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ABSTRACT

Networks of smart ultra-portable devices are already indispensable in our lives, augment-

ing our senses and connecting our lives through real time processing and communication

of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user’s

sight, the engineering of these devices involves fierce tradeoffs between energy availability

(battery sizes impact portability) and signal processing / communication capability (which

impacts the "smartness" of the devices). The goal of this dissertation is to provide a fun-

damental understanding and characterization of these tradeoffs in the context of a sensor

network, where the goal is to estimate a common signal by coordinating a multitude of

battery-powered sensor nodes. Most of the research so far has been based on two key as-

sumptions –"distributed processing" and "temporal independence" – that lend analytical

tractability to the problem but otherwise are often found lacking in practice. This disser-

tation introduces novel techniques to relax these assumptions – leading to vastly efficient

energy usage in typical networks (up to 20% savings) and new insights on the quality of

inference. For example, the phenomenon of sensor drift is ubiquitous in applications such

as air-quality monitoring, oceanography and bridge monitoring, where calibration is often

difficult and costly. This dissertation provides an analytical framework linking the state of

calibration to the overall uncertainty of the inferred parameters.

In distributed estimation, sensor nodes locally process their observed data and send the

resulting messages to a sink, which combines the received messages to produce a final

estimate of the unknown parameter. In this dissertation, this problem is generalized and

called "collaborative estimation", where some sensors can potentially have access to the

observations from neighboring sensors and use that information to enhance the quality of

their messages sent to the sink, while using the same (or lower) energy resources. This

is motivated by the fact that inter-sensor communication may be possible if sensors are



geographically close. As demonstrated in this dissertation, collaborative estimation is par-

ticularly effective in "energy-skewed" and "information-skewed" networks, where some

nodes may have larger batteries than others and similarly some nodes may be more in-

formative (less noisy) compared to others. Since the node with the largest battery is not

necessarily also the most informative, the proposed inter-sensor collaboration provides a

natural framework to route the relevant information from low-energy-high-quality nodes

to high-energy-low-quality nodes in a manner that enhances the overall power-distortion

tradeoff.

This dissertation also analyzes how time-correlated measurement noise affects the un-

certainties of inferred parameters. Imperfections such as baseline drift in sensors result in

a time-correlated additive component in the measurement noise. Though some models of

drift have been reported in the literature earlier, none of the studies have considered the

effect of drifting sensors on an estimation application. In this dissertation, approximate

measures of estimation accuracy (Cramér-Rao bounds) are derived as a function of phys-

ical properties of sensors – namely the drift strength, correlation (Markov) factor and the

time-elapsed since last calibration. For stationary drift (Markov factor less than one), it is

demonstrated that the first order effect of drift is asymptotically equivalent to scaling the

measurement noise by an appropriate factor. When the drift is non-stationary (Markov fac-

tor equal to one), it is established that the constant part of a signal can only be estimated

inconsistently (with non-zero asymptotic variance). The results help quantify the notions

that measurements taken sooner after calibration result in more accurate inference.
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Chapter 1

Introduction

Over the last decade, advances in low-power micro-electro-mechanical system (MEMS)

technology and wireless communications have led to the emergence of wireless sensor net-

works (WSNs) [2]. A wireless sensor network consists of a large number of sensors that

can communicate with each other to achieve a specific task. Individually, each sensor in

a sensor network is characterized by a low power constraint which translates to limited

computation and communication capabilities. However, when suitably deployed in large

scale, potentially powerful networks can be constructed to accomplish various high-level

tasks, and this makes wireless sensor networks a promising technology for a wide range of

applications. Examples of current and potential applications of wireless sensor networks in-

clude environment monitoring, military sensing, traffic surveillance, health care, and smart

homes [2, 19, 13].

A common goal in many WSN applications is to reconstruct or infer regarding the

underlying physical phenomenon based on sensor measurements. The estimation of un-

known parameters by a set of distributed sensor nodes and a fusion center has become

an important topic in signal processing research for wireless sensor networks [95, 52, 67].

In distributed parameter estimation, sensor nodes collect real-valued data, locally process

the data, and send the resulting messages to the fusion center (FC), which combines all

the received messages to produce a final estimate of the unknown parameter. Both the

local processing of data and its subsequent transmission are done in accordance with the

1



limited energy resources inside each node and usually involves some loss of information.

The purpose of this thesis is to understand the tradeoff between this loss of information

and energy requirements for various hitherto-unexplored but practical scenarios of interest

in the context of estimation.

In addition to local information processing, estimation using a WSN may also involve

inter-sensor communication if sensors are geographically close. In fact, a major challenge in

WSN research is the integrated design of local signal processing operations and strategies

for inter-sensor communication and networking so as to achieve a desirable trade-off among

resource efficiency, system performance and ease of implementation.

We illustrate the ideas of distributed estimation and collaborative estimation in Fig-

ure 1.1. In the traditional centralized estimation, the sensors receive noisy observations

based on the signal of interest (dotted lines imply information loss) and communicate the

full-precision observations to the fusion center (bold lines indicate no information loss).

In case of distributed estimation, the sensors perform some resource-conscious local pro-

cessing before transmission to the fusion center. In collaborative estimation, the sensors

communicate the observations among their neighbors before deciding on the exact data to

be transmitted to the fusion center. The local communications for the purpose of spatial

collaboration are assumed to be lossless in this thesis, since this can mostly be ensured for

sensors with sufficient geographical proximity. However, in a possibly more general setting,

this assumption may need to be relaxed. The act of collaboration is important since it

enables efficient allocation of energy resources throughout the network.

1.1 Distributed and collaborative estimation

Enabling distributed and collaborative estimation applications in the context of a sensor

network may involve several challenges, some of which are discussed below.

• Resource allocation: Sensor networks may comprise of a wide variety of sensors with

a varying degree of reliability or precision. In those situations, it is important to assign

2



Phenomena 

Sensors 

Estimate 

Centralized estimation Collaborative estimation 
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Sensors 
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Sensors 

Estimate 

Distributed estimation 

Figure 1.1: Distributed estimation (left) and estimation with spatial collaboration among
sensors (right).

resources to each of these sensors in a judicious manner. By resource, we mean either

the power required for the transmission of analog values or the number of bits for

quantization (assuming a fixed cost for transmitting each bit). Intuitively, a sensor

with better observation quality should be assigned a higher amount of resources.

However, finding the optimal strategy is a difficult problem for most scenarios. The

problem becomes more complicated when the sensors have correlated observations,

in which case even the earlier intuition is invalid, i.e., better individual observation

quality does not necessarily imply allocating more resources. For example, if two

sensors produce absolutely identical observations, then it makes sense to transmit

only one of them. The other sensor in this case is assigned zero resources, even

though it is equally informative. Significant correlation among observation noise may

be exhibited when the sensors are geographically close.

• Quantizer design: Constraints on sensor cost, bandwidth, and energy budget dictate

that low-quality sensor observations may have to be aggressively quantized (e.g., down

to a few bits per observation per sensor). Furthermore, local compression at a sensor

node depends not only on the quality of sensor observation, but also on the quality

of the wireless communication channels between sensor nodes and the fusion center.

3



Thus, estimators must be developed based on severely quantized versions of very noisy

observations. Designing a quantizer involves finding the optimum mapping between

the observation space and quantizer outputs and is usually a difficult problem.

• Different signal and noise conditions: Owing to the difficulty (in general) of quan-

tizer design and resource allocation problems, distributed and collaborative signal

processing algorithms are intricately tailored to the kind of signal and noise condi-

tions present in the network. Motivated by realistic application scenarios, different

assumptions may be made about the observation characteristics. For example, the

signal of interest may be constant with time (e.g. temperature of a region within the

span of a few minutes), or may be time-varying based on some predictable temporal

dynamics (e.g. gas concentration in a region with a constant rate of pollutants), or

may vary randomly with time based on some known statistics (e.g. temperature of

a region within the span of a several days). Similarly, the noise conditions also play

an important role. Based on the spatio-temporal correlation properties of noise and

the state of calibration of the sensors, different compression/transmission/estimation

techniques may be required.

1.2 Problems addressed and thesis organization

In this thesis we address several problems on centralized, distributed and collaborative

estimation. Though the topics of centralized and distributed estimation are well researched

in the literature, collaborative estimation is still a nascent area and a majority of the work

in this thesis is directed to that topic. In Chapter 2, we formally introduce the distributed

signal processing framework in wireless sensor networks and present an extensive literature

review of centralized and distributed estimation problems.

Among the various possibilities for power saving local signal processing, one-bit (or

binary) quantization is particularly appealing due to its ease of implementation. Traditional

one-bit quantization involves fixing a threshold, below which the encoded value is “0” and
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above which it is “1”. In Chapter 3, we consider probabilistic quantizers, where quantization

is defined not just by a simple threshold but instead defined as an arbitrary function that

maps the noisy observations to its probability of being encoded as “0” (say). We assume

the parameter to be range limited and design a quantization rule to minimize the maximum

distortion over this parameter range. We also identify a broad class of noise distributions

for which a simple threshold quantizer is also the optimal probabilistic quantizer (in some

sense). For a wide range of noise distributions, we demonstrate the superior performance

of the probabilistic quantizer - particularly in the moderate to high-SNR regime.

Designing resource allocation strategies for power constrained sensor networks in the

presence of correlated data often gives rise to intractable problem formulations. In such sit-

uations, applying well-known strategies derived from conditional-independence assumption

may turn out to be fairly suboptimal. In Chapter 4, we address this issue for the situation

where neighboring nodes are able to collaborate among themselves prior to transmission. In

a scheme which we refer to as spatial whitening, each sensor updates their observations in a

coordinated manner such that the updated observations are maximally whitened, i.e., their

covariance matrix is as close to a diagonal matrix as possible. We demonstrate that exist-

ing bit allocation schemes, when applied on this updated observation space, yield superior

estimation performance. We also comment on the computational limitations for obtaining

the optimal whitening transformation, and propose an iterative optimization scheme to

achieve the same for large networks.

In Chapter 5, we explore the still-nascent research topic of collaborative estimation

in the context of single-snapshot estimation of a random parameter. By single-snapshot

estimation, we mean that the FC makes an inference based on observations collected at

one particular instant. In contrast to the distributed estimation problem, this collaborative

framework allows the sensor nodes to update their observations by (linearly) combining

observations from other adjacent nodes. The updated observations are communicated to

the FC by transmitting through a wireless channel. The optimal collaborative strategy is

obtained by minimizing the expected mean-square-error subject to power constraints at

5



the sensor nodes. Each sensor can utilize its available power for both collaboration with

other nodes and transmission to the FC. Two kinds of constraints, namely the cumulative

and individual power constraints are considered. The effects due to imperfect information

about observation and channel gains are also investigated. The resulting performance

improvement is illustrated analytically through the example of a homogeneous network with

equi-correlated parameters. Assuming random geometric graph topology for collaboration,

numerical results demonstrate a significant reduction in distortion even for a moderately

connected network, particularly in the low local-SNR regime.

In Chapter 6, we build on our research on collaborative estimation by exploring two

important extensions. Firstly, for the single-snapshot estimation, we gain further insights

into partially connected collaboration networks (nearest-neighbor and random geometric

graphs for example) through the analysis of a family of topologies with regular structure.

Secondly, we explore the estimation problem by adding the dimension of time, where the

goal is to estimate a time-varying dynamic signal in a power-constrained network. To

model the time dynamics, we consider the stationary Gaussian process with exponential

covariance (sometimes referred to as Ornstein-Uhlenbeck process) as our representative

signal. For such a signal, we show that it is always beneficial to sample as frequently

as possible, despite the fact that the samples get increasingly noisy due to the power-

constrained nature of the problem. Simulation results are presented to corroborate our

analytical results.

In Chapter 7, we seek to characterize the estimation performance of a sensor network

where the individual sensors exhibit the phenomenon of drift, i.e., a gradual change of the

bias. Though estimation in the presence of random errors has been extensively studied in

the literature, the loss of estimation performance due to systematic errors like drift have

rarely been looked into. In Chapter 7, we derive closed-form bounds on the estimation

accuracy of drift-corrupted signals. We assume a polynomial time-series as the representa-

tive signal and an autoregressive process model for the drift. When the Markov parameter

for drift ρ < 1, we show that the first-order effect of drift is asymptotically equivalent
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to scaling the measurement noise by an appropriate factor. For ρ = 1, i.e., when the

drift is non-stationary, we show that the constant part of a signal can only be estimated

inconsistently (non-zero asymptotic variance). Practical usage of the results are demon-

strated through the analysis of bandwidth limited multi-sensor network communicating

only quantized observations.

Chapter 8 summarizes the research work and the results presented in this dissertation.

Some concluding remarks and suggestions for future work are also provided.
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8



Chapter 2

Background and literature survey

Estimation in resource constrained sensor networks usually involves some local process-

ing/compression at the sensor nodes. If the act of local processing is done independently

by all nodes, then the problem is called distributed estimation. On the other hand, if

the local processing involves cooperation with other neighboring sensors, the problem is

called collaborative estimation. While the research on distributed estimation is fairly ma-

ture, collaborative estimation is a relatively new area of research. In this thesis, we make

contributions to both of these areas. Specifically, Chapters 3 and 7 deal with distributed

estimation while Chapters 4, 5 and 6 addresses some collaborative estimation problems. In

this chapter, we formalize the problem of distributed estimation and present a methodical

overview of the literature on this topic. The literature on collaborative estimation will be

presented later in the appropriate chapters.

2.1 System description

Consider a dense sensor network that includes N sensor nodes and a fusion center (FC)

to observe and estimate an unknown parameter θ. The general distributed estimation ar-

chitecture consists of several blocks, as depicted in Figure 2.1. The signal of interest θ

is observed through noise-corrupted observations at each sensor node. For the nth sensor

node, we denote the noise as εn and observation as xn. Because of transmission-power
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Figure 2.1: System diagram of decentralized estimation.

constraints at the sensor nodes, these observations must undergo power-efficient transfor-

mations before they are transmitted through wireless channels. The transformation can be

digital (quantization followed by modulation) or analog (e.g., amplify and forward). We

denote the transformed variable as zn. In case of quantization, we denote the quantizer

function as γn(.) and the quantized message as mn. The received signal at the FC is de-

noted by the Nr-dimensional signal y = [y1, y2, . . . , yNr ]. Note that for orthogonal channels,

Nr = N , so that each sensor can be thought of having separate channels for themselves.

The FC then applies a fusion-rule to combine the observations in y and obtain an estimate

θ̂.

2.2 Past research

The entire distributed estimation system presents a rich field for potential research and

several aspects of this problem have been considered by researchers, especially over the

past decade. It should be mentioned here that the literature on distributed estimation is

too diverse and in this chapter, we focus only on estimation methods where all sensors fully
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observe the parameter of interest and there is a fixed fusion-center. For example, we do

not survey distributed estimation of a random field [4, 21], or distributed Karhunen-Loève

transform [29]. Both are examples where each sensor observes the parameter of interest

only partially. We also exclude consensus algorithms [18] and estimation fusion in a chain-

type topology [40] from this survey, both being examples of systems without a fixed fusion

center. Another active research area that is not surveyed is dimensionality-reduction (in

case of a vector parameter) as a preprocessing step before quantization [22].

In Table 2.1, we attempt to summarize the research progress so far, listing several refer-

ences and the frameworks addressed therein, as relevant to the research in this thesis. The

literature is summarized with respect to the specific assumptions and schemes considered

under each architectural block, (namely signal, noise, quantization, modulation, channel

and fusion-rule) and the design problems that are addressed. The literature on distributed

estimation is broadly split into two groups based on the communication framework used -

digital and analog.

• In the analog communication framework, a general non-linear transformation zn =

hn(xn) is applied to the observations which are then directly transmitted. If the

transformation hn(·) is linear, then it is also known as the amplify and forward scheme.

• The digital communication framework is implemented through quantization and mod-

ulation, where the unit of information is bits. The nth sensor quantizes its observation

xn into bn bits and uses Pn units of power to transmit the signal using a modulation

scheme (e.g., BPSK). The transmitted signal is then attenuated and noise-corrupted

as it passes through the channel and this may incur an erroneous reception. Hence

there are two venues where loss of information can potentially take place - first during

quantization and second during noisy reception. Sometimes, while analyzing a dis-

tributed estimation application, the distortion due to erroneous reception is ignored.

This assumption, which is only valid in the high-power regime, sub-classifies the body

of literature on digital-communication based distributed estimation, as depicted in

Table 2.1.
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Comparative studies of these two (analog and digital) schemes can be found in [26,

28, 29] and we will not describe this in detail here. The summary is that though the

analog framework can provide better energy-distortion (system-wide) tradeoff for several

simple examples, a digital framework is often preferred from an implementation perspec-

tive. This is because several practical aspects like error-correction techniques, resistance to

channel impairments, multiple-access strategies and security are better handled in a digital

framework [31].

The objective of distributed estimation problems is to minimize the overall distortion

of the estimated parameter at the FC, subject to various considerations, e.g., limited re-

sources, robustness to failure, etc. Due to stringent power and bandwidth limitations at

each sensor node, several problems address the efficient allocation of such resources. We call

them bit-allocation or power-allocation problems. The problem of how to optimally quan-

tize/compress/transform an observed signal to meet a pre-specified bandwidth constraint

is also an interesting problem. This is coupled with the problem of how to optimally/easily

estimate the parameter in the FC, and we refer to these problems as quantizer design or

estimator design. Some research questions are aimed at understanding the performance of a

specific quantization or transmission scheme, we call them performance-analysis problems.

We next provide a taxonomy for the various schemes under each system block (signal,

noise, quantization, modulation, channel and fusion-rule) that are mentioned in Table 2.1.

For ease of reference, we assign each of the schemes/assumptions an identifying-name,

which we subsequently use in Table 2.1.
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2.3 Taxonomy

2.3.1 Signal and noise

Depending on the particular application, several models of signal are assumed in the lit-

erature. The estimation application can either be single-snapshot or dynamic. In the

single-snapshot problem, energy-constrained spatial sampling is performed at one particu-

lar instant and the inference is made using those samples. For the dynamic scenario, the

goal is to estimate a time-varying parameter process for all time instants. In contrast to

the single snapshot framework, this involves obtaining multiple samples in time and com-

puting the filtered estimates for any desired time instants, including time instants where

observation samples are not available.

The signal of interest may either be constant or vary slightly over the spatial field of

interest. Noise captures both the randomness associated with the sensing circuitry (which

is uncorrelated across sensors) and the error due to unexplained variables describing the

phenomena of interest (which is likely to be correlated across sensors). In some applications,

the phenomena may be best described by a joint model of the signal and noise. In addition,

the signal and noise can have temporal variations.

Signal models (single-snapshot/static)

• unknown: Unknown deterministic scalar signal. θ ∈ R.

• range: Unknown deterministic scalar signal with a known range. θ ∈ [−U,U ].

• variance: Random scalar signal with known variance. E(θ) = 0, E(θ2) = η2.

• density : Random scalar signal with known probability density (equivalently distribu-

tion) function. fΘ(θ). θ ∼ fΘ(·).

• Gaussian: Random scalar signal that is Gaussian distributed. θ ∼ N (0, η2).

• polynomial : Deterministic signal with known time dynamics. xt =
∑P

p=0 θpt
p+εt,θ ∈

RP+1.
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Signal models (time-varying/dynamic)

• Ornstein-Uhlenbeck (OU) process : Gaussian, temporally correlated, scalar signal.

θt ∼ N (0, η2),E[θt1,t2 ] = η2 exp (−|t1 − t2|/τ).

Noise Models

• zero-noise: Perfect observation model that observes a noiseless signal. εn = 0.

• iid-unknown: Noise is independent and identically distributed but the noise distribu-

tion that is not known either to the FC or to the sensors themselves. εn ∼ f(w), but

pdf f(w) is unknown.

• iid-M-moment : Noise is independent and identically distributed but the noise distri-

bution is known only in terms of the first M moments. E(εn) = 0, E(εjn) = µj for

1 ≤ j ≤M and all n.

• iid-density : Noise is independent and identically distributed with known pdf. εn ∼

f(w).

• iid-range: Noise is independent and identically distributed with known pdf and also

range-limited. εn ∼ f(w) and εn ∈ [−R,R].

• iid-Gaussian: Noise is independent and identically distributed with Gaussian pdf.

εn ∼ N(0, σ2).

• Gaussian: Noise vector ε is jointly (multivariate) Gaussian and possibly correlated.

ε ∼ N (0,Σ), Σ is positive definite.

• ind-variance-range: Noise terms εn are independent (but possibly heterogenous) and

range-limited with known variance and range. The covariance matrix is hence diag-

onal. E(ε2n) = σ2
n and εn ∈ [−R,R].

• ind-variance: Noise terms εn are independent (but possibly heterogenous) with known

variance. E(ε2n) = σ2
n.
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• covariance: Noise terms εn are possibly correlated with known covariance matrix.

E(εε′) = Σ.

• covariance-range: Noise terms εn are possibly correlated and range-limited with

known covariance matrix and range. E(εε′) = Σ and εn ∈ [−R,R] for all n.

• white Gaussian+OU process : Noise terms εt,n are spatially independent but tempo-

rally correlated. εt,n = dt,n + wt,n, where wt,n is temporally independent but dt,n is a

temporally correlated OU process.

Joint Signal and Noise Models

• joint-covariance: Signal θ and noise εn are both zero-mean scalar random variables

and are characterized by joint second-order moments. E(θ2) = η2, E(εθ) = Σε,θ and

E(εε′) = Σ.

2.3.2 Quantization

As mentioned earlier, quantization/compression is an integral part of digital-communication

based implementation of distributed estimation systems. An L−level quantization is a

transformation γ(·) whose domain is a continuous set and range is a discrete-set with

cardinality L. The number of bits of information required to represent such a discrete

variable is b = log2(L). The case of L = 2 or b = 1 corresponds to binary quantization, and

is widely researched because of its analytical tractability and also the fact that it represents

the most-stringent constraint on bandwidth and serves as a worst-case analysis. When a

universal and robust design is desired, the quantizer functions γn(·) may be constrained

to be identical, though it is well known that this comes at the cost of higher estimation

error, especially for small magnitudes of L. For quantization procedures that incur unequal

distortion for different points in the observation domain, addition of some noise prior to

quantization levels the playing field, i.e., decreases the worst-case distortion at the cost

of increasing the best-case distortion. Hence schemes like dithering or more generally
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probabilistic quantization are often desirable for problems that minimize the maximum-

distortion.

• binary : This refers to binary threshold-quantizers of the form

mn = γn(xn) =

 1 xn ≥ τn

0 xn < τn

, (2.1)

where each sensor can possibly have different thresholds τn.

• identical-binary : All the sensors implement τn = τ, ∀n.

• binary-dithering : This is the binary non-subtractive dithering scheme. A random

input vn is generated from some pdf f
(d)
n (vn) and is added to the observation xn prior

to binary quantization to reduce the worst case performance.

• identical-binary-probabilistic: This is the absolute generalization of the binary

threshold and dithering quantizers. The quantizer is defined by the function

γn(xn) = P (mn = 1|xn) defined on the domain of the observation. Design of

binary-probabilistic quantizers is more difficult than the threshold quantizers be-

cause this involves finding the function γn(·) rather than a threshold τn. Owing to

this difficulty, research so far has only been able to address zero-noise and identical

quantizer scenarios.

• binary-equispaced : Each sensor performs binary quantization with different thresholds

τn. These threshold values are uniformly spaced in the range of the observation, which

is considered known.
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• multi-level : A multi(L)-level quantizer is of the form

mn = γn(xn) =



1 τn,1 ≤ xn

2 τn,2 ≤ xn < τn,1

· · · · · · · · ·

L xn < τn,(L−1)

, (2.2)

As mentioned earlier, if L is large enough, having identical quantizers (τn,l = τl,∀l)

does not adversely affect the performance. Hence multiple threshold quantizers are

almost always assumed to be identical in most problem formulations.

• uniform-probabilistic: This refers to the case of non-identical multi-level quantizers

with Ln = 2bn levels with uniform spacing between the thresholds. If observation

xn is assumed to be bounded to a finite interval [−U,U ], the quantization points

τn,l ∈ [−U,U ], l = 1, . . . , 2bn are uniformly spaced such that τn,l− τn,(l+1) = 2U/(2bn−

1) , ∆n. Suppose that xn ∈ [τn,(l+1), τn,l). Then xn is dither-quantized to either

τn,(l+1) or τn,l according to

P (mn = τn,(l+1)) = q, P (mn = τn,l) = 1− q, (2.3)

where mn is the resulting message and q = (τn,l − xn)/∆n.

2.3.3 Modulation for digital communication

There are usually two main choices to make while implementing a modulation scheme for

digital communication - where to embed the information in the carrier signal (amplitude,

phase or frequency) and what is the constellation size (2bn , bn ≥ 1) [31]. Though frequency-

based schemes have better resistance to channel impairments like fading and interference,

amplitude/phase-based schemes are more bandwidth efficient. Also, modulations with large

constellations have higher data rate for a given signal bandwidth, but are more susceptible

to noise, fading and hardware imperfections. In Table 2.1, BPSK refers to the binary phase
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shift keying scheme and MQAM refers to the quadrature amplitude modulation with M

points in the signal constellation.

• variable-const: For an observation xn quantized using bn bits with bn ≥ 2, sensor n

can choose to transmit all bn bits in one symbol or choose to transmit bn/b0 separate

symbols, each consisting of b0 bits. Since the sensors can have potentially different

values of bn, the former case will be referred to as the variable-const strategy.

• fixed-const: On the other hand, if all the sensors choose to transmit with some

pre-agreed b0, we call it the fixed-const strategy. In such a case, the bit-allocation

problem and power-allocation problem are the same.

2.3.4 Channel models

The digital information is transmitted to the FC over a communication channel using Pn

units of power through a modulation scheme. The carrier-based modulation-demodulation

process is often abstracted out while analyzing the error performance. For additive-white-

gaussian (AWGN) channel, the error is represented as Gaussian noise vn that is independent

across time and space (sensors) and added to the unmodulated signal (in its constellation-

form) zn. For example, in binary pulse-amplitude-modulation (BPAM ) or binary phase-

shift-keying (BPSK ), the received signal is modeled as yn = zn + vn,zn ∈ {−
√
Pn,
√
Pn}

and vn ∼ N (0, ξ2
n) where ξ2

n is related to the power spectral density of the underlying

noise process. Sometimes the modulated signal incurs a path-loss before reaching the

receiver. The effective power reaching the FC is often modeled as gnPn, where gn is the

channel gain. The channel-gain gn may be known either completely or only through some

statistical models. The design of optimum receivers and their error-analysis depends on

the the nature of channel and type of modulation. Extensive studies have been done on

these aspects for the additive Gaussian Noise channel and Rayleigh fading channel [72, 31].

• path-loss: In case of static channels gn > 0 may be estimated before use and may

be assumed to be known. In a spatial setting, an often used model for path-loss is
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gn = d−κn where dn is the distance of sensor n from the fusion center and κ is a known

path-loss exponent, approximately in the range κ ∈ [2, 5].

• Rayleigh: In case of slow-fading channels, the gain gn is modeled as a random variable.

For Rayleigh-fading channels, gn is modeled as an exponential distribution with mean

µg. P (gn = g) = 1
µg

exp(−g/µg), g ∈ [0,∞).

• identical-AWGN: The noise process for all the channels are identical. ξ2
n = ξ2,∀n.

• MAC-AWGN: Sometimes in analog communication and also in digital communica-

tion scenario where sensors coherently uses the same channel, the received signal is

modeled as y =
∑N

n=1

√
gnzn + v, where the additive noise v is Gaussian distributed.

v ∼ N (0, ξ2).

2.3.5 Fusion-rules and distortion metrics

The fusion center usually has access to received values yn, which are the quantized and

noisy versions of the original observation xn. To estimate the parameter θ̂ from y =

[y1, y2, . . . , yn], we need to know how the statistics of y (pdf, mean, covariance, etc.) relate

to the parameter of interest θ. Depending on the amount of information about θ contained

in y and the amount of computation that can be carried out in a realistic time-frame, the

FC chooses to implement a particular fusion rule (or estimator). The topic of estimation

theory is extensively discussed in the textbooks [49, 81].

• MLE: If θ is a deterministic but unknown variable and the received signal vector has

pdf y ∼ p(y; θ), the maximum-likelihood estimator (MLE) is defined as

θ̂ML , arg max
θ
p(y; θ). (2.4)
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MLE, if unique, is asymptotically unbiased and attains the Cramer-Rao Lower Bound

(CRB), which is the inverse of the Fisher information of θ in y.

Ey;θ(θ̂ML − θ)2) ≥ J−1
F (θ) , CRB,where

JF = −Ey;θ

{
∇θ [∇θp(y; θ)]T

}
.

(2.5)

For example, if y ∼ N (Hθ,Σ), then

JF = HTΣ−1H , and

θ̂ML = J−1
F H

TΣ−1y.

(2.6)

• BLUE: If θ is a deterministic unknown random variable and the mean and covariance-

matrix of the received signal vector is known to be µy(θ) and Σyy(θ), then the best-

linear-unbiased estimator (BLUE) can be thought of as the MLE of θ, had y actually

followed a Gaussian distribution with the above mean and covariance. In general,

BLUE may be quite suboptimal compared to MLE, but it can often be convenient to

use and is easily computed. Of course, if the original pdf of y is Gaussian, then MLE

and BLUE are identical and optimal.

• MMSE: If θ is an unknown random variable and combined with the received signal

vector, the random vector [θ,y] has joint-pdf p(y, θ), the minimum-mean-square esti-

mator (MMSE) minimizes the Bayes risk for a quadratic cost function and is defined

as

θ̂MSE , E(θ|y) =

∫
θp(θ|y) dθ. (2.7)

The performance of the MMSE estimator can be bounded by the Bayesian Cramér-

Rao bound (BCRB), which is the inverse of the sum of prior and expected Fisher
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information,

Ey,θ((θ̂MSE − θ)2) ≥ J−1
B , BCRB, where

JB = JP + JD, and

JP = −Eθ
{
∇θ [∇θp(θ)]

T
}
,

JD = −Eθ
{
Ey|θ

{
∇θ [∇θp(y|θ)]T

}}
.

(2.8)

For example, if θ ∼ N (θ0, η
2) and y|θ ∼ N (Hθ,Σ), then

JP = η−2,

JD = HTΣ−1H , and

θ̂MSE = θ0 + J−1
B H

TΣ−1(y −Hθ0).

(2.9)

• LMMSE: If θ is an unknown random variable and the mean and covariance-matrix

of the vector [θ,y] are known, then the linear-minimum-mean-square estimator

(LMMSE) can be thought of as the MMSE estimator of θ, had [θ,y] actually

followed a Gaussian distribution with the above mean and covariance. As with

BLUE, in general, LMMSE may often be quite suboptimal compared to MMSE, but

it is often convenient to use because of computational ease. Of course, if the original

pdf of [θ,y] is Gaussian, then MMSE and LMMSE are identical and optimal.

Sometimes, for problems when the MLE (for deterministic θ) or MMSE (for random

θ) estimator is difficult to compute and the performance of BLUE or LMMSE estimator

is not satisfactory, estimators are derived based on comparing one or more easily available

summary-statistics of y. This is a rather broad class of estimators and sometimes called

moment-based estimators.

Sometimes when θ is deterministic and unknown, after quantization, the covariance-

matrix of m may depend on the actual value of θ and hence evaluation of BLUE estimator

becomes difficult. In those cases, a new covariance matrix is formed where each entry in

the covariance matrix is replaced by the maximum possible value in the domain of θ. The
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BLUE corresponding to the actual mean and this new covariance matrix will be called

max-quant-BLUE estimator. The BLUE corresponding to the actual mean of y and the

covariance of the full-precision observations x will be called unquantized-BLUE estimator.

2.4 Major contributions

Having described the background on distributed estimation research, it is worthwhile to put

in perspective our contributions on this topic that are presented in this thesis. Chapters

3 and 7 describe our contributions on distributed estimation. While Chapter 3 focuses

on the design of identical binary quantizers for range-limited signal estimation, Chapter 7

provides the performance analysis for polynomial signal estimation using drift-corrupted

(and possibly quantized) sensor data.

Our contributions on the collaborative estimation problem (which will be formalized

later) appear in Chapters 4, 5 and 6. While Chapter 4 addresses the problem of bit-

allocation in a digital communication based framework, Chapters 5 and 6 deal with en-

ergy/power allocation in an analog amplify-and-forward communication framework. In

Chapter 5, we consider a single-snapshot estimation problem where the goal is to estimate

a static parameter based on observations at only one particular instant. In Chapter 6, we

consider a time-varying signal estimation problem where the goal is to estimate a random

process (rather than a parameter) based on observations obtained over a period of time.

The aforementioned major contributions are summarized in Table 2.2.
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Chapter 3

Quantizer design for distributed

estimation

3.1 Introduction

In this chapter, we address the problem of identical binary-probabilistic quantizer design

for distributed estimation. We consider a distributed estimation problem with N sensors

collecting noisy observations of an unknown but fixed scalar parameter θ such that the

local sensor observations X = [X1, X2, . . . XN ]′ are independent and identically distributed

(i.i.d.), i.e., f(X, θ) =
∏N

n=1 f(Xn, θ), where f(X, θ) and f(Xn, θ) are known probability

density functions (pdf). One example of such a model is the location estimation problem

with additive noise,

Xn = θ + εn, 1 ≤ n ≤ N, (3.1)

where the noise samples ε = [ε1, ε2, . . . εN ]′ are zero-mean, additive, independent, and identi-

cally distributed with symmetric pdf f(w) and variance σ2. In many practical applications,

the dynamic range of θ is often assumed to be known, such that θ ∈ [θ0−∆, θ0 + ∆] where

θ0 and ∆ are known constants. Without loss of generality, we assume θ0 = 0 and ∆ = 1

and confine our attention to θ ∈ [−1, 1] in the rest of this chapter.
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As an application of this problem, one can consider an environmental monitoring system

consisting of a central base station communicating with multiple thermal sensors with

limited energy deployed over a region in a dense manner, so that they are more-or-less

recording the same temperature at any given time. The redundancy in the number of

sensors serves to increase robustness of the network, share the power resources and increase

the lifetime of the monitoring system. The objective of the sensor network is to monitor the

temperature in the region throughout the day, though the diurnal temperature variation

(say 10− 40◦C) is roughly known. The system diagram is provided in Figure 3.1.
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Fusion 
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Figure 3.1: System diagram of identical binary quantization based distributed estimation.

3.1.1 Identical one-bit quantizers

Since the channel capacity of links between sensors and the fusion center and the energy

resources for transmission in the battery-powered sensor nodes can be severely limited,

we assume that each sensor performs a binary quantization and transmits only one-bit of

information to the FC. With an appeal to symmetry, each sensor is designed to employ an

identical quantization rule.
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A one-bit quantizer can be defined as a mapping from the observation space R to a

symbol set of size 2, say {S0,S1}. Such a mapping can be expressed in two forms. In the

often used function-form description, a quantizer explicitly maps its input Xn to the output

Yn through a function ϕ : R → {S0,S1}. For example, the function-form description of a

zero-threshold quantizer is

Yn = ϕT (Xn) ,

 S1, Xn ≥ 0

S0, Xn < 0
, ∀n. (3.2)

Alternatively, in the probability-form description, a quantizer is defined as the conditional

probability γ : R → [0, 1] of the output being a particular symbol (say S1) given an input

Xn,

γ(Xn) , P (Yn = S1|Xn),∀n. (3.3)

For example, the equivalent probability-form description of the zero-threshold quantizer

(3.2) is

γT (Xn) ,

 1, Xn ≥ 0

0, Xn < 0
, ∀n, (3.4)

which we will refer to as the Threshold Quantizer. In this chapter, we will use the

probability-form description (3.3) for analysis and subsequent design of quantizers. Here

by allowing γ to take any value between 0 and 1, we consider all possible local quantiza-

tion rules [10], i.e., the quantization rule can be either deterministic (e.g., single threshold

quantizer [73],[89]) or probabilistic (e.g., dithered quantizer, i.e., some noise added to the

signal before quantization [33],[69]).
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3.1.2 Error-free reception

In this chapter, we assume that the stringent source-rate constraint (1-bit per observation)

frees up resources so that adequate channel-coding is undertaken to counter noise/fading

phenomena in the communication channel. As a result, the compressed information in Y =

[Y1, Y2, . . . , YN ] is assumed to be obtained in a lossless fashion at the FC, an assumption that

is consistent with several previous research contributions on this topic [73, 58]. However, in

the more general scenario, absence of sufficient resources for adequate channel-coding may

result in lossy transmission of Y - an issue also considered by several researchers [3, 94].

The results in this chapter can be extended to the noisy channel scenario.

3.1.3 Performance metric

The goal of the fusion center is to use the quantized observations and obtain an estimate

of the location parameter θ̂ using an estimator h(Y , γ). The problem setup is summarized

below by the Markov chain,

θ
f(w)→ X

γ→ Y
h→ θ̂. (3.5)

Let θ̂ be an unbiased estimator of θ. It is well known that the variance of any unbiased

estimator is lower bounded by the Crameŕ-Rao lower bound (CRB) and that the CRB is

asymptotically achieved by using the Maximum-Likelihood (ML) estimator (see [49]). Let

g(θ) denote the probability that the quantizer output is S1 when the original parameter is

θ,

g(θ) = P (Yn = S1|θ) = Eεn(γ(θ + εn))

=

∫ ∞
−∞

γ(x)f(x− θ) dx. (3.6)
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Then the sample mean Y = 1
N

∑N
i=1 Yi is the ML-estimate of g(θ) and from the functional

invariance property, we have

θ̂ML = g−1(Y ). (3.7)

For N independent observations, the variance of θ̂ML satisfies

E{(θ − θ̂)2} ≥ 1

N

1

I(θ)
,

1

N
CRB(θ, γ, f), (3.8)

where I(θ) = −EW [∇2
θ ln p(Y1; θ)] is the Fisher Information (FI) for one sensor output and

the equality can be achieved asymptotically [89]. In case of binary quantization, FI can be

expressed as (see [10]),

I(θ) =
(g′(θ))2

g(θ)(1− g(θ))
. (3.9)

In general, CRB(θ, γ; f) is a function of the unknown parameter θ, i.e., the quantizer γ

may result in a high CRB for one θ and a low CRB for another. To ensure accurate esti-

mation over the entire parameter range, we use the maximum possible estimation variance

or the maximum-CRB

φ(γ, f) = sup
θ∈(−1,1)

CRB(θ, γ, f), (3.10)

as our performance metric.

Although it is relatively easy to obtain φ(γ, f) for a given noise probability distribution

function f(.) and quantization rule γ, the problem of determining

φ(f) = inf
γ

sup
θ∈(−1,1)

CRB(θ, γ, f) (3.11)
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has been shown to be extremely difficult and remains unsolved [10],[89]. We refer to the

minimizer of (3.11) as the minimax-CRB quantizer. Our goal in this chapter is to design

minimax-CRB quantizers for arbitrary noise densities.

3.1.4 Previous work

The problem of quantizer design for minimax-CRB criterion has been addressed only in

terms of some scattered results till now. It is well known that the Threshold Quantizer

(γT , see (3.4)), though widely used in the literature [73],[89], is unsuitable for high-SNR

situations because the maximum value of CRB, typically occurring at boundaries, may

exponentially increase with decreasing variance σ2 [69]. This problem is often addressed by

adding some additional noise (dithering) to the observation prior to threshold-quantization.

We refer to this as a Dithering Quantizer (γD). Dithering is often necessary only in the

high-SNR situations, when the noise variance is below a critical magnitude, say σ2
F . The

critical variance depends on the shape of the noise pdf and is determined by [69]

σF = arg inf
σ
φ(γT , f(σ2)). (3.12)

By design, the Dithering Quantizer has the limitation that the maximum-CRB actually

flattens out (does not decrease) below the critical variance, e.g., for Gaussian noise it was

shown in [69] that σF ≈ 2/π.

Zero-noise performance limit and Sine Quantizer (γ0): The performance limit of φ(f)

for the noiseless situation, i.e., when f(w) = δ(w), was derived in [10]. For such a scenario,

the optimum minimax-CRB quantizer and the corresponding performance were shown to
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be

γ0(x) ,


1, x > 1

1
2

(
1 + sin πx

2

)
, x ∈ [−1, 1]

0, x < −1

, and (3.13)

φ0 ,
4

π2
≈ 0.4. (3.14)

It must be noted here that analogous performance limits for finite-variance noise den-

sities are extremely challenging and their derivation remains an open problem. While the

quantizer given by (3.13) is insightful, it has limited applicability due to two reasons, (1)

the noiseless scenario can only approximate high-SNR cases and (2) even for high-SNR

cases, γ0 may be far from satisfying the minimax property, as we shall show later in this

chapter.

In this chapter, we make some significant contributions towards the study of minimax-

CRB quantizer design. We define antisymmetric quantizers and restrict our attention

within that class. We determine certain conditions under which the shape of the optimal

quantizer is greatly simplified, thereby enabling efficient implementation. We then identify

a class of noise distributions for which the Threshold Quantizer is optimal. Lastly for other

noise distributions, aided by some theoretical insights, we propose a class of piecewise-

linear quantizers and formulate the quantizer design problem as one of numerical minimax

optimization. The resulting quantizer is shown to perform significantly better compared to

all three existing quantizers - namely the Threshold, Dithering and Sine quantizers.

3.2 Main results

Before presenting the results, we provide some definitions that will be needed for the

subsequent discussion.

Definition 3.2.1. A quantizer γ(x) is admissible if the resulting conditional probability

distribution g(θ) is monotonically increasing in θ ∈ (−1, 1).
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The monotonic property is desirable since it ensures that g−1(·) exists so the ML-

estimator (3.7) is well-defined. The increasing property is without loss of generality, since,

corresponding to every γ(x), there is another valid quantizer γ(x) , 1 − γ(x) such that

g(θ) ,
∫∞
−∞ γ(x)f(x − θ) dx = 1 − g(θ). This reverses the increasing/decreasing property

and yet has the same maximum-CRB, since by (3.9), CRB(θ, γ, f) = CRB(θ, γ, f). Hence

it is sufficient that, in pursuit of a minimax-CRB quantizer, we restrict our attention to

admissible quantizers. Alternatively, throughout the rest of the chapter, any reference to

a minimax-CRB quantizer will imply that it is admissible.

Definition 3.2.2. A quantizer γ(x) is antisymmetric if

γ(x) + γ(−x) = 1, ∀x. (3.15)

It may be noted here that traditional quantizers like the Threshold, Dithering, and Sine

quantizers are antisymmetric. It is easy to see that antisymmetric property of γ(x) together

with the assumption of symmetric noise pdf f(w) implies that g(θ) is also antisymmetric,

i.e., g(θ) = 1− g(−θ). This further means that,

CRB(θ, γ; f) = CRB(−θ, γ; f), (3.16)

which implies that we can reduce the interval of interest in (3.10) by a factor of half, i.e.,

either θ ∈ (−1, 0] or θ ∈ [0, 1) is sufficient for analysis.

We note here that for an antisymmetric quantizer with symmetric noise pdf, g(θ) can

be simplified as,

g(θ) = F (θ) +

∫ 0

−∞
γ(x)ξ(θ, x) dx, where (3.17)

ξ(θ, x) , f(x− θ)− f(x+ θ), (3.18)

and F (θ) ,
∫ θ
−∞ f(w) dw is the distribution function.
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Definition 3.2.3. We call a quantizer γ1(x) dominant over another quantizer γ2(x) if

CRB(θ, γ1; f) ≤ CRB(θ, γ2; f), ∀θ ∈ (−1, 1). (3.19)

Clearly, a dominant quantizer is better in terms of performance, since it ensures a lesser

maximum-CRB, i.e., φ(γ1, f) ≤ φ(γ2, f). As a passing remark, it may be pointed here that

the reverse is not necessarily true, i.e., lesser maximum-CRB does not necessarily imply

dominance.

Definition 3.2.4. A probability density function f(w) is unimodal if it has only one max-

ima (at w = w0, say), i.e., f ′(w) > 0, for w ∈ (−∞, w0) and f ′(w) < 0, for w ∈ (w0,∞).

For example, commonly used Gaussian and Laplacian noise densities are unimodal.

In certain cases, the support of a minimax-CRB quantizer can be highly restricted.

Lemma 3.2.5 lays out such a scenario.

Lemma 3.2.5. (Restricting the domain:) Assume the noise density f(w) to be zero-mean,

symmetric and unimodal. Then an antisymmetric minimax-CRB quantizer is at most unit-

support in the negative semi-axis, i.e.,

γ(x) = 0 for x < −1. (3.20)

To establish Lemma 3.2.5 we show that, for any antisymmetric γ(x), there exists a

unit-support quantizer γ̃(x) (namely, the trivially truncated quantizer),

γ̃(x) ,


1, x > 1

γ(x), x ∈ [−1, 1]

0, x < −1

, (3.21)

that is both antisymmetric and dominant over γ(x). The full proof is provided in Appendix

A.1.
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The unit-support property helps make the quantizer structure simpler, which will be

key in a subsequent theoretical result as well as our numerical design in Section 3.3. We

note here that for an antisymmetric unit-support quantizer with symmetric noise pdf, g(θ)

and g′(θ) can be simplified as,

g(θ) = F (θ) +

∫ 0

−1

γ(x)ξ(θ, x) dx, and (3.22)

g′(θ) = f(θ) +
d

dθ

{∫ 0

−1

γ(x)ξ(θ, x) dx

}
. (3.23)

In certain cases, the Threshold Quantizer (γT ) is also the minimax-CRB quantizer, an

example of which is provided in Theorem 3.2.6.

Theorem 3.2.6. (Optimality of Threshold Quantizer:) Assume the noise density f(w) to

be zero-mean, symmetric, unimodal and such that

f ′(w − z) + f ′(w + z) ≤ 0, for w ∈ [0, 1], z ∈ [0, 1]. (3.24)

Then, the Threshold Quantizer is dominant over all possible antisymmetric quantizers.

The proof of Theorem 3.2.6 is given in Appendix A.2. This is an important result, since

condition (3.24) is satisfied for a wide family of noise densities, including the following

example.

Example 3.2.7. Gaussian density: For Gaussian density with variance σ2, it is easy to

see that condition (3.24) holds for σ2 ≥ 1 (derivation in Appendix A.3). Therefore, for

Gaussian noise with variance σ2 ≥ 1, no probabilistic quantizer (within the antisymmetric

class) can decrease the maximum-CRB beyond the Threshold Quantizer.

We end this section by pointing out a deficiency of the Sine Quantizer that we alluded

to in the introduction. We show that the CRB at the boundaries (θ = ±1) for vanishingly

small variance (σ2 → 0) is more than twice of that predicted for the noiseless case. The

exact degree of sub-optimality depends on the shape of the noise density and is summarized

in Proposition 3.2.8 below.
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Laplacian Gaussian Noiseless case
16/π2 ≈ 1.62 4/π ≈ 1.27 4/π2 ≈ 0.41

Table 3.1: Lower bound on maximum-CRB using Sine Quantizers.

Proposition 3.2.8. (High-SNR sub-optimality of Sine Quantizer.) Let f(w;σ2) denote a

family of zero-mean, symmetric noise densities with σ2 signifying the variance. Assume

that the moment condition σ−4
∫∞
−∞w

4f(w;σ2) dw <∞ is satisfied. Then,

lim
σ2→0

φ(γ0, f(w;σ2)) ≥ lim
σ2→0

CRB(±1, γ0; f(w;σ2)) (3.25)

=
4

π2

1

2µ2
1

(3.26)

>
8

π2
, (3.27)

where µ1 is the normalized one-sided mean, µ1 , σ−1
∫∞

0
wf(w;σ2) dw.

The proof of Proposition 3.2.8 is provided in Appendix A.4. The bound 8
π2 in Propo-

sition 3.2.8 can be compared directly with the theoretical limit 4
π2 (3.14) to note that it

is twice as large. For illustration, the specific limit in (3.26) for Gaussian and Laplacian

pdf is tabulated in Table 3.1 (derivation in Appendix A.5). We will further substantiate

these results numerically in Section 3.4. In terms of a low-noise sensing application with

a pre-specified allowable distortion, Proposition 3.2.8 quantifies the scope of improvement

over Sine Quantizer - by a judicious design of quantizer (detailed subsequently in Section

3.3), we can potentially reduce the required number of sensors to half.

Proposition 3.2.8 highlights the sub-optimality of the Sine Quantizer, which necessitates

an alternative quantizer design in the high-SNR regime. Even in the moderate-SNR regime,

in the absence of concrete analytical results for finite variance scenarios, it is not clear how

one should design efficient minimax-CRB quantizers. In the following section, we describe

a quantizer design method through direct numerical optimization.
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3.3 Design of antisymmetric minimax-CRB quantizer

A general probabilistic quantizer γ(x) is any function that maps (−∞,∞) → [0, 1]. But

numerical search within such a functional space is extremely difficult and hence we make

some additional assumptions.

First, the proposed quantizer γP (x) is assumed to be antisymmetric, and the noise

density is assumed to be symmetric. From Lemma 3.2.5, this also means that it is unit-

support. To further simplify the structure, we assume that γP (x) is piecewise linear. Hence,

we divide the support interval [−1, 0] into several equally spaced intervals. We choose the

observation grid-size ∆x or the number of grid intervals K so that K∆x = 1. Define a0 ≡ 0

and for k = 1, 2, . . . , K, the following,

Dk , [xk−1, xk], where xi = −(K − i)∆x

γP (x) = ak−1 +mk(x− xk−1), for x ∈ Dk, and

ak = ak−1 +mk∆x,

(3.28)

where m1,m2, . . . ,mK are the slopes that need to be chosen.

Notation: Henceforth, we will refer to the quantizer γP (x) as the Antisymmetric Unit-

support Piecewise-Linear (AUPL) quantizer. The AUPL quantizer is entirely specified in

terms of the slope vector m.

Objective Function: We characterize the objective function in terms of m. For the

piecewise linear quantizer γP , the expressions (3.22) and (3.23) reduce to linear functions
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of m, i.e.,

g(θ) = [a(θ)]Tm+ F (θ), and

g′(θ) = [c(θ)]Tm+ f(θ), where

a(θ) = Jq(θ) + r(θ),

c(θ) = Jq′(θ) + r′(θ),

J ,



K 1 · · · 1

0 K − 1 · · · 1

...
. . .

. . .
...

0 0 · · · 1


,

[q(θ)]k = ∆x

∫
Dk
ξ(θ, x) dx, and

[r(θ)]k =

∫
Dk
xξ(θ, x) dx, k = 1, 2, . . . , K.

(3.29)

Next, we discretize the parameter set. We note that the region of interest is only

θ ∈ [−1, 0], with the other half taken care of through symmetry. We choose the parameter

grid size ∆θ or the number of grid partitions L so that L∆θ = 1. Let the discrete points

be defined as

θl = − l

L
, for l = 0, 1, . . . , L (3.30)

Next, the maximum-CRB due to quantizer γP (see (3.10)) is approximated as

φ(m, f) = max
l

(aTl m+ Fl)(1− aTl m− Fl)
(cTl m+ fl)2

, (3.31)

where al , a(θl), cl , c(θl), Fl , F (θl) and fl , f(θl). In Equation (3.31), φ(·, f) is our

objective function with m as the variable.

Constraints: We identify two constraints. Firstly, the slopes mk must be chosen so that

the probability values for all observations x satisfy γP (x) ∈ [0, 1]. Since γP is piecewise
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linear, this is ensured by placing inequality constraints at the boundary points. From

(3.28), we obtain γP (xk) = ∆x

∑k
j=1mj = 1

K

∑k
j=1mj. Hence the probability constraint

at point xk can be expressed as 0 ≤ ∑k
j=1mj ≤ K, for k = 1, 2, . . . , K. Secondly, from

the antisymmetric property, assuming that γP (x) is continuous at 0, we have γP (0+) =

γP (0−) = 1/2, and hence we need to ensure that γP (0) = γP (xK) = 1/2, or equivalently,∑K
j=1mj = K/2.

Optimization Problem: Finally, the minimax-CRB quantizer φ(f) defined by (3.11)

can be obtained as a solution to the following optimization problem in RK ,

minimize
m

φ(m, f),

s.t.

−L
L

m ≤
 0

KiK

 , and

(iK)Tm = K/2, where

(3.32)

L ,



1 0 · · · 0

1 1
. . . 0

...
...

. . .
...

1 1 · · · 1


, and iK ,



1

1

...

1


. (3.33)

Implementation Notes: It may be noted that al, cl, Fl, fl in φ(m, f) (see (3.31)) are

all constants and may be pre-computed before running the optimizer. Also, once the noise

pdf is known, the optimum quantizer γP can be computed offline and programmed into

the sensor nodes. Choice of K and L essentially provides a tradeoff between discretization

artifacts and numerical complexity. From numerical experiments, K = L ≈ d10/σe was

found to yield sufficiently convergent results. The problem given by (3.32) is not known

to be convex (to the best of author’s knowledge) and hence we require multiple and good

starting pointsm0 to obtain a satisfactory solution. In our implementation, we have chosen
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two starting points for m0, namely the closest AUPL counterparts for the Threshold and

Sine quantizers. We have used the MATLAB function FMINCON for optimization.

3.4 Illustrative examples

We illustrate some of the key ideas in this chapter through numerical results.
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Figure 3.2: Minimum Fisher information (φ(γ, f)−1) for Threshold, Sine, Dithering and
AUPL quantizers for (a) Laplacian and (b) Gaussian noise.

Sub-optimality of Sine Quantizer: In Proposition 3.2.8, we showed that the Sine

Quantizer given by (3.13), though optimum for zero-noise, is significantly sub-optimal

when σ is small but finite (high-SNR). The results displayed in Figure 3.2 illustrate this

phenomena. We display the minimum Fisher Information (inverse of Crameŕ-Rao bound)

of the Sine Quantizer. As illustrative noise pdf-s, we consider Gaussian and Laplacian

densities over a wide range of variance (0.05 ≤ σ ≤ 8). The dotted line showing φ−1
0 = π2/4

is the zero-noise limit. The dash-dotted lines corresponding to π2/16 and π/4, which are

significantly less than the zero-noise limit, denote the performance of the Sine Quantizer.

These results are consistent with the limits described in Table I.
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Performance of AUPL quantizer: In Figure 3.2, we have also compared the AUPL

quantizer γP with the Threshold γT , Dithering γD and Sine γ0 quantizers. The critical

standard deviation for Dithering Quantizer corresponds to the maxima of the performance

of γT (recall (3.12)). In Figure 3.2, γD corresponds to the unbroken horizontal lines con-

nected to the maxima of γT performance curves. These critical variances are seen to

approximately σL ≈ 0.79 and σN ≈ 0.63 for Laplacian and Gaussian noise respectively. We

observe that the AUPL quantizer performs better than all three existing quantizers, and

considerably so in the moderate to high-SNR regime.

Minimax-optimality of Threshold Quantizer: We showed in Example 3.2.7 that for

Gaussian density with σ ≥ 1, the Threshold Quantizer is also the antisymmetric minimax-

CRB quantizer. We verify in Figure 3.2-(b) that the performance curves for AUPL and

Threshold quantizers coincide for σ ≥ 1. In fact, they seem to coincide somewhat earlier,

around σ ≥ 0.7. This is because dominance (see Theorem 3.2.6) is only a sufficient condition

for minimax-CRB superiority. It may also be noted that no such coincidence is observed

for the Laplacian case (Figure 3.2-(a)). Since the Laplacian density is not differentiable at

the origin, Theorem 3.2.6 does not apply in this case.

Shape of AUPL quantizer: We display the shape of AUPL quantizer γP (x) and cor-

responding g(θ) for various noise pdf-s in Figures 3.3 and 3.4 respectively. We consider

Laplacian and Gaussian pdf-s for small (σ = 0.05), medium (σ = 0.2) and large (σ = 0.7)

variances. We note that for Gaussian noise, the AUPL quantizer displays a damped oscillat-

ing behavior, where the bumps get smaller but more in number, with decreasing variance.

In the limit of small σ, the AUPL quantizer is seen to approach the shape of the Sine Quan-

tizer, though not exactly. In the limit of large σ, for the Gaussian case, the AUPL quantizer

is seen to approach the shape of the Threshold Quantizer. Figure 3.3 also shows that γP

need not be monotonic. This is in contrast with commonly used Threshold, Dithering and

Sine quantizers, all of which are monotonic. The AUPL quantizer relaxes this assumption

and allows for non-monotone functions. The overall quantizer probability g(θ), however,

40



has to be monotonically increasing in θ ∈ (−1, 1) to satisfy the admissibility property (see

Definition 3.2.1). This can be verified in Figure 3.4.
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Figure 3.3: Designed probability γP (x) = P (Y = S1|x) for AUPL quantizer.

3.5 Summary

In this chapter, we studied the design of identical binary quantizers for distributed estima-

tion using minimax Crameŕ-Rao lower bound as the performance criterion. Among other

theoretical results, we have specified a broad family of distributions for which the Thresh-

old Quantizer is optimal. Aided with some theoretical results, we formulated a numerical

optimization problem to obtain the minimax-CRB quantizer within the antisymmetric and

piecewise-linear class. We demonstrated the superior performance of the AUPL quantizer

for a wide range of noise density functions. Though AUPL quantizers can demonstra-

bly achieve better performance, they have some drawbacks that deserve mention. Firstly,

AUPL quantizers are more difficult to implement because of the numerical complexity in-

volved in the design process. Traditional quantizers like Sine, Threshold and Dithering
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Figure 3.4: Overall probability g(θ) = EW (γP (θ +W )) for AUPL quantizer.

quantizers are relatively simpler to design. Secondly, since AUPL quantizer is tailored

to a particular noise density, it may not be suitable for applications where the ambient

noise changes frequently. Lastly, the AUPL quantizer in Section 3.3 was derived under the

assumption of noiseless channels. Extension of AUPL quantizer to noisy communication

channels merits further investigation.
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Chapter 4

Bit allocation for collaborative

estimation using spatial whitening

4.1 Introduction

In this chapter, we demonstrate how spatial collaboration can result in more efficient re-

source allocation for estimation applications. Wireless sensor networks consist of spatially

distributed noisy sensors that cooperatively monitor environmental conditions. Since the

individual sensor nodes are characterized by limited energy, bandwidth and computational

capability, the task of the fusion center (FC) is to make accurate inference about the

phenomenon by requesting as little information from the sensor nodes as possible [73]. De-

pending on the particular application and set of constraints, the FC often has to adopt

smart strategies to collect and process data [87]. While the design of optimum strategies

in some cases is relatively easy under the assumption of conditional independence1 across

sensors, it is well known that the design gets harder and sometimes the optimum strat-

egy is intractable when correlation has to be taken into account [51]. In particular, when

the sensors are geographically close, they are expected to possess significant correlation

among themselves and the optimum strategies derived for the independent case will no

1Here, ‘independence’ refers to the statistical independence of sensor data conditioned on the parameter
of interest. For additive Gaussian observation noise, this is equivalent to the covariance matrix of noise being
diagonal. The observations are still marginally dependent, since they are observing the same parameter.
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longer be optimal. In this chapter, we introduce a framework called spatial whitening (to

be formalized later) to deal with this problem.

Our framework stems from this idea: If two sensors in a network are highly correlated,

they are also likely to be spatially close, which means that they should be able to com-

municate and exchange information among themselves in a relatively inexpensive manner

(avoiding routing overheads and long distance communications). Each sensor in the net-

work can now use the information from neighboring nodes to achieve a local whitening

transformation. If each of such local transformations can be coordinated, one can aim to

achieve global whitening, and the transformed observations can then be transmitted to the

FC using optimum encoding strategies (for inference, resource allocation, etc) that were

derived for conditionally independent scenarios. Hence, this two-stage (whitening followed

by encoding) framework potentially enables the use of several earlier known results in the

presence of correlated noise.

We introduce the log-determinant divergence based formulation of spatial whitening in

Section 4.2. To illustrate the potential usage of this framework, we employ the problem of

distributed parameter estimation [73], where several sensor nodes quantize their individual

observations before sending them to FC. The goal is to minimize the expected distortion of

the estimated parameter subject to a constraint on the total number of bits transmitted to

the FC. We demonstrate that an optimal strategy for bit allocation (derived for independent

scenario [51]) delivers increasingly better performance with increasing degree of whitening.

The whitening transformation described in this chapter requires local message passing

which is certainly not without cost. However, in this chapter, we assign no cost to whitening,

acknowledging fully that any actual implementation of a system would have to consider

the tradeoff between the benefits of whitening and the cost of it. Investigations on this

tradeoff is a worthy topic for future research.

The concept of whitening, in general, has mostly been addressed in a global framework

till now. It is well known that the Karhunen-Loève Transform (KLT) [29] (also referred

to as Principal Components Analysis, PCA or Singular Value Decomposition, SVD) of a
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random vector with covariance matrix Σ = UΛUT provides the unique whitening trans-

formation (UT ) that is also orthogonal. However, PCA is ill suited for our problem, since

those whitening transformations are not local, while the orthogonality property serves no

additional purpose. The Cholesky decomposition Σ = LLT , which provides the unique

lower triangular whitening transformation (L−1), also requires non-local transformations.

Moreover, the lower-triangular property imposes a tree-type dependence structure while in

fact there is no natural ordering of spatially correlated data [100]. Other sparsity-inducing

decompositions like Sparse-PCA [101] and vector Sparse-PCA [83] are exploratory2 in na-

ture, which means that the resulting transformations are not guaranteed to be local. In

[88], a hardware-friendly technique was proposed to achieve generic spatial whitening trans-

formations that were also global in scope. In distributed-KLT [29], individual nodes ob-

serve non-overlapping portions of a random vector and perform dimensionality-reduction

(without collaboration with neighbors) for optimum reconstruction at the FC. Our pri-

mary contribution in this chapter is the formulation of a whitening framework that uses

local communications among sensors and hence can be potentially used in sensor network

scenarios.

4.2 Problem statement

In Figure 4.1, we consider N sensors in a network that is observing an unknown, determin-

istic, scalar parameter of interest θ in the presence of zero-mean, correlated Gaussian noise

with covariance Σ. Hence, the sensor observations x = [x1, x2, . . . , xN ] follow

x ∼ N (1θ,Σ), 1 , [1 · · · 1]T ∈ RN . (4.1)

Note that the sensor observations xk-s are conditionally-independent when Σ is a diagonal

matrix. Let the neighborhood structure among the various nodes be represented by the

N × N adjacency matrix A, Aij ∈ {0, 1}, which is expected to be sparsely populated.

2The placeholders for non-zero coefficients are not known/specified beforehand.
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Figure 4.1: System diagram of spatial whitening based distributed estimation.

Entries Aij = 1 signify that node i is a neighbor of node j. A low-cost link for local

communication is assumed to be available between two neighboring links. Since each node

is trivially connected to itself, Aii = 1. We denote the set of all A-sparse matrices as

SA , {W ∈ RN×N : Wij = 0 if Aij = 0}. (4.2)

Note that because A is the adjacency matrix, all linear transformations of the form

x̃ = Wx ∼ N (W1θ,WΣW T ), W ∈ SA, (4.3)

can be realized relatively inexpensively through local data transmissions, i.e., node k realizes

the transformation x̃k =
∑

j∈NkWkjxj by collaborating with its set of neighbors Nk ,

{j1, j2, . . . , j|Nk|}, i.e., all the column-indices of A such that Ak,ji = 1.

The goal is to find the optimal mean-preserving, whitening transformation, i.e., one for

which W1 = 1, and WΣW T is as near to a diagonal matrix as possible. The mean-

preserving condition ensures that the problem framework is preserved, i.e., any resource

allocation algorithm previously designed for the observation domain x is applicable to new
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transformed domain x̃. The whitening condition helps induce conditional independence

across sensors (in some optimal sense). We choose the log-determinant divergence [17] as

our metric for matrix-nearness, a point that we will elaborate later. The idea is that the

nodes can use (optimally) whitened observations x̃k (instead of original correlated obser-

vations xk) as the information to be encoded and relayed to the FC. This way an encoding

strategy that was derived using conditional independence assumption across sensors can be

used to enhance the performance of the system. We will consider the application of optimal

encoding for distributed estimation in Section 4.4 and show the resulting improvement in

performance due to the two-stage processing. But before that we describe our approach

towards finding the optimum whitening transformation and comment on the computational

aspects.

In the domain of symmetric positive-definite N × N matrices, the log-determinant

divergence of P from Q is defined [17] as

L(P ;Q) , Tr Q−1P − log detP −N + log detQ. (4.4)

It is well known that L(P ;Q) is a Bregman-divergence [17] and hence convex in P for

any fixed Q. Also L(P ;Q) ≥ 0 for all P and Q with equality if and only if P = Q. We

formulate the spatial whitening problem as finding an A-sparse, mean-preserving trans-

formation W and a diagonal matrix (with positive entries) D such that the divergence

L(WΣW T ;D) is minimized,

min
W ,D

L(WΣW T ;D) s.t. W ∈ SA,W1 = 1. (4.5)

We note from definition (4.4) that

L(WΣW T ;D) = L(D−
1
2WΣW TD−

1
2 ; I), (4.6)

47



where I is the identity matrix. Using (4.6), we obtain an equivalent formulation of (4.5),

min
Z

L(ZΣZT ; I) s.t. Z ∈ SA, (4.7)

where W = δ−1(Z1)Z, D = δ−2(Z1), (4.8)

where δ(·) is the diagonalization3 operator. We note that (4.7) is a significantly simplified

re-formulation of (4.5). Using (4.4), we define the cost function w.r.t. Z as

l(Z) , L(ZΣZT ; I) = Tr ZΣZT − log detZZT + c0, (4.9)

where c0 , −N−log det Σ is a constant. We refer to (4.7) as the log-determinant divergence

based spatial whitening problem. If the cardinality of non-zero elements ofA is nz(A) ≤ N2,

then (4.7) is an optimization problem in Rnz(A).

A related problem is that of structured inverse-covariance selection (Example 2.5 in

[86]) and its subsequent application for in-network inference using graphical models [8].

However, the problem we address in this chapter is different in two ways. Firstly, rather than

selecting the inverse-covariance, we are interested in selecting the inverse of the Cholesky

factor (modulo an orthogonal multiple). Secondly, we are addressing a fixed FC based

problem as opposed to in-network inference problems like belief-propagation or consensus.

Since Z is not restricted to the set of symmetric positive-definite matrices, our objective

function (4.9) does not inherit the convexity property of well known max-det problems [86].

Neither does the first-order gradient condition, written in matrix-derivative notations [60],

dl(Z)

dZ
= 2(ZΣ−Z−T ) ◦ A = 0, (4.10)

where ◦ denotes the element-wise (or Hadamard) product, lend itself to any known closed-

form solution except in the trivial situation when A is the all-1 matrix (in which case,

ZΣZT = I, and any orthogonal multiple of the Cholesky factor L−1 is a solution for

3Function X = δ(x) is defined as δ : RN → RN×N such that x corresponds to the diagonal elements of
X, other elements being zero.
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Z). In the next section, we provide an iterative algorithm that finds (locally) optimal

solutions to problem (4.7). Multiple runs using different starting points must be used to

mitigate the local-maxima problem and obtain a satisfactory solution. It may be noted

here that in most of the existing literature, matrix factorization problems of this nature

(involving sparsity/structure) are inherently non-convex and can only guarantee locally

optimal solutions [29], [101], [83].

4.3 Iterative algorithm for spatial whitening

In our iterative approach to solving problem (4.7), we update each row of elements in

Z to achieve the optimum decrement in divergence, while keeping the rest of the matrix

unchanged. This process is repeated until convergence. Each such iteration is a convex

optimization problem and we obtain closed form expressions for the updates.

Optimizing (4.7) with respect to the row-vector zk , Zk,Nk ∈ R|Nk| while keeping all

the other elements of Z constant is equivalent to minimizing

g(zk) =
1

2
zTkΣkzk − log(zTk ck), (4.11)

Σk ∈ R|Nk|×|Nk|, ck ∈ R|Nk|,

where Σk denotes the Nk-clique covariance matrix extracted from Σ, and the elements of

ck are defined by

(ck)i , (−1)k+ji det(Z−k,ji), i = 1, 2, . . . , |Nk|, (4.12)

with Z−k,ji denoting the matrix obtained after truncating the kth row and jth
i column of

Z. The first-order gradient condition of (4.11) implies (zTk ck)Σkzk = ck, solving which
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one obtains the unique extremum of (4.11),

z∗k =
Σ−1
k ck√

cTkΣ−1
k ck

. (4.13)

That z∗k is the minimizer follows from the convexity of (4.11) (the Hessian is (Σk +

(zTk ck)
−2ckc

T
k ), which is positive definite).

Each rank-one update of the form (4.13) can be efficiently computed using the well-

known Woodbury-formula. Since the overall divergence of (4.7) decreases at each of the

iterations of (4.11), and the minimum divergence is lower bounded (see equation (4.10)) by

sup
Z∈SA

l(Z) ≥ sup
Z∈RN×N

l(Z) = l(L−1) = 0, (4.14)

this iterative algorithm is guaranteed to converge. It may be noted that these kind of

iterative techniques are sometimes called block-coordinate-descent or terminal-by-terminal

optimization [29].

In the remainder of this chapter, we will focus on the application of spatial whitening

to distributed estimation.

4.4 Bit-allocation for collaborative estimation

We consider the practical parameter-estimation problem where individual sensors in a net-

work are required to quantize their real-valued local measurements to an appropriate length

and send the resulting discrete message to the FC, while the latter combines all the re-

ceived messages to produce a final estimate [73]. The critical resource that needs to be

conserved is the bandwidth or equivalently, the rate of transmission. Assume that the

network consisting of N nodes is allowed to transmit only B bits in totality for a one-shot

estimation problem. The question then is how to judiciously allocate the B bits among the

various sensors such the the resulting distortion of estimate is minimized at the FC [51],
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[53]. For the sake of simplicity, we assume that each sensor incurs an equal per-bit cost for

transmission.

We would use the quantization and bit allocation framework outlined in [51]. All ob-

servations xk-s are assumed to be bounded to a finite interval [−U,U ] and a uniform

probabilistic quantization is performed. An observation is quantized with bk-bits as fol-

lows. The quantization points a
(k)
j ∈ [−U,U ], j = 1, . . . , 2bk are uniformly spaced such that

a
(k)
j+1 − a(k)

j = 2U/(2bk − 1) , ∆k. Suppose that xk ∈ [a
(k)
j , a

(k)
j+1). Then xk is quantized to

either a
(k)
j+1 or a

(k)
j according to

P (mk = a
(k)
j ) = q, P (mk = a

(k)
j+1) = 1− q, (4.15)

where mk is the resulting message and q = (a
(k)
j+1 − xk)/∆k.

When the noise is Gaussian and independent across sensors, the subsequent near-

optimal strategy [51] is particularly simple and allocates

bk = ROUND

[
log2

(
1 +

1

λσ2
k

)]
(4.16)

bits to the kth sensor, where σ2
k is the individual variance, λ > 0 controls the overall sum

of bits
∑N

k=1 bk = B and the rounding is performed to the nearest integer. The idea is

that FC broadcasts a lower value of λ when a more precise parameter estimate is needed.

However, when the noise is correlated, strategy (4.16) is suboptimal and this is where

spatial whitening can be of help. Once we perform a spatial whitening transformation in

the observation space, the idea is that we effectively de-correlate the noise without losing

any information and hence a strategy like (4.16) applied on the modified space can still

deliver near-optimal performance.

Next, we state the distortion metric derived in [51] which we shall use for comparing the

performance of various schemes. For a random variable y ∼ N (1θ,C) that is effectively

range limited in [−U,U ], the mean-square-error (MSE) for estimating θ̂ at FC (when yk is
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quantized to mk using bk bits) following the scheme in (4.15), is given by

MSE(θ̂) ≈ 1TC−1(C +Q)C−11

(1TC−11)2
, (4.17)

where Q is the diagonal matrix with elements Qkk = (U2)/(2bk − 1)2. It is assumed that

FC is using the optimally weighted fusion rule θ̂ = (1TC−11)−11TC−1m (see [49]) on the

quantized observations.

Our simulation setup is as follows. The spatial placement and neighborhood structure

is modeled as a Random Geometric Graph RGG(N, r) [24], where sensors are uniformly

distributed over a unit square with communication links present only for pairwise distances

of at most r. The noise is modeled as an exponentially correlated Gaussian covariance

matrix Σ,

x ∼ N (1θ,Σ), Σi,j = σiσjα
di,j , (4.18)

where α ∈ (0, 1) is indicative of the degree of spatial correlation. A smaller value of α

indicates lower correlation with α→ 0 signifying completely independent observations.

We consider N = 50 nodes and the particular RGG used for our simulation is depicted in

Figure 4.2. The individual sensor variances σ2
k are generated by uniform random numbers in

the range [0.5, 1.5] and the correlation parameter α = 0.02. The range-limit of observations

is taken as U = 20.

In Figure 4.3, we compare the distortion performance MSE(θ̂) (4.17) corresponding

to the three scenarios when strategy (4.16) is applied to various transformations of the

data. The line labeled not whitened corresponds to the naive case of strategy (4.16) being

directly applied to the observation space x. Expectedly, the performance of this scheme is

suboptimal. In spatially whitened cases, we use the transformed variable (see (4.8))

x̃ = W rx, W r = δ−1(Zr1)Zr,Dr = δ−2(Zr1), (4.19)
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where Zr is the minimum-divergence solution (4.7) subject to constraints that [Zr]ij = 0

if dij > r. We note that

x̃ ∼ N (1θ,W rΣW
T
r ), (4.20)

which implies that x̃k possess the same mean as the signal, but corrupted only with approx-

imately independent Gaussian noise with variance γ2
k , Var(x̃k) ≈ [Dr]k,k = ([Zr1]k)

−2.

Strategy (4.16) is then applied on whitened space x̃ with σ2
k replaced by γ2

k in Equation

(4.16). We have shown the performance for r = 0.1 and r = 0.5 in Figure 4.3. As the

range r increases, we have more whitening and consequently the performance increases.

Thirdly, we display the results for orthogonally whitened (or PCA) case, where we consider

the well known eigenvalue decomposition Σ = UΛUT and consequently the whitening

transformation

x̃ = D−1UTx, D , δ(UT1). (4.21)

Since PCA fully whitens Σ (by definition), its performance is expected to provide a lower

bound on that of other schemes. This is confirmed by Figure 4.3. However, since the weights

in PCA are not designed to be zero for sensors that are far apart, such a transformation may

be impossible to realize in a power constrained network and hence not realistic. Finally, the

Cramer-Rao lower bound CRB = 1/(1TΣ−11) is also displayed, which confirms that in the

asymptotic regime with sufficient quantization bits per sensor, all these schemes perform

identically.

4.5 Summary

In this chapter, we have considered a two-stage framework for distributed signal processing

in the presence of spatially correlated data. The first stage is designed to whiten the

observation space by communicating only with neighboring sensors. In the second stage,
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Figure 4.2: Random Geometric Graph used for example in Section 4.4. Edges are shown
of pairwise distance less than 0.18.

each sensor encodes these whitened observations following well-known strategies derived

using conditional independence assumption. We consider the example of bit-allocation for

distributed estimation to demonstrate the potential applicability of this framework. Many

research questions on whitening remain unaddressed in this chapter and are worthy topics

of future research. Some of them are cost considerations for the whitening stage, theoretical

analysis of whitening based distributed estimation and extension of this framework to vector

parameter scenarios.
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Chapter 5

Power allocation for analog

forwarding based collaborative

estimation

5.1 Introduction

In Chapter 4, we have shown how spatial collaboration can lead to efficient resource allo-

cation in quantization-based estimation applications. In this chapter, we demonstrate the

same for analog amplify-and-forward based estimation applications. To recall, by spatial

collaboration, we mean that the sensors can share their observations among other neighbor-

ing nodes prior to transmission to the FC. The observations from the neighbors are linearly

combined using appropriate weights and then transmitted to the fusion center (FC) through

a coherent multiple access channel (MAC). The FC receives the noise-corrupted signal and

makes the final inference. The schematic diagram of such a system is shown in Figure 5.1

(we will introduce the notations and describe each block later in Section 5.2).

The individual sensor nodes are battery powered and hence the network is power lim-

ited. The power constraints can be described by the following two situations 1) Cumulative:

Here the total power-usage in the network (summed across all the nodes) has to be be-
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Figure 5.1: Sensor network performing collaborative estimation.

low a pre-specified limit. 2) Individual : Here each node has their own power constraint

as dictated by the capacity of their batteries. The performance analysis of a cumulative-

constraint problem is usually simpler and more insightful since we have only one constraint

to take care of. The individual-constraint problem is more practical from an implementa-

tion perspective but also more difficult to analyze. In the absence of a power limit, the

sensors could collaborate with all the other nodes, make the inference in the network, and

transmit the estimated parameter to the FC without any further distortion (by using infi-

nite transmission power). This is similar to the centralized inference situation, where the

error in estimate is only due to the noisy observation process. However, with limited power

availability, both collaboration and transmission have to be performed judiciously, so as

to maximize the quality of inference at the FC. In this chapter, we study the following

problems. For a cumulative power constraint, we study the optimal allocation of power

resources among various nodes and tasks (namely collaboration and transmission) so as to

achieve the best estimation performance at the FC. Regarding individual power constraints,

the goal is to allocate power between collaboration and transmission at each node.
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In the absence of collaboration, this problem reduces to the class of distributed infer-

ence/beamforming algorithms. In distributed estimation, the objective is to coordinate all

the sensors so that without communicating with one-another, they collectively maximize

the quality of inference at the FC. The quality of inference can be quantified by either the

mean-square error (MSE) (in case of random signals) or Cramér-Rao lower bound (in case

of deterministic unknown signals). Distributed estimation has been extensively researched

both from analog [96],[14],[50] and digital [73],[54],[42] encoding perspectives. Examples of

analog encoding include the amplify-and-forward (AF) scheme, where the nodes amplify

the raw observations and transmit to the FC by either forming a coherent beam in a mul-

tiple access channel [96] or using their own dedicated links with the FC for transmission

(sometimes referred to as orthogonal MAC) [14]. The AF framework appears extensively in

the literature [96],[50],[12] due to its simplicity of implementation in complex networks and

provable information-theoretic-optimality properties for simple networks [28]. In another

research direction, quantization of the observations may be performed prior to transmis-

sion [58],[73]. The quantized observations are then communicated to the FC using digital

communication, where further information may be lost due to channel errors [94]. An-

other closely related field of research in communication theory is distributed beamforming

in relay networks [35], [41], [55], where the objective is to maximize the signal-to-noise

ratio (SNR), rather than minimize the estimation error, at the FC. These two problems are

sometimes related, as one might imagine. When the observation and channel gains are per-

fectly known, the SNR and MSE functions are monotonically related and the two problems

are equivalent. However, in the presence of observation and channel gain uncertainties, the

SNR and MSE functions are different.

Though distributed inference/beamforming has been widely studied, research regarding

collaborative estimation is relatively nascent. When the transmission channels are orthog-

onal and cost-free collaboration is possible within a fully connected sensor network, the op-

timal strategy is to perform the inference in the network and use the best available channel

to transmit the estimated parameter [20]. In the quantization based framework considered

58



in Chapter 4, we saw that spatial collaboration can be used to whiten the observation

space, thereby enabling efficient resource allocation when the noise is correlated. In this

chapter, we explore the benefits of spatial collaboration in the analog amplify-and-forward

framework, where sensors are able to linearly combine the observations from neighboring

nodes before transmitting to the FC. We obtain the optimal cumulative power-distortion

tradeoff when a fixed but otherwise cost-free collaborative topology is used to transmit

over a coherent MAC channel. Subsequently, we extend the problem formulation in three

new directions, namely a) consideration of individual power constraints, b) consideration of

imperfect information about observation and channel gains (the second order statistics are

assumed to be known), and c) consideration of finite costs associated with collaboration.

The primary contributions of this chapter are as follows

• Extending the amplify-and-forward framework to formulate and analyze the problem

of estimation with spatial collaboration

• Defining a metric called collaboration gain, that quantifies the worthiness of spatial

collaboration as a tool to enhance the estimation performance

• Demonstrating that for a fixed but otherwise cost-free (ideal) collaborative topology,

the resulting optimization problem reduces to an eigen-decomposition problem for

the cumulative-constraint case. For the individual-constraint case, accurate numeri-

cal solution can be obtained by solving several semi-definite feasibility problems. We

investigate both cases further by deriving/analyzing the optimal achievable distortion

and the corresponding weights for some special collaborative topologies like the dis-

tributed (no-connections), partially connected cycles, and fully connected cases. We

also derive the explicit expression of collaboration gain for a homogeneous network

with identical channel and observation gains and equicorrelated observation noise.

In particular, we demonstrate that collaboration is particularly effective in a certain

power regime that depends on various factors like the skewness (or variability) of
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power-availability in the network, uncertainty in observation and channel gains, and

the correlation of the measurement noise.

• Addressing the design of collaborative topologies where finite costs are involved in

collaboration. We suggest an efficient algorithm that uses the results for the fixed-

topology but cost-free case to find locally optimal solutions for the finite-cost case.

The rest of the chapter is organized as follows. In Section 5.2, we formulate the prob-

lem after describing each block of the system in Figure 5.1. We define “collaboration gain”

(CG) that is normalized with respect to the operating region (CG ∈ [0, 1]). It summarizes

the efficacy of collaboration across various problem conditions. In Section 5.3, we solve the

optimal transmission-power allocation problem for a fixed but otherwise cost-free collabo-

rative topology, (i.e., extend the results of [45] to address points (a) and (b) in the previous

paragraph). We also derive explicit expressions for collaboration gain for a homogeneous

network with equicorrelated noise. In Section 5.4, we address the problem with finite col-

laboration costs and suggest a greedy algorithm to obtain a locally optimal solution in

polynomial time. Concluding remarks are presented in Section 5.5.

5.2 Problem formulation

5.2.1 Linear sensing model

We consider the scenario where the parameter of interest is a scalar random variable with

known statistics, specifically, Gaussian distributed with zero mean and variance η2. The

observations at the sensor nodes n = 1, 2, . . . , N are governed by the linear model xn =

h̃nθ + εn, where h̃n is the observation gain and εn is the measurement noise. The second

order statistics of the observation gain h̃ = [h̃1, h̃2, . . . , h̃N ]T is assumed to be

E h̃ = h, var h̃ = Σh. (5.1)
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The measurement noise ε = [ε1, ε2, . . . , εN ]T is assumed to be zero-mean, Gaussian with

(spatial) covariance var ε = Σ. Perfect knowledge of the observation model statistics h,Σh

and Σ is assumed. In vector notation, we have

x = h̃θ + ε, (5.2)

where x = [x1, x2, . . . , xN ]T denotes the observations.

5.2.2 Linear spatial collaboration

We consider an extension of the analog amplify-and-forward scheme as our encoding and

modulation framework for communication to the fusion center. In the basic amplify-and-

forward scheme, each node transmits a weighted version of its own observation, say Wnxn,

with resulting power W 2
nE[x2

n]. Such a scheme is appealing and often-used [14],[96],[20] due

to two reasons, 1) Uncoded nature: Does not require block coding across time and hence

efficient for low-latency systems, 2) Optimal in select cases: For a memoryless Gaussian

source transmitted through an additive white Gaussian noise (AWGN) channel (Figure 5.1

with N = 1), an amplify-and-forward scheme helps achieve the optimal power-distortion

tradeoff in an information-theoretic sense (see Example 2.2 in [26]). The optimality of

linear coding has also been established [30] for distributed estimation over a coherent MAC

(Figure 5.1 without spatial collaboration).

In general, all the N data-collecting sensor nodes in a network may not have the ability

to communicate with the FC. In that case, they may still pass their information (through

the act of collaboration) to another node which has a communication link with the FC

(see the network in Figure 5.3, for example). We assume that the nodes are ordered in

such a way that the first M nodes (where M ≤ N) are able to communicate with the FC.

Let the availability of collaborative links among the various nodes be represented by the

M ×N zero-one adjacency matrix (not necessarily symmetric) A, where Amn ∈ {0, 1}. An

entry Amn = 1 signifies that node n shares its observation with node m. Sharing of this
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observation is assumed to be realized through a reliable communication link that consumes

power Cmn, regardless of the actual value of observation. The M ×N matrix C describes

all the costs of collaboration among various sensors and is assumed to be known. Since

each node is trivially connected to itself, Amm = 1 and Cmm = 0. We denote the set of all

A-sparse matrices as

SA , {W ∈ RM×N : Wmn = 0 if Amn = 0}. (5.3)

Corresponding to an adjacency matrix A and an A-sparse matrix W , we define collabora-

tion in the network as individual nodes being able to linearly combine local observations

from other collaborating nodes,

zm =
∑

n=1,...,N
Amn=1

Wmnxn, m = 1, . . . ,M. (5.4)

In effect, the network is able to achieve a one-shot spatial transformation W : x → z of

the form1

z = Wx, W ∈ SA. (5.5)

We refer to W as the matrix containing collaboration weights. It may be noted that, 1)

Particularization: When W is a diagonal matrix (equivalently, A is the identity matrix

IM), our collaborative scheme simplifies to the basic amplify-and-forward relay strategy as

in [50],[96], 2) Collaboration cost: Any collaboration involving W ∈ SA is achieved at the

1It is worth emphasizing our assumption that though collaboration incurs a fixed cost (in terms of power
consumed that could otherwise have been used for transmission), it is otherwise reliable, in the sense that
the act of collaboration does not incur any errors. This can be implemented by, say communicating in a
digital framework with sufficient precision and ensuring sufficient channel coding to counter the channel
noise. We abstract this process by assigning a cost to the link when it is required to be used. An
interesting problem which is worthy of research but beyond the scope of this chapter, is to assume possibly
erroneous collaboration, where z = Wx + ζ (say) and errors incurred during collaboration (ζ) decrease
with collaboration power.
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expense of power

QA,m ,
N∑
n=1

CmnAmn, (5.6)

at node m, and cumulatively

QA ,
M∑
m=1

QA,m, (5.7)

for the entire network, and 3) Transmission cost: The power required for transmission of

encoded message zm at node m is,

PW ,m , Eθ,h̃,ε
[
z2
m;W

]
=
[
WExW

T
]
m,m

, where (5.8)

Ex , Eθ,h̃,ε
[
xxT

]
= Σ + η2(hhT + Σh). (5.9)

Consequently, the cumulative transmission power in the network is

PW ,
M∑
m=1

PW ,m = Tr
[
WExW

T
]
. (5.10)

5.2.3 Coherent multiple access channel

The transformed observations z are assumed to be transmitted to the fusion center through

a coherent MAC channel. In practice, a coherent MAC channel can be realized through

transmit beamforming [62], where sensor nodes simultaneously transmit a common message

(in our case, all zm-s are scaled versions of a common θ) and the phases of their transmissions

are controlled so that the signals constructively combine at the FC. Denote the channel

gain at node m by g̃m. The second order statistics of the channel g̃ , [g̃1, g̃2, . . . , g̃M ] is

assumed to be,

E g̃ = g, var g̃ = Σg, (5.11)
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and the noise of the coherent MAC channel u is assumed to be a zero-mean AWGN with

variance ξ2. Perfect knowledge of the channel statistics g, Σg and ξ2 is assumed. The

output of the coherent MAC channel (or the input to the fusion center) is

y = g̃TWx+ u, u ∼ N (0, ξ2) (5.12a)

= g̃TWh̃︸ ︷︷ ︸
net gain

θ + g̃TWε+ u︸ ︷︷ ︸
net zero-mean noise

. (5.12b)

5.2.4 Linear minimum mean square estimation

Having received y, the goal of the fusion center is to obtain an accurate estimate θ̂ of the

original random parameter θ. We restrict our attention to linear estimators of the form

θ̂ = ay, where a is a fixed constant subject to design. We consider the mean square error

(MSE) as the distortion metric

DW (a) , Eθ,h̃,ε,g̃,u
[
(θ − ay)2;W

]
. (5.13)

From the theory of linear minimum mean square estimation (LMMSE, see [49], Chapter

12), we readily obtain that

aLMMSE , arg min
a
DW (a) =

E[yθ]

E[y2]
, and (5.14a)

DW , DW (aLMMSE) = η2 − (E[yθ])2

E[y2]
, (5.14b)

where the above expectations are w.r.t. all random variables {θ, h̃, ε, g̃, u}. From (5.12a)

and (5.12b), we obtain

E
[
y2
]

= Tr
[
EgWExW

T
]

+ ξ2, and

E [yθ] = η2gTWh, where

(5.15)

Eg , E
[
g̃g̃T

]
= ggT + Σg, (5.16)
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where Ex is defined in (5.9).

Remark: Perfect observation gain and channel state information (OGI and CSI): When

the observation and channel gains are precisely known, i.e., Σh = Σg = 0, (5.12b) reduces

to a linear Gaussian model conditioned on θ,

y|θ ∼ N (gTWhθ, gTWΣW Tg + ξ2), (5.17)

and hence the LMMSE estimator is also the minimum mean square estimator (MMSE)

[49],

θ̂LMMSE := aLMMSEy = Eθ,ε,u[θ|y] =: θ̂MMSE, (5.18)

i.e., θ̂LMMSE minimizes the distortion over all possible estimators (not just within the linear

class).

We know from the theory of MMSE estimation (see [49, 81]) that the optimal distortion

DMMSE is related to the Fisher Information (FI),

J , −Eθ
{
Ey|θ

{
d2θ

dθ2
p(y|θ)

}}
, (5.19)

by DMMSE ≥
(

1
η2

+ J
)−1

in general and that equality holds for linear Gaussian models of

the form (5.17). Though the FI (Equation (5.19)) results in

J =

(
gTWh

)2

gTWΣW Tg + ξ2
(5.20)

for the case of perfect OGI and perfect CSI (the linear Gaussian model in (5.17)), the FI

is difficult to derive for cases when the observation and channel gains are uncertain. In

fact, this is the main reason why we consider LMMSE estimation (which is suboptimal

in general but easier to compute) rather than MMSE estimation (which is optimal but

difficult to compute).
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For the purposes of notation in this chapter, for all cases (whether we have perfect

OGI/CSI or not), we would find it convenient to work with the quantity

JW ,
1

DW
− 1

η2
. (5.21)

as a surrogate for the LMMSE distortion DW (as in (5.14b)). Note that DW and JW are

monotonically related and that minimizing DW is equivalent to maximizing JW . Motivated

by the preceding discussions, we would refer to JW as the equivalent Fisher Information,

or sometimes simply FI or even distortion, for the sake of brevity.

5.2.5 Problem statement

The design of the collaboration weights W is critical since it affects both the power re-

quirements and estimation performance of the entire application. Specifically, the following

quantities depend on W , 1) the resources required to collaborate, i.e., Qnz(W ),m
2 for indi-

vidual nodes or Qnz(W ) cumulatively for the network (see (5.6) and (5.7)), 2) the resources

required to transmit, i.e., PW ,m for individual nodes or PW cumulatively for the network

(see (5.8) and (6.4)), and 3) the final distortion of the estimate at the FC, DW , provided by

(5.14b). In this chapter, we address the problems of designing the collaboration matrix that

minimizes the distortion subject to either 1) a system-wide cumulative power constraint,

minimize
W

DW

subject to PW +Qnz(W ) ≤ P C,

(5.22)

2Definition of operators nz(·), zero(·), and nnz(·): The operator nz : RN×N → {0, 1}N×N is used to
specify the non-zero elements of a matrix. If Wij 6= 0, then [nz(W )]ij = 1, else [nz(W )]ij = 0. Similarly,

the operator zero : RN×N → {0, 1}N×N is used to specify the zero elements of a matrix, [zero(W )]ij =

1 − [nz(W )]ij . The operator nnz : RN×N → Z+ is used to specify the number of non-zero elements of a
matrix.
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or 2) power constraints at individual sensor nodes,

minimize
W

DW

subject to PW ,m +Qnz(W ),m ≤ P C
m, m = 1, . . . ,M.

(5.23)

We note that problem (5.23) (with M individual power constraints) is more realistic from a

deployment point of view, since various nodes in a network can possess significantly different

power sources, based on age of deployment or make/type of the batteries. However, problem

(5.23) is significantly more difficult than problem (5.22), which has only one cumulative

power constraint. Problem (5.22) is more important from a system design and analysis

point of view, since it is more tractable analytically and as a result, reveals significant

insights on the various system level tradeoffs.

5.2.6 Solution methodology

Both problems (5.22) and (5.23), in general, have no known procedure that efficiently

computes (in polynomial-time) the globally optimal solution(s). However, for the special

case when the entries of the collaboration cost matrix C are either zero or infinity, Cij ∈

{0,∞}, we will show that globally optimal solutions for both the problems can be obtained

using efficient numerical techniques, and for problem (5.22), even a closed-form solution

can be derived.

Physically, this special case corresponds to the situation when the topology of a net-

work is fixed (and hence not subject to design) and communication among neighbors is

relatively inexpensive compared to communication with the FC. Let A = zero(C) denote

the permitted adjacency matrix for such a situation. Hence, the collaboration costs vanish,

and problems (5.22) and (5.23) simplify to

minimize
W∈SA

DW

subject to PW ≤ P C, and

(5.24)
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minimize
W∈SA

DW

subject to PW ,m ≤ P C
m, m = 1, . . . ,M.

(5.25)

respectively, which are optimization problems in nnz(A) variables. Since problems (5.24)

and (5.25), which will be solved in Section 5.3, arise out of the assumption of zero-cost for

collaboration, we would refer to them as ideal-collaborative problems.

For the general case, when the topology is flexible and collaboration incurs a finite cost, a

polynomial-time sub-optimal algorithm is proposed in Section 5.4 where the bigger problem

is broken into smaller sub-problems, where several ideal-collaborative problems of the form

(5.24) or (5.25) are solved at each iteration. Specifically, we start from the distributed

topology A = [IM |0], and follow a greedy algorithm to augment the collaborative topology

with the most power-efficient link at each iteration.

5.2.7 Performance metric - Collaboration gain

Let the optimal solutions to problems (5.22) and (5.23) be denoted by Dopt(P
C), where

(note bold notation) P C = P C for a cumulative-constraint (problem (5.22)) and P C =

[P C
1 , P

C
2 , . . . , P

C
M ]T for individual constraints (problem (5.23)). Generally, the distortion

Dopt(P
C) depends on a number of problem conditions other than P C, which includes 1)

the source variance η2, 2) the noise variance Σ, 3) the observation gain statistics {h,Σh},

4) the coherent channel gain statistics {g,Σg}, and 5) the power needed to collaborate

(matrix C). However, to assess and compare the benefits of spatial collaboration for a

wide-range of problem conditions, we seek a metric that is normalized with respect to the

operational region. Towards that goal, we define a few quantities. 1) Let

D0 , Dopt

(
P C →∞;A = 11T

)
, (5.26)

denote the optimal distortion that can be obtained with arbitrary collaboration and without

any power constraints (the actual value of D0 will be derived later, see (5.51) for an early
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preview). 2) Let

Ddist
opt (P

C) , Dopt

(
P C;A = [IM |0]

)
(5.27)

denote the optimal distortion for the distributed scenario, i.e., transmission power is opti-

mally allocated among sensors and there is no collaboration among them. 3) Also let

Dconn
opt (P C) , Dopt

(
P C;A = 11T

)
(5.28)

denote the optimal distortion for the fully connected collaborative topology. Note that

D0︸︷︷︸
Infinite power

Full collab.

≤ Dconn
opt (P C)︸ ︷︷ ︸

Finite power
Full collab.

≤ Ddist
opt (P

C)︸ ︷︷ ︸
Finite power
No collab.

≤ η2︸︷︷︸
Zero power
(prior only)

, (5.29)

where η2 is the worst-case distortion that corresponds to the prior information only. Equa-

tion (5.29) is illustrated in Figure 5.2, where a typical operational region is depicted

alongwith the power-distortion tradeoff for distributed and connected topologies for the

cumulative-constraint problem3. The goal of any estimation application is to close as much

of the performance gap (η2−D0) as possible using limited resources and spatial collabora-

tion is a tool that enables efficient allocation of those resources. We are now in a position

to define Collaboration Gain (CG), the following normalized (centered and scaled) metric,

CG =
Ddist

opt (P
C)−Dconn

opt (P C)

η2 −D0

. (5.30)

Note that 0 ≤ CG ≤ 1, which means that efficacy of collaboration can now be summa-

rized for a wide range of problem conditions. For example, if for a problem CG = 0.01 (say),

we might conclude that collaboration is not sufficiently beneficial for that particular prob-

lem. On the other hand, if CG = 0.2 (say), we would conclude that spatial collaboration

closes the realizable performance gap by 20% and hence, may be worth considering.

3As we shall see later, for the cumulative-constraint problem, all the available power must be used at
optimality, i.e., Popt = PC, and hence the subscript (C) is dropped from PC in Figure 5.2.
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Figure 5.2: A typical power-distortion curve illustrating collaboration gain.

5.3 Main results - Ideal collaborative power alloca-

tion:

In this section, we consider the situation when the entries of the collaboration cost matrix

C are either zero or infinity, Cij ∈ {0,∞}, i.e., we will solve problems (5.24) and (5.25),

where the topology A = zero(C) is assumed to be fixed and not subject to design.

5.3.1 Explicit formulation w.r.t. non-zero weights

From (5.14b) and (5.21), we note that minimizing the distortion DW is equivalent to

maximizing the equivalent Fisher Information,

JW =

(
gTWh

)2

Tr
[
EgWExW

T
]
− η2 (gTWh)2 + ξ2

, (5.31)

where DW and JW are related by Equation (5.21). Part of the numerator and denominator

of JW and also the expressions for power ((5.8) for individual and (6.4) for cumulative) are

quadratic functions of the non-zero elements in W . To see that explicitly, we concatenate
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the elements of W (column-wise, only those that are allowed to be non-zero), in w =

[w1, w2, . . . , wL]T . For l = 1, 2, . . . , L, define indices ml and nl such that wl = Wml,nl .

Further, we define L × L matrices ΩJN, ΩJD, ΩP,m, ΩP ,
∑M

m=1 ΩP,m and L × N matrix

G such that the following identities,

gTW = wTG, (5.32a)

JW =

= wTΩJNw︷ ︸︸ ︷(
gTWh

)2

Tr
[
EgWExW

T
]
− η2

(
gTWh

)2︸ ︷︷ ︸
= wTΩJDw

+ξ2
, (5.32b)

PW = Tr
[
WExW

T
]︸ ︷︷ ︸

wTΩPw

=
M∑
m=1

[
WExW

T
]
m,m︸ ︷︷ ︸

wTΩP,mw

(5.32c)

are satisfied. Precisely, the elementwise descriptions for all the matrices are as follows,

[G]l,n =

 gml , n = nl,

0, otherwise
,

[ΩJN]k,l = gmkgmlhnkhnl ⇔ ΩJN = GhhTGT ,

[ΩJD]k,l = [Eg]mk,ml [Ex]nk,nl − η
2 [ΩJN]k,l , and

[ΩP,m]k,l =

 [Ex]nk,nl , mk = ml = m,

0, otherwise
,

(5.33)

for k, l = 1, 2, . . . , L, n = 1, 2, . . . , N and m = 1, 2, . . . ,M .

Though ΩJN is rank-1 (as described above), in general, there are no compact expressions

for the matrices ΩJD and ΩP,m. We illustrate some relevant matrix definitions (ΩP,m and G

in particular) through an example, in Figure 5.3, with N = 4 data-collection nodes, M = 3

communicating nodes and 3 collaborating links, resulting in a total of L = 6 non-zero

coefficients in the collaboration matrix W .

For some special cases and regular topologies, more compact expressions for ΩJD may be

derived. For the special case when perfect channel state information is available (Σg = 0),
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Figure 5.3: Matrices G and ΩP assuming columnwise ordering of elements in W

it is easy to see that

ΩJD = G
(
Ex − η2hhT

)
GT

= GΣ̃GT , where Σ̃ , Σ + η2Σh. (5.34)

This simplification will also be useful later in our discussion.

With the help of these definitions, the objective function (Fisher Information) is sim-

plified as

Jw ,
wTΩJNw

wTΩJDw + ξ2
, (5.35)

and problems (5.24) and (5.25) are re-written as

maximize
w

Jw

subject to wTΩPw ≤ P C, and

(5.36)

maximize
w

Jw

subject to wTΩP,mw ≤ P C
m, m = 1, . . . ,M.

(5.37)
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respectively, which are both optimization problems with the same fractional-quadratic ob-

jective (5.35) and single (or multiple) quadratic constraint(s). Solution of problems (5.36)

and (5.37) will be provided in Sections 5.3.2 and 5.3.3 respectively.

5.3.2 Cumulative power constraint

Since multiplying w by a scalar α > 1 (strictly) increases both Jw and power wTΩPw (and

for α < 1, strictly decreases them), problem (5.36) is equivalent to its converse formulation,

where power is minimized subject to a maximum distortion constraint (represented by JC),

minimize
w

wTΩPw

subject to Jw ≥ JC,

(5.38)

in the sense that the optimal solutions Jopt(P
C) (of (5.36)) and Popt(J

C) (of (5.38)) are

inverses of one another. Moreover, the optimal solutions hold with active constraints (sat-

isfying equalities P = P C for(5.36) and J = JC for (5.38)). From (5.35), problem (5.38) is

further equivalent to,

minimize
w

wTΩPw

subject to wT (JΩJD −ΩJN)w + Jξ2 ≤ 0,

(5.39)

which is a quadratically constrained quadratic program (QCQP) in L , nnz(A) variables.

Note in (5.39) that, though ΩP is positive definite (it is composed of blocks of another

positive definite matrix Ex, see Figure 5.3, for example), the matrix JΩJD − ΩJN is not,

and hence problem (5.39) is not convex. However, a QCQP with exactly one constraint (as

in problem (5.39)) still satisfies strong duality (for a background, see Appendix B, [7]) and

hence the optimal solution to (5.39) satisfies the Karush-Kuhn-Tucker (KKT) conditions

(ΩP + µ (JΩJD −ΩJN))w = 0. (5.40)

73



Together with the following active constraint conditions at optimality

P = wTΩPw, and wT (JΩJD −ΩJN)w + Jξ2 = 0, (5.41)

which implies µ = P
Jξ2

, the solution to problem (5.39) (equivalently, problems (5.38), (5.36)

and (5.24)) is summarized below.

Theorem 5.3.1. (Power-Distortion tradeoff for Linear Coherent Ideal-Collaborative Es-

timation) For a given topology A, let J ∈ (0, λG,max (ΩJN,ΩJD))4. The optimal tradeoff

between distortion (represented by J) and cumulative transmission power P and also the

optimal weights w that achieve that tradeoff, are obtained through the solution of the gen-

eralized eigenvalue problem,

(
ΩP

Pξ
− ΩJN

J
+ ΩJD

)
w = 0, where Pξ ,

P

ξ2
. (5.42)

In particular, the function Jopt(P ) : (0,∞)→
(
0, JA0

)
and its inverse Popt(J) are

Jopt(P ) = λG,max

(
ΩJN,ΩJD +

ΩP

Pξ

)
, and (5.43a)

Popt(J) = λposG,min

(
ΩP,−ΩJD +

ΩJN

J

)
ξ2, (5.43b)

respectively. This optimal tradeoff is achieved when the weights of collaboration matrix is

an appropriately scaled version of the (generalized) eigenvector corresponding to (5.43a) (or

(5.43b), since they are equivalent), say vopt. That is, wopt = cvopt, where the scalar c is

such that wT
optΩPwopt = P .

Theorem 5.3.1 is important since it helps to (numerically) compute the power-distortion

tradeoff for arbitrary problem conditions (like topology, noise covariance, second-order

4Definitions of eigenvalue related operators: The operators λ(P ) and v(P ) denote the solution(s)
to the ordinary eigenvalue problem Pv = λv. Operator λmax(·) denotes the maximum among all real
eigenvalues and λposmin(·) denotes the minimum among all positive eigenvalues (i.e., the positive eigenvalue
that is closest to, but different from, zero). The operators λG(P ,Q) and vG(P ,Q) denote the solution(s) to
the generalized eigenvalue problem Pv = λQv. Operators λG,max(·, ·) and λposG,min(·, ·) are similarly defined

as λmax(·) and λposmin(·) respectively. Note that, when Q is full-rank, then λG(P ,Q) = λ(Q−1P ).
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statistics of the observation and channel gains). Since the numerical complexity for eigen-

value problems is roughly cubic in the size of the problem (see for example [68]), the

complexity of computing the (cumulative) power-distortion tradeoff is O(L3), where (recall

that) L = nnz(A) is the number of non-zero collaboration weights.

Corresponding to the example topology in Figure 5.3 and randomly chosen system

parameters h,Σ and g, a typical power-distortion tradeoff curve is shown in Figure 5.2

(bold line). Theorem 5.3.1 can be simplified further for several specific scenarios, allowing

deeper insight into the power-distortion tradeoff as it relates to the problem parameters.

The first obvious simplification is because of the rank-1 property of ΩJN. The only non-zero

generalized eigenvalue is (provided the inverse exists)

Jopt(P ) = hTGT

(
ΩJD +

ΩP

Pξ

)−1

Gh, (5.44a)

with eigenvector wopt ∝
(

ΩJD +
ΩP

Pξ

)−1

Gh. (5.44b)

Equation (5.44a) explicitly shows the effect of finite-power constraint Pξ on the distortion.

Some other insightful examples are discussed next.

Example 1: For the case of perfect CSI (Σg = 0), we note from (5.34) that ΩJD =

GΣ̃GT . It follows that

Jopt(P ) = λG,max

(
GhhTGT ,GΣ̃GT +

ΩP

Pξ

)
(5.45)

(a)
= λG,max

(
hhT , Σ̃ +

ΓP

Pξ

)
, ΓP ,

(
GTΩ−1

P G
)−1

(5.46)

(b)
= hT

(
Σ̃ +

ΓP

Pξ

)−1

h, (5.47)

assuming all the inverses exist. Step (a) reduces the size of the eigenvalue problem from L to

N yet preserving the non-zero eigenvalues. Note that the corresponding generalized eigen-

vectors of problems (5.45) (say vL) and (5.46) (say vN) are related by vL = Ω−1
P GΓPvN .

Step (b) describes the only non-zero generalized value of problem (5.46), since hhT is rank-

1. Note that optimal collaboration weights are provided by wopt ∝ Ω−1
P GΣ̃

(
Σ̃ + ΓP

Pξ

)−1

h.
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When, in addition to perfect CSI, we also have perfect OGI (Σh = 0), Equation (5.47)

further simplifies to

Jopt(P ) = hT
(

Σ +
ΓP

Pξ

)−1

h, (5.48)

which is an insightful closed form expression. Equation (5.48) can be compared to the

centralized case, where measurements xn are directly observed through gains h and mea-

surement noise with variance Σ, for which the Fisher Information is Jcent , hTΣ−1h,

which is also the infinite power limit of (5.48). One can think of the additional quantity

ΓP

Pξ
in (5.48), which factors in the effect of channels, the collaboration topology and finite

transmission power, as equivalent to the variance of an additional noise that is added to

the measurement noise.

When, in addition to perfect OGI and CSI, we also have a distributed topology ( A =

IM) and the measurement noise is uncorrelated (Σ is diagonal), we can proceed as follows.

We have w = diag(W )5. This means that ΩP = diag(diag(Σ+η2hhT )) is a diagonal matrix

with mth element as σ2
m + η2h2

m, and G = diag(g). Consequently, ΓP is a diagonal matrix

with mth element as σ2
m+η2h2m
g2m

. Hence, the optimal power-distortion tradeoff in Equation

(5.48) further simplifies to (define σ2
m , Σm,m and γm , η2h2m

σ2
m

)

Jopt(P ) =
M∑
m=1

h2
m

σ2
m

[
1 +

1 + γm
Pξg2

m

]−1

, (5.49)

which was also obtained in [96]. Since for the centralized case, we have Jcent =
∑M

m=1
h2m
σ2
m

,

Equation (5.49) indicates the exact fractions of individual Fisher Information that “reaches”

the receiver. When subjected to a network-wide power constraint, information from the

more informative (higher γm) and less reliable (lower gm) sensor undergoes a higher degree

of “attenuation”. While a higher observation gain hm clearly carries more information, it

5Definition of operators diag(·) and vec(·): While operating on a matrix, diag : RM×N → Rmin(M,N) is
used to extract the diagonal elements. While operating on a vector, diag : RM → RM×M is used to construct
a matrix by specifying only the diagonal elements, the other elements being zero. The vectorization operator
vec : RM×N → RMN stacks up all the elements of a matrix column-by-column.
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also requires quadratically higher power to transmit in an amplify-and-forward framework

such as ours (note that Pm = w2
m(σ2

m + η2h2
m)). Similarly, a lower magnitude of channel

gain gm implies that quadratically higher transmission power is needed to compensate for

the channel. Hence, in the optimal tradeoff (5.49), it turns out that information from

higher-hm and lower-gm sensors are attenuated by a larger factor.

Example 2: When the network is fully connected (A = 11T ), we proceed from (5.44a)

and obtain the following result.

Proposition 5.3.2. The optimal solution for Example 2 is

Jopt(P ) = J̃

[
1 +

1 + η2J̃

G

]−1

and Wopt ∝ uvT ,

where J̃ , hT Σ̃
−1
h, G , gT Σ̃

−1

g g, u = Σ̃
−1

g g,

v = Σ̃
−1
h, Σ̃ , Σ + η2Σh and Σ̃g , Σg +

I

Pξ
.

(5.50)

Also, for the special case with perfect OGI and perfect CSI (when Σh = Σg = 0), the

resulting distortion is information theoretically optimal.

Proof: See Appendix A.6. QED.

This example is important since a connected topology makes use of all possible collab-

oration links and hence Equation (5.50) gives the LMMSE performance limit for a network

with cumulative transmission power constraint. From (5.50), we are now in a position to

compute the optimal achievable Fisher Information J0 (and equivalently the distortion D0),

by letting the power go to infinity,

J0 = J̃

[
1 +

1 + η2J̃

G0

]−1

, where G0 , g
TΣ−1

g g. (5.51)

As discussed earlier, D0 (definition in (5.26)) forms a lower bound for distortion in a

network and is useful to characterize the operational region and subsequently define the

collaboration gain (Equation (5.30)).
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From Equation (5.50), it can be explicitly seen that for a fully connected topology, more

observation or channel uncertainty always deteriorate the estimation performance, a notion

that is intuitive but still was not completely evident in the discussion so far. The following

result formalizes this notion.

Proposition 5.3.3. If Σh,1 � Σh,2 and Σg,1 � Σg,2 (here A � B implies that A−B is a

symmetric positive definite matrix), then for a connected topology,

Jopt,1(P ) < Jopt,2(P ). (5.52)

Proof: This is established by re-writing Equation (5.50) as

Jopt(P ) =

[(
1 +

1

G

)
1

J̃
+
η2

G

]−1

, (5.53)

which shows explicitly that Jopt(P ) is a monotonically increasing function of J̃ and G. Recall

that J̃ = hT (Σ + η2Σh)
−1
h and G = gT Σ̃

−1

g g. Assuming Σh,1 � Σh,2 and Σg,1 � Σg,2, it

is sufficient to show that a) J̃1 < J̃2 and b) G1 < G2, both of which are evident from the

inequality involving positive definite matrices in Lemma A.7.1 (see Appendix A.7). QED.

The last two examples provided insight on the distributed and fully connected topologies

respectively. The following example addresses a partially connected topology and shows

how the distortion decreases with an increase in links available for collaboration.

Partially connected cycle graphs: In Figure 5.4, we display a class of graphs, namely

the (K − 1) connected directed cycle, for K = 1, 2, . . . ,M , in which each node shares its

observations with the next K − 1 nodes. The adjacency topology of such a graph will be

denoted as A = C(K). Note that K = 1 denotes the distributed scenario while K = M

denotes the fully connected scenario.

Example 3: We assume that the collaborative topology is a (K − 1) connected directed

cycle (A = C(K)) and the channel gain and uncertainties are such that the network is

homogeneous and equicorrelated. In particular, we denote a) the expected observation and

channel gains by h2
0 and g2

0, b) the observation and channel gain uncertainties by αh and
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Figure 5.4: Directed cycle graphs, (K − 1) connected.

αg, and c) measurement noise variance and correlation by σ2 and ρ, and thereby assume

h = h0

√
αh1,Σh = h2

0(1− αh)I,

g = g0
√
αg1,Σg = g2

0(1− αg)I, and

Σ = σ2
(
(1− ρ)I + ρ11T

)
.

(5.54)

These assumptions provide an analytically tractable example that is representative of a

broad range of problem conditions and will also be used in the subsequent discussions. In

addition to covering the partial collaboration (1 ≤ K ≤ N) regime, note that αh = 1 implies

perfect OGI, αg = 1 implies perfect CSI and ρ = 0 implies uncorrelated measurement noise.

Equation (5.44a) can be simplified further for this example, to obtain the following result.

Proposition 5.3.4. The optimal solution for Example 3 is

Jopt(P ) =
h2

0

σ2

[
ρN + α̃h

(
ρN +

γ

N

)
+

1

N

(
α̃g +

1

Pξg2
0αg

){
γ + ρK + α̃h

(
ρK +

γ

K

)}]−1

,

where ρt , ρ+
1− ρ
t

, γ ,
η2h2

0

σ2
, and α̃ ,

1

α
− 1.

(5.55)

Proof: See Appendix A.8. QED.
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Equation (5.55) helps us quantify the efficacy of collaboration in a partially connected

network. For example, when the measurement noise is uncorrelated (ρ = 0) and we have

perfect OGI (αh = 1, equivalently α̃h = 0) and perfect CSI (αg = 1, equivalently α̃g = 0),

Equation (5.55) reduces to

J =
h2

0g
2
0

σ2ξ2

NP

γ + 1
K

. (5.56)

For the high-(NP ) regime, (i.e., when J is large and D ≈ J−1), we can now compare the

power requirements of a distributed topology (say P dist, for K = 1) with that of a (K − 1)

connected topology (say P C(K)), provided an identical distortion performance is desired.

Since P dist

γ+1
= PC(K)

γ+ 1
K

, this implies that the relative savings in power is

P dist − P C(K)

P dist
=

1− 1
K

γ + 1
, (5.57)

which depends on the local-SNR γ. For example, when the local-SNR is large, say γ = 100,

then even a fully connected network (large K) can provide only 1% power savings. On

the other hand, if the local-SNR is small, say γ = 1, then even a 1-connected network

(for which K = 2) can provide 25% efficiency in power savings. The conclusion is that

one needs to be judicious in the design of collaborative topologies, especially when there

are overhead costs associated with it. The design of collaborative topologies with finite

collaboration cost will be discussed later in Section 5.4.

5.3.3 Individual power constraints

In the previous subsection, we have discussed the solution to the ideal-collaborative power

allocation problem with a cumulative transmission power constraint. In this subsection,

we consider the case when the individual nodes have separate power constraints. We recall
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problem (5.37),

maximize
w

Jw =
wTΩJNw

wTΩJDw + ξ2

subject to wTΩP,mw ≤ P C
m, m = 1, . . . ,M.

(5.58)

Let Jopt be the optimal solution of problem (5.58), although it is not clear yet how this

solution can be obtained. Unlike problem (5.36) for which a closed from solution was

derived in Section 5.3.2, in general, there are no known closed form expressions of Jopt.

However, as we shall show below, Jopt can still be precisely obtained using an efficient

(polynomial time) numerical procedure. For some special cases though, closed form and

insightful expressions for Jopt can be obtained, which will be discussed later.

Numerical Solution

We would use the semi-definite relaxation (SDR) technique for quadratically constrained

problems [35], [59] to solve problem (5.58). The SDR technique is widely used in the

literature since it can reduce an otherwise intractable problem to one with polynomial

time complexity. However, the main drawback of SDR technique is that, in general, it

can guarantee only a sub-optimal solution. But, in some special problems, which includes

our problem at hand (as we shall establish later), the relaxation involved in SDR is exact

and hence, the SDR technique becomes an efficient numerical tool to obtain the (precisely)

optimal solution. For more details on the SDR technique, including sub-optimality analysis

for special classes of problems, the reader is referred to [59].

We proceed using arguments similar to [35], [98]. Define

X , wwT ∈ RL×L, (5.59)
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so that problem (5.58) is equivalent to,

maximize
X

JX =
Tr [ΩJNX]

Tr [ΩJDX] + ξ2

subject to Tr [ΩP,mX] ≤ P C
m, m = 1, . . . ,M,

rankX = 1, X � 0,

(5.60)

Problem (5.60) is further equivalent to,

find maximum J

such that X (J) is nonempty,

(5.61)

where X (J) is defined as the following (feasible) set,

X (J) ,

X
∣∣∣∣∣∣∣∣∣∣

Tr [(JΩJD −ΩJN)X] + Jξ2 ≤ 0,

Tr [ΩP,mX] ≤ P C
m, m = 1, . . . ,M,

rankX = 1, X � 0.

 (5.62)

Note that by definition, any X ∈ X (Jopt) will correspond to the optimal weights that

maximize the Fisher Information. Also note that X (J1) ⊃ X (J2) when 0 ≤ J1 < J2.

Therefore, assuming we can test the feasibility of X (J) for some J , a simple bisection

search over [0, J0] can potentially yield Jopt with arbitrary accuracy6 (since Jopt < J0 for

finite power). However, testing the feasibility of X (J) is a difficult problem.

Though the set of symmetric positive-semidefinite matrices is convex and the other

M + 1 inequalities in (5.62) are also convex, X (J) is still not convex due to the rank

6Arbitrary accuracy is only of theoretical interest, since the solution to the feasibility problem (5.61)
will have numerical errors. Hence, a more realistic stopping criterion is a fixed number of iterations, say
15.
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constraint rankX = 1. Relaxing this constraint, we define,

X R(J) ,

X
∣∣∣∣∣∣∣∣∣∣

Tr [(JΩJD −ΩJN)X] + Jξ2 ≤ 0,

Tr [ΩP,mX] ≤ P C
m, m = 1, . . . ,M,

X � 0,

 (5.63)

which is now a convex set (superscript R stands for relaxation). Because of this relaxation,

we have X (J) ⊂ X R(J) for all J . We denote the solution to the new problem,

find maximum J

such that X R(J) is nonempty,

(5.64)

as JR
opt, so that Jopt ≤ JR

opt. Hence, in general, the solution of the relaxed problem (5.64)

only provides an upper bound to the solution of the original problem (5.61). However, the

following result establishes the fact that the relaxation is tight, i.e., Jopt = JR
opt for our

specific problem.

Proposition 5.3.5. (Semidefinite relaxation is tight): Assume ΩP to be positive definite

and note that ΩJN is rank-1. Then, for any feasible J < Jopt, X R(J) contains a rank-1

matrix.

Proof: See Appendix A.9. QED.

The matrix ΩP is usually positive definite since it is composed of blocks of the matrix

Ex = E[xxT ]. Since X R(J) contains a rank-1 matrix, X R(J) ∩ X (J) is non-empty, and

feasibility of X R(J) also implies the feasibility of X (J), thereby making the relaxation

tight (in terms JR
opt being equal to Jopt). Note that the solution to (5.64) can also be

obtained using a bisection search. However, feasibility test of X R(J) is a convex semi-

definite programming problem and hence can be performed efficiently (in polynomial-time).

The computational complexity7 of such a feasibility problem is roughly O(M2L2), where M

7Generally, numerical techniques for semidefinite programming are iterative in nature, see [85] for a
detailed discussion. In the dual formulation of the problem, each iteration solves a linear problem in

M variables and L(L+1)
2 equations, with the resulting complexity being O(M2L2). The number of such

83



is the number of sensors and L is the number of non-zero collaboration weights. We have

used the publicly available software SeDuMi as the optimization tool [77] for our numerical

simulations.

Closed Form solutions

Though numerical solution of the general problem (5.58) can be obtained using the proce-

dure outlined in Section 5.3.3, closed form solutions can be obtained for some special cases.

All the special cases discussed in this subsection will make use of the following optimization

problem in its core,

maximize
t

Ft =

(∑M
m=1 amtm

)2

∑M
m=1 bmt

2
m + ξ2

,

subject to 0 ≤ tm ≤ cm, m = 1, . . . ,M,

given that am and bm are positive for all m,

(5.65)

which is known to have the following solution.

Proposition 5.3.6. (Solution of problem (5.65), see [41]): Order the sensors based on the

parameter dm , am
bmcm

such that, without loss of generality,

d1 ≥ d2 ≥ · · · ≥ dM . (5.66)

Define

Φk ,

∑k
m=1 bmc

2
m + ξ2∑k

m=1 amcm
. (5.67)

Also, define m̃ algorithmically as follows - keep checking in the decreasing order m̃ =

{M,M − 1, . . . , 2} whether Φm̃−1
am̃
bm̃
≥ cm̃, and stop at the first instance this condition is

satisfied. If Φ1
a2
b2
< c2, then m̃ = 1. Then the solution to problem (5.65) is Fopt which is

iterations is generally between 5 to 20 for many practical purposes (although theoretically, it is also a
polynomial function).
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achieved when t = topt, where

Fopt =

(∑m̃
m=1 amcm

)2

∑m̃
m=1 bmc

2
m + ξ2

+
M∑

m=m̃+1

a2
m

bm
,

topt,m =

 cm, m = 1, . . . , m̃

Φm̃
am
bm

< cm, m = m̃+ 1, . . . ,M.

(5.68)

Note that all the constraints are active (i.e., m̃ = M or topt,m = cm for all m) if and

only if ΦM−1dM ≥ 1.

Notation: Corresponding to constants a, b and c, we would denote the optimal solution

(5.68) of problem (5.65) as Fopt(a, b, c). When mentioned in conjunction with Fopt(a, b, c),

the corresponding value of t will be simply denoted as topt, i.e., without the arguments, to

avoid repetition.

Next, we provide some insightful examples. Some of these results will be used to derive

the collaboration gain for homogeneous networks in Section 5.3.4.

Example 4: For the problem with a) distributed topology, b) perfect information about

observation and channel gains, and c) uncorrelated measurement noise, problem (5.58) can

be simplified as (note that w = diag(W )),

maximize
w

Jw =
wTaaTw

wTdiag(b)w + ξ2

subject to w2
mσ

2
x,m ≤ P C

m, m = 1, . . . ,M,

(5.69)

where

am = gmhm, bm = g2
mσ

2
m, σ

2
m = [Σ]m,m ,

σ2
x,m = σ2

m + η2h2
m.

(5.70)

Note that since am and bm are positive, the value of wm at optimality has to be positive,

hence the quadratic constraints in (5.69) reduce to the linear constraints as in (5.65). The

rest of the problem is solved by defining cm ,
√

PC
m

σ2
m+η2h2m

and applying Proposition 5.3.6.
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We obtain

Jopt
(
P C
)

=

(∑m̃
m=1 hmgmcm

)2

∑m̃
m=1 σ

2
mg

2
mc

2
m + ξ2

+
M∑

m=m̃+1

h2
m

σ2
m

. (5.71)

Equation (5.71) is mathematically equivalent to the solution in [41], which was obtained

in the context of maximum-SNR beamforming. This is because, for perfect OGI and perfect

CSI, maximum-SNR also implies minimum-MSE. However, in the presence of observation

and channel gain uncertainties, the two problems are different.

The optimal Fisher Information in (5.71) can also be compared to that in the

cumulative-constraint case. With individual constraints, some sensors (those with lower

“reliability-to-power ratio” dm =
hm
√
σ2
m+η2h2m

gmσ2
m

√
PC
m

, precisely sensors m = m̃ + 1, . . . ,M)

effectively “convey” the entirety of their individual Fisher Information to the FC while

the other sensors (m = 1, . . . , m̃) can convey only a fraction of their combined sum. In

contrast, for the cumulative-constraint problem, different fractions of individual Fisher

Information reach the FC. However, in the infinite-power limit, both the cases converge to

the centralized Fisher Information Jcent =
∑M

m=1
h2m
σ2
m

.

The previous example assumed perfect CSI and perfect OGI. The following extension

of Example 3 (homogeneous network with equicorrelated parameters) illustrates the dete-

rioration of performance with observation and channel gain uncertainties.

Example 5: Consider a distributed topology with problem conditions similar to Example

3 (see (5.54)). To find the optimal distortion for this example, we proceed directly from

(5.31), using the full-matrix notation

maximize
w

W=diag(w)

Jw =

(
gTWh

)2

Tr
[
EgWExW

T
]
− η2 (gTWh)2 + ξ2

,

subject to
[
WExW

T
]
m,m
≤ P C

m, m = 1, . . . ,M.

(5.72)
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Noting the following identities,

(
gTWh

)2
= αgαhg

2
0h

2
0

(
wT1

)2
,

Tr
[
EgWExW

T
]

= g2
0σ

2
x

{
(1− αgαx)w

Tw

+αgαx

(
wT1

)2
}
,[

WExW
T
]
m,m

= σ2
xw

2
m, where

σ2
x = σ2 + η2h2

0, αx =
ρσ2 + αhη

2h2
0

σ2
x

,

(5.73)

problem (5.72) is equivalent to,

maximize
w

Fw =
αgαhg

2
0h

2
0

(
wT1

)2

g2
0σ

2
x(1− αgαx)wTw + ξ2

,

subject to σ2
xw

2
m ≤ P C

m, m = 1, . . . ,M,

(5.74)

in the sense that Fw is monotonically related to Jw through Jw =
[

1
Fw

+ ρσ2

αhh
2
0

]−1

. Problem

(5.74) is similar in form to problem (5.65) and the solution can be obtained by applying

Proposition 5.3.6. We have

Jopt (P ) =

[
1

Fopt (a, b, c)
+

ρσ2

αhh2
0

]−1

, where (5.75)

am =
√
αgαhg0h0, bm = σ2

xg
2
0(1− αgαx), cm =

√
P C
m

σ2
x

.

When all the constraints are active, the solution is

Jopt (P ) =

[
g2

0(1− αgαx)
∑
Pm + ξ2

αgαhg2
0h

2
0σ
−2
x

(∑√
Pm
)2 +

ρσ2

αhh2
0

]−1

, (5.76)

from which it is evident that the Fisher Information decreases with more uncertainty in

observation and channel gains (lower values of αh and αg). This result will be useful later

to derive the collaboration gain for this example.

The following example considers a fully connected network.
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Example 6: For the problem with a) fully connected topology (A = 11T ) and b) un-

correlated channel gain uncertainty (Σg is diagonal), we can start from (5.72), where the

variable of optimization is the entire matrix W ,

maximize
W

JW =

(
gTWh

)2

Tr
[
EgWExW

T
]
− η2 (gTWh)2 + ξ2

,

subject to
[
WExW

T
]
m,m
≤ P C

m, m = 1, . . . ,M.

(5.77)

Problem (5.77) can be simplified further based on the assumption of diagonal Σg. However,

the analysis is relegated to Appendix A.10 and we state just the result here.

Proposition 5.3.7. The optimal solution for Example 6 is

Jopt
(
P C
)

= J̃

[
1 +

1 + η2J̃

Fopt (a, b, c)

]−1

, where

a = g, b = diag (Σg) , and cm =
√
P C
m,

(5.78)

and J̃ = hT Σ̃
−1
h, Σ̃ = Σ + η2Σh, as defined in (5.50). Optimality is achieved when the

corresponding weights are

W opt = κtoptv
T , v = Σ̃

−1
h, κ =

1√
J̃(1 + η2J̃)

. (5.79)

Proof: See Appendix A.10. QED.

From the formula for optimal weights W opt in (5.79), we note that all the sensors

have identical fusion rules (precisely, the vector vT ) but they transmit using different

transmission power (according to κtopt). It may be surprising to note that even though

all the sensors are transmitting the same information coherently, they may still refrain

from using the maximum power available (topt,m ≤ cm, in general). This is because of the

uncertainty in the channel (which is captured by the diagonal entries of Σg). If a channel is

too uncertain, allocating a large amount of power to the sensor (even if the power is locally

available) may not be helpful for inference. Indeed, all other parameters being constant, a
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higher magnitude of [Σg]m,m results in a lower value of dm (see problem (5.65)) and hence

the power constraint is more likely to be inactive at optimality. However, for perfect CSI

(Σg = 0), all the sensors must transmit with maximum power available.

We are now in a position to explicitly derive the formula of collaboration gain for

homogeneous networks. It must be mentioned here that explicit formulas of CG for arbitrary

problems are difficult to derive and we only provide the example of homogeneous networks

in this chapter. As mentioned in Section 5.2.7, collaboration gain is a useful metric that

indicates the efficacy of spatial collaboration for estimation.

5.3.4 Collaboration gain for a homogeneous network

This analysis of homogeneous networks is particularly illustrative since it is actually possible

to derive closed-form expressions of CG for a wide range of individual (and also cumulative)

power constraints. From the closed form equation of CG, we can actually predict the

conditions for which collaboration will be particularly effective. Specifically, we will derive

the formula for collaboration gain and analyze how it depends on the problem parameters

like size of the network, noise correlation, observation/channel gain uncertainties and power

constraints.

Theoretical analysis for a homogeneous network

Let P be the total power used in the network. For the cumulative-constraint problem, P

is a sufficient descriptor of the power constraints. However, for the individual-constraint

problem, we have M different power constraints {P1, P2, . . . , PM}, which makes it difficult

to analyze the problem theoretically. Fortunately, for a large subset of those problems, only

2 summary-descriptors of {P1, P2, . . . , PM} suffice to characterize the collaboration gain –

namely, the cumulative power P , and a skewness parameter κ, defined as,

κ ,
Psq

P
, Psq ,

(
M∑
m=1

√
Pm

)2

, P =
M∑
m=1

Pm. (5.80)
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As an example, we refer to Equation (5.76), where the distortion is seen to depend on only∑
Pm (which is P ) and

(∑√
Pm
)2

(which is κP ). It is easy to see (applying Cauchy-

Schwartz inequality) that 1 ≤ κ ≤M , where the limiting values have distinct significance.

The value κ = 1 implies that only one of the sensors has all the power (P1 = P , say) while

other sensors have no power at all P2 = · · · = PM = 0. On the other hand, the value

κ = M implies that all sensors have equal power allocated to them P1 = · · · = PM = P
M

.

Define κM (a normalized8 version of κ) as

κM =
κ− 1

M − 1
∈ [0, 1]. (5.81)

A stronger rationale behind naming the parameter κ as skewness is provided by the follow-

ing result, which shows that κ is monotonically related to another quantity that explicitly

enables power allocation in a skewed manner.

Lemma 5.3.8 (Parameter κ is an indicator of skewness). Assume that power available at

the M nodes are

P1 = P0, P2 = %P0, . . . , PM = %M−1P0, % ∈ [0, 1], (5.82)

so that % is an explicit measure of dissimilarity (or skewness) among the power available

at various nodes. Then (recall definition of κ in (5.80)),

κ(%) =

(
1 +
√
%+ · · ·+

(√
%
)M−1

)2

1 + %+ · · ·+ %M−1
(5.83)

is a strictly monotonically increasing function of %. Note that κ(% = 0) = 1 and κ(% = 1) =

M .

Proof: See Appendix A.11. QED.

8The parameter κM is similar in structure to the Chiu-Jain fairness metric [11] used for congestion
control in computer networks.
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The following proposition provides an explicit formula for the collaboration gain in a

homogeneous network with equicorrelated parameters for both the individual-constraint

and cumulative-constraint problems. We would use Examples 3, 5 and 6 to establish this

result, the derivation of which is relegated to Appendix A.12.

Proposition 5.3.9. (Collaboration gain for a homogeneous network): For the individual-

constraint problem, let the node indices be arranged (without loss of generality) in such a

way so that P C
1 ≤ · · · ≤ P C

M . Let P and κ denote the summary-descriptors of {P C
1 , . . . , P

C
M}

as per Equation (5.80). Assume,

P C
M ≤

∑M−1
m=1 P

C
m + ξ2

g20(1−αgαx)∑M−1
m=1

√
P C
m

2

. (5.84)

Then, all the power constraints are active at optimality, Pm = P C
m, ∀m, for both distributed

and connected topologies, and the collaboration gain is

CG =

(
1− 1

M

) (
κ
M

1+(M−1)αg

1+(κ−1)αg

)(
1− κ−1

M−1

αg

1+P−1
g

)
(1− αx)(

1 + 1
Pg(1+(κ−1)αg)

)(
1 + (κ−1)αg

1+P−1
g
αx

) ,

where Pg =
Pg2

0

ξ2
, αx =

ρ+ γαh

1 + γ
, γ =

η2h2
0

σ2
.

(5.85)

For the cumulative-constraint problem, the collaboration gain is given by Equation (5.85)

by setting κ = M .

Proof: See Appendix A.12. QED.

Several remarks about Proposition (5.3.9) are in order. Condition (5.84) is basically an

assumption that the power constraints are not too skewed. In Equation (5.85) note that all

the quantities in parenthesis in the numerator denote quantities less than 1, while those in

the denominator are greater than one, so this reaffirms the notion that collaboration gain

is always less than 1. Furthermore,

a) Dependence on local-SNR γ, noise correlation ρ, and observation gain uncertainty

αh: Collaboration gain increases with a decrease in αx, which means that CG increases as a)

91



Noise correlation decreases (smaller ρ), b) observation gain uncertainty increases (smaller

αh), and c) local SNR decreases (smaller γ), provided ρ < αh (which is typically true for

a problem involving moderately correlated noise and sufficiently certain observation gain).

Hence, collaboration is more effective when the local-SNR is small, measurement noise is

uncorrelated and observation gains are uncertain.

b) Dependence on (normalized) total power Pg, power skewness κ and channel gain

uncertainty αg: To understand the effect of Pg, κ and M on collaboration gain, we simplify

Equation (5.85) by considering the large-M asymptotic regime. Note that in general, an

infinite number of sensors implies that the Fisher Information is infinite and distortion is

zero for both distributed and connected topologies, which is a trivial regime to consider.

Towards the goal of analyzing regimes that incur only finite distortion in the asymptotic

limit, we consider two cases, as listed below.

First, we would consider the fixed-κ-large-P regime, which signifies that the effective

number of powered nodes are not increasing with M (recall that κ = 1 implies that only

one node has all the power, regardless of M), i.e., most of the nodes are auxilliary nodes

that provide their information to the powered nodes which then communicate with the

fusion center. Hence, even with a large transmission power the distortion at the FC is

finite, which makes this regime non-trivial. From (5.85), we note that

lim
M→∞
Pg→∞

CG =
(1− αx)αgκ

(1 + αg(κ− 1)) (1 + αxαg(κ− 1))
. (5.86)

With the additional technical assumption that αg >
1

1+αx
(which basically means that the

channel gains are sufficiently certain), the collaboration gain (Equation (5.86)) decreases

as κ increases, and hence is maximum when κ = 1, at which point

CG = (1− αx)αg. (5.87)

That CG decreases with αx has already been discussed in the previous remark, and also

applies for this regime. We conclude that in the fixed-κ-large-P regime, collaboration is
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highly effective if there are only a few powered sensors (small κ), and the channel gains

(higher αg) are fairly certain.

Next, we consider the fixed-(κ/M)-finite-(P×M) regime. Here, the normalized skewness

parameter κM is kept constant, which means that effectively, the number of powered sensors

κ increase linearly with M (note the contrast with previous regime). To keep the effective

Fisher Information (and resulting distortion) finite, the total available power P must scale

inversely proportional9 to M . Let PM , PgM denote the normalized total power, which is

a finite constant. From (5.85), we can derive that

max
PM

lim
M→∞

PgM=PM

CG =
1−√αx

1 +
√
αx
, when P ∗M =

1

κMαg
√
αx
. (5.88)

This implies that collaboration is more effective for smaller αx, a fact that was established

earlier as well. We conclude that in the fixed-(κ/M)-finite-(P ×M) regime, collaboration is

most effective when the normalized operating power is a particular finite quantity, precisely

P ∗M = 1
κMαg

√
αx

. Moreover, P ∗M increases as the power constraints get more skewed (smaller

κM) or the channel gains get more uncertain (smaller αg).

The assertions in Proposition 5.3.9 and the subsequent discussion are illustrated in

Figure 5.5 for an example with the following problem parameters η2 = 1
2
, σ2 = 1, ρ = 0.1,

g0 = h0 = 1 and αg = αh = 0.9. Contours of the actual collaboration gain are computed

numerically using procedure outlined in Section 5.3.3 and displayed for a wide range of

cumulative power Pg, number of nodes M and skewness of power constraints. To illustrate

the fixed-κ-large-P regime, we have used κ = 1 (only one sensor has all the power) in

Figure 5.5(a). To illustrate the fixed-(κ/M)-finite-(P ×M) regime, we have used κM =

{1/3, 2/3, 1} in Figures 5.5(b), 5.5(c), and 5.5(d) respectively. To simulate a particular

skewness κ, the local power constraints are generated in accordance with (5.82) by finding

the corresponding value % through bisection search (recall that % and κ are monotonically

9Another asymptotic domain that is conceptually different but otherwise would yield identical results
is to keep the power P constant and let the channel gains g scale at the rate of 1√

M
. The argument here is

that, though the network size increases with M , the channel capacity of the effective multiple-input-single

output (MISO) channel induced by the M sensors, precisely 1
2 log

(
1 +

P
∑M

m=1 g
2
m

ξ2

)
, is held constant.
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(c) Mildly skewed power constraints (κM = 2/3)
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(d) All sensors have equal power (κM = 1)
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Figure 5.5: Collaboration gain in a homogeneous sensor network with skewed power con-
straints.

related, as per Lemma 5.3.8). The active-constraint condition of Equation (5.84) is depicted

through the dotted line in Figures 5.5(b) and 5.5(c). The portion of the figure to the right of

the dotted line suggests that one or more of the constraints are inactive, while the left half

denotes the region where all the constraints are active and consequently Equation (5.85)

is the accurate measure of collaboration gain. No dotted lines appear in Figure 5.5(a) and

5.5(d) because all the constraints are trivially active in both the cases, although for different

reasons. For κ = 1, there is only one sensor with all the power and hence it must transmit

with full power, which explains Figure 5.5(a). For κ = M , we have equal power allocation

(P C
m = P C, say) and condition (5.84) reduces to P C ≤

(√
P C + ξ2

g20(1−αgαx)(M−1)
√
PC

)2

, which

is trivially satisfied for all P C.

94



For the problem parameters mentioned above, we calculate that αx ≈ 0.37. For the

fixed-κ-large-P regime, theoretical justifications predict that the maximum gain possible

(across various problem conditions) is (1− αx)αg ≈ 0.57, which can be confirmed from the

contours toward the top-right corner of Figure 5.5(a). For the fixed-(κ/M)-finite-(P ×M)

regime, theoretical predictions yield that the maximum gain is
1−√αx

1+
√
αx
≈ 0.24, which can be

validated from the innermost contours of Figures 5.5(b), 5.5(c) and 5.5(d). Note that the

contours shifts to the left as κM increases. This is due to the fact that the normalized power

required to achieve maximum collaboration gain decreases as κM become larger, a fact also

discussed above. In conclusion, for this particular problem instance, upto 57% (and 24%)

of the distortion performance can be recovered using collaboration in the fixed-κ-large-P

regime (and fixed-(κ/M)-finite-(P ×M)) regimes. We have established this fact using both

numerical results and theoretical insights.

Random geometric graphs

To demonstrate how the distortion decreases with increasing collaboration, we consider

the following simulation setup. The spatial placement and neighborhood structure of the

sensor network is modeled as a Random Geometric Graph, RGG(N, r) [24], where sensors

are uniformly distributed over a unit square and bidirectional communication links are

possible only for pairwise distances at most r, i.e., the adjacency matrix is A such that

Ai,j = 1[di,j≤r]. Correspondingly, the cost matrix is a {0,∞}matrix with the (i, j)th element

being zero only if di,j ≤ r, otherwise being infinity. We assume N = 20 sensor nodes and

gradually increase the radius of collaboration from r = 0 (signifying distributed topology)

to r =
√

2 (signifying connected topology, since the sensors are placed in a unit square).

The simulated sensor network is depicted in Figure 5.6, with collaboration radius r = 0.2.

In general, for 0 < r <
√

2, the network is only partially connected as in Figure 5.6.

We simulate a homogeneous network with the following parameters σ2 = 1, ρ = 0

(independent noise), g0 = h0 = 1 and αg = αh = 0.9. To contrast the effect of prior

uncertainty on collaboration gain, we simulate two different variance of the prior, η2 = 0.1
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Figure 5.6: Random Geometric Graph with 20 nodes, used for example in Section 5.3.4.
Edges are shown for pairwise distance less than 0.2. The radius of collaboration is depicted
for sensors 1,2,3 and 17.

and 0.5. To illustrate the effect of power constraints, we simulate a wide range of both

cumulative-power and skewness. We simulate three skewness conditions – κM = 0.5, 0.75

and 1, the value of 1 implying equal power allocation. The three values of cumulative-power

that were simulated were a) Pg = P ∗ = 1
0.75×20

1
αg
√
αx

(recall from the discussion in Section

5.3.4 that, for κ = 0.75, this is a high-CG operating region), b) Pg = P ∗/4 (depicting the

low power regime), and c) Pg = 4P ∗ (depicting the high power regime).

The simulation results are depicted in Figures 5.7-(a) and (b) for the two values of

prior uncertainty η2 = 0.1 and η2 = 0.5 respectively. Corresponding to these values of

η2, the infinite-power distortion D0, the maximum possible collaboration gain CG* and the
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corresponding operating power P ∗ for κM = 0.75, are calculated by using (5.55) and (5.88),

η2 ↓ D0 CG* P ∗(κM = 0.75)

0.1 0.07 0.29 0.13

0.5 0.04 0.56 0.25.

(5.89)

With varying power availability and varying extent of collaboration, the resulting dis-

tortion varies between D ∈ (D0, η
2), where the ranges are (0.07, 0.1) and (0.04, 0.5), for the

prior variance η2 = 0.1 and η2 = 0.5 respectively. To compare the effect of collaboration

across the two different problem conditions, we depict the normalized distortion D−D0

η2−D0
in

Figures 5.7-(a) and (b). Note that in this normalized scale, the collaboration gain is simply

the difference between the right-most (distributed) and the left-most (connected) ends of

a curve. The efficacy of collaboration, as indicated by the downward slope of the curves, is

clearly demonstrated in Figures 5.7-(a) and (b), where it is noted that a large part of the

overall gain is achieved only with partial collaboration, i.e., the distortion tends to saturate

beyond a collaboration radius of r ≈ 0.4. Hence, though the collaboration gain, as defined

in (5.30), requires a fully connected topology, a large part of that gain can be realized

with only a partially connected network. Also, we note that the efficacy of collaboration

diminishes when the operating power is too small (Pg = P ∗/4) or too large (Pg = 4P ∗),

indicating the fact that collaboration in a network should be used judiciously, especially

when there are costs associated with it. Finally, we note that the efficacy of collaboration

is higher when the prior has a lower variance (the curves in Figure 5.7-(a) has more down-

ward slope than those in Figure 5.7-(b)). This observation is explained directly by the

comments following Proposition 5.3.9, where we argued that collaboration gain increases

with decreasing local-SNR.

The summary of all the main results in this Chapter are tabulated in Tables 5.1 and

5.2 for ease of reference.

97



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius of collaboration, r

N
or
m
al
iz
ed

D
is
to
rt
io
n,

(D
−

D
0
)/
(η

2
−

D
0
)

 

 

←− Distributed

Connected −→

Pg = P∗/4, κM = 0.50

Pg = P∗/4, κM = 0.75

Pg = P∗/4, κM = 1
Pg = P∗, κM = 0.50
Pg = P∗, κM = 0.75
Pg = P∗, κM = 1
Pg = 4P∗, κM = 0.50
Pg = 4P∗, κM = 0.75
Pg = 4P∗, κM = 1

(a) η2 = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radius of collaboration, r

N
or
m
al
iz
ed

D
is
to
rt
io
n,

(D
−

D
0
)/
(η

2
−

D
0
)

 

 

←− Distributed

Connected −→

Pg = P∗/4, κM = 0.50

Pg = P∗/4, κM = 0.75

Pg = P∗/4, κM = 1
Pg = P∗, κM = 0.50
Pg = P∗, κM = 0.75
Pg = P∗, κM = 1
Pg = 4P∗, κM = 0.50
Pg = 4P∗, κM = 0.75
Pg = 4P∗, κM = 1

(b) η2 = 0.5

Figure 5.7: Improvement in distortion due to increasing collaboration among 20 nodes in
a random geometric graph. 98



Table 5.1: Main results: cumulative power constraint (Examples 1, 2 and 3)

Cases Conditions
Optimal (equivalent)
Fisher Information

Optimal weights are
proportional to

(A)
General J = hTGT

(
ΩJD +

ΩP

Pξ

)−1

Gh w ∝
(

ΩJD +
ΩP

Pξ

)−1

Gh

(B)
Perfect CSI

Σg = 0
J = hT

(
Σ̃ +

ΓP

Pξ

)−1

h w ∝ Ω−1
P GΓP

(
Σ̃ +

ΓP

Pξ

)−1

h

(C)
Perfect OGI,
Perfect CSI,

[45]

Σh = 0,
Σg = 0 J = hT

(
Σ +

ΓP

Pξ

)−1

h w ∝ Ω−1
P GΓP

(
Σ +

ΓP

Pξ

)−1

h

(D)
Distributed,

Uncorrelated,
Perfect OGI,
Perfect CSI,

[96]

A = I,

Σ is diagonal

Σh = 0,

Σg = 0

J =
N∑
n=1

h2
n

σ2
n

[
1 +

1 + γn
Pξg2

n

]−1

,

σ2
n , Σn,n, γn ,

η2h2
n

σ2
n

W ∝ diag ([v1, v2, . . . , vN ]) ,

vn =
hn
gnσ2

n

[
1 +

1 + γn
Pξg2

n

]−1

(E)
Connected

A = 11T J = J̃

1 +
1 + η2J̃

gT
(
Σg + I

Pξ

)−1

g


−1

,

J̃ , hT Σ̃
−1
h

W ∝ uvT , u =

(
Σg +

I

Pξ

)−1

g,

v = Σ̃
−1
h

(F)
Cycle topology,
Homogeneous,
Equicorrelated-

(Σ,Eh,Eg)

A = C(K),

h = h0

√
αh1,

Σh = h2
0(1− αh)I,

Σ = σ2R(ρ),

g = g0
√
αg1,

Σg = g2
0(1− αg)I

J =
h2

0

σ2

[
ρN + α̃h

(
ρN +

γ

N

)
+

1

N

(
α̃g +

1

Pξg2
0αg

){
γ + ρK + α̃h

(
ρK +

γ

K

)}]−1

,

ρt , ρ+
1− ρ
t

, γ ,
η2h2

0

σ2
, α̃ ,

1

α
− 1. w ∝ 1L.

Note: K = 1⇒ Distributed, K = N ⇒ Connected

αg = 1⇒ Perfect CSI, αh = 1⇒ Perfect OGI

Other definitions: ΓP ,
(
GTΩ−1

P G
)−1

, Σ̃ , Σ + η2Σh, R(ρ) ,
(
(1− ρ)I + ρ11T

)
.
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Table 5.2: Main results: individual power constraint (Examples 4, 5 and 6)

Cases Conditions
Optimal (equivalent)
Fisher Information

Optimal weights

(A)
Distributed,

Uncorrelated,
Perfect OGI,
Perfect CSI,

[41]

A = I,

Σ is diagonal

Σh = 0,

Σg = 0

J =Fopt (a, b, c) ,

am = gmhm,

bm = g2
mσ

2
m, σ

2
m = [Σ]m,m ,

cm =

√
P C
m

σ2
m + η2h2

m

W = diag (topt)

(B)
Distributed,

Homogeneous,
Equicorrelated-

(Σ,Eh,Eg)

A = I,

h = h0

√
αh1,

Σh = h2
0(1− αh)I,

Σ = σ2R(ρ),

g = g0
√
αg1,

Σg = g2
0(1− αg)I

J =

[
1

Fopt (a, b, c)
+

ρσ2

αhh2
0

]−1

,

a =
√
αgαhg0h01,

b = σ2
xg

2
0(1− αgαx)1,

cm =

√
P C
m

σ2
x

W = diag (topt)

(C)
Connected,

Uncorrelated-
channel-gain

A = 11T ,
Σg is diagonal

J =J̃

[
1 +

1 + η2J̃

Fopt (a, b, c)

]−1

,

J̃ , hT Σ̃
−1
h,

a = g, b = diag (Σg) , cm =
√
P C
m

W =κtoptv
T ,

v = Σ̃
−1
h,

κ =
1√

J̃(1 + η2J̃)

Other definitions: Σ̃ , Σ + η2Σh, R(ρ) ,
(
(1− ρ)I + ρ11T

)
, σ2

x = σ2 + η2h2
0, αx =

ρσ2 + αhη
2h2

0

σ2
x
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5.4 Collaboration with finite costs

In Section 5.3, we have solved the optimal collaboration problem for the situation when the

cost of communication for each link is either zero or infinity, i.e., Ci,j ∈ {0,∞} (also termed

as the ideal case). In this section, we address the general problem where communication

may incur a non-zero but finite cost, i.e., 0 < Ci,j < ∞ (also termed as the finite-cost

case). Unlike the ideal case, finding the globally optimal solution for the finite-cost case is

a difficult problem and there are no known numerical techniques that efficiently solve this

problem. In this section, we outline an efficient (polynomial-time) numerical procedure that

obtains a locally optimal solution to the finite-cost problem. We first describe our iterative

solution for the individual-constraint problem. The cumulative-constraint problem follows

from similar arguments and is described next. Lastly, solutions to both the problems are

demonstrated using numerical simulations.

5.4.1 Individual power constraint

We propose an iterative solution as follows. Let the collaboration topology and transmission

power availability (for all N nodes, in vector form) at iteration i be denoted by Ai and

P trans
i respectively. Note that the transmission power availability is the difference between

the original power constraint and the collaboration cost due to the topology Ai. For the

nth node, it means

[P trans
i ]n =

[
P C
]
n
−

M∑
m=1

[Ai]mnCmn. (5.90)

Note that for the auxiliary nodes n = M + 1, . . . , N , the transmission power availability

[P trans
i ]n does not mean much, since they cannot transmit to the FC anyway. For those

sensors, it is best if they use their entire resources for collaboration. Recall that the

optimal distortion corresponding to any topology A and transmission power constraint

P trans can be obtained from the discussion in Section 5.3. Denote such a distortion by

DA
opt (P trans). We start with a distributed topology, i.e., A1 = [IM |0] and follow a greedy
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algorithm. At iteration i, we evaluate the distortion performance corresponding to all

incremental topologies of the form Ai + E(m,n), where E(m,n) is an all-zero matrix

except for the (m,n)th element, which is 1 (signifying an incremental n→ m link). There

are MN−nnz(Ai) such possibilities for selecting E(m,n), each corresponding to a link that

is current not being used (equivalently [Ai]mn is zero). The number of such possibilities

may even be lesser if there is not enough power to make a link possible. For example, if

Cmn > [P trans
i ]n, then the nth node does not have sufficient power to use the n→ m link for

collaboration. Among all such possible links, let n∗ → m∗ denote the link that provides the

best distortion performance. Then the iteration is concluded by augmenting the topology

with the edge n∗ → m∗. Thus, in compact notations, each iteration is represented as,

(m∗, n∗) = arg min
m,n

[Ai]mn=0

Cmn≤[P trans
i ]

n

D
Ai+E(m,n)
opt (P trans

i − enCmn) ,

Ai+1 = Ai +Em∗n∗ ,

(5.91)

where en is an all-zero vector with the exception of nth element, which is 1. The iterations

are terminated when one of the following conditions is satisfied, a) there is no feasible link,

b) maximum number of iterations has exceeded a pre-specified limit or c) there is not enough

increment in (relative) performance after a particular iteration, say, for a pre-specified δ, if

D
Ai+1
opt

(
P trans
i+1

)
−DAi

opt (P trans
i )

η2 −D0

≤ δ. (5.92)

A rough estimate of computational complexity can be established as follows. Recall from

Section 5.3.3 that computing DA
opt(P ) is roughly O (M2L2), where L = nnz(A). Assume

that the algorithm gets terminated after adding O(N) links, which is to say that each

node communicates with a fraction of its neighbors at optimality. Since we start with the

distributed topology we have L = O(N) for all the iterations. Since each of the iterations

(as in (5.91)) require approximately MN function evaluations, the total complexity of the
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finite-cost collaborative power allocation problem is

O(M2N2)︸ ︷︷ ︸
evaluation

of Dopt

× O(MN)︸ ︷︷ ︸
evaluations

per iteration

× O(N)︸ ︷︷ ︸
number

of iterations

= O(M3N4). (5.93)

It must be emphasized here that (5.93) is only a rough (but practical) measure of com-

plexity and is not a rigorous bound. It assumes a fixed number of iterations to solve a

semidefinite optimization problem (see discussion in Section 5.3.3) and also sufficiently

high collaboration costs so that only O(N) links are added starting from a distributed

topology.

5.4.2 Cumulative power constraint

To solve the cumulative power-constraint problem, we proceed on similar lines. Let the

cumulative power constraint be P C and the cumulative transmission power availability at

iteration i be denoted by P trans
i , so that

P trans
i = P C −

M∑
m=1

N∑
n=1

[Ai]mnCmn. (5.94)

Denote the optimal distortion corresponding to any topology A and transmission power

constraint P trans (see Section 5.3.2) as DA
opt (P trans). Starting from a distributed topology,

the best collaboration link n∗ → m∗ is selected at each iteration according to

(m∗, n∗) = arg min
m,n

[Ai]mn=0

Cmn≤P trans
i

D
Ai+E(m,n)
opt (P trans

i − Cmn) ,

Ai+1 = Ai +Em∗n∗ ,

(5.95)

with the stopping criteria being similar to that described in the previous subsection. As

regards to computational complexity, recall from (5.3.2) that the complexity of computing

DA
opt(P ) is O (L3), where L = nnz(A). Assuming O(N) iterations (as in the previous

case) the overall complexity for the finite-cost-collaborative cumulative-constraint problem
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is roughly

O(N3)︸ ︷︷ ︸
evaluation

of Dopt

× O(MN)︸ ︷︷ ︸
evaluations

per iteration

× O(N)︸ ︷︷ ︸
number

of iterations

= O(MN5). (5.96)

5.4.3 Numerical simulations

To demonstrate the efficacy of collaboration in finite-cost scenarios, we consider a random

geometric graph of M = N = 10 nodes. As in the previous examples, we consider a

homogeneous network with the following parameters η2 = 0.5, σ2 = 1, ρ = 0 (independent

noise), g0 = h0 = 1 and αg = αh = 0.9. The collaboration cost of link m → n is assumed

to increase quadratically with the distance between nodes m and n. This is because the

gain of a wireless channel is often inversely proportional (upto a constant exponent) to

the distance between a source and a receiver [31]. Consequently, to maintain a reliable

communication link, the transmission power has to be scaled up accordingly. In particular,

we assume

Cm,n = c0d
2
m,n, (5.97)

where dm,n denotes the distance between nodes m and n and c0 is a constant of pro-

portionality. For our numerical simulations, we consider a wide range of c0, specifically

c0 ∈ [10−4, 104], to depict the effect of collaboration cost on the distortion performance.

A lower collaboration cost in effect allows the network to collaborate more and thereby

reduces the distortion. We consider two magnitudes of total operating power (namely,

Pg = 1 and 3) for both the individual-constraint and cumulative-constraint cases. For the

individual-constraint case, we consider two skewness conditions for the power-constraint,

namely κM = 0.5 and κM = 0.75. The corresponding distortion curves are shown in Figure

5.8. For very low values of the c0, the distortion converges to that in a fully connected

network. Similarly, for very high values of the c0, no links are selected for collaboration,

and the network operates in a distributed manner. Since in our example, the network is ho-
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mogeneous, equal power allocation among nodes is also the optimum power allocation for a

cumulative-power-constrained problem. Consequently, the performance of the cumulative-

constraint problem (dash-dotted lines) is always better than that with individual power

constraints (bold and dashed lines). In conclusion, Figure 5.8 shows that in a homogeneous

network, the estimation performance improves with higher operating power, less skewed

power constraints and lower collaboration cost among sensors, as expected.
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Figure 5.8: Estimation with finite collaboration cost - an example with 10 sensor nodes.

5.5 Summary

In this chapter, we addressed the problem of collaborative estimation in a sensor network

where sensors communicate with the FC using a coherent MAC channel. For the scenario

when the collaborative topology is fixed and collaboration is cost-free, we obtained the

optimal (cumulative) power-distortion tradeoff in closed-form by solving a QCQP problem.

With individual power constraints, we have shown that the semidefinite relaxation tech-
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nique can be used to obtain precisely optimal numerical results. Several special cases are

presented as examples to highlight the problem conditions for which collaboration is partic-

ularly effective. Through the use of both theoretical and numerical results, we established

that collaboration helps to substantially reduce the distortion of the estimated parameter at

the fusion center, especially in low local-SNR scenario. As future work, we wish to explore

the collaborative estimation problem when the parameter to be estimated is a vector with

correlated elements. The scenario when collaboration is erroneous, as mentioned earlier, is

also important.
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Chapter 6

Analog forwarding based

collaborative estimation of dynamic

parameters

6.1 Introduction

In Chapter 5, we presented an extension of the amplify-and-forward framework that allowed

spatial collaboration in a partially connected network topology. It was observed that even a

sparsely connected network was able to realize a performance which was very close to that

of a fully connected network. This is due to the fact that in an amplify-and-forward frame-

work, the observation noise is also amplified along with the signal, thereby significantly

increasing the energy required for transmission. Spatial collaboration, in effect, smooths

out the observation noise, thereby improving the quality of the signal that is transmitted

to the FC using the same energy resources.

In this chapter, we explore the potential of collaborative estimation further by making

two significant contributions. First, though it was observed earlier that even a moderately

connected network performs almost as well as a fully connected network, no analytical

results were presented. In this chapter, we extend our previous work by analyzing the es-

107



timation performance for partially connected collaboration networks. Though the analysis

of arbitrary network topologies is a difficult problem, we derive the estimation performance

for a family of structured network topologies, namely the Q-cliques. We demonstrate that

the insights obtained from the structured topology apply approximately to two practical

topologies, namely the nearest neighbor and random geometric graphs, of similar connec-

tivity. Given a particular network topology, we investigate two different energy allocation

schemes for data transmission. In addition to the optimal energy-allocation (EA) scheme

as derived in the previous chapter, we also consider the suboptimal but easy-to-implement

equal energy-allocation scheme, where neighboring observations are simply averaged to

mitigate the observation noise. For both of these schemes, we derive the performance in a

closed form in the asymptotic domain where the number of nodes is large and the overall

transmission capacity of the network is held constant. These results offer insights into

the relationship between estimation performance and problem parameters like channel and

observation gains, prior uncertainty and extent of spatial collaboration.

The collaborative estimation problem has so far been analyzed in the single-snapshot

context, where energy-constrained spatial sampling is performed at one particular instant

and the inference is made using those samples. In our second contribution in this chapter,

we extend the problem formulation to consider power-constrained inference of a random

process, where the goal is to estimate the process for all time instants. In contrast to

the simple snapshot framework, this involves obtaining multiple samples in time and com-

puting the filtered estimates for any desired time instants, including time instants where

observation samples are not available. Since collection of each sample involves the expen-

diture of energy resources, the appropriate constraint in this situation is the energy spent

per unit time (or power). A key parameter here is the sampling frequency, the choice of

which affects the overall estimation performance. Note that a higher sampling frequency

usually means that one can better capture the temporal variations. However, with a power

constraint, less energy is available for the collection of each of those samples, which would

result in more noisy samples. This trade-off is investigated in the context of a Gaussian
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random process with exponential covariance, where it turns out that a higher sampling

frequency always results in better estimates.
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Figure 6.1: Wireless sensor network performing collaborative estimation.

6.2 Problem formulation

We first consider the single snapshot estimation problem, where the dimension of time is

ignored. We will extend the discussion to time varying Gaussian process later in Section

6.2.3. The single snapshot framework is depicted in Figure 6.1. The parameter to be

estimated, θ (written without any time subscript to signify the single snapshot nature of the

problem), is assumed to be a zero-mean Gaussian source with prior variance η2. Different

noisy versions of θ are observed by N sensors. The observation vector is x = [x1, . . . , xN ]

where xn = hnθ+ εn, with hn and εn denoting the observation gain and measurement noise

respectively. The measurement noise variables {εn}Nn=1 are assumed to be independent and

identically distributed (iid) Gaussian random variables with zero mean and variance σ2.

Let the availability of collaboration links be represented by the adjacency matrix A,

where Anm = 1 (or Anm = 0) implies that node n has (or does not have) access to the
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observation of node m. Define an A-sparse matrix as one for which non-zero elements may

appear only at locations (n,m) for which Anm = 1. The set of all A-sparse matrices is

denoted by SA. Corresponding to an adjacency matrix A and an A-sparse matrix W , we

define collaboration in the network as individual nodes being able to linearly combine local

observations from other collaborating nodes

zn =
∑

m∈A(n)

W nmxm, (6.1)

where A(n) , {m : Anm = 1}, without any further loss of information. In effect, the net-

work is able to compute a one-shot spatial transformation of the form z = Wx. In practice,

this transformation is realizable when any two neighboring sensors are close enough to en-

sure reliable information exchange. Note that, when W is restricted to be diagonal (in

other words, when A = I), the problem reduces to the amplify-and-forward framework for

distributed estimation, which is widely used in the literature [14],[96],[20] due to its sim-

plicity in implementation and provably optimal information theoretic properties for simple

networks [30].

The transformed observations {zn}Nn=1 are transmitted to the FC through a coherent

MAC channel, so that the received signal is y = gTz+u, where g and u describe the channel

gains and the channel noise respectively. The channel noise u is assumed to be Gaussian

distributed with zero mean and variance ξ2. The FC receives the noise-corrupted signal y

and computes an estimate of θ. Since y is a linear Gaussian random variable conditioned

on θ,

θ ∼ N (0, η2), and

y|θ ∼ N

 gTWh︸ ︷︷ ︸
,µ (net gain)

θ, gTWΣW Tg + ξ2︸ ︷︷ ︸
,ζ2 (net noise variance)

 ,
(6.2)

the minimum-mean-square-error (MMSE) estimator θ̂ = E [θ|y] is the optimal fusion rule.

From estimation theory (for details the reader is referred to [49]), the MMSE estimator
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and resulting distortion DW is given by

θ̂ =
1

1 + ζ2

η2µ2

y

µ
, and

1

DW
=

1

η2
+ JW , JW =

µ2

ζ2
, (6.3)

where the quantity JW is the Fisher Information and µ and ζ2 are the net gain and net

noise variance as defined in Equation (6.2). The cumulative transmission energy required

to transmit the transformed observations z is

EW = E[zTz] = Tr
[
WExW

T
]
, where

Ex , E[xxT ] = η2hhT + Σ.

(6.4)

6.2.1 Collaboration strategies

Note that the quantities µ, ζ2 and, therefore, the distortion D (equivalently J) and also the

transmission energy E depend on the choice of the collaboration matrix W . As indicated

earlier, we explore two strategies to determine W , namely 1) optimal and 2) equal energy-

allocation (EA) strategies, that stem from two different engineering considerations.

In the optimal EA strategy, we assume that the FC knows the channel and observation

gains and also the collaboration topology precisely. In such a situation, the FC can compute

the optimal collaboration matrix subject to a cumulative transmission energy constraint

(Optimal EA) W opt = arg min
W∈SA

DW , s.t. EW ≤ E , (6.5)

and communicate the corresponding weights W opt to the sensor nodes via a separate and

reliable control channel. The exact form of W opt and corresponding Jopt were derived in

the previous chapter (see Equation 5.48) and briefly summarized below.

Theorem 6.2.1 (Optimal single-snapshot estimation). Let L be the cardinality of A, which

is also the number of non-zero collaboration weights. In an equivalent representation, con-

struct w ∈ RL by concatenating those elements of W that are allowed to be non-zero.
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Accordingly, define the L× L matrix Ω and L×N matrix G such that the identities

Tr
[
WExW

T
]

= wTΩw, and gTW = wTG, (6.6)

are satisfied. Then the optimal Fisher Information is,

Jopt = hT (Σ + Γ/Eξ)−1 h, where

Eξ , E/ξ2, and Γ ,
(
GTΩ−1G

)−1
,

(6.7)

which is achieved when the collaboration weights are wopt = κΩ−1GΓ (Σ + Γ/Eξ)−1 h, with

the scalar κ chosen to satisfy wT
optΩwopt = E. W opt is the matrix equivalent of wopt.

When either the FC is computationally limited or reliable control channels are not avail-

able, the optimal EA strategy cannot be implemented. In these situations, one reasonable

way of assigning transmission energy and collaboration weights at each node may be the

equal EA strategy, where all the sensors are allocated equal transmission energy (namely

E
N

). In addition, the nth sensor equally weighs all the observations from its neighbors

where the weights (say {dn}Nn=1) are chosen to satisfy E [z2
n] = E

N
. Note from (6.1) that

zn = dn
∑

m∈A(n)(hmθ + εm). Consequently,

(Equal EA) [W eq]nm =

 dn, if m ∈ A(n)

0, else
,

dn =

√√√√ E/N(∑
m∈A(n) hm

)2

η2 + |A(n)|σ2

,

(6.8)

where |A(n)| denotes the number of neighbors of n. The Fisher Information corresponding

to the equal EA strategy is simply Jeq , JW eq , which can be obtained by applying Equation

(6.3).

Once the collaboration strategy (namely, either optimal or equal EA) is chosen and

a cumulative operating energy E is specified, the resulting distortion performance (FI-s

Jopt or Jeq) depends on the following problem parameters, 1) signal prior, measurement
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noise and channel noise, which were assumed to be Gaussian distributed with zero mean

and variances η2, σ2IN and ξ2 respectively, 2) observation and channel gains, and 3) the

collaboration topology. To obtain analytical expressions for FI-s, it is clear that we need

to make further simplifying assumptions on the observation/channel gains (which will be

discussed in Section 6.3.1) and also the topology for collaboration.
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Figure 6.2: Example of Q-cliques.

6.2.2 Partially connected networks

With the goal to investigate partially connected collaboration topologies, we adopt the

following methodology. Intuitively, we expect the distortion to decrease as the network be-

comes more connected (since it adds more degrees of freedom) and it is our aim to obtain

asymptotic limits that explicitly reflect the effect of connectedness. Since the analysis of

arbitrary topologies is difficult, we derive our analytical results for a structured collabo-

ration topology that consists of several fully-connected clusters (or cliques) of finite size

Q, as illustrated in Figure 6.2. To be precise, if N = KQ, we have A = IK ⊗
(
1Q1TQ

)
.

Since all of the nodes in a Q-clique network are (Q − 1)-connected, the performance of

this special topology may serve as an approximation to other topologies where the average

number of neighbors per node is (Q − 1). To demonstrate the efficacy of this approxima-

tion, we will compare the analytical results for Q-clique networks with numerical results
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for two practical collaboration topologies, namely 1) nearest-neighbor (NN) topology and

2) random geometric graphs (RGG) [24]. For the NN-topology, a sensor receives the ob-

servations from its nearest Q − 1 neighbors. For the RGG topology, a sensor collaborates

with all other sensors that are located within a circle of radius r with the sensor at the

center. The expected number of neighbors, which is a function of r, can be derived using

geometric arguments, thereby enabling comparison with an equivalent Q-clique topology.

Examples of these two topologies are illustrated in Figures 6.3(a) and 6.3(b) for a network

with N = 20 nodes. It may be noted that unlike the NN topology, all collaboration links

of an RGG topology are bidirectional by definition.

6.2.3 Ornstein-Uhlenbeck process

We now bring in the dimension of time, and consider the problem of power-constrained

estimation of time-varying signals. In order to model the temporal dynamics, we assume

that the signal of interest is a stationary zero-mean Gaussian random process θt with

exponential covariance function

E [θt1 , θt2 ] = η2e−(|t1−t2|)/τ , (6.9)

where η2 and τ represent the magnitude and temporal variation of the parameter respec-

tively. Note that τ → 0 implies that the signal changes very rapidly, while τ →∞ means

that the signal is constant over time. Such a process (with covariance parameterized by

η2 and τ) is widely used in the literature [65] due to its ability to model a time varying

Gaussian process while providing a relatively simple framework for analysis. This process

is also sometimes known as the Ornstein-Uhlenbeck (OU) process.

Let P denote the power constraint in the network. We assume that the OU process

is sampled periodically with the period T (see Figure 6.4), which implies that a total of

E = PT energy units is available for each sampling instant. Let the spatial sampling at each

instant be performed in a manner similar to the single-snapshot framework discussed earlier,
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(a) Random geometric graph with radius r = 0.2 (total 44 links)
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(b) Nearest neighbor topology with Q = 3 (total 40 links)

Figure 6.3: Example of two practical collaboration topologies for a N = 20-node network.
Bidirectional links are shown without arrows.

115



𝒚 ≜  [… , 𝑦−𝑇 , 𝑦0, 𝑦𝑇 , 𝑦2𝑇 , … ]’ 

𝑇 2𝑇 ∞ 0 −∞ −𝑇 

Time  
𝑡 

𝜚 ≜ 𝐸 𝜃0𝜃𝑡 /𝜂2 = ⅇ−𝑡/𝜏 

𝜌 ≜ 𝐸 𝜃0𝜃𝑇 /𝜂2 = ⅇ−𝑇/𝜏 

Figure 6.4: Periodically sampled Ornstein-Uhlenbeck process.

namely through collaboration and coherent amplify-and-forward beamforming. Let the sig-

nal received by the FC at instant t be denoted as yt, so that the entire observed sequence can

be represented by the following infinite-dimensional vector y , [. . . , y−T , y0, yT , y2T , . . .]
′.

From the linear Gaussian model y|θ in (6.2) and subsequent description of Fisher Informa-

tion J in (6.3), the spatial sampling process can be abstracted (via an appropriate scaling)

through the additive model yt = θt+vt, where the aggregate noise vt ∼ N
(
0, 1

J

)
summarizes

the uncertainty due to {εn,t}Nn=1 (measurement noise at sensors) and ut (channel noise). We

assume εn,t and ut to be temporally white, from which it follows that vt is temporally white

as well. In vector notations,

y = θ + v, v ∼ N
(

0,
1

J
I

)
, (6.10)

where θ , [. . . , θ−T , θ0, θT , θ2T , . . .]
′ and v , [. . . , v−T , v0, vT , v2T , . . .]

′. Having observed

y, the MMSE estimator of θt (the value of OU process at any instant t) is given by the

conditional expectation (refer to [49] for details)

θ̂t = E[θt|y] = Rθty′R
−1
yy′y, (6.11)

where Rθty′ , E [θty
′] and Ryy′ , E [yy′]. Moreover, the variance of θ̂t is given by

Var (θt|y) = η2 −Rθty′R
−1
yy′Rθty. (6.12)

Since yt is sampled periodically at instants t = kT, k ∈ Z and y contains infinite elements

in both time directions, the conditional variance Var (θt|y) is also expected to be periodic in
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time, i.e., Var (θt|y) = Var (θt+kT |y) , ∀t, k. Hence any interval of length T , say t ∈ [0, T ] is

sufficient for analyzing the conditional variance (6.12). Since we are interested in estimating

the OU process at all time instants, the quality of inference has to be summarized by a

metric that is independent of time t. We consider two such performance metrics, first of

which is the average variance

Avar(T ) ,
1

T

∫ T

0

Var (θt|y) dt. (6.13)

Note that average variance depends on the sampling period T , which is made explicit by

the argument. However, there may be situations when the sampling period T is also subject

to design. In this case, we need a metric that is independent of T as well. In this situation,

we may use the performance metric to be the limiting value

Var0 , min
T

max
t∈[0,T ]

Var (θt|y) , (6.14)

which assumes that we select the sampling period T in a manner that minimizes the worst-

case conditional variance for all time. We would consider both the metrics (6.13) and (6.14)

in this chapter.

6.3 Main results

6.3.1 Single snapshot estimation

As motivated earlier, we consider an N -sensor network, the collaboration topology of which

consists entirely of Q-cliques, where Q is a finite integer (see Figure 6.2). Let N = KQ,

which ensures that there is an integral number of such cliques. Let the total energy available

in the network be E , which is finite. We consider the asymptotic limit when the network

is large (N → ∞) but the transmission capacity of the equivalent Multiple-Input-Single-

Output (MISO) channel is kept finite. We assume that the random variables {g̃n}Nn=1 (which

can be thought of as unnormalized channel gains) are iid realizations from the pdf fg̃(·) and
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the channel gains are gn = 1√
N
g̃n so as to ensure that the transmission capacity remains

the same even as the number of nodes increases1, thereby enabling a fair comparison of

networks of various sizes. Without such a scaling, the transmission capacity would increase

to infinity (and the resulting distortion would be driven down to zero) as the number of

nodes increases, which is a trivial regime to consider.

Let Jopt and Jeq denote the asymptotic limits of the Fisher Information JW corre-

sponding to the optimal (6.5) and equal energy-allocation strategies (6.8) respectively. The

following results provide closed form expressions for these limits.

Theorem 6.3.1 (Fisher Information for Q-clique topology).

(Optimal EA) Jopt =
E
η2

E [g̃2]

ξ2
(1−HQ) , and (6.15a)

(Equal EA) Jeq =
E
η2

(E [g̃])2

ξ2

1

1 +RQ

, (6.15b)

where HQ and RQ are defined as

HQ = E

[
1

1 + η2

σ2

(
h2

1 + · · ·+ h2
Q

)] , and (6.16a)

RQ =
1

Q (E [h])2

(
Var [h] +

σ2

η2

)
, (6.16b)

respectively.

The proof of Theorem 6.3.1 is relegated to Appendix A.13. A few remarks due to

Theorem 6.3.1 are in order.

Special Cases: In general, the equal EA scheme is suboptimal, i.e., Jopt ≥ Jeq. However,

the two energy allocation schemes are asymptotically equivalent when Var[h] and Var[g̃] are

both zero, which is the case when the network is homogeneous, i.e., h = h01 and g̃ = g̃01

1Note that the channel capacity of the equivalent MISO channel is 1
2 log

(
1 + E‖g‖2

ξ2

)
and that

limN→∞ ‖g‖2 = E
[
g̃2
]

from the law of large numbers.
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(say). For such a network,

Jopt = Jeq =
E g̃2

0

ξ2η2

1

1 + 1
Q

σ2

η2h20

. (6.17)

Explicit expressions for Rayleigh distributed gains: The evaluation of (6.15a) is, in

general, hindered by the computation of HQ, which involves the computation of a Q-

dimensional integral. However, if the observation gains are Rayleigh2 distributed fh(h) =

Rayleigh(h;αh), we can show (derivation in Appendix A.14) that

HQ =
(−1)Q−1λQ exp(λ)Ei(λ)−∑Q−2

i=0 i!(−λ)Q−1−i

(Q− 1)!
, (6.18)

where λ , σ2

2α2
hη

2 and Ei(z) ,
∫∞
z

exp(−t)/t dt is the exponential integral function. It

immediately follows that H1 = λ exp(λ)Ei(λ), which corresponds to the distributed case

(Q = 1), and HQ ≈ λ
Q−1

for large values of Q. In our numerical simulations, we would

consider Rayleigh distributed channel and observation gains, for which (6.18) will be useful.

Simulation results

Theorem 6.3.1 is important since it provides a framework to evaluate the estimation per-

formance for partially connected collaboration topologies. Though (6.15a) and (6.15b) are

accurate indicators of performance for a structured network consisting only of Q-cliques,

it is of interest to see how this insight applies for more complicated topologies. Towards

that goal, we simulate the nearest-neighbor and random geometric graph topologies as de-

scribed in Section 6.2.2. We consider a network with N = 104 nodes, which is large enough

to demonstrate convergent behavior. We consider η2 = 1, ξ2 = 1, fh(h) = Rayleigh(h; 1),

fg̃(g̃) = Rayleigh(g̃; 1) and two values of observation noise variance, namely σ2 = 1 and

σ2 = 2. The operating energy is fixed at E = 0.7. This choice of E is made to reflect an

2A Rayleigh distributed random variable x with parameter α has a probability density function

Rayleigh(x;α) = x
α2 exp

(
− x2

2α2

)
for x ∈ [0,∞). The first two moments are E [x] = α

√
π
2 and E

[
x2
]

= 2α2

respectively.
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operating region where substantial performance gain is possible through spatial collabora-

tion.

Numerical results obtained through Monte-Carlo simulations of both the optimal and

equal EA strategies with varying degrees of spatial collaboration are illustrated in Figures

6.5(a) and 6.5(b) for the NN and RGG topologies respectively. For the (Q − 1)-nearest-

neighbor case, the theoretical results corresponding to an equivalent problem with Q-cliques

are juxtaposed. It is observed from Figure 6.5(a) that the performance of the two schemes

are almost identical. For a random geometric graph, we consider that all the N sensors

are randomly spread in a unit square. If the radius of collaboration is r, it follows that the

expected number of neighbors is approximately Q̃ = Nπr2, and that this approximation

is more accurate for large values of r. Hence in Figure 6.5(b), the theoretical results

corresponding to an equivalent problem with Q̃-cliques are juxtaposed. It is observed

that the theoretical approximations compare favorably with the Monte-Carlo simulations,

although they are less accurate compared to the (Q− 1)-nearest-neighbor case.

From the two examples given above, it is observed that only a small number of collabo-

ration links are needed to achieve near-connected performance. In particular, the distortion

performance is seen to saturate as early as Q ' 20, though a fully connected network would

imply Q = N = 104 connections per node. This demonstrates the efficacy of spatial collab-

oration as an approach to enhance estimation performance beyond distributed networks.

6.3.2 Time varying process estimation

In this subsection, we compute the conditional variance of the OU process given the vector

of periodically sampled observations. Towards computing (6.12), we begin by describing

the matrix Ryy′ and vector Rθty′ . The covariance matrix of the sampled parameter values
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Figure 6.5: Energy-constrained estimation with single snapshot spatial sampling.
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θ takes the shape of the well known stationary matrix (e.g., [65]),

E[θθ′] = η2C, C ,



1 ρ ρ2 . . . ·

ρ 1
. . .

. . .
...

ρ2 . . .
. . .

. . . ρ2

...
. . .

. . . 1 ρ

· . . . ρ2 ρ 1


, (6.19)

where ρ , e−T/τ . The structured matrix C in Equation (6.19), is often referred to as the

Kac–Murdock–Szegö matrix in the literature. From the additive model (6.10), it follows

that

Ryy′ =
(
I + η2JC

)
/J. (6.20)

Similarly, the following expression for Rθty′ follows directly from the definition % = e−t/τ ,

where t ∈ [0, T ],

E[θty
′] = η2

[
. . . , ρ2%, ρ%, %, ρ/%, ρ2/%, . . .

]
. (6.21)

With the help of the above descriptions of Ryy′ and Rθty′ , computing (6.12) involves

inverting the matrix I + η2JC (the asymptotic closed form expression for such an inverse

can be found in the next chapter, see Proposition 7.3.1) followed by a quadratic product.

The resulting algebra is involved but straightforward. We relegate details of the derivation

to Appendix A.15 and state the result below.

Theorem 6.3.2 (Variance of OU process estimates).

Var (θt|y) =

η2

[
1 + η2Jρ′

{
1−

(
%−ρ/%
1−ρ

)2
}]

√
(η2J + ρ′) (η2J + 1/ρ′)

,

where ρ′ ,
1− ρ
1 + ρ

, ρ = e−T/τ , % = e−t/τ , t ∈ [0, T ].

(6.22)
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Equation (6.22) provides the closed form estimation variance of an OU process at any

instant t ∈ [0, T ], provided that power constrained noisy samples are observed periodically

with period T . In addition to ρ, the quantity J also depends on the sampling period T

through the energy-FI (Fisher Information) relation J = cPT
η2

, which follows from Theorem

6.3.1 by using E = PT and defining

c ,


E[g̃2](1−HQ)

ξ2
for Optimal EA,

(E[g̃])2

ξ2(1+RQ)
for Equal EA.

(6.23)

In the following discussions, we illustrate the power-constrained estimation of an OU process

and show how the instantaneous variance (6.22) can be used to compute other performance

measures described in Section 6.2.3, namely a) average variance, Avar(T ) and b) min-max

performance limit, Var0.

Simulation results

In Figure 6.6(a), we visualize the estimation of an OU process with stationary variance η2 =

1 and covariance drop-off parameter τ = 1s. We simulate a total duration of Tobs = 30s,

during which we consider sampling the same process using two different sampling periods,

T = 0.75s (top) and T = 3s (bottom). The sampling noise sequence {vkT}, which is an

abstraction of the spatial data aggregation, is simulated as independent zero-mean Gaussian

random variables with variance 1
2.5T

for the two different sampling periods. The inverse

relation Var (vkT ) ∝ 1
T

is due to the fact that vkT represents a noise with variance 1
J

and

the Fisher Information J = cPT
η2

as per Theorem 6.3.1. The constant 2.5 (which represents

the quantity cP
η2

) was chosen so as to produce a visible contrast between the sampling errors

corresponding to the chosen sampling periods. As can be seen in Figure 6.6(a), the samples

are obtained almost without any noise for T = 3s (bottom). The circles representing noisy

samples align almost on top of the thin line that represents the path of the OU process. The

samples are, however, significantly noisy for T = 0.75s (top), since less energy is available
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Figure 6.6: Power-constrained estimation of OU process

per sampling duration. This is evidenced by the circles lying significantly distant from the

OU process path. The filtered estimates θ̂t = E [θt|{ykT}] are obtained by applying (6.11)

and are shown by the bold lines. When compared visually, the filtered estimates appear

more accurate in the case of smaller sampling period (top). This observation is justified

by plotting the steady state variance, as obtained from Theorem 6.3.2, in Figure 6.6(b) for

various sampling periods T = {0.1, 0.75, 1.5, 3}. Though the best-case variance (occurring

at t = kT ) is higher for smaller sampling periods, the worst-case variance (occurring at
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t = (k + 0.5)T ) goes down as the OU process is sampled more frequently. Because the

power is kept constant, the variance converges to a finite value (rather than vanishing) for

small values of T . Since the gap between the worst-case and best-case scenarios reduces

with T , the limiting variance (≈ 0.4, annotated as Var0) is flat with respect to time. From

Equation (6.22), the limiting variance can be derived precisely to be

Var0 , lim
T→0

Var (θt|y) =
η2

√
1 + 2Pτc

, (6.24)

which also means that Var0 trivially satisfies

min
T

max
t∈[0,T ]

Var (θt|y) = Var0, (6.25)

thereby answering the question of min-max performance limit as posed earlier in Equation

(6.14). The following result is obtained by substituting in (6.24) the value of constant c (see

(6.26)), thereby stating explicitly how the performance limit depends on channel conditions

and collaboration topology.

Corollary 6.3.3 (Min-max performance limits).

Var0 =


η2

/√
1 +

2PτE[g̃2](1−HQ)
ξ2

for Optimal EA,

η2

/√
1 + 2Pτ(E[g̃])2

ξ2(1+RQ)
for Equal EA.

(6.26)

In addition to the instantaneous variance and min-max performance limits, one may

also be interested in the average variance Avar(T ) as defined by Equation (6.13) in Section

6.2.3. The average variance is obtained by integrating (6.22) over t ∈ [0, T ]. Since % = e−t/τ

is the only variable in (6.22) that depends on t, we obtain

Avar(T ) =
η2
[
1 + η2Jρ′

{
1− IT

(1−ρ)2

}]
√

(η2J + ρ′) (η2J + 1/ρ′)
,

where IT ,
1

T

∫ T

0

(%− ρ/%)2 dt =
1− ρ2

T/τ
− 2ρ.

(6.27)

125



1 2 4 8 16 32

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of nearest neighbors connected, Q + 1

A
v
er
a
g
e
V
a
ri
a
n
ce
,
A
v
a
r(
T
)

 

 

←− Distributed

Connected −→

Equal PA, T = 0.7, Monte-Carlo
Equal PA, T = 0.4, Monte-Carlo
Equal PA, T = 0.1, Monte-Carlo
Equal PA, T → 0 approx, Var0
Optimal PA, T = 0.7, Monte-Carlo
Optimal PA, T = 0.4, Monte-Carlo
Optimal PA, T = 0.1, Monte-Carlo
Optimal PA, T → 0 approx, Var0

(a) Fixed number of nearest neighbors

0 0.005 0.01 0.015 0.02 0.025 0.03

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Radius of collaboration, r

A
v
er
a
g
e
V
a
ri
a
n
ce
,
A
v
a
r(
T
)

 

 

←− Distributed

Connected −→

Equal PA, T = 0.7, Monte-Carlo
Equal PA, T = 0.4, Monte-Carlo
Equal PA, T = 0.1, Monte-Carlo
Equal PA, T → 0 approx, Var0
Optimal PA, T = 0.7, Monte-Carlo
Optimal PA, T = 0.4, Monte-Carlo
Optimal PA, T = 0.1, Monte-Carlo
Optimal PA, T → 0 approx, Var0

(b) Random geometric graph

Figure 6.7: Power-constrained estimation of OU process - Average variance
We use average variance as the performance metric in the following simulation, in which

we consider both the aspects discussed in this chapter, namely the spatial aggregation pro-

cedure and the temporal dynamics. The simulation settings are similar to those considered

in Section 6.3.1, which we repeat here for the sake of completeness. The sensor network

126



comprises of N = 104 nodes. We consider η2 = 1, ξ2 = 1, σ2 = 1, fh(h) = Rayleigh(h; 1) and

fg(g) = Rayleigh(g; 1). The exponential drop-off parameter is set to τ = 1s and an observa-

tion duration of Tobs = 30s is considered, which is large enough to demonstrate steady state

behavior. The observation duration is discretized into M = 1600 instants for generating

the OU process sequence using a first-order autoregressive model. The average variance is

obtained as the mean of the deviations from all M estimates. Three values of sampling

period are considered for simulation, namely T = {0.7, 0.4, 0.1}. The limiting value when

T → 0, Var0, is also shown on all the graphs. The operating power is chosen as P = 1.4 to

reflect an operating region where substantial performance gain is possible through spatial

collaboration. Both NN (Figure 6.7(a)) and RGG (Figure 6.7(b)) topologies are considered

to show the applicability of the Q-clique results to practical collaboration scenarios. As ear-

lier, both the equal-EA and optimal-EA spatial energy allocation strategies are simulated.

The results in Figure 6.7 show that the average variance decreases with T . Though we

have not rigorously proved that Avar(T ) is monotonically decreasing in T , this assertion

can be visually verified from Figure 6.6(b), by comparing the area under the curves for

any two sampling periods (T = 3 and T = 1.5, say). This observation coupled with the

min-max property of Var0 leads to the conclusion that an OU process should be sampled as

frequently as possible, even if that implies that less energy is available per sampling period

(resulting in more noisy samples). However, this assertion is based on the assumption that

the sampling noise is temporally white. In practical situations, the sampling errors may

become correlated if the samples are obtained too frequently, and caution must be exercised

to make sure that the temporal independence assumption is valid.

6.4 Summary

In this chapter, we have considered the linear coherent estimation problem in wireless sen-

sor networks and investigated two key aspects. First, we have provided an asymptotic

analysis of the single-snapshot estimation problem when the collaboration topology is only

partially connected. We achieve this by obtaining the solutions for a family of structured
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networks and then using those solutions to approximately predict the performance of more

sophisticated networks using geometric arguments. Second, we have extended the prob-

lem formulation towards the estimation of a time varying signal. In particular, we have

derived the instantaneous, average and worst case performance metrics when the signal is

modeled as a Gaussian random process with exponential covariance. Both these aspects

were investigated under the assumption of spatial and temporal independence among the

measurement and channel noise samples. An important topic of research may be to relax

this assumption and observe the effect of spatial and temporal correlation on the estimation

performance.
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Chapter 7

Signal estimation using sensors with

baseline drift

7.1 Introduction

In all the discussions so far in this thesis, sensor inaccuracies are modeled as temporally

independent measurement errors. In fact, this temporal independence property of noise is a

convenient assumption in much of the sensor network literature, e.g., [73], [64] - one which

greatly serves to bring down the complexity of the problem at hand. However, it has been

widely reported that a variety of sensors used in various applications exhibit systematic

errors or drift (to be formalized later), e.g., Ground Moving Target Indicator radar sensors

[5], tilt sensors in bridge monitoring applications [92], CO2 sensors used for air quality

monitoring [23] and salinity sensors for ocean monitoring [66]. For example, gas sensors are

known to drift due to other environmental parameters like temperature and humidity [38].

In this chapter, we drop the assumption of temporal independence of measurement noise

and seek to explore the problem of estimation using sensors that exhibit baseline drift.
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Figure 7.1: Estimation of a polynomial signal using sensors with baseline drift.

7.1.1 Inference with drifting sensors

When sensors in a network develop systematic errors with time, inferences based on these

observations become increasingly inaccurate. For example, a scheme where each sensor can

track their own drift in a collaborative manner is presented in [79] and such a system was

shown to accumulate error over time. This necessitates periodic calibration/ registration

of the sensors, a procedure that increases the operating cost for the network. Though the

issue of drift is often acknowledged in the literature, performance analysis of a network

consisting of drifting sensors has not been done before. Our goal in this chapter is to

characterize the estimation performance of a sensor network in terms of the drift properties

of the constituent sensors.

The schematic diagram of such a sensor network in illustrated in Figure 7.1. Multiple

sensors S1,S2, . . . ,SN are deployed in a field of interest to monitor a particular environment.

The sensors observe the same phenomena over t = 1, 2, . . . , T time instants and their

observations are corrupted by noise and drift. The noisy observations are relayed to a

common sink, where the objective is to estimate the parameters governing the observed

phenomena. Let zt,n denote the noisy observation of the nth sensor at the tth instant and zn
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denote the vector [z1,n, z2,n, . . . , zT,n]′. We assume a linear observation model of the form

zn = Xθ + εn, εn ∼ N (0,Σn) (7.1)

where x , Xθ and εn are T × 1 vectors denoting the signal and error terms. Here X

is assumed to be a T × (P + 1) known matrix (describing the temporal-dynamics) and

θ is the (P + 1) × 1 vector denoting an unknown but deterministic signal. The error

term εn consists of noise and drift components (to be described later) and is assumed

to be Gaussian distributed with covariance matrix Σn. The observations zn are possibly

quantized and communicated to a sink, whose job is to obtain an accurate estimate of θ.

From estimation theory (see, for example, [49] and [6]), it is well known that the variance of

an unbiased estimator is lower bounded by the Cramér-Rao Lower Bound (CRB) and that

the Maximum-Likelihood (ML) estimator asymptotically (for small errors) attains that

bound. In this chapter, we derive the closed-form CRB (upto reasonable approximations)

for estimating θ when Σn corresponds to drift corrupted errors and X corresponds to

a polynomial signal. In the subsequent discussion, we provide the motivation and full

descriptions of Σn and X.

7.1.2 Models of noise and drift

At instant t, let xt and εt,n denote the common signal magnitude and observation error of

sensor n. When the effect due to drift is ignored, the measurement noise is often modeled

as independent and identically distributed Gaussian noise wt,n, (e.g., [73], [64]), i.e.,

zt,n = xt + wt,n, wt,n
i.i.d.∼ N (0, σ2

n), (7.2)

where σ2
n is the noise variance. However, in the presence of drift, the observation error has

two components: one due to baseline-drift dt,n and the other due to random measurement

noise wt,n,

zt,n = xt + dt,n + wt,n. (7.3)
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Drift is generally described as a gradual change of the bias of a sensor [38], [93]. Depending

on the specific sensing methodology, various models have been proposed to characterize the

drift sequence {dt,n}Tt=1 in frequency and time domains (for a survey, see [38]). Below we

describe three commonly used models of drift.

• Frequency domain: The phase-drift in an oscillator is often modeled in the frequency

domain using several powers of frequency (power-law model) [93], i.e., the power spec-

tral density (PSD) is of the form, Sn(f) =
∑2

i=−2 hn,if
i, where hn,i are appropriate

constants.

• Temporal domain - Deterministic: Drift is also modeled sometimes as a linear

movement of the sensor baseline, i.e., dt,n = an + (t− 1)bn, where the intercept an is

set to zero after each calibration and slope bn is assumed to be an unknown constant

that is often estimated later and compensated for. Example applications include

odor identification using gas-sensor arrays [70] and air pollution monitoring using gas

sensor networks [82].

• Temporal domain - Random: In the broader signal processing literature, auto-

regressive moving average (ARMA) processes are often used to describe serially cor-

related time series, an example of which is drift. As a trade-off between modeling-

efficiency and analytical-complexity, drift is often modeled as a first-order autoregres-

sive (AR(1)) process. Example applications include Ground Moving Target Indicator

(GMTI) radars ([5], [48]), Ring-laser Gyroscopes [75], Liquid Chromatography [36]

and sensor networks [79].

In this chapter, we will use the first-order autoregressive model to describe the statistical

properties of drift. The AR(1) model characterizes the drift behavior at nth sensor in terms

of an auto-correlation parameter ρn (visually, a smaller value of ρn means that the baseline

drift crosses the zero-line more often and looks more like white noise) and a strength
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parameter σ2
δ,n (signifying the magnitude of drift),

dt+1,n = ρndt,n + δt,n, where

ρn ∈ [0, 1] and δt,n
i.i.d.∼ N (0, σ2

δ,n).

(7.4)

Note that, when ρ = 1, the drift is modeled effectively as a non-stationary random walk,

as in [79].

If we define γn such that σ2
δ,n = γnσ

2
n, our “AR(1)+White noise” model for observa-

tion error is completely parameterized by {σ2
n, ρn, γn}. These noise and drift parameters

usually have to be identified from the empirical PSD for stationary noise (e.g., [36], [39])

or other time-domain features for non-stationary noise (e.g., [37]). In this chapter, we

consider the characterization of the sensing uncertainty in terms of {σ2
n, ρn, γn} as part of

system identification that must be done prior to an observation cycle. Estimation of these

parameters is beyond the scope of this chapter. Moreover, within an observation cycle, the

drift-parameters are assumed to be constant. If the drift parameters change frequently, our

proposed framework must be used in conjunction with periodic system re-identifications.

7.1.3 Deterministic signal model

Often in the sensor network literature, the signal of interest is assumed to be constant over

the observation duration, e.g., [73],[64]. This means xt = θ, ∀t. However, such a signal

model may be too simplistic for real applications and we consider a generalization of the

form,

xt =
P∑
p=0

θpt
p, θp ∈ R, (7.5)

where θp-s are the unknown constants that need to be estimated and P is the order of the

polynomial time-series that is assumed to be known. In vector notations, the polynomial
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signal x , [x1, x2, . . . , xT ]′ assumes a linear form x = Xθ, where

X =



1 1 · · · 1

1 2 · · · 2P

...
...

. . .
...

1 T · · · T P


, θ =



θ0

θ1

...

θP


. (7.6)

It may be noted that time-varying signals in different applications are approximated by

either polynomials or piecewise-polynomials [84],[90]. For example, a polynomial regression-

based data gathering algorithm for environmental monitoring applications was suggested

in [91]. Also, a polynomial spline approximation of stationary random processes, as applied

to Clarke’s model of multipath fading channels, was presented in [97].

This completes the description of the signal and observation noise considered in this

chapter. We intend to derive the closed form CRB (for the estimation of θp-s) in terms

of the signal (P, T ) and noise {σ2
n, ρn, γn} parameters. This would help us characterize

the performance of a sensor network and increase our understanding about its estimation

capabilities.

7.1.4 Related work

A related area of work is the study of systematic-bias or model-error estimation schemes

using multiple, and sometimes collaborative sensors. In the radar signal processing liter-

ature, the process of model-based estimation and subsequent removal of systematic errors

prior to target tracking is known as sensor-registration [15], [99]. In the weather research

literature, the serially-correlated forecasting error arising due to modeling deficiency is of-

ten considered separately and tracked alongside the model parameters [16], [102]. In the

sensor network literature, drift-aware networks perform learning-based collaborative bias

estimation to enhance the effective lifetime of the network [79], [80]. However, in this chap-

ter, we are focused on the quality of estimation in the presence of systematic errors, rather

than techniques on mitigating systematic errors.
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Several researchers have studied the Cramér-Rao bounds for polynomial (or polyphase)

signal estimation in the presence of independent (or correlated) noise. The CRB is usually

obtained from the inverse of the Fisher Information Matrix (FIM) [49]. For Additive White

Gaussian Noise (AWGN), the large sample approximation of FIM is known to be a multiple

of the Hilbert Matrix (e.g., [56]). The second order approximation was derived in [71] in

the context of polynomial phase signals. For a mixture of additive and multiplicative white

Gaussian noise, the large sample FIM was shown in [78] to be a scalar multiple of the

AWGN case. Our primary contribution in this chapter is the derivation of (approximate)

closed-form CRB for polynomial signal estimation in the presence of a mixture of white

(measurement noise) and AR(1) Gaussian noise (drift). We also discuss the non-stationary

case when the autoregressive parameter is equal to 1. To the best of author’s knowledge,

polynomial signal estimation in such a mixture of noise has not been considered earlier.

As mentioned earlier, the study of estimating polynomial signals in AR(1)+White noise

would help us characterize the capability of a sensor network to infer the parameters of a

time-varying signal using sensors with drift.

The rest of the chapter is organized as follows. In Section 7.2, we formally list the

assumptions and set up the problem for two scenarios based on the initial state of the sensor.

In Section 7.3, we consider the single-sensor case and derive large sample approximations

of the CRB for ρ < 1 and ρ = 1. In Section 7.4, we extend the results to multiple

sensors having different drift characteristics. In Section 7.5, we demonstrate the application

of the results to a bandwidth limited sensor network that communicates only quantized

observations. Concluding remarks are provided in Section 7.6.

7.2 Problem formulation

To be more specific about our problem framework, we formally state the assumptions below.

1. Same phenomenon: Each sensor is observing the same physical phenomenon (e.g.,

temperature), which is modeled as a time-polynomial signal. In our framework, if
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multiple signals are to be sensed (e.g., temperature and humidity), the observations

have to be transmitted separately and the parameters independently estimated.

2. Known drift statistics: The drift in each sensor is modeled as AR(1) Gaussian time-

series with known statistics - namely the autoregressive and strength parameters, ρn

and γn respectively. The drift parameters are assumed to be accurately estimated

from previous experiments and remain unchanged during the measurement duration.

3. Spatially uncorrelated noise and drift: We assume that the observations at all the

sensors at a particular instant are independent, conditioned on the signal magnitude

at that instant. In other words, though the observation noise samples dt,n + wt,n are

temporally correlated (due to drift), there is no spatial correlation among them.

4. Synchronized observations: The clocks of the sensors are synchronized and they

have identical sampling intervals. Hence they collect the observations at the same

time instants. It may be noted that clock synchronization in sensor networks can be

achieved through periodic gossip among neighboring sensors [18].

5. Parallel sensor network with fusion center (Figure 7.1): We assume that the sensors

do not collaborate among themselves and rather communicate their observations only

to the sink. The sink, having collected all the observations from the individual sensor

nodes, performs inference and takes appropriate action. In the distributed inference

literature, this topology is known as a parallel sensor network [87]. It may be noted

in passing that this is in contrast to other frameworks where inference is performed

in-network and without a fixed fusion center, e.g., [40].

6. Reliable signal transmission: In Sections 7.3 and 7.4, we assume that the noisy ob-

servations are communicated perfectly to the sink without any further distortion. We

call this the full-precision case which helps obtain a benchmark performance. How-

ever, there may be cases when, due to power and bandwidth limitations at the sensor

nodes, reliable communication of full-precision observations may be impossible. In

such cases, a digital communication based framework in conjunction with efficient
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channel coding can be used to reliably transmit only a finite number of bits [73],

[58]. In Section 7.5, we will discuss inference using digitized observations where all

sensor nodes perform quantization with identical fidelity. It may be noted in pass-

ing that, for sensor networks where there is a constraint on system-wide bandwidth

(summed across all nodes), different sensors nodes may be assigned different fidelity

of quantization based on their observation quality [51]. Though outside the scope

of this chapter, optimal fidelity assignment for sensors in the presence of drift is a

challenging topic worthy of future research.

With the above-mentioned assumptions, our goal in this chapter is to derive approximate

closed form expressions for the Cramér-Rao bounds.

7.2.1 Sensor calibration and noise covariance

Consider a single sensor with noise and drift properties denoted by {σ2, γ, ρ} (the subscript

n is dropped for most of this subsection). Assume that inference has to be performed

from noisy observations zt at instants t = 1, . . . , T . Let τ > 0 denote the time-instants

elapsed since the sensor was last calibrated, i.e., when the drift component was set to zero

by correcting the baseline. Since the duration of inference starts from instant 1, it follows

that the drift sequence was set to zero at instant 1 − τ (which is a non-positive index, a

slight notational inconvenience). Therefore, the drift sequence proceeds as follows,

d1−τ = 0, d2−τ = δ1, d3−τ = ρδ1 + δ2 . . . etc.. (7.7)

Since each of the drift innovations δi ∼ N (0, γσ2), we have

Var(dt) = γσ2(1 + ρ2 + · · ·+ ρ2(τ+t−1)) =: γσ2Sτt , (7.8)
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where the summation within the parenthesis is defined as Sτt . Though the drift sequence

{dt}Tt=1 is stationary for large magnitudes of τ ,

lim
τ→∞

Sτt =
1

1− ρ2
, ρ < 1, (7.9)

it is not stationary in the transient stage, for which,

Sτ1 < Sτ2 < · · · < SτT , τ <∞. (7.10)

In this chapter, though we would solve the estimation problem for a general τ , we would

refer to the limiting cases τ = 1 as calibrated (C) and τ → ∞ as uncalibrated (U) respec-

tively.

We define R such that γσ2R is the covariance matrix of the drift vector d ,

[d1, d2, . . . , dT ]′

E[d′d] = γσ2



Sτ1 ρSτ1 ρ2Sτ1 · · · ρT−1Sτ1

ρSτ1 Sτ2 ρSτ2 · · · ρT−2Sτ2

ρ2Sτ1 ρSτ2 Sτ3
...

...
...

. . .
...

ρT−1Sτ1 ρT−2Sτ2 · · · . . . SτT


=: γσ2R.

(7.11)

For the uncalibrated case, the diagonal elements are the same (Sτt = 1
1−ρ2 ), and R takes

the shape of the well known stationary matrix (e.g., [65]),

E[d′d] =
γσ2

1− ρ2



1 ρ · · · ρT−1

ρ 1 · · · ρT−2

...
...

. . .
...

ρT−1 ρT−2 · · · 1


, (7.12)
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sometimes referred to as the Kac–Murdock–Szegö matrix.

For the nth sensor, we denote the covariance of the drift sequence by Rn. Let Σn denote

the covariance matrix of the total error (AR(1)+White noise), i.e., εn = wn + dn, so that,

Σn = σ2
n (I + γnRn) , (7.13)

where I is the T × T identity matrix.

7.2.2 Maximum-Likelihood estimation and Cramér-Rao bound

Given the linear observation model (7.1) and noise covariance described in Section 7.2.1,

the Maximum-Likelihood (ML) estimator of θ at the sink is of the form (for a reference on

estimation theory, see [49], [6]),

θ̂ML = J−1X ′
N∑
n=1

Σ−1
n zn, (7.14)

where J is known as the Fisher Information matrix,

J ,X ′
(

N∑
n=1

Σ−1
n

)
X, (7.15)

It is well known in estimation theory [49] that within the class of unbiased estimators,

the ML estimator of a linear model is optimal in terms of estimation variance [49]. Also, the

least possible estimation variance is provided by the Cramér-Rao lower bound, V , J−1,

so that

E
[
(θp − θ̂ML

p )2
]
≥ V p,p =

[
J−1

]
p,p
, (7.16)

for 0 ≤ p ≤ P . Since Equation (7.16) holds with a strict equality for linear models, the

CRB is an appropriate performance metric for our problem.
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It is unclear from (7.15) and (7.16) exactly how the estimation variance V p,p depends

on the drift parameters σ2
n, γn, ρn, signal parameters P and the sample size T . Our goal

in this chapter is to derive large sample approximations for these Cramér-Rao bounds and

thereby provide insight into the behavior of estimation performance as it relates to the drift

properties of the sensors.

7.3 Main result: single sensor case

Towards obtaining the CRB for the general case of multiple sensors, we first consider

the single-sensor scenario and thereby obtain the core results of this chapter. Subsequent

applications of these core results to the multi-sensor scenario (Section 7.4) and bandwidth

limited networks (Section 7.5), as we shall see later, will be somewhat straightforward

extensions.

While analyzing the single-sensor scenario, for notational brevity, we drop the sensor-

index subscript n from σ2
n, ρn, γn, Rn and Σn for the remainder of this section. Note from

(7.15) and (7.16) that, for a single sensor, the Fisher Information matrix is J = X ′Σ−1X

and the Cramér-Rao bound is [V ]p,p = [J−1]p,p. In the following discussion, we first

compute the inverses of the disturbance covariance matrices. Next, we use those results to

derive the CRB.

7.3.1 Inverse of disturbance covariance

Our goal is to approximate Σ−1 in a form that are analytically tractable. The exact closed

form expression for Σ−1
U (for τ →∞) is known to be quite complicated (e.g., p-53 of [76],

[25]) and we will not use it. The author have not found a closed form expression for either

Σ−1
C (the τ = 1 case) or Σ−1 (for general τ) in the literature.
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In this chapter, we propose an approximation to Σ−1 that is novel to the best knowledge

of the author. We suggest the following form for the inverse

(I + γR)−1 = I − νA+O(yT ), (7.17)

where ν is a constant, A is a matrix with certain structure (to be described later), and y

is a quantity less than 1, so that O(yT ) represents a term that vanishes exponentially with

sample size T . The idea is that, for large T , we should be able to use the approximation

(I + γR)−1 ≈ I − νA (7.18)

towards computing the CRB. The specifics of this approximation are laid out in Proposition

7.3.1.

Proposition 7.3.1. Based on drift parameters γ and ρ, define the following constants,

y ,
1

2

γ + 1

ρ
+ ρ−

√(
γ + 1

ρ
+ ρ

)2

− 4

 ,
ν ,

yγ

ρ(1− y2)
, andκ ,

y(ρ− y)

1− ρy .

(7.19)

Then (I + γR)−1 = I−νA+O(yT ), where A has the structure shown in Equation (7.21),

with

ai , 1 + y2(i−1)ητ , bj , 1 + y2(j−1)κ,

ητ ,
1− y2

1− ρy + %τy/ρ
− 1, %τ ,

ρ2τ

1 + ρ2 + · · ·+ ρ2τ−2
.

(7.20)
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A =



a1 ya1 y2a1 · · · · · · · · · yT−2a1 yT−1b1

ya1 a2 ya2 · · · · · · yT−4a2 yT−3b2

...

y2a1 ya2 a3 yT−5b3

...
...

...
...

. . . . .
. ...

...
...

...
... . .

. . . .
...

...
...

... yT−4a2 yT−5b3 · · · · · · b3 yb2 y2b1

yT−2a1 yT−3b2 · · · · · · · · · yb2 b2 yb1

yT−1b1 · · · · · · · · · · · · y2b1 yb1 b1


,

ai = 1 + y2(i−1)ητ ,
bj = 1 + y2(j−1)κ.

(7.21)

The constant y can perhaps be more conveniently described as the smaller of the roots

of the quadratic equation (both of which are positive)

y2 −
(
γ + 1

ρ
+ ρ

)
+ 1 = 0. (7.22)

It is easy to establish that y < 1 for ρ ≤ 1 and for all γ, so that yT → 0 for large sample

size T . The assertion of Proposition 7.3.1 can be verified by matrix multiplication, which

we show in Appendix A.16. Also note that for the two special cases of τ = 1 and τ = ∞,

%C = ρ2, ηC = −y2 and %U = 0, ηU = κ. Next, a few remarks are in order.

Remark 7.3.1.1: Identity: The following identity will be used in several places in this

chapter and follows from definition (7.19) after some algebraic manipulations,

γy = (ρ− y)(1− ρy). (7.23)

Remark 7.3.1.2: It may be noted that A is defined entirely by the diagonal elements

a1, a2, . . . , abT
2
c (counted from top) and b1, b2, . . . , bdT

2
e (counted from bottom). From the

expressions for ai and bj in Equation (7.21), we note that for large T , both abT
2
c and bdT

2
e

converge to the same value, namely 1. That means that it should not matter whether

the anti-diagonal elements are expressed in terms of ai-s or bj-s. In Proposition 7.3.1, we

describe the antidiagonal elements in terms of bj-s just for the sake of being definitive.
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7.3.2 Computation of Fisher Information Matrix

We use Proposition 7.3.1 in (7.13) and (7.15) to compute the Fisher Information matrix,

J ≈ 1

σ2
X ′(I − νA)X, (7.24)

which would be inverted later to obtain the CRB-s. We consider the matrices X ′X and

X ′AX individually before summing them up. We would approximate all the elements of

these matrices as polynomials in T (i.e., the sample size). This will help derive approxima-

tions of the CRB that are correct upto the second order for ρ ≤ 1.

We note from (7.6) that X ′X is a Hankel (equal skew-diagonal elements) matrix,

[X ′X]k,l =
T∑
t=1

tk+l, 0 ≤ k, l ≤ P. (7.25)

It is a well known result, e.g., [71], [78] that summations of the form (7.25) can be written

as

T∑
t=1

tq =

q∑
i=0

Bq,iT q+1−i, q ≥ 0, where

Bq,0 ,
1

q + 1
,Bq,1 ,

1

2
,Bq,2 ,

q

12
,Bq,3 , 0, etc.

(7.26)

A general form for Bq,i can be found, for example, on p-1, [32]. However, all the results

in this chapter will be established using the first four terms which we have enumerated in

(7.26).

Similar polynomial expressions can be obtained forX ′AX and are derived in Appendix

A.17. We state the result in Proposition 7.3.2.

Proposition 7.3.2.

[X ′AX]k,l =
k+l∑
i=0

Ak,l,iT k+l+1−i + α
(τ)
k,l

+O(T k+l+1yT ), 0 ≤ k, l ≤ P,

(7.27)
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where some leading constants Ak,l,i and α
(τ)
k,l are

Ak,l,0 ,
1 + y

1− y
1

k + l + 1
, ∀k, l,

Ak,l,1 ,
1 + 2κ− 2y − y2

2(1− y)2
, k + l ≥ 1,

α
(τ)
0,0 ,

−2y + ητ + κ

(1− y)2
, etc.

(7.28)

The exact form of Ak,l,i and α
(τ)
k,l are provided in Appendix A.17. From (7.27), it is

clear that the Fisher information for calibrated and uncalibrated cases differ only by a

constant (dependence on τ is explicitly indicated). This means that when sample size is

large, estimation accuracy will be similar for both the cases. We will elaborate this point

later. Next, we use the result in Proposition 7.3.2 to derive the CRBs for the cases when

ρ < 1 and ρ = 1.

7.3.3 Cramér-Rao bounds for ρ < 1

Using (7.25),(7.26) and (7.27) in (7.24), we obtain the compact second order expression for

the Fisher Information Matrix,

J = TE

[
ξ0H +

ξ1ee
′ + ξ

(τ)
2 ff ′

T
+O

(
1

T 2

)]
E, (7.29)

where E,H are (P + 1) × (P + 1) matrices, e,f are (P + 1)-dimensional vectors and

ξ0, ξ1, ξ
(τ)
2 are constants defined by

E , diag{1, T, . . . , T P},

Hk,l ,
1

k + l + 1
, for 0 ≤ k, l ≤ P.

e , [1, 1, . . . , 1]′, f , [1, 0, . . . , 0]′,

ξ0 ,
1

σ2

[
1− ν 1 + y

1− y

]
, ξ1 ,

1

σ2

[
1

2
− νA1

]
, and

ξ
(τ)
2 , −ξ1 −

1

σ2
να

(τ)
0,0 ,

(7.30)
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respectively. The notation A1 is actually Ak,l,1 with the subscripts dropped, since Ak,l,1
does not depend on k and l (see (7.28)). H is the well known Hilbert matrix [71].

The leading constant ξ0 can be simplified further based on definitions in (7.19) and the

identity (7.23),

ξ0 =
1

σ2

[
1 +

γ

(1− ρ)2

]−1

. (7.31)

The CRB will be obtained as the inverse of the FIM described in (7.29). Since ρ < 1, we

ensure from (7.31) that ξ0 > 0. Therefore, the FIM of the form (7.29) can be inverted

assuming ξ0H as the dominant term. Such an inversion was performed in [71] in the

context of polynomial-phase signals. We summarize the analysis in [71] in the form of

Lemma 7.3.2.1.

Lemma 7.3.2.1. [71]: Let H be the Hilbert matrix and e,f vectors as defined in (7.30).

Let c0, c1, c2 be constants such that c0 6= 0. Then, for 0 ≤ p ≤ P , the diagonal elements are

[[
c0H +

1

T
(c1ee

′ + c2ff
′)

]−1
]
p,p

=

KP,p

c0

[
1

2p+ 1
− 1

Tc0

(c1 + c2LP,p) +O
(

1

T 2

)]
,

(7.32)

where KP,p and LP,p are defined by

KP,p ,

[
(P + p+ 1)

(
P + p

p

)(
P

p

)]2

, and

LP,p ,

[
P + 1

p+ 1

]2

,

(7.33)

respectively.

The idea behind Lemma 7.3.2.1 is that, for sufficiently large T , terms of order O( 1
T 2 ) in

(7.32) can be ignored and we obtain approximate closed form expressions for the diagonal

elements. The approximation in (7.32) is accurate only for small relative magnitude of the

second order term, i.e., small magnitudes of
(2p+1)(c1+c2LP,p)

c0T
. Lemma 7.3.2.1 can be used
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now to invert (7.29). The Cramér-Rao bound (diagonal terms) obtained in such a manner

are summarized in Proposition 7.3.3.

Proposition 7.3.3. For ρ < 1 and sufficiently large T , the CRB for estimating θp is

[V ]p,p ≈
KP,p

T 2p+1ξ0

[
1

2p+ 1
− 1

Tξ0

(
ξ1 + ξ

(τ)
2 LP,p

)]
, (7.34)

for 0 ≤ p ≤ P .

A few remarks due to Proposition 7.3.3 are in order.

Remark 7.3.3.1: Asymptotic performance: As expected, the estimation performance

does not depend on transient information (τ) when the number of samples used for inference

is sufficiently large. From (7.31) and (7.34), the first order approximation of CRB is

[V ]p,p ≈
[
1 +

γ

(1− ρ)2

]
σ2KP,p

T 2p+1(2p+ 1)
, (7.35)

which is true for any value of τ .

Remark 7.3.3.2: Equivalent AWGN noise: For estimation of polynomial signals, the

effect of drift is asymptotically (upto first order) equivalent to scaling the measurement

noise by a factor of 1 + γ/(1− ρ)2, where γ, ρ characterizes the drift properties of a sensor.

Remark 7.3.3.3: Constant signal: xt = θ0, ∀t: Simpler and more precise expressions

for CRB may be obtained for a constant signal. When P = 0, we can directly proceed from

(7.29). In this case, all of the matrices ee′ = ff ′ = E = H = 1, and hence we obtain

V ≈ 1

ξ0T + ξ1 + ξ
(τ)
2

=
1

ξ0T − να(τ)
0,0/σ

2
, (7.36)

where the scalar V denotes the Cramér-Rao bound.

Remark 7.3.3.4: Dependence on τ : In terms of estimation of a signal, intuitively, the

transient state τ <∞ should be more informative, since the drift starts from a known point,

rather than an unknown point. This intuition is corroborated by equation (7.34), from

which it is easy to derive that [V ]p,p increases with τ (shown below). In conjunction with
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Remark 7.3.3.1, we can conclude that, though calibration always results in better estimates,

the relative gain in performance ([V U ]p,p − [V C ]p,p)/[V U ]p,p) diminishes for higher sample

sizes.

Proof that [V ]p,p increases with τ : Since ξ0 > 0 (from (7.31)), it suffices to show that

ξ
(τ)
2 decreases with τ (see (7.34)), or equivalently, α

(τ)
0,0 increases with τ (see (7.30), note that

ν > 0), which is further equivalent to showing that ητ increases with τ (see (7.28)). The

last condition is verified from (7.20), since ρτ is a decreasing function of τ and 0 < ρ, y < 1.

Remark 7.3.3.5: Approximation region: The CRB as expressed by (7.34) is accurate

only for cases when the relative magnitudes of the second order terms,

εp =
(2p+ 1)(ξ1 + ξ

(τ)
2 LP,p)

ξ0T
, 0 ≤ p ≤ P, (7.37)

are small. This condition helps specify the operating values of σ2, γ, ρ, P and T for which

the closed-form CRB (7.34) can be used for performance analysis.

7.3.4 Cramér-Rao bounds for ρ = 1

For the case when the AR parameter ρ = 1, the drift phenomenon is a non-stationary even

in the limit of τ →∞, since it is a random walk (e.g., [79]) where the bias builds up with

time and is unbounded. Hence, the CRB for the uncalibrated scenario is infinity and we

consider only the transient case τ <∞ here.

For ρ = 1, the leading term of the Fisher information matrix J (7.29) vanishes since

(7.31) implies that ξ0 = 0. Hence, terms of order O(T−2) need to be considered. In

particular, using definitions (7.19), (7.28) and (7.30), the constants can further be simplified

as

ξ0 = 0, ξ1 = 0, %τ =
1

τ
, and

ξ
(τ)
2 =

1

σ2

[
2

γ̃ + 1

(
1 +

2τ

γ̃ − 1

)]−1

, γ̃ ,
√

1 + 4γ−1,

(7.38)

147



and we subsequently note (see Appendix A.18) that the FIM is of the structure depicted

in equation (7.39),

J = E

ξ(τ)
2

1
T
ξ

(τ)
3 f ′P +O

(
1
T 2

)
∗ 1

T
D
[
ξ4HP + 1

T

(
ξ5ePe

′
P + ξ

(τ)
6 fPf

′
P

)
+O

(
1
T 2

)]
D

E, (7.39)

where the constants ξ
(τ)
3 , ξ4, ξ5, ξ

(τ)
6 , vectors eP ,fP and matrices HP ,D are defined by

ξ
(τ)
3 , − 1

σ2
να

(τ)
1,0 , ξ4 ,

1

σ2γ
,

ξ5 , −
1

σ2

y2

(1− y)3
, ξ

(τ)
6 , −ξ5 −

1

σ2
να

(τ)
1,1 ,

fP , [1, 0, . . . , 0]′, eP , [1, 1, . . . , 1]′,

D , diag{1, 2, . . . , P}, and

[HP ]k,l ,
1

k + l + 1
, for 0 ≤ k, l ≤ P − 1.

(7.40)

Here eP ,fP and HP are the P -dimensional equivalents of e, f and H (defined in (7.30))

respectively. The CRB is obtained from the FIM (7.39) by using block-inversion and

Lemma 7.3.2.1 (see Appendix A.18). The results are summarized in Proposition 7.3.4.

Proposition 7.3.4. For ρ = 1 and sufficiently large T , the CRB for estimating θp, [V ]p,p

is equal to

[V ]p,p ≈


1

ξ
(τ)
2

[
1 + 1

Tξ
(τ)
2

P 2
(
ξ
(τ)
3

)2
ξ4

]
, p = 0,

KP−1,p−1

T 2p−1p2ξ4

[
1

2p−1
− 1

Tξ4

(
ξ5 +

(
ξ

(τ)
6 −

(
ξ
(τ)
3

)2
ξ
(τ)
2

)
P 2

p2

)]
, 1 ≤ p ≤ P.

(7.41)

A few remarks due to Proposition 7.3.4 are noted below.
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Remark 7.3.4.1: Constant Signal: xt = θ0,∀t: For a random walk drift, a constant

signal can only be estimated inconsistently with asymptotic variance

V ≈ 1

ξ
(τ)
2

=
2σ2

γ̃ + 1

(
1 +

2τ

γ̃ − 1

)
. (7.42)

It is explicitly seen from (7.42) that the variance increases with white noise variance σ2,

the drift strength γ (note that γ̃ decreases with γ, see (7.38)), and the time since last

calibration, τ . This phenomenon of inconsistent estimation can be intuitively understood

as follows. Even without the white noise component in (7.3), the observation never captures

independent readings of θ0. Rather, the samples are

z1 = θ0 + dτ + w1,

z2 = θ0 + dτ+1 + w2 = (θ0 + dτ ) + δτ+1 + w2, etc.,

(7.43)

which means that θ0 + dτ appears together in all subsequent observations, thereby making

θ0 indistinguishable from dτ . Since dτ has a finite variance, θ0 can only be estimated

inconsistently.

Remark 7.3.4.2: Time Features: For other parameters whose effect on the signal vary

with time, i.e., θp for p ≥ 1, the CRB is (to first order) equivalent to the case of estimating

the derivative of the signal in drift-only noise. We note that the derivative of the signal is

x′(t) =
∑P

p=1 pθpt
p−1 and the forward difference (see (7.3)),

zt+1 − zt = xt+1 − xt + dt+1 − dt + wt+1 − wt

= x′(t)(∆T ) + δt + wt+1 − wt, (7.44)

which is an estimator of the derivative, contains independent drift innovations δt with

variance γσ2. Hence in Proposition 7.3.4, the variance of estimating θp is scaled down by

a factor of p2 compared to the equivalent case with white noise γσ2.
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Remark 7.3.4.3: Approximation region: The CRB as expressed by (7.41) is accurate

only for cases when the relative magnitude of the second order terms,

εp =


1

Tξ
(τ)
2

P 2
(
ξ
(τ)
3

)2
ξ4

, p = 0,

2p−1
Tξ4

(
ξ5 +

(
ξ

(τ)
6 −

(
ξ
(τ)
3

)2
ξ
(τ)
2

)
P 2

p2

)
, 1 ≤ p ≤ P.

(7.45)

are small. This condition helps specify the operating values of σ2, γ, P and T for which the

closed-form CRB (7.41) can be used for performance analysis.

7.3.5 Numerical results - Maximum relative error

In the remainder of this section, we demonstrate the accuracy of the closed-form perfor-

mance approximations using representative examples. We shall consider the approxima-

tions expressed in both the forms of Fisher Infomation matrix (Equations (7.29) and (7.39),

with O
(

1
T 2

)
terms truncated) and Cramér-Rao bounds (Equations (7.34) and (7.41)).

We use the metric called Maximum Relative Error (MRE) which was also used in

[71]. This involves computing both the exact (7.16) and approximate CRB-s. The relative

deviations of the approximations are then calculated for all 0 ≤ p ≤ P and the largest one

is called the MRE. We denote

1. [V TH]p,p as the theoretical CRB as in (7.16), and

2. [V AP]p,p as the approximate CRB derived either through

• FIM Approx : inversion of the intermediate FIM, i.e., [V AP]p,p = [J−1]p,p, in

Equations (7.29) and (7.39) with O
(

1
T 2

)
terms truncated, or

• CRB Approx : final Cramér-Rao bounds in Equations (7.34) and (7.41).

Then the maximum relative error is defined by

MRE = max
p=0,1,··· ,P

∣∣[V TH]p,p − [V AP]p,p
∣∣

[V TH]p,p
. (7.46)

150



In short, the MRE summarizes the approximation error over all components of the param-

eter vector.

As an example, we consider the estimation of a cubic-polynomial signal, i.e., P = 2.

Since our performance bounds are asymptotically accurate, it is expected that the MRE

will decrease with increasing sample size T . In Figure 7.2, we display the sample size Tε

required for 95% accuracy, or in other words, MRE < ε = 0.05. Since MRE is a ratio of

variances, it does not depend on the measurement noise variance σ2. While considering

the ρ < 1 case, we have displayed the wide parameter region γ ∈ [10−3, 1], ρ ∈ [0.6, 0.97] in

Figures 7.2(a) and 7.2(b) - which demonstrate the uncalibrated (τ → ∞) and calibrated

(τ = 1) scenarios respectively. The ρ = 1, τ = 1 case is demonstrated in 7.2(c), where we

have displayed the parameter region γ ∈ [10−3, 1].

Figure 7.2 provides useful guidance on the applicability and limitations of the perfor-

mance bounds derived in this chapter. Firstly, the performance bounds are found to be

reasonably accurate over a wide range of possible parameter values and for a moderate

number (tens and hundreds) of samples. For accurate performance prediction in station-

ary drift (Figures 7.2(a) and 7.2(b)), higher values of drift-autocorrelation (ρ) and drift-

strength (γ) generally requires larger observation durations (Tε). This is predicted by the

approximation-region condition in (7.37), since the denominator ξ0 (see (7.31)) is inversely

proportional to ρ and γ. For the random-walk drift scenario (Figure 7.2(c)), higher value of

drift-strength γ requires smaller observation durations (Tε) for accurate performance pre-

dictions. This too, can be explained from approximation-region condition in (7.45), where,

with the aid of definitions (7.38) and (7.40), it can be established that εp = O(γ−1/2) for

small γ. This also partially explains the log-linear relation between Tε and γ in Figure

7.2(c).

We have so far only considered the estimation performance of a single sensor that is able

to reliably communicate its observations to the sink without any distortion. In Sections

7.4 and 7.5, we discuss extensions to the multiple sensor framework and bandwidth limited

networks.

151



25

100

100

400400

FIM Approx,

Calibrated

M
a
rk

o
v
 p

a
ra

m
e
te

r,
 ρ

Drift strength, γ
1e−3 1e−2 1e−1 1

0.6

0.8

0.95

25

100

100

400

400

1600

1600

CRB Approx,

Calibrated

M
a
rk

o
v
 p

a
ra

m
e
te

r,
 ρ

Drift strength, γ
1e−3 1e−2 1e−1 1

0.6

0.8

0.95

(a) Stationary drift (ρ < 1) and calibrated sensors.
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Figure 7.2: Sample size Tε required for 95% accurate performance prediction
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7.4 Multiple sensors

In this section, we consider the application of the results in Section 7.3 to multiple sensors

with different noise and drift parameters {σ2
n, γn, ρn}. Since the sensor noise and drift are

independent across the sensors (Assumption 3), the Fisher Information for θ is equal to

the sum of individual FIM-s (see equation (7.15)),

J = J1 + J2 + · · ·+ JN . (7.47)

Hence the expressions for FIM (given by (7.29) and (7.39)) and subsequently CRB (given by

(7.34) and (7.41)) can be extended (in a rather straightforward manner) with the following

change in definitions,

ξ#,eff ,
N∑
n=1

ξ#(σ2
n, γn, ρn), for [#] = 0, 1, 2, 3, 4, (7.48)

where ξ#(σ2, γ, ρ) can be thought of as a function of its arguments as defined in (7.30) and

(7.40) for [#] = 0, 1, 2, 3, 4, and ξ#,eff denote the effective value of the constant.

As an illustration of this extension, we consider an example where noise and drift

parameters are uniformly (randomly) distributed over a given range, say,

ρn ∈ [ρl, ρu], σ
2
n ∈ [σ2

l , σ
2
u] and γn ∈ [γl, γu]. (7.49)

When the number of sensors N is large, (7.48) can be further approximated by substituting

the summations by integrals,

ξ#,eff = NE [ξ#]

=
N

∆ρ∆σ2∆γ

∫ σ2
u

σ2
l

∫ γu

γl

∫ ρu

ρl

ξ#(σ2, γ, ρ) dρ dγ dσ2. (7.50)

We would refer to the CRB derived using the constants ξ#,eff (arising out of integration)

as the Average-CRB. We expect the Average-CRB to be an effective indicator of system
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performance for large number of sensors N . We show some numerical results below to

demonstrate the accuracy of Average-CRB.

7.4.1 Numerical results

We demonstrate the results for both ρ < 1 and ρ = 1 cases. The simulation setup is

described below:

• We assume a linear signal, i.e., P = 1 and assume all the sensors are observing the

same phenomenon. The parameters to be estimated are the constant term (θ0) and

the slope term (θ1).

• We consider multi-sensor systems with the number of sensors, N , starting from 25

and going upto 100.

• For the ρ < 1 scenario, for each sensor, the drift parameters are randomly selected

by choosing the parameters from the range,

ρn ∈ [.85, .95], σ2
n ∈ [72, 288] and γn ∈ [.6, 2.4], (7.51)

which is close to an estimated spectrum in [36].

• Within the ρ < 1 scenario, we simulate both calibrated (τn = 1, ∀n) and uncalibrated

(τn = ∞, ∀n) cases. In one simulation, we assume that all N sensors are calibrated

while in another simulation we assume that none of them are calibrated.

• For the ρ = 1 scenario, the drift parameters are randomly selected by choosing the

parameters from the range,

σ2
n ∈ [2, 12] and γn ∈ [.05, .3]. (7.52)
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Figure 7.3: Average performance for multi-sensor systems for ρ ∈ [0.85, 0.95].

• For each realization of an N -sensor network, ML-estimation of the constant and slope

parameters were performed and the error variances were averaged over 105 Monte-

Carlo trials (realizing the measurement noise and sensor drift).

• Several (103) Monte-carlo trials (realizing N -sensor networks with σ2, ρn, γn chosen

from above parameter range) are performed and the average and 95% confidence

interval of the error variances are observed.

• We repeat the experiments for sample sizes T = 80 and 160. These samples sizes

were chosen to ensure moderate computational (Monte-Carlo) effort.

Since we have only a small number of samples, we have used the expressions for Fisher

Information Matrix (Equations (7.29) and (7.39)) to predict the estimation error variance

of the constant (θ0) and slope (θ1) portion of a signal. The results are displayed in Figures

7.3 and 7.4, of which we make some comments below.

Firstly, an approximation to the system performance using (7.50) is seen to be fairly

accurate, as depicted in Figures 7.3 and 7.4. In all cases, the variance is inversely pro-
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Figure 7.4: Average performance for multi-sensor systems for ρ = 1.

portional to the number of sensors, as depicted by the log-linearity of all the curves. The

(average) performance prediction improves (error-bars becomes shorter) for higher sample

sizes, since the summation (7.48) is better approximated by the integral (7.50) for large

N . This means that just by knowing the range of the parameter values and the number of

sensors, we can have a good understanding about the estimation performance of the entire

sensor network. Secondly, from Figure 7.3, we note the intuitive phenomenon that the

performance using calibrated sensors is better than that using uncalibrated sensors. Also,

though for T = 80, the performance gap is quite large, the gap between calibrated and

uncalibrated cases narrows down for T = 160. This corroborates Remark 7.3.3.4, where

we noted that the relative performance gain diminishes for higher sample sizes. For the

ρ = 1 case, from Figure 7.4, we note that increasing the sample size does not help in esti-

mation of the constant portion of the signal. This is due the inconsistency property of the

non-stationary drift model, as described in Remark 7.3.4.1.
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7.5 Quantized observations

As another application of the results in Section 7.3, we consider the performance char-

acterization of a sensor network where resource (bandwidth, power, etc.) available for

communication is limited [73], [58]. Bandwidth constraints preclude the reliable communi-

cation of full-precision observations from the individual sensor nodes to the sink. In such

situations, the observations must be compressed and digitized prior to transmission [31]. In

this section, we digitize each observation by using uniform quantization, as will be discussed

shortly. Since the reliability of the transmission of digitized observations may be further

enhanced through the use of efficient channel coding (error-control codes), it is reasonable

to assume that once the quantization is performed, there is no further deterioration of the

observation-quality [73]. In other words, the quantized observations are assumed to be

available error-free at the sink. The schematic diagram of such a system is depicted in

Figure 7.1. Our goal in this section is to predict the estimation performance of the sensor

network composed of sensors with drift, when only quantized observations are available for

inference at the sink.

We use uniform quantization [51], in which each of the observations zt,n are quantized

uniformly with l-bits. Assuming that the observations are bounded zt,n ∈ [U0, U1] and

the quantization thresholds aj ∈ [U0, U1], j = 0, . . . , 2l are uniformly spaced such that

aj+1−aj = (U1−U0)/(2l−1) , ∆, the expected distortion due to the quantization process

is

σ2
Q , E[(z̃t,n − zt,n)2] =

∆2

12
, ∀t, n. (7.53)

Since the quantization noise z̃t,n − zt,n, in general, is neither independent across time nor

Gaussian distributed, the Maximum-Likelihood estimator is difficult to design. However,

the quasi-ML estimator is easier to implement, which is designed on the assumption that

the quantization noise is i.i.d. Gaussian with variance σ2
Q. We will use the quasi-ML

estimator, described below, to perform inference using quantized observations.
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Effectively, the quasi-ML estimator assumes that the noise at individual sensor nodes

has an added component σ2
QI, with the total covariance being (compare with (7.13))

Σ̃∗,n , σ2
QI + Σ∗,n

= σ2
QI + σ2

n(I + γnR∗,n)

, σ̃2
n (I + γ̃nR∗,n) , (7.54)

where σ̃n, γ̃n satisfy

σ̃2
n , σ2

n + σ2
Q, and γ̃n ,

γn
1 + σ2

Q/σ
2
n

. (7.55)

Accordingly, the quasi-ML estimator is defined as (compare to (7.14)),

θ̃
ML

= J̃−1X ′
N∑
n=1

Σ̃
−1

n z̃n,where

J̃ ,X ′
(

N∑
n=1

Σ̃
−1

n

)
X.

(7.56)

Note that, in the limiting case when quantization errors are small (equivalently, large l),

we have σ̃2
n → σ2

n, γ̃n → γn and the quasi-ML-estimator is identical to the ML-estimator.

We would refer to the CRB derived using modified noise parameters {σ̃2
n, γ̃n, ρn} as

the Modified-CRB. We expect the Modified-CRB to be an effective indicator of system

performance for moderate to large number of quantization levels 2l. Similar to Section 7.4,

with certain change in definitions, the expressions for FIM (given by (7.29) and (7.39)) and

subsequently CRB (given by (7.34) and (7.41)) can be extended to obtain the Modified-

CRB,

ξ#,eff ,
N∑
n=1

ξ#(ρn, σ̃
2
n, γ̃n), (7.57)

where ξ#(ρ, σ2, γ) can be thought of as a function of its arguments as defined in (7.30)

and (7.40) for [#] = 0, 1, 2, 3, 4. We show some numerical results below to corroborate the

effectiveness of Modified-CRB as an efficient performance predictor.
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7.5.1 Numerical results

The simulation setup is described as follows.

• A sample size of T = 400 and network size of N = 25 nodes was considered.

• The noise and drift parameters of the sensor nodes are chosen by uniformly spacing

them in the range,

72 = σ2
1 < σ2

2 < · · · < σ2
N = 288,

0.6 = γ1 < γ2 < · · · < γN = 2.4, and

0.85 = ρ1 < ρ2 < · · · < ρN = 0.95.

Both calibrated (τn = 1, ∀n) and uncalibrated (τn =∞, ∀n) cases were considered.

• We assume a linear signal, i.e., P = 1 with the constant term (θ0 = 400) and the

slope term θ1 = 0.9. The range of the observations to be quantized was chosen to

be U0 = 0, U1 = 1200, beyond which the observations were clipped. The range was

deliberately chosen large so that clipping (which is another source of distortion which

we have not modeled) does not occur frequently.

• Uniform quantization is performed using l = 5, 6, . . . , 9 bits per observation.

• Quasi-ML estimation of the constant and slope parameters was performed and the

error variances were averaged over 108 Monte-Carlo trials (realizing the measurement

noise and sensor drift). The 95% confidence interval of the error variances were also

observed.

The results of Monte-Carlo simulations are compared to theoretical predictions from

Modified-CRB and displayed in Figure 7.5. The full-precision CRB is also displayed in

the figure (labeled w/o Quant), marking the convergence of Modified-CRB in the large-l

regime. The actual estimation variance of both the constant and slope parameters (of the

linear signal) seem to agree, with reasonable accuracy, to the Modified-CRB.
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Figure 7.5: Cramér-Rao bounds with quantized observations.

7.6 Summary

In this chapter, we have derived approximate bounds for the estimation accuracy of poly-

nomial signals using sensors that exhibit drift in addition to having measurement errors.

This is important since sensor drift, or loss of calibration with time, is a major problem

in many applications. The theoretical closed form expressions are validated through nu-

merical results. As future work, it may be worthwhile to analyze the performance for

other signal models, e.g., stochastic models rather than deterministic. Additionally, it may

be interesting to investigate the impact of spatial correlation (i.e, relaxing Assumption 3)

on estimation performance. More bit-efficient quantization schemes (other than uniform

quantization) that optimally allocate bandwidth to each of the sensors is also another topic

of interest. Finally, in-network inference where only the summary of estimated parameters

are communicated to the sink, rather than entire observations, will be another framework

that one might consider.
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Chapter 8

Conclusions and suggestions for

future work

We have explored the problem of distributed parameter estimation in resource constrained

wireless sensor networks. This problem is significantly more difficult compared to cen-

tralized estimation because of the complexities involved in choosing the optimum com-

pression/transformation scheme for communication with the fusion center. Adding to the

complexity is the fact that the sensor nodes may have access to the correlated observa-

tions from neighboring nodes, using which the sensors can potentially improve the overall

effectiveness of the information it relays to the fusion center using finite energy resources.

Determining the optimal collaboration strategies in such scenarios is a non-trivial problem.

Owing to these challenges, the understanding of the performance of distributed and col-

laborative estimation problems is often coupled to particular kinds of observation (signal

and noise) characteristics. One particular observation characteristic that lends tractability

to many estimation problems is the assumption of time-independent measurement noise.

However, in some practical applications (e.g., gas sensing applications), the sensors usually

exhibit baseline drift, that leads to time-correlated measurement noise. Analysis of such

scenarios is extremely difficult. In this thesis, we addressed some of the aforementioned

challenges and thereby improved our understanding of distributed parameter estimation

problems. Specifically, our contributions are listed below.
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In Chapter 3, we studied distributed parameter estimation using identical binary quan-

tizers. The problem involved finding an optimum probabilistic mapping from the obser-

vation space to the binary symbol space. We made the analysis tractable by defining and

focusing our attention to the subset of antisymmetric quantizers. Among other theoreti-

cal results, we have specified a broad family of distributions for which the commonly-used

threshold quantizer is optimal. Aided with some theoretical results, we formulated a numer-

ical optimization problem to obtain the minimax-CRB quantizer within the antisymmetric

and piecewise-linear class.

In Chapter 4, we studied the collaborative parameter estimation problem in a quanti-

zation based framework. We addressed this problem by using an earlier result on optimal

bit-allocation that was derived based on the assumption of spatially independent measure-

ment noise. We used spatial collaboration as a preprocessing tool that maximally whitens

the noise components, i.e., the covariance matrix of the transformed noise is as close to a

diagonal matrix as possible. Such a whitening transformation allowed us to improve the

efficiency of aforementioned bit-allocation scheme, as evidenced by numerical simulations.

In Chapter 5, we studied the collaborative parameter estimation problem in an analog-

forwarding based framework. We restricted our attention to coherent multiple access chan-

nels. For the scenario when the collaborative topology is fixed and collaboration is cost-free,

we obtained the optimal (cumulative) power-distortion tradeoff in closed-form by solv-

ing a quadratically-constrained quadratic-programming problem. With individual power

constraints, we showed that the semidefinite relaxation technique can be used to obtain

precisely optimal numerical results. Several special cases were presented as examples to

highlight the problem conditions for which collaboration is particularly effective. Through

the use of both theoretical and numerical results, we established that collaboration helps

to substantially reduce the distortion of the estimated parameter at the fusion center,

especially in low local-SNR scenario.

In Chapter 6, we built on the results of Chapter 5 and investigated two key aspects.

First, we provided an asymptotic analysis of the single-snapshot estimation problem when
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the collaboration topology is only partially connected. We achieved this by obtaining the so-

lutions for a family of structured networks and then using those solutions to approximately

predict the performance of more sophisticated networks using geometric arguments. Sec-

ond, we extended the problem formulation towards the estimation of a time varying signal.

In particular, we derived the instantaneous, average and worst case performance metrics

when the signal is modeled as a Gaussian random process with exponential covariance.

Both these aspects were investigated under the assumption of spatial and temporal inde-

pendence among the measurement and channel noise samples.

In Chapter 7, we analyzed how time-correlated measurement noise affects the dis-

tributed parameter estimation problem. We have derived approximate Cramér-Rao bounds

for the estimation accuracy when the inference has to be performed using sensors that

exhibit drift. We assumed a polynomial time-series as the representative signal and an

autoregressive process model for the drift. For stationary drift, we showed that the first-

order effect of drift is asymptotically equivalent to scaling the measurement noise by an

appropriate factor. When the drift is non-stationary, we showed that the constant part of

a signal can only be estimated inconsistently (non-zero asymptotic variance).

To summarize, the main contributions of the work reported in this dissertation are as

follows.

• Designed optimal probabilistic antisymmetric quantizers for distributed estimation

• Introduced the spatial whitening transformation as a tool that enables efficient bit-

allocation in distributed estimation

• Derived the optimal strategy for collaboration when analog-forwarding is performed

through a coherent multiple access channel

• Analyzed the collaborative estimation problem for the Ornstein-Uhlenbeck process

• Analyzed the distributed estimation problem for sensors with baseline drift

Despite our contributions in this thesis, the understanding of distributed parameter

estimation problem remains incomplete. However, the line of questioning, the techniques
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used and the results achieved in this thesis provide new tools for further exploration on this

topic. Below are some examples of well-formulated research questions that follow directly

from this thesis.

• Identical binary quantizer design: We know that in some cases, the threshold quan-

tizer is also the optimal antisymmetric quantizer, assuming that the binary observa-

tions are correctly received by the fusion center. What happens when the channel is

noisy, as in the case of a binary symmetric channel? What is the noise variance of

the channel below which the threshold quantizer is also the optimal antisymmetric

quantizer?

• Spatial whitening : Through the bit-allocation example in Chapter 4, we have seen

that spatial whitening transformations can lead to vastly efficient usage of network

resources. Though the concept of whitening is intuitive, it is not trivial to actually

show that log-determinant divergence based and adjacency-restricted spatial whiten-

ing always improves the efficiency of resource allocation. Theoretical studies on this

line can lead to potentially interesting results. For example, can we find the class of

problems for which spatial whitening will certainly benefit resource allocation?

• Analog-forwarding based collaborative estimation: Since this area was largely unex-

plored prior to this thesis, several extensions may lead to tractable formulation and

interesting observations. One may ask, what is the optimal collaboration strategy

when

– the parameter to be estimated is a vector with possibly correlated elements?

– the channel to the fusion center is an orthogonal multiple access channel?

– the act of collaboration incurs some loss of information?

Regarding the estimation of time-varying processes, we have shown that when an

Ornstein-Uhlenbeck process is to be estimated in the presence of time-independent

measurement noise, the observations should be sampled as frequently as possible.

How does this strategy change when the noise is time-correlated?
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• Inference using sensors with drift : We know that while estimating a deterministic

signal, the effect of drift is equivalent to scaling the white noise component by an

appropriate multiplicative factor. What is the multiplicative factor, if any, when

– the signal of interest is stochastic?

– the drift process is modeled as a general autoregressive moving average (ARMA)

process?
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Appendix A

Appendix - Proofs of various results

A.1 Proof of Lemma 3.2.5

Let g̃(θ) be the conditional probability corresponding to γ̃(x). We need to show that γ̃(x)

dominates γ(x) for the (half-range) θ ∈ [0, 1). Refer to the expression of I(θ) in (3.9).

It suffices to show that the numerator and denominator terms satisfy, for θ ∈ [0, 1), the

inequalities (N) (g′)2 ≤ (g̃′)2 and (D) g(1 − g) ≥ g̃(1 − g̃). Since admissibility (Definition

3.2.1) implies g′ > 0 and g ≥ 1/2 for θ ∈ [0, 1), it suffices to show that (N1) g′ ≤ g̃′ and

(D1) g ≤ g̃. From (3.17), we obtain

g − g̃ =

∫ −1

−∞
γ(x)(f(x− θ)− f(x+ θ)) dx. (A.1)

With unimodality of f(w) implying f(x−θ) ≤ f(x) ≤ f(x+θ), for x ∈ (−∞,−1), θ ∈ [0, 1)

and γ(x) being positive by definition, (D1) is established from (A.1). Since f ′(w) > 0 in

(−∞, 0) (see Definition 3.2.4), we can interchange the order of integration and derivative

in (A.1), to obtain,

g′ − g̃′ = −
∫ −1

−∞
γ(x)(f ′(x− θ) + f ′(x+ θ)) dx ≤ 0,

thereby establishing (N1).
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A.2 Proof of Theorem 3.2.6

Note that conditions for Lemma 3.2.5 are satisfied, hence it suffices to show that the

Threshold Quantizer dominates any admissible antisymmetric unit-support quantizer γ(x).

Refer to expression of I(θ) in (3.9). It suffices to show that the numerator and denominator

terms satisfy, for θ ∈ [0, 1), the inequalities (N) (g′)2 ≤ (f)2 and (D) g(1− g) ≥ F (1− F ).

Since admissibility (Definition 3.2.1) implies g′ > 0 and g ≥ 1/2 for θ ∈ [0, 1), it suffices

to show that (N1) g′ ≤ f and (D1) g ≤ F . From the definition of ξ(θ, x) in (3.18) and

condition (3.24), we have for x ∈ [−1, 0], θ ∈ [0, 1)

d

dθ
ξ(θ, x) = −(f ′(x− θ) + f ′(x+ θ)) ≤ 0. (A.2)

Since γ(x) is always positive, Equations (3.23) (with interchanged order of integration and

differentiation) and (A.2) yield (N1). By integrating Equation (A.2) along θ ∈ [0, θ1] with

the boundary condition ξ(0, x) = 0 (which is true by definition), we obtain

ξ(θ1, x) ≤ 0, for x ∈ [−1, 0], θ1 ∈ [0, 1). (A.3)

Once again, since γ(x) is always positive, Equations (3.22) and (A.3) yield (D1).

A.3 Derivation for Example 3.2.7

We will show that (3.24) holds for Gaussian distribution with σ2 ≥ 1. Since unimodality

ensures that f ′(w) < 0 for w > 0, it suffices to show that (3.24) hold in the (restricted)

domain 0 ≤ z ≤ w ≤ 1. Noting that f ′(w − z) = −f ′(z − w) (from symmetric property of

f(w)) and defining α , w/z, it suffices to establish

f ′(z(1 + α)) ≤ f ′(z(1− α)) (A.4)
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for the domain α ∈ [0, 1], z ∈ [0, 1] and σ2 ≥ 1. Substituting f ′(w) =−(
√

2πσ3)−1w exp (−w2/(2σ2))

and rearranging terms, condition (A.4) is equivalent to showing

log
1 + α

1− α ≥
2αz2

σ2
. (A.5)

The following identity can be ascertained easily for 0 ≤ α ≤ 1

h(α) , log
1 + α

1− α − 2α ≥ 0, (A.6)

by noting that h(0) = 0 and h′(α) ≥ 0. The additional conditions 0 ≤ z ≤ 1 and σ2 ≥ 1

imply (A.5), thereby completing the derivation.

A.4 Proof of Proposition 3.2.8

We would prove Equation (3.26) and (3.27). Starting from (3.22), for θ = −1 and small σ

we proceed from (3.22) as follows

g(−1) = F (−1) +

∫ 0

−1

γ0(x) (f(x+ 1)− f(x− 1)) dx

(a)
= F (−1) +

∫ 1

0

γ0(z − 1) (f(z)− f(z − 2)) dz

(b)
=

∫ ∞
0

γ0(z − 1)f(z) dz +O(σ4)

(c)
=

∫ ∞
0

(
π2

16
z2 +O(z4)

)
f(z) dz +O(σ4)

(d)
=
π2σ2

32
+O(σ4),

(A.7)

where (a) is due to change in variables, (b) is due to bounding three distinct terms. First,

F (−1) =
∫ −1

−∞ f(z) dz can be bounded to O(σ4)1 assuming that the normalized fourth-

moment is bounded and applying an inequality (precisely, no. 26.1.41) in [1]. The other two

terms are themselves bounded by F (−1), i.e.,
∫∞

1
γ0(z − 1)f(z) dz <

∫∞
1
f(z) dz = F (−1)

1Recall the Landau or ”big O” notation: a function f is asymptotically bounded above by g, written
f(n) = O(g(n)), if there exist constants N > 0 and c > 0 such that f(n) ≤ cg(n) for all n > N .
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and
∫ 1

0
γ0(z − 1)f(z − 2) dz <

∫ 1

0
f(z − 2) dz < F (−1) and hence are of the order O(σ4).

(c) follows from the Taylor-series expansion of (3.13) in the vicinity of z = 0,

γ0(z − 1) =
1

2

[
1− cos

(πz
2

)]
=
π2z2

16
+O(z4),

and (d) follows from the partial moment relation
∫∞

0
znf(z) dz = O(σn). Similarly, for

g′(θ) in (3.23),

g′(−1) = −π
2

16

∫ ∞
0

z2f ′(z) dz +O(σ3)

(a)
=
π2σµ1

8
+O(σ3),

(A.8)

where (a) follows from integration by parts and the fact that z2f(z)|∞0 = 0. Applying (A.7)

and (A.8) in (3.9) we obtain (3.26).

The normalized one-sided mean µ1 depends on the shape of the noise density and the

inequality in (3.27) is due to the fact that µ1 < 1/2 for any zero-mean, symmetric noise

density f(w). Consider the function

f0(w) =

 2f(w) w ≥ 0

0 w < 0
, (A.9)

which is also a density function since
∫∞
−∞ f0(w) dw = 1 and hence must have a positive

variance. Thus Varf0(w) = Ef0(w2)− (Ef0(w))2 = σ2(1− 4µ2
1) > 0. Hence µ1 < 1/2.

A.5 Derivation of limits in Table 3.1

To derive the limits in Table 3.1, we consider the generalized Gaussian density [63], specified

in terms of the shape parameter β and variance σ2 as f(w; β, σ2) = β
2αΓ(1/β)

exp
(
− (|w|/α)β

)
,

where α is related to variance by α2 = σ2 Γ(1/β)
Γ(3/β)

and the one-sided mean is
∫∞

0
wf(w) dw =

αΓ(2/β)
2Γ(1/β)

. Here Γ(b) ,
∫∞

0
tb−1e−t dt denotes the Gamma function. Common densities

like Laplacian (β = 1) and Gaussian (β = 2) pdf-s are specific examples of this family.
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From [63], the normalized fourth-moment is σ−4
∫∞
−∞w

4f(w;σ2) = Γ(5/β)
Γ(1/β)

, which is clearly

bounded for finite β. Hence Proposition 3.2.8 applies, and we have from (3.26),

lim
σ2→0

CRB(±1, γ0; f(w; β, σ2)) =
8

π2

Γ(1/β)Γ(3/β)

(Γ(2/β))2
. (A.10)

Specific instances of this result β = 1 and β = 2 are shown in Table 3.1. Note that Γ(1) = 1,

and Γ(b) = (b−1)Γ(b−1) for all b > 1, which simplifies to Γ(b) = (b−1)! for integer b > 1.

Furthermore, Γ(1/2) =
√
π.

A.6 Proof of Proposition 5.3.2

Since w = vec(W ) for a connected topology, we obtain ΩP = Ex ⊗ I, G = I ⊗ g and

ΩJD = (Ex ⊗Eg)− η2GhhTGT

= (Ex ⊗Σg) +GΣ̃GT . (A.11)

Substituting the appropriate values in (5.44a), we have (assuming all the inverses exist)

Jopt(P )
(a)
= hTGT

(
GΣ̃GT + Ω̃P

)−1

Gh

(b)
= hT

(
Σ̃ + Γ̃P

)−1

h

(c)
= hT

((
1 +

1

G

)
Σ̃ +

1

G η
2hhT

)−1

h

(d)
= J̃

[
1 +

1 + η2J̃

G

]−1

, (A.12)

where step (a) follows by defining Ω̃P , Ex⊗Σ̃g where Σ̃g is already defined in (5.50). Step

(b) follows from arguments similar to those used in (5.46) and by defining (and subsequently
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simplifying) Γ̃P as

Γ̃P ,
(
GT Ω̃

−1

P G
)−1

=
((
I ⊗ gT

) (
E−1

x ⊗ Σ̃
−1

g

)
(I ⊗ g)

)−1

=
Ex

G , where G , gT Σ̃
−1

g g, (A.13)

step (c) follows from the fact that Ex = Σ̃+η2hhT , and step (d) follows from the definition

J̃ , hT Σ̃
−1
h and following identities involving rank-1 updated matrix inverses. For any

scalars α 6= 0 and β, vector p and invertible matrix Q,

(
αQ+ βppT

)−1
=
Q−1

α
− βQ−1ppTQ−1

α(α + βQp)
, and (A.14)

pT
(
αQ+ βppT

)−1
p =

Qp

α + βQp

, Qp , p
TQ−1p. (A.15)

From equations (5.44b) and discussion in Example 1, the optimal weights are,

wopt ∝ Ω̃
−1

P GΣ̃
(
Σ̃ + Γ̃P

)−1

h, (from (5.44b))

∝ Ω̃
−1

P Gh

=
(
E−1

x ⊗ Σ̃
−1

g

)
(h⊗ g)

=
(
E−1

x h
)
⊗
(
Σ̃
−1

g g
)

(A.16)

which implies that W opt ∝ Σ̃
−1

g gh
TE−1

x . Step (a) follows the fact that
(
Σ̃ + Γ̃P

)−1

h ∝

Σ̃
−1
h (see (A.14)).

From Corollary 2.3.5 of [27], the sum-rate required to encode a single-dimensional real-

valued Gaussian source with variance η2, observed through the vector h and Gaussian

observation noise with covariance Σ, in such a way that reconstruction incurs an average

distortion of at most D, satisfies

Rtot ≥
1

2
log

λ

D −D0

, where λ =
η4J0

1 + η2J0

. (A.17)
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Since, for a fixed sum-power P , the sum-rate has to be lesser that the (centralized) capacity

of the coherent MAC channel, i.e., Rtot ≤ C, where C = 1
2

log(1 + ‖g‖2Pξ), we obtain

1 + ‖g‖2Pξ ≥
η4J0

(D −D0)(1 + η2J0)
. (A.18)

Replacing D by J (recall, J = 1
D
− 1

η2
) and after some algebra, we obtain,

J ≤ J0

[
1 +

1 + η2J0

‖g‖2Pξ

]−1

. (A.19)

But the right hand side is precisely the distortion achieved by a connected network (see

(5.50) and note that G = ‖g‖2Pξ for Σg = 0). This establishes the information theoretic

optimality.

A.7 An equality involving positive definite matrices

Lemma A.7.1 (An inequality). For any N-dimensional vector p and N × N symmetric

positive definite matrices A and B,

1

pT (A+B)−1 p
≥ 1

pTA−1p
+

1

pTB−1p
. (A.20)

Proof: Since A,B ∈ S++, A−
1
2BA−

1
2 ∈ S++. Define by U and Λ the following

eigendecomposition A−
1
2BA−

1
2 = UΛUT . Hence λn > 0, ∀n. Define q = UTA−

1
2h. Note

that

qTq = pTA−1p,

qTΛ−1q = pTB−1p, and

qT (I + Λ)−1q = pT (A+B)−1 p.

(A.21)
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Hence, to prove (A.20), it suffices to show that

1∑N
n=1

q2n
1+λn

≥ 1∑N
n=1 q

2
n

+
1∑N

n=1
q2n
λn

,

or equivalently, with an , 1
1+λn

and bn , 1+λn
λn

,

N∑
n=1

q2
n

N∑
n=1

q2
nanbn ≥

N∑
n=1

q2
nan

N∑
n=1

q2
nbn. (A.22)

Since λn > 0,∀n, both an and bn are decreasing functions of λn. Hence inequality (A.22)

follows from the Chebyshev’s (sum) inequality (page 240, Equation 1.4, [61]). Equality

holds if and only if, for all indices k for which qk 6= 0 (denote such a set by ixnz(q)), the

eigenvalues are similar. That is, iff λk = λ, ∀k ∈ ixnz(q). QED.

A.8 Proof of Proposition 5.3.4

We would use Equation (5.44a). To start with, we note that Gh is a multiple of 1 and

both matrices ΩJD and ΩP has an eigenvector as 1, where 1 has dimension L = MK.

In particular, careful inspection of (5.33) (the elements of matrices Eg and Ex take two

distinct values, diagonal and otherwise) yields

Gh = g0h0
√
αgαh1,

ΩP1 = σ2
x (1 + (K − 1)αx) 1, and

ΩJD1 =
[
σ2
xg

2
0 {1 + (K − 1)(αx + αg)

+(MK − 2K + 1)αxαg} − η2g2
0h

2
0αgαhMK

]
1,

(A.23)

where σ2
x = σ2(1 + γ), αx = ρ+γαh

1+γ
and γ =

η2h20
σ2 . Based on the above equations, define

scalars φ, µ, ν be such that GhhTGT1 = φ1, ΩP1 = µ1 and ΩJD1 = (ν − η2φ)1, in
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particular,

φ = g2
0h

2
0αgαhMK,

µ = σ2
x (1 + (K − 1)αx) , and

ν = σ2
xg

2
0 {1 + (K − 1)(αx + αg) + (MK − 2K + 1)αxαg} ,

(A.24)

From (5.44a), we therefore obtain

Jopt(P ) =
φ

ν + µ
Pξ
− η2φ

, (A.25)

which when simplified further leads to (5.55). Since 1 is the corresponding eigenvector, we

also have wopt ∝ 1, i.e., the sensors just average all the observations.

A.9 Proof of Proposition 5.3.5

Our goal is to show that for any feasible J < Jopt, X R(J) contains a rank-1 matrix.

Specifically, we will show that

X̃ , arg max
X∈XR(J)

Tr [ΩPX] , (A.26)

which is the global optimizer to the (convex) semi-definite optimization problem

minimize
X

Tr [ΩPX]

subject to Tr [(JΩJD −ΩJN)X] + Jξ2 ≤ 0,

Tr [ΩP,mX] ≤ P C
m, m = 1, . . . ,M,

−X � 0,

(A.27)
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is rank-1. The Lagrangian of (A.27) is given by,

L(X, α,β,Z) = Tr [ΩPX]

+ α
(
Tr [(JΩJD −ΩJN)X] + Jξ2

)
+

M∑
m=1

βm
(
Tr [ΩP,mX]− P C

m

)
− Tr [XZ] ,

(A.28)

with the dual problem being,

maximize
α,β

αJξ2 −
M∑
m=1

βmP
C
m

subject to Z̃ , ΩP + α (JΩJD −ΩJN) +
M∑
m=1

βmΩP,m � 0,

α ≥ 0, β ≥ 0.

(A.29)

Also, we have the following complementary conditions (let tilde denote respective values

at optimality),

α̃
(

Tr
[
(JΩJD −ΩJN) X̃

]
+ Jξ2

)
= 0, (A.30a)

β̃m

(
Tr
[
ΩP,mX̃

]
− P C

m

)
= 0, m = 1, . . . ,M, (A.30b)

Tr
[
X̃Z̃

]
= 0. (A.30c)

Without loss of generality, let X̃ = Ỹ Ỹ
T

(such a decomposition is possible since X̃ is

symmetric positive semidefinite). Also denote the columns of Ỹ as w̃l ∈ RL for l =

1, 2, . . . , L, so that Ỹ = [w̃1, w̃2, . . . , w̃L]. From (A.30c), we have

Tr
[
X̃Z̃

]
=

L∑
l=1

w̃T
l Z̃w̃l = 0, (A.31)
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which coupled with the fact that Z̃ � 0 implies that

Z̃w̃l = 0, for all l = 1, . . . , L. (A.32)

Thus, from definition of Z̃ in (A.29), we conclude that w̃l-s are the generalized eigenvectors

that satisfy

(
Ω̃ + α̃

(
JΩJD − ttT

))
w̃l = 0L, ∀ l, with

Ω̃ , ΩP +
M∑
m=1

β̃mΩP,m,

t , Gh (note ΩJN in (5.33)).

(A.33)

Hence it follows that for all l,

((
Ω̃ + α̃JΩJD

)
− α̃ttT

)
w̃l = 0L,

⇔
(
IL −

(
Ω̃ + α̃JΩJD

)−1

α̃ttT
)
w̃l = 0L, (A.34)

⇒ w̃l ∝
(
Ω̃ + α̃JΩJD

)−1

t, (A.35)

where (A.34) is because ΩP is positive definite and hence the matrix
(
Ω̃ + α̃JΩJD

)
is also

positive definite and invertible, and (A.35) follows from the fact that both α̃ and tT w̃l has

to be non-zero to satisfy (A.33). We thus conclude that

w̃l is unique upto its norm, ∀ l,

⇒ X̃ is a rank-1 matrix,

(A.36)

thereby establishing Proposition 5.3.5.
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A.10 Proof of Proposition 5.3.7

Problem (5.77) is equivalent to

maximize
W

JW =

(
gTWh

)2

Tr
[
EgWExW

T
]

+ ξ2
,

subject to
[
WExW

T
]
m,m
≤ P C

m, m = 1, . . . ,M,

(A.37)

in the sense that JW and JW are monotonically related through JW = JW
1−η2JW

and W opt

is the same for both problems. This is further equivalent to

maximize
V

JV =

(
gTV hx

)2

Tr
[
EgV V

T
]

+ ξ2
,

subject to ‖vm‖2 ≤ P C
m, m = 1, . . . ,M,

(A.38)

by defining V , vm and hx such that

V ,WE
1
2
x =


vT1
...

vTM

 , and hx , E
− 1

2
x h. (A.39)

With a goal to reduce the number of optimization variables from MN to M , we define the

matrix transformation V → V x as one that retains the norm of its individual row vectors

but otherwise aligns the rows to hTx , i.e.,

V x , t
hTx
‖hx‖

, tm , ‖vm‖ , so that

JV x = ‖hx‖2

(
gT t
)2

tTEgt+ ξ2
.

(A.40)

We would need the following result to proceed further.

Lemma A.10.1. When Σg is diagonal,

JV ≤ JV x , for any V . (A.41)
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Proof: To prove Lemma (A.10.1), we will show that

JV
‖hx‖2

(a)

≤
∥∥gTV ∥∥2

Tr
[
EgV V

T
]

+ ξ2

(b)

≤
(
gT t
)2

tTEgt+ ξ2
=
JV x

‖hx‖2 , (A.42)

where (a) follows from definition of JV in (5.77) and Cauchy-Schwartz inequality implying(
gTV hx

)2 ≤ ||gTV ||2||hx||2, and the last equality is due to definition of JV x in (A.40).

Hence it remains to prove (b), which can be established by showing

Tr
[((

tTΣgt
)
ggT −

(
gT t
)2

Σg

)
V V T

]
≤ 0, (A.43a)

and ξ2
(∥∥gTV ∥∥2 −

(
gT t
)2
)
≤ 0. (A.43b)

Define ḡ, V̄ and its aligned equivalent V̄ x as

ḡ , Σ
− 1

2
g g, V̄ , Σ

1
2
gV , so that

V̄ x = t
hTx
‖hx‖

, where t̄m = ‖v̄m‖ , or

t̄ = Σ
1
2
g t (since Σg is diagonal).

(A.44)

Note that Tr
[
V̄ V̄

T
]

= ‖t̄‖2
. Condition (A.43a) is therefore equivalent to showing

Tr
[(
‖t̄‖2

ḡḡT −
(
ḡT t̄
)2
)
V̄ V̄

T
]
≤ 0,

or equivalently ‖t̄‖2
(∥∥ḡT V̄ ∥∥2 −

(
ḡT t̄
)2
)
≤ 0, (A.45)

which is similar to condition (A.43b). Thus it remains to establish (A.43b), which is true

because

∥∥gTV ∥∥2 (a)
=

∥∥∥∥∥
M∑
m=1

gmvm

∥∥∥∥∥
2

(b)

≤
∥∥∥∥∥

M∑
m=1

gm ‖vm‖
∥∥∥∥∥

2

(c)
=
(
gT t
)2
, (A.46)
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where (a) and (c) are due to definitions of vm and t respectively, and (b) is due to Cauchy-

Schwartz inequality,
∥∥vTmvn∥∥ ≤ ‖vm‖ ‖vn‖ for all 1 ≤ m,n ≤M . This completes the proof.

QED.

Note that JV x is a function of the vector t, whose elements are non-negative (since tm

is a norm). Therefore problem (A.38), in conjunction with Lemma A.10.1, is equivalent to

maximize
t

JV x (t) ,

subject to t2m ≤ P C
m, m = 1, . . . ,M,

(A.47)

through the relations V opt = topt
hTx
‖hx‖ and JV opt = JV x (topt). Problem (A.47) is further

equivalent to

maximize
t

Ft =

(
gT t
)2

tTΣgt+ ξ2
,

subject to t2m ≤ P C
m, m = 1, . . . ,M,

(A.48)

through the following relations between variables JV x (t) = ‖hx‖2 Ft

1+Ft
, which proves Propo-

sition 5.3.7

A.11 Proof of Lemma 5.3.8

We start by noting that for % ∈ (0, 1)

κ(%) =

(
1− %M2
1− % 1

2

)2
1− %

1− %M =
1− %M2
1 + %

M
2

1 + %
1
2

1− % 1
2

. (A.49)

We would show that dκ(%)
d%

> 0 for % ∈ (0, 1). From (A.49),

dκ(%)

d%
=
%−

1
2 −M%

M
2
−1 − %M− 1

2 +M%
M
2(

1 + %
M
2

)2 (
1− % 1

2

)2 , (A.50)
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the numerator of which can be rearranged as

%−
1
2

(
1− %M

)
−M%

M
2
−1 (1− %)

= %−
1
2 (1− %)

(
1 + %+ · · ·+ %M−1 −M%

M−1
2

)
= %−

1
2 (1− %)

bM
2
c∑

m=1

(
%
m−1

2 − %M−m2

)2

, (A.51)

which is evidently a positive quantity. This completes the proof.

A.12 Proof of Proposition 5.3.9

We start with the cumulative-constraint case, for which we will use the results from Example

3. From Equation (A.25) and corresponding to the distributed (K = 1) and connected cases

(K = M), we denote the constants {µ, ν} with subscripts 1, 2, as {µ1, ν1} and {µ2, ν2}

respectively, i.e.,

Jdist
opt (P ) =

φ

ν1 + µ1
Pξ
− η2φ

, and

Jconn
opt (P ) =

φM

ν2 + µ2
Pξ
− η2φM

,

(A.52)

where φ = g2
0h

2
0αgαhM , ν1 = σ2

xg
2
0 (1 + (M − 1)αgαx), µ1 = σ2

x , ν2 = σ2
xg

2
0 (1 + (M − 1)αg) (1 + (M − 1)αx)

and µ2 = σ2
x (1 + (M − 1)αx). Applying the corresponding distortion terms (note

D =
(

1
η2

+ J
)−1

) in (5.30), (note that J0 = φM
ν2−η2φM therefore the denominator term of

(5.30) is η2 −D0 = η2φ
ν2

) the collaboration gain can be simplified as

CG =

Mµ1−µ2
Mµ1

+ Pξ
Mν1−ν2
Mµ1(

1 + 1
Pξ

µ2
ν2

)(
1 + Pξ

ν1
µ1

) . (A.53)

Each of the fragments can be simplified further, Mµ1−µ2
Mµ1

= 1
M

(M − 1)(1 − αx),
Mν1−ν2
Mµ1

=

g20
M

(M − 1)(1 − αg)(1 − αx),
µ2
ν2

= 1
g20(1+(M−1)αg)

and ν1
µ1

= g2
0 (1 + (M − 1)αgαx). Replacing
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these fragments in (A.53), defining Pg = Pξg
2
0 and dividing both numerator and denomi-

nator by (1 + Pg) leads to Equation (5.85) (with κ replaced by M).

For the individual-constraint case, we would use Examples 5 (distributed) and 6 (con-

nected) to compute the collaboration gain. First we show that all the constraints are active

for both the distributed and connected cases if condition (5.84) is satisfied. If we apply

Proposition 5.3.6 to a homogeneous problem with a1 = · · · = aM and b1 = · · · = bM , the

active constraint condition ΦM−1dM ≥ 1 simplifies to

∑M−1
m=1 c

2
m + ξ2

bm∑M−1
m=1 cm

≥ cM . (A.54)

For the distributed case (Example 5), we refer to problem (5.75) to find that bm = σ2
xg

2
0(1−

αgαx) and cm =

√
PC
m

σx
, so that inequality (A.54) explicitly evaluates to condition (5.84).

For the connected case (specialized version of Example 6 for homogeneous parameters), we

refer to Equation (5.78) to note that bm = g2
0(1 − αg) and cm =

√
P C
m, so that inequality

(A.54) evaluates to

∑M−1
m=1 P

C
m + ξ2

g20(1−αg)∑M−1
m=1

√
P C
m

≥
√
P C
M , (A.55)

which is clearly true if condition (5.84) holds (since αx ∈ [0, 1]).

As regards collaboration gain, we proceed as we did in the cumulative case. For the

distributed (Equation (5.76)) and connected (Equation (5.78) with homogeneous parame-

ters) cases, we can rearrange the terms of Jopt(P ) to express them in the form of (A.52),

where the various constants are now φ = g2
0h

2
0αgαhκ, ν1 = σ2

xg
2
0 (1 + (κ− 1)αgαx), µ1 = σ2

x ,

ν2 = σ2
xg

2
0 (1 + (κ− 1)αg) (1 + (M − 1)αx) and µ2 = σ2

x (1 + (M − 1)αx). However, in this

case J0 is obtained not just by letting Pξ → ∞ (thereby letting µ vanish), but also by

setting κ = M in both φ and ν, i.e., J0 = φ(κ=M)M
ν2(κ=M)−η2φ(κ=M)M

. Therefore the denominator

term of (5.30) is η2 − D0 = η2φ(κ=M)
ν2(κ=M)

= η2φ
ν2

M
κ

(1+(κ−1)αg)

(1+(M−1)αg)
, which is just a scaled version

of η2φ
ν2

. Adjusting (A.53) for this scaling and rest of the derivation remaining similar, we
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obtain

CG =

κ
M

(1+(M−1)αg)

(1+(κ−1)αg)

(
Mµ1−µ2
Mµ1

+ Pξ
Mν1−ν2
Mµ1

)
(

1 + 1
Pξ

µ2
ν2

)(
1 + Pξ

ν1
µ1

) , (A.56)

which is precisely Equation (5.85), thereby completing the proof.

A.13 Proof of Theorem 6.3.1

We will derive Jopt (Equation (6.15a)) first and Jeq (Equation (6.15b)) later, for the case

when A = IK ⊗ (1Q1TQ) (note that N = KQ). From Theorem 6.2.1, we have

Jopt = hT (Σ + Γ/Eξ)−1 h, Eξ , E/ξ2, Γ ,
(
GTΩ−1G

)−1
(A.57)

The construction of matrices Ω and G are shown in Figure A.1 for th example of N =

4, K = 2, Q = 2. Since the asymptotic framework implies gk = 1
N
g̃k, the norm of Γ

increases with N (in contrast to Σ = σ2IN), implying

Jopt → hT (Γ/Eξ)−1 h

(a)
= EξhTGTΩ−1Gh (A.58)

(b)
= Eξ

K∑
k=1

(
gTk gk

)
hTkE

−1
x,khk

(c)
= Eξ

K∑
k=1

(
gTk gk

)
hTk
(
σ2I + η2hkh

T
k

)−1
hk

(d)
=
Eξ
η2

K∑
k=1

(
Q∑
q=1

g2
kq

)1− 1

1 + η2

σ2

(∑Q
q=1 h

2
kq

)
 , (A.59)

where (a) follows from the definition of Γ (see (A.57)), (b) follows from the structure of

G and Ω by defining Q-dimensional vectors gk , [gk1, . . . , gkQ]T , hk , [hk1, . . . , hkQ]T and

Q × Q matrix Ex,k , [Ex]k1,...,kQ (see example in Figure A.1 for a particular ordering of

the elements of W in which the clusters Ex,1 and Ex,2 appear twice to from the diagonal
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blocks of Ω), (c) follows by expanding Ex,k and (d) follows from identity (A.15) followed by

some rearrangements. Since for all K, as N →∞, we have
∑Q

q=1 g
2
kq → 1

K
E [g̃2], Equation

(A.59) leads to (6.15a) as K →∞, proving the first part of the result.

1 

2 

4 

3 FC 

𝑔1 
𝑔2 

𝑔3 

𝑨 
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 

𝒘
𝑨
 𝑾 

𝑤1 𝑤2 0 0
𝑤3 𝑤4 0 0
0 0 𝑤5 𝑤6
0 0 𝑤7 𝑤8

 

𝑮 
𝑔1 0 0 0
0 𝑔1 0 0
𝑔2 0 0 0
0 𝑔2 0 0
0 0 𝑔3 0
0 0 0 𝑔3
0 0 𝑔4 0
0 0 0 𝑔4

  

𝑙 𝑚𝑙  𝑛𝑙  

1 1 1 

2 1 2 

3 2 1 

4 2 2 

5 3 3 

6 3 4 

7 4 3 

8 4 4 

𝛀 = 𝛀𝟏 + 𝛀𝟐 +𝛀𝟑 + 𝛀𝟒 

𝐸11 𝐸12 0 0 0 0 0 0
𝐸21 𝐸22 0 0 0 0 0 0
0 0 𝐸11 𝐸12 0 0 0 0
0 0 𝐸21 𝐸22 0 0 0 0
0 0 0 0 𝐸33 𝐸34 0 0
0 0 0 0 𝐸43 𝐸44 0 0
0 0 0 0 0 0 𝐸33 𝐸34
0 0 0 0 0 0 𝐸43 𝐸44

  

(𝑬𝒊𝒋  denotes  [𝑬𝒙]𝒊𝒋 ) 

𝑔4 

Figure A.1: Example Q = 2-clique topology with N = 4 nodes. Illustration of Ω and G
matrices assuming row-wise ordering of elements in W .

To establish (6.15b), we proceed by noting that for “Equal EA” strategy, the collab-

oration matrix W (d) = dIK ⊗
(
1Q1TQ/Q

)
for some scalar d. Here d affects both the

transmission power,

EW (d) = NE
[
z2
n

]
= N

d2

Q2
E

{( Q∑
q=1

hq

)
θ +

Q∑
q=1

εq

}2


→ Kd2

Q

[
η2
{
QE[h2] +Q(Q− 1)E2[h]

}
+Qσ2

]
, (A.60)

183



and the resulting Fisher Information,

JW (d) =

(
gTWh

)2

σ2gTWW Tg + ξ2

=

(
d
Q

∑K
k=1

(∑Q
q=1 gkq

)(∑Q
q=1 hkq

))2

σ2 d2

Q2

∑K
k=1 Q

(∑Q
q=1 gkq

)2

+ ξ2

→ d2

ξ2
E2[g̃]E2[h]

(
Note:

Q∑
q=1

gkq = O
(

1

K

))
. (A.61)

Eliminating the scalar d between (A.60) and (A.61) yields the energy-distortion tradeoff in

equation (6.15b).

A.14 Explicit expressions for Rayleigh distributed

gains

To derive (6.18), we first note that the square of a Raleigh ditributed random variable is

exponential distributed,

fh(h) =
h

α2
exp

(
− h2

2α2

)
=⇒ ft(t) = exp (−t) ,

for t ,
h2

2α2
, h > 0, t > 0,

(A.62)

consequently, it suffices to show that for Ti
i.i.d.∼ ft(t),

E
[

1

1 + 1
λ

(T1 + · · ·+ TQ)

]
= HQ as given by (6.18), (A.63)

where λ = σ2

2α2η2
. We further note that the finite-sum of i.i.d. exponential ditributed

random variables is Gamma distributed,

ft(t) = exp (−t) , Ti
i.i.d.∼ ft(t) =⇒ fs;Q(s) =

1

(Q− 1)!
exp (−s) sQ−1,

for s , t1 + · · ·+ tQ, ti > 0, s > 0.

(A.64)
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Hence it further suffices to establish that for S ∼ fs;Q(s),

E
[

1

1 + 1
λ
S

]
= HQ as given by (6.18). (A.65)

We establish (6.18) through recursion. First note that for Q = 1, fs;1(s) = exp (−s) and

H1 evaluates to

H1 =

∫ ∞
0

exp (−s)
1 + 1

λ
s

ds

= λ exp(λ)

∫ ∞
λ

exp (−s′)
s′

ds′ ( by substitution s′ = s+ λ )

= λ exp(λ)Ei(λ), ( by definition of Ei(λ) in (6.18) ) (A.66)

For Q ≥ 2, we have the following recursion

HQ =

∫ ∞
0

fs;Q(s)
1

1 + s
λ

ds

=

∫ ∞
0

1

(Q− 1)!
exp (−s) sQ−1 1

1 + s
λ

ds

=
λ

Q− 1

∫ ∞
0

1

(Q− 2)!
exp (−s) sQ−2

s
λ

1 + s
λ

ds

=
λ

Q− 1

∫ ∞
0

fs;Q−1(s)

(
1− 1

1 + s
λ

)
ds

=
λ

Q− 1
(1−HQ−1) , (A.67)

which can be further verified to result in (6.18). The first few terms are given below for

ease of reference

H2 = λ− λH1,

H3 =
1

2

(
λ− λ2 + λ2H1

)
,

H4 =
1

6

(
2λ− λ2 + λ3 − λ3H1

)
.

(A.68)

185



A.15 Proof of Theorem 6.3.2

We will establish equation (6.22) using a result in matrix inverse approximation derived in

Chapter 7. Comparing the closely related stationary matrices in Chapter 7 denoted by R

(see (7.12), this is not to be confused with Ryy′ denoting covariance of y in this chapter)

with that of C given by (6.19), we note that R = 1
1−ρ2C. Hence, combining expressions

for Ryy′ from (6.20), E[θty
′] from (6.21) and Var (θt|y) from (6.12), we write

Var (θt|y) = η2 − η4J

[
· · · ρ2% % ρ/% ρ2/% · · ·

]
︸ ︷︷ ︸

,pT (say)

[
I + γR

]−1



...

ρ2%

%

ρ/%

ρ2/%

...


,

where γ , η2J
(
1− ρ2

)
,

(A.69)

and vector p is defined as above. The inverse (I + γR)−1 has an elegant asymptotic

approximation (precisely summarized and proved in Proposition 7.3.1) of the form

(I + γR)−1 = I − νA

= I − ν (I +A1 + κA2 + κA3)

(A.70)

where ν, κ are scalars that depends on γ and ρ, precisely

y ,
1

2

γ + 1

ρ
+ ρ−

√(
γ + 1

ρ
+ ρ

)2

− 4

 ,
ν ,

yγ

ρ(1− y2)
, andκ ,

y(ρ− y)

1− ρy .

(A.71)

and A is a matrix composed of several structured matrices Ai–s (see Appendix A.17 for the

precise structures, we refrain from repeating here). Using (A.69), the rest of the problem
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involves finding some quadratic products,

Var (θt|y) = η2 − η4J

(1− ν)pTp− νpTA1p− νκpT (A2 +A3)p︸ ︷︷ ︸
−→0

 (A.72)

among whom the last term is negligible, due to the following explanation. We illustrate the

infinite-dimensional matrix ppT in Figure A.2, which has finite components in the “cen-

ter” of the matrix (defined by quadrants Q1, Q2, Q3, Q4) and the elements (exponentially)

decrease in magnitude towards the “periphery”. On the other hand, matrices A2,A3 (see

⋮ ⋮ ⋮ ⋮
⋯ 𝜌4𝜚2 𝜌3𝜚2 𝜌2𝜚2 𝜌3 𝜌4 𝜌5 ⋯

𝜌3𝜚2 𝜌2𝜚2 𝜌𝜚2 𝜌2 𝜌3 𝜌4

⋯ 𝜌2𝜚2 𝜌𝜚2 𝜚2 𝜌 𝜌2 𝜌3 ⋯

⋯ 𝜌3 𝜌2 𝜌 𝜌2/𝜚2 𝜌3/𝜚2 𝜌4/𝜚2 ⋯

𝜌4 𝜌3 𝜌2 𝜌3/𝜚2 𝜌4/𝜚2 𝜌5/𝜚2

⋯ 𝜌5 𝜌4 𝜌3 𝜌4/𝜚2 𝜌5/𝜚2 𝜌6/𝜚2 ⋯

⋮ ⋮ ⋮ ⋮

 

𝑦3 

𝑦2 

𝑦 1 

𝑦3 

𝑦3 

𝑦3 

𝑦2 

𝑦2 

𝑦2 

𝑦 

𝑦 

𝑦 1 
𝑄1 𝑄2 

𝑄3 𝑄4 

⋮ ⋮ 

⋮ 

⋮ 

Figure A.2: Illustrating ppT and the summations along diagonals in various quadrants

Appendix A.17) has finite elements only in the “periphery” and vanishingly small elements

towards the “center”. Hence pT (A2 +A3)p represents a sum that is vanishingly small

and can be ignored. It remains to compute pTp and pTA1p to finish the derivation. The

product pTp is obtained by simply adding the diagonal terms in Figure A.2,

pTp =

 %2︸︷︷︸
Q2 diag

+
ρ2

%2︸︷︷︸
Q4 diag

 1

1− ρ2
, (A.73)

where two separate summations for quadrants Q2 and Q4 are indicated above. As regards

pTA1p, we note that A1 (Appendix A.17) is a matrix with yi along the ith off-diagonal
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lines. Working out the algebra, we have

pTA1p = 2× yρ

(1− yρ)2︸ ︷︷ ︸
both Q1 and

Q3 sums

+
2yρ

1− yρ

 %2︸︷︷︸
Q2 sum

+
ρ2

%2︸︷︷︸
Q4 sum

 1

1− ρ2
, (A.74)

which completes the derivation. It is easy to verify that the sum computed by inserting

(A.73) and (A.74) in (A.72), with scalars y (not to be confused with observation vector y)

and ν as in (A.71), is algebraically equivalent to equation (6.22).

A.16 Proof of Proposition 7.3.1

In Proposition 7.3.1, we need to show that

(I + γR)−1 = I − νA+O(yT ). (A.75)

Let Ã be such that

(I + γR)−1 = I − νÃ, (A.76)

i.e., the exact form of Equation (A.75). Then it suffices to prove that

A = Ã+O(yT ), or equivalently,

Ã
−1
A = I +O(yT ). (A.77)

To prove (A.77), we need Ã
−1

. Note that (A.76) implies

Ã
−1

= ν(I +R−1/γ). (A.78)
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The inverse of RU (given by (7.12)) is well known [65]. The inverse of R is very similar to

that of RU except for the top-left element. Specifically,

R−1 =



1 + %τ −ρ · · · 0 0

−ρ 1 + ρ2 . . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . 1 + ρ2 −ρ

0 0 · · · −ρ 1


. (A.79)

From (A.78) and with the help of some identities that follow directly from (7.19), namely,

ν(1 + 1/γ) = (1− ρy + y2)/(1− y2), and

ν(1 + (1 + ρ2)/γ) = (1 + y2)/(1− y2),

(A.80)

we express Ã
−1

as,

Ã
−1

=
1

1− y2
×

mτ −y · · · 0 0

−y 1 + y2 . . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . 1 + y2 −y

0 0 · · · −y 1− ρy + y2


, (A.81)

where mτ , 1−ρy+y2 +%τy/ρ. Constructing A from Equation (7.21), we can now directly

verify (A.77). Specifically, the residual is of the following structure
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Ã
−1
A− I =

yT

r0



0 0 · · · r1 r3

0 0 . .
.
r2 0

... . .
.
. .
.
. .
. ...

r1 r2 . .
.

0 0

r2 0 · · · 0 0


, (A.82)

where constants r0, r1, r2, r3 are defined as

r0 , (1− ρy)(ρ− ρ2y + %τy), r1 , −%τy

r2 , −ρ(ρ− y)(1− ρy) + %τ (1 + y2 − ρy),

r3 , r2 + %τy(%τ − ρ2)/ρ,

(A.83)

respectively. Since (A.82) are terms of order O(yT ), this completes the proof of (A.77) and

hence Proposition 7.3.1.

A.17 Polynomial Approximation of X ′AX

First, we would decompose A (see (7.21)) to aid analytical calculations. Note that

A = I +A1 + ητA2 + κA3, (A.84)

and matrices A1,A2 and A3 are defined by

A1 ,



0 y · · · yT−2 yT−1

y 0
. . . yT−3 yT−2

...
. . .

. . .
. . .

...

yT−2 yT−3 . . . 0 y

yT−1 yT−2 · · · y 0


, (A.85)
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A2 ,



1 y y2 · · · yT−2 0

y y2 . .
.
. .
.

0 0

y2 . .
.
. .
.
. .
.

. .
. ...

... . .
.
. .
.
. .
.

. .
.

0

yT−2 0 . .
.
. .
.

0 0

0 0 · · · 0 0 0


, and (A.86)

A3 ,



0 0 0 · · · 0 yT−1

0 0 . .
.
. .
.
yT−1 yT−2

0 . .
.

. .
.
. .
.

. .
. ...

... . .
.

. .
.
. .
.

. .
.

y2

0 yT−1 . .
.
. .
.

y2 y

yT−1 yT−2 · · · y2 y 1


, (A.87)

respectively. To calculate X ′AX, we compute each of terms in (A.84). X ′X is given by

(7.25) and (7.26). For X ′A1X, we refer to (A.85) and collect the identical powers of y

from either side of the principal diagonal,

[X ′A1X]k,l =
T−1∑
i=1

yi
T−i∑
j=1

(jk(i+ j)l + jl(i+ j)k)

(a)
=

T−1∑
i=1

yi
T−i∑
j=1

k+l∑
r=0

Ari
rjk+l−r

=
T−1∑
i=1

yi
k+l∑
r=0

Ari
r

T−i∑
j=1

jk+l−r

(b)
=

T−1∑
i=1

yi
k+l∑
r=0

Ari
r

k+l−r∑
s=0

Bs,r(T − i)k+l−r+1−s
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(c)
=

T−1∑
i=1

yi
q−1∑
r=0

Ari
r

q−r−1∑
s=0

Bs,r

q−r−s∑
t=0

Ct,s,rT
q−r−s−t(−i)t

(d)
=

T−1∑
i=1

yi
q−1∑
r=0

q−r−1∑
s=0

q−r−s∑
t=0

Xr,s,t

(e)
=

T−1∑
i=1

yi

(
q−1∑
u=0

u∑
v=0

v∑
r=0

Xr,u−v,v−r +

q∑
v=1

v−1∑
r=0

Xr,q−v,v−r

)
(f)
=

T−1∑
i=1

yi

(
q−1∑
u=0

T q−u
u∑
v=0

iv
v∑
r=0

Dr,v,u +

q∑
v=1

iv
v−1∑
r=0

Dr,v,q

)
(g)
=

q−1∑
u=0

T q−u
u∑
v=0

Yv

v∑
r=0

Dr,v,u︸ ︷︷ ︸
,Au,M1

, u≤k+l

+

q∑
v=1

Yv

v−1∑
r=0

Dr,v,q︸ ︷︷ ︸
,αM1

+O(T qyT ), (A.88)

where in step (a) we collect all like powers of i and j and define Ar ,
(
l
r

)
+
(
k
r

)
, (b) follows

from the summation formula in (7.26) and the definition Bs,r , Bk+l−r,s, (c) is due to

binomial expansion and definitions q , k + l + 1 and Ct,s,r ,
(
q−r−s

t

)
. Step (d) follows

from the definition Xr,s,t , ir+tT q−r−s−tArBs,rCt,s,r(−1)t, step (e) is an identity involving

series rearrangement (i.e., true for any Xr,s,t, by defining u , r + s + t and v , r + t),

step (f) follows from defining Dr,v,u , ArBu−v,rCv−r,u−v,r(−1)v−r. Step (g) follows from the

definition Yv ,
∑∞

i=1 i
vyi (which converges for finite v since y < 1 and the error term is of

the order T vyT ). Quantities of the form Yv are also known as poly-logarithms. In the last

step, we denote the polynomial coefficients by Au,M1 and the constant term by αM1 .

For X ′A2X, we start with (A.86) and collect the identical powers of y from the top-left

half,

[X ′A2X]k,l =
T−1∑
i=1

yi−1

i∑
j=1

jk(i+ 1− j)l

=
∞∑
i=1

yi−1

i∑
j=1

jk(i+ 1− j)l︸ ︷︷ ︸
,αM2

+O(T qyT ), (A.89)

where αM2 is a constant.
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Similarly, for X ′A3X, we start with (A.87) and collect the identical powers of y from

the bottom-right half,

[X ′A3X]k,l

=
T−1∑
i=1

yi−1

i∑
j=1

(T − j + 1)k(T + j − i)l

(a)
=

T−1∑
i=1

yi−1

i∑
j=1

k∑
r=0

GrT
k−r(−j + 1)r

l∑
s=0

HsT
l−s(j − i)s

(b)
=

T−1∑
i=1

yi−1

i∑
j=1

k+l∑
t=0

T k+l−t
t∑

s=0

Kt,s

(c)
=

k+l∑
t=0

T k+l−tAt,M3 +O(T qyT ), (A.90)

where (a) follows from binomial expansion and definitions Gr ,
(
k
r

)
, Hs ,

(
l
s

)
. In (b), we

have rearranged the sum to group similar exponents of T with the transformation t , r+s

and defined Kt,s , Gt−s(−j + 1)t−sHs(j − i)s, (c) follows from similar arguments while

deriving (A.88) and (A.89) and the definition

At,M3 ,
∞∑
i=1

yi−1

i∑
j=1

t∑
s=0

Kt,s, t ≤ k + l. (A.91)

We note that all the constants Au,M1 , αM1 , αM2 ,At,M3 depend on k and l. We can now

prove Proposition 7.3.2 by composing X ′AX with the help of (A.88), (A.89) and (A.90)

in (A.84). Define A−1,M3 = 0. The constants Ak,l,i and α
(τ)
k,l in Proposition 7.3.2 are given

by

Ak,l,i = Bk+l,i +Ai,M1 + κAi−1,M3 , 0 ≤ i ≤ k + l,

α
(τ)
k,l = αM1 + ηταM2 + κAk+l,M3 ,

(A.92)

respectively. Some of these constants are enumerated in Table A.1. This completes the

proof. For example, to computeAk,l,0, we note that Bk+l,0 = 1
k+l+1

, A0,M1 = 2Y0
k+l+1

, Y0 = y
1−y
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i ↓ Bk+l,i Ai,M1 Ai−1,M3 Yi
0 1

k+l+1
2

k+l+1
Y0 0 y

1−y
1 1

2
Y0 − Y1

1
(1−y)2

y
(1−y)2

2 k+l
12

k+l
6
Y0 − k+l

2
Y1 +

(k2)+(l2)
k+l−1

Y2 − (k+l)y
(1−y)3

y(1+y)
(1−y)3

3 0 −(k+l2 )
6
Y1 +

(k2)+(l2)
2

Y2 − (k2)+(l2)−
kl
2

3
Y3

y((1+y)((k2)+(l2))+kly)
(1−y)4

y(1+4y+y2)
(1−y)4

(k, l) ↓ αM1 αM2 Ak+l,M3

(0, 0) − 2y
(1−y)2

1
(1−y)2

1
(1−y)2

(0, 1),(1, 0) − y
(1−y)2

1
(1−y)3

− y
(1−y)3

(1, 1) 2y2

(1−y)4
1

(1−y)4
y2

(1−y)4

Table A.1: Values of several constants helpful to derive Ak,l,i and α
(τ)
k,l .

which means

Ak,l,0 = Bk+l,0 + Y0A0,M1 =
1 + y

1− y
1

k + l + 1
, (A.93)

which agrees with (7.28).

A.18 FIM and CRB for ρ = 1

First we derive the FIM given by Equation (7.39). Let the Taylor Series of the FIM be of

the form

J =
1

σ2
E

[
Q0 +

1

T
Q1 +

1

T 2
Q2 +O

(
1

T 3

)]
E. (A.94)

The first term Q0 is equal to ξ2ff
′ (follows from (7.29) and the fact that ξ0 = ξ1 = 0 for

ρ = 1). The second order term Q1 follows from collecting third-order terms in (7.25) and

(7.27) and adding them according to (7.24), i.e.,

[Q1]k,l =


0, k = l = 0,

−να(τ)
k,l , k + l = 1,

Bk+l,2 − νAk,l,2, k + l ≥ 2.

(A.95)

194



From definitions (7.19) and identity (7.23), we obtain the following simplifications for ρ = 1,

ν =
1− y
1 + y

, κ = y, and
1

γ
=

y

(1− y)2
, (A.96)

which when applied to (A.92) (and using values from Table A.1) leads to,

[Q1]k,l =
kl

k + l − 1

1

γ
, k + l ≥ 2, (A.97)

which explains the term ξ4 in (7.40). Similarly, Q2 follows from collecting fourth-order

terms,

[Q2]k,l =


0, k + l ≤ 1,

−να(τ)
k,l , k + l = 2,

Bk+l,3 − νAk,l,3, k + l ≥ 3,

(A.98)

the last term of which when simplified yields

[Q2]k,l = −kl y2

(1− y)3
, k + l ≥ 3. (A.99)

that explains the term ξ5 in (7.40).

The derivation of the CRLB in Equation (7.41) follows from the block inversion of J

and subsequent application of Lemma 7.3.2.1. The block inversion formula is

a b′

b C


−1

=

 1
a

+
b′[C− 1

a
bb′]

−1
b

a2
∗

∗
[
C − 1

a
bb′
]−1


,

m ∗

∗ A

 , say. (A.100)
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From (7.39), we have

a = ξ
(τ)
2 , b =

1

T
ξ

(τ)
3 f ′ +O

(
1

T 2

)
,

C =
1

T
D

[
ξ4H +

1

T

(
ξ5ee

′ + ξ
(τ)
6 ff ′

)
+O

(
1

T 2

)]
D,

(A.101)

where we have dropped the subscript P from HP , eP and fP . Next we apply Lemma

7.3.2.1 to obtain the diagonal elements [A]q,q of block A. By substituting c0 = ξ4, c1 =

ξ5 c2 = ξ
(τ)
6 −

(
ξ

(τ)
3

)2

/ξ
(τ)
2 , and observing the facts that [D−1]p,p = 1

p
and LP−1,p−1 = P 2/p2,

we obtain [V ]p,p for p ≥ 1 as in (7.41). For the top-left element, m, the second order term

is
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, (A.102)

which completes the derivation of (7.41).
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