5

Rec. RBF 5× subs. 28.5% 1100 5 0.8 8

Arcsine 30.5% 1105 15 1.75
√

π
2 0.026

Arcsine 2× subs. 29.3% 1511 8 2.25
√

π
2 0.035

Arcsine 3× subs. 28.6% 1377 8 2
√

π
2 0.04

Arcsine 5× subs. 28.9% 1210 8 2
√

π
2 0.045

HMM(Cheng et al., 2009) 39.3%

PA(Crammer, 2010) 30.0%

DROP(Crammer, 2010) 29.2%

PAC-Bayes 1-frame(Kesher et al., 2011) 27.7%

PAC-Bayes 9-frame(Kesher et al., 2011) 26.5%

Online LM-HMM(Cheng et al., 2009) 25.0%

6.5.4 Results

Typically, the performance on the TIMIT dataset is evaluated based on the phoneme er-

ror rate. However, this requires an additional mechanism such as an HMM to segment

the frames into groups corresponding to phonemes. As we are only interested in the

relative performance of the kernels, we limited ourselves to only measuring the frame

error rate (FER), i.e. the percentage of input windows which were classified incorrectly.

The result (FER), average number of support vectors per one vs. one classifier (Nsv),

window size / recursion depth (τ ), and optimal parameters σ and σi as defined in sub-

section 4.2 for each variant are shown in Table 1. FER for the subsampled versions of

the testset were determined by labeling the missing frames with the nearest classified

frame in the case of subsampling 3× and 5×. In the case of 2× subsampling, the FER

was calculated twice by using the classification of both the previous and next frame as

label for the missing frames, and we took the average of both FER’s. The fact that most
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literature doesn’t mention FER makes it hard to compare our results to the state of the

art, but some papers actually do mention FER, and to give some idea of our performance

in general we have included some representative results in the table.

All the techniques with recursive kernels outperform the classical windowed Gaussian

RBF kernels, even without subsampling, and it is obvious that subsampling gives a

boost in performance. Remarkably, we found that the optimal spectral radius of the

arcsine kernels is greater than one. Upon examining the necessary recursion depth we

found that these kernels do indeed only depend on a finite history of the input time se-

ries. This is due to the relatively high variance of the input, which pushes the kernels

into the saturating part of their nonlinearity.

It is interesting to note that in the case of the unsubsampled dataset we find that the

number of support vectors is lower for the recursive kernels than for the windowed ker-

nels. This seems to suggest that the recursive kernels are better at capturing the inherent

structure of the speech data 6.

In Triefenbach et al. (2010), the same task was studied by (among other techniques)

using a very large reservoir of 20,000 nodes. The FER found for this setup was 29.1%

(FER is not mentioned in the paper, but we know from personal communication with

the authors), which is comparable to our own results.

7 Conclusions

In this paper we described a straightforward method to define a kernel function that is

associated with a recurrent neural network with an infinite number of hidden nodes. We

link this result with findings which have been made in the domain of Reservoir Com-

puting, which employs large, randomly initiated neural networks. In our case (with

analog sigmoid nodes), such networks are commonly called Echo State Networks. In-

finite sized neural networks can be considered as ESNs without a random factor, and

determined solely by the data and a small number of parameters.

It is possible to associate the parameters of the recursive kernel functions with properties

known to play an important role in the dynamics of ESNs. Specifically, it is possible to

6This comparison would be unfair for the subsampled datasets as these are smaller.
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define a ‘spectral radius’ for recursive kernels, which determines the dynamical regime

of both recurrent networks and recursive kernels. A second important parameter in

Reservoir Computing, defined as the memory capacity, which is fundamentally limited

by the number of nodes, has an equivalent for recursive kernels. For these, memory

capacity is fundamentally limited by the number of support vectors.

We tested the performance of recursive kernels on two benchmarks in which relevant

information is specifically coded in time. We found that for the tasks investigated, recur-

sive kernels perform better than classical Gaussian RBF kernels operating on a sliding

time window of the input signal. This result suggests that the recursive nonlinearity

and the fading memory of the recursive kernels are better suited to capture the temporal

nature of the data than an artificial time window.

One of the main arguments we wish to convey in this paper is that there is a direct

link between Reservoir Computing and kernel machines, and that it is possible to view

reservoirs as primal space approximations of an infinite-sized recursive kernel. More

precisely, the random weights can be considered as Monte-Carlo samples from a con-

tinuous distribution. Indeed, we found that performance of reservoirs in function of

network size asymptotically approaches that of the recursive kernels (using the same

amount of training data).

Many potential directions for future work remain. One of the most interesting questions

that remain is why fading memory seems to work better than time windows for certain

tasks. One potential explanation is the fact that the fading dependence on input history

is a more natural representation of the dependencies required for the task than an artifi-

cially cut-off time window. Hence one can argue that a fading memory acts as a natural

regularizer on time-series processing tasks. Interestingly, we also tried to apply recur-

sive kernels on synthetic time-series prediction and generation (where the input was

defined by a differential equation), but we found that windowed kernels perform better

or as good as recursive kernels. Here, it seems a windowed approach still is preferable

over the fading memory approach. This can partially be explained by the Takens em-

bedding theorem (Takens et al., 1981), which states that all information for integrating

an n-th order differential equation is embedded in a time window of 2n + 1 frames.

Another interesting line of research would be trying to construct principle component

approximations of the feature space of the recursive kernels (known as the Nyström
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approximation). This would allow to make a finite approximation, conform classical

reservoirs, but which depend on the underlying structure of the data.
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