6 research outputs found

    Support Vector Machine for Photovoltaic System Efficiency Improvement

    Get PDF
    Photovoltaic panels are promising source for renewable energy. They serve as a clean source of electricity by converting the radiation coming from the sun to electric energy. However, the amount of energy produced by the photovoltaic panels is dependent on many variables including the irradiation and the ambient temperature, leading to nonlinear characteristics. Finding the optimal operating point in the photovoltaic characteristic curve and operating the photovoltaic panels at that point ensures improved system efficiency. This paper introduces a unique method to improve the efficiency of the photovoltaic panel using Support Vector Machines. The dataset, which is obtained from a real photovoltaic setup in Spain, include temperature, radiation, output current, voltage and power for a period of one year. The results obtained show that the system is capable of accurately driving the photovoltaic panel to produce optimal output power for a given temperature and irradiation levels

    Location prediction optimisation in WSNs using kriging interpolation

    Get PDF
    © The Institution of Engineering and Technology 2016. Many wireless sensor network (WSN) applications rely on precise location or distance information. Despite the potentials of WSNs, efficient location prediction is one of the subsisting challenges. This study presents novel prediction algorithms based on a Kriging interpolation technique. Given that each sensor is aware of its location only, the aims of this work are to accurately predict the temperature at uncovered areas and estimate positions of heat sources. By taking few measurements within the field of interest and by using Kriging interpolation to iteratively enhance predictions of temperature and location of heat sources in uncovered regions, the degree of accuracy is significantly improved. Following a range of independent Monte Carlo runs in different experiments, it is shown through a comparative analysis that the proposed algorithm delivers approximately 98% prediction accuracy

    Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: Insights from a mechanistic model

    Get PDF
    Alpine grasslands sustain local economy by providing fodder for livestock. Intensive fertilization is common to enhance their yields, thus creating negative externalities on water quality that are difficult to evaluate without reliable estimates of nutrient fluxes. We apply a mechanistic ecosystem model, seamlessly integrating land-surface energy balance, soil hydrology, vegetation dynamics, and soil biogeochemistry, aiming at assessing the grassland response to fertilization. We simulate the major water, carbon, nutrient, and energy fluxes of nine grassland plots across the broad European Alpine region. We provide an interdisciplinary model evaluation by confirming its performance against observed variables from different datasets. Subsequently, we apply the model to test the influence of fertilization practices on grassland yields and nitrate (NO3_{3}^{-}) losses through leaching under both current and modified climate scenarios. Despite the generally low NO3_{3}^{-} concentration in groundwater recharge, the variability across sites is remarkable, which is mostly (but not exclusively) dictated by elevation. In high-Alpine sites, short growing seasons lead to less efficient nitrogen (N) uptake for biomass production. This combined with lower evapotranspiration rates results in higher amounts of drainage and NO3_{3}^{-} leaching to groundwater. Scenarios with increased temperature lead to a longer growing season characterized by higher biomass production and, consequently, to a reduction of water leakage and N leaching. While the intersite variability is maintained, climate change impacts are stronger on sites at higher elevations. The local soil hydrology has a crucial role in driving the NO3_{3}^{-} use efficiency. The commonly applied fixed threshold limit on fertilizer N input is suboptimal. We suggest that major hydrological and soil property differences across sites should be considered in the delineation of best practices or regulations for management. Using distributed maps informed with key soil and climatic attributes or systematically implementing integrated ecosystem models as shown here can contribute to achieving more sustainable practices

    Spatio-temporal Modelling-based Drift-aware Wireless Sensor Networks

    Full text link
    Wireless sensor networks are deployed for the purpose of monitoring an area of interest. Even when the sensors are properly calibrated at the time of deployment, they develop drift in their readings leading to erroneous network inferences. Based on the

    Calibration automatique d'un réseau de capteurs sans fil à effet Hall mesurant la consommation énergétique résidentielle

    Get PDF
    Un réseau de capteurs sans fil mesurant la consommation énergétique résidentielle de chacun des disjoncteurs du panneau d’alimentation principal d’une résidence est un outil très pratique pour un usager, mais un tel système peut s’avérer dispendieux. Afin de réduire le coût de ce produit, un réseau de capteurs à effet Hall est proposé en alternative aux traditionnels transformateurs de courants. Un système utilisant plusieurs capteurs à effet Hall est beaucoup moins coûteux et est plus facile d’installation grâce à son potentiel de miniaturisation. Par contre, la précision des mesures des capteurs à effet Hall n’est pas la même que celle des transformateurs de courants puisque sa sensibilité dépend de la proximité de celui-ci au fil qu’il mesure, ce qui cause alors des incertitudes au niveau du gain du capteur. Ce mémoire contribue à l’amélioration de la précision des mesures prises par les capteurs à effet Hall en proposant deux algorithmes numériques afin de faire la calibration des capteurs. Le premier algorithme est l’algorithme des moindres carrés (LMS) qui est simple et peut calibrer les capteurs sans présence de diaphonie tandis que le second est l’analyse en composantes indépendantes rapide (FastICA) qui est un algorithme plus complexe, mais en mesure d’atténuer le problème de diaphonie lorsqu’il est présent. Suite à la présentation du système et de la théorie liée aux algorithmes, les résultats des simulations et des expérimentations sont présentés pour les deux algorithmes. Pour les résultats de simulation avec LMS, l’erreur moyenne du courant mesuré par capteur pour 3 à 30 capteurs sans diaphonie et avec bruit est de 0,53 ARMS. Pour ce qui est de la combinaison de FastICA et LMS, l’erreur moyenne du courant mesuré avec diaphonie et avec bruit est de 0,55 ARMS pour 3 capteurs allant jusqu’à 0,83 ARMS pour 30 capteurs. Deux types d’installations sont testés pour les résultats expérimentaux. L’algorithme LMS pour les tests sans diaphonie est en mesure de réduire l’erreur moyenne par capteur pour 3 capteurs à 0,47 ARMS pour l’installation 1 (cafetière, fusil à air chaud et purificateur d’air) et à 0,49 ARMS pour l’installation 2 (cafetière, fusil à air chaud et plinthes contrôlées par un thermostat électronique). Puisque les mesures d’un des appareils utilisés pour l’installation 1 sont très bruitées, la combinaison de FastICA et LMS pour les tests avec diaphonie a seulement réduit l’erreur moyenne par capteur pour 3 capteurs à 3,16 ARMS. Par contre, l’erreur est réduite à 0,85 ARMS pour l’installation 2

    Collaborative Estimation in Distributed Sensor Networks

    Get PDF
    Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user\u27s sight, the engineering of these devices involves fierce tradeoffs between energy availability (battery sizes impact portability) and signal processing / communication capability (which impacts the smartness of the devices). The goal of this dissertation is to provide a fundamental understanding and characterization of these tradeoffs in the context of a sensor network, where the goal is to estimate a common signal by coordinating a multitude of battery-powered sensor nodes. Most of the research so far has been based on two key assumptions -- distributed processing and temporal independence -- that lend analytical tractability to the problem but otherwise are often found lacking in practice. This dissertation introduces novel techniques to relax these assumptions -- leading to vastly efficient energy usage in typical networks (up to 20% savings) and new insights on the quality of inference. For example, the phenomenon of sensor drift is ubiquitous in applications such as air-quality monitoring, oceanography and bridge monitoring, where calibration is often difficult and costly. This dissertation provides an analytical framework linking the state of calibration to the overall uncertainty of the inferred parameters. In distributed estimation, sensor nodes locally process their observed data and send the resulting messages to a sink, which combines the received messages to produce a final estimate of the unknown parameter. In this dissertation, this problem is generalized and called collaborative estimation , where some sensors can potentially have access to the observations from neighboring sensors and use that information to enhance the quality of their messages sent to the sink, while using the same (or lower) energy resources. This is motivated by the fact that inter-sensor communication may be possible if sensors are geographically close. As demonstrated in this dissertation, collaborative estimation is particularly effective in energy-skewed and information-skewed networks, where some nodes may have larger batteries than others and similarly some nodes may be more informative (less noisy) compared to others. Since the node with the largest battery is not necessarily also the most informative, the proposed inter-sensor collaboration provides a natural framework to route the relevant information from low-energy-high-quality nodes to high-energy-low-quality nodes in a manner that enhances the overall power-distortion tradeoff. This dissertation also analyzes how time-correlated measurement noise affects the uncertainties of inferred parameters. Imperfections such as baseline drift in sensors result in a time-correlated additive component in the measurement noise. Though some models of drift have been reported in the literature earlier, none of the studies have considered the effect of drifting sensors on an estimation application. In this dissertation, approximate measures of estimation accuracy (Cramer-Rao bounds) are derived as a function of physical properties of sensors -- namely the drift strength, correlation (Markov) factor and the time-elapsed since last calibration. For stationary drift (Markov factor less than one), it is demonstrated that the first order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. When the drift is non-stationary (Markov factor equal to one), it is established that the constant part of a signal can only be estimated inconsistently (with non-zero asymptotic variance). The results help quantify the notions that measurements taken sooner after calibration result in more accurate inference
    corecore