137 research outputs found

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    A review of image fusion algorithms based on the Super-Resolution paradigm

    Get PDF
    A critical analysis of remote sensing image fusion methods based on the super-resolution (SR) paradigm is presented in this paper. Very recent algorithms have been selected among the pioneering studies adopting a new methodology and the most promising solutions. After introducing the concept of super-resolution and modeling the approach as a constrained optimization problem, different SR solutions for spatio-temporal fusion and pan-sharpening are reviewed and critically discussed. Concerning pan-sharpening, the well-known, simple, yet effective, proportional additive wavelet in the luminance component (AWLP) is adopted as a benchmark to assess the performance of the new SR-based pan-sharpening methods. The widespread quality indexes computed at degraded resolution, with the original multispectral image used as the reference, i.e., SAM (Spectral Angle Mapper) and ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), are finally presented. Considering these results, sparse representation and Bayesian approaches seem far from being mature to be adopted in operational pan-sharpening scenarios

    Crop monitoring and yield estimation using polarimetric SAR and optical satellite data in southwestern Ontario

    Get PDF
    Optical satellite data have been proven as an efficient source to extract crop information and monitor crop growth conditions over large areas. In local- to subfield-scale crop monitoring studies, both high spatial resolution and high temporal resolution of the image data are important. However, the acquisition of optical data is limited by the constant contamination of clouds in cloudy areas. This thesis explores the potential of polarimetric Synthetic Aperture Radar (SAR) satellite data and the spatio-temporal data fusion approach in crop monitoring and yield estimation applications in southwestern Ontario. Firstly, the sensitivity of 16 parameters derived from C-band Radarsat-2 polarimetric SAR data to crop height and fractional vegetation cover (FVC) was investigated. The results show that the SAR backscatters are affected by many factors unrelated to the crop canopy such as the incidence angle and the soil background and the degree of sensitivity varies with the crop types, growing stages, and the polarimetric SAR parameters. Secondly, the Minimum Noise Fraction (MNF) transformation, for the first time, was applied to multitemporal Radarsat-2 polarimetric SAR data in cropland area mapping based on the random forest classifier. An overall classification accuracy of 95.89% was achieved using the MNF transformation of the multi-temporal coherency matrix acquired from July to November. Then, a spatio-temporal data fusion method was developed to generate Normalized Difference Vegetation Index (NDVI) time series with both high spatial and high temporal resolution in heterogeneous regions using Landsat and MODIS imagery. The proposed method outperforms two other widely used methods. Finally, an improved crop phenology detection method was proposed, and the phenology information was then forced into the Simple Algorithm for Yield Estimation (SAFY) model to estimate crop biomass and yield. Compared with the SAFY model without forcing the remotely sensed phenology and a simple light use efficiency (LUE) model, the SAFY incorporating the remotely sensed phenology can improve the accuracy of biomass estimation by about 4% in relative Root Mean Square Error (RRMSE). The studies in this thesis improve the ability to monitor crop growth status and production at subfield scale

    Multitemporal Mosaicing for Sentinel-3/FLEX Derived Level-2 Product Composites

    Get PDF
    The increasing availability of remote sensing data raises important challenges in terms of operational data provision and spatial coverage for conducting global studies and analyses. In this regard, existing multitemporal mosaicing techniques are generally limited to producing spectral image composites without considering the particular features of higher-level biophysical and other derived products, such as those provided by the Sentinel-3 (S3) and Fluorescence Explorer (FLEX) tandem missions. To relieve these limitations, this article proposes a novel multitemporal mosaicing algorithm specially designed for operational S3-derived products and also studies its applicability within the FLEX mission context. Specifically, we design a new operational methodology to automatically produce multitemporal mosaics from derived S3/FLEX products with the objective of facilitating the automatic processing of high-level data products, where weekly, monthly, seasonal, or annual biophysical mosaics can be generated by means of four processes proposed in this work: 1) operational data acquisition; 2) spatial mosaicing and rearrangement; 3) temporal compositing; and 4) confidence measures. The experimental part of the work tests the consistency of the proposed framework over different S3 product collections while showing its advantages with respect to other standard mosaicing alternatives. The source codes of this work will be made available for reproducible research

    Multisource and multitemporal data fusion in remote sensing:A comprehensive review of the state of the art

    Get PDF
    The recent, sharp increase in the availability of data captured by different sensors, combined with their considerable heterogeneity, poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary data sets, however, opens up the possibility of utilizing multimodal data sets in a joint manner to further improve the performance of the processing approaches with respect to applications at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several

    A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture

    Full text link
    Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.Comment: 25 pages, 2 figures and lots of large tables. Supplementary materials section included here in main pd

    A survey of remote-sensing big data

    Get PDF
    We have entered an era of big data. It is popular to refer to the three Vs when characterizing big data: remarkable growths in the volume, velocity and variety of data. However, this statement is too general. Remote-sensing big data has several concrete and special characteristics: multi-source, multi-scale, high-dimensional, dynamic-state, isomer, and non-linear characteristics. This survey explains these characteristics in detail. Furthermore, according to whether the characteristics are closely related to the instruments or methods of data acquisition, we points out that the dynamic-state, multi-scale and non-linear characteristics are intrinsic characteristics of remote-sensing big data while the multi-source, high-dimensional and isomer characteristics are extrinsic characteristics of remote- sensing big data. In addition, we briefly review promising techniques and applications of remote-sensing big data
    corecore