2,304 research outputs found

    Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping

    Get PDF
    This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results

    Bayesian mapping of brain regions using compound Markov random field priors

    Get PDF
    Human brain mapping, i.e. the detection of functional regions and their connections, has experienced enormous progress through the use of functional magnetic resonance imaging (fMRI). The massive spatio-temporal data sets generated by this imaging technique impose challenging problems for statistical analysis. Many approaches focus on adequate modeling of the temporal component. Spatial aspects are often considered only in a separate postprocessing step, if at all, or modeling is based on Gaussian random fields. A weakness of Gaussian spatial smoothing is possible underestimation of activation peaks or blurring of sharp transitions between activated and non-activated regions. In this paper we suggest Bayesian spatio-temporal models, where spatial adaptivity is improved through inhomogeneous or compound Markov random field priors. Inference is based on an approximate MCMC technique. Performance of our approach is investigated through a simulation study, including a comparison to models based on Gaussian as well as more robust spatial priors in terms of pixelwise and global MSEs. Finally we demonstrate its use by an application to fMRI data from a visual stimulation experiment for assessing activation in visual cortical areas

    Convective regularization for optical flow

    Full text link
    We argue that the time derivative in a fixed coordinate frame may not be the most appropriate measure of time regularity of an optical flow field. Instead, for a given velocity field vv we consider the convective acceleration vt+vvv_t + \nabla v v which describes the acceleration of objects moving according to vv. Consequently we investigate the suitability of the nonconvex functional vt+vvL22\|v_t + \nabla v v\|^2_{L^2} as a regularization term for optical flow. We demonstrate that this term acts as both a spatial and a temporal regularizer and has an intrinsic edge-preserving property. We incorporate it into a contrast invariant and time-regularized variant of the Horn-Schunck functional, prove existence of minimizers and verify experimentally that it addresses some of the problems of basic quadratic models. For the minimization we use an iterative scheme that approximates the original nonlinear problem with a sequence of linear ones. We believe that the convective acceleration may be gainfully introduced in a variety of optical flow models

    08291 Abstracts Collection -- Statistical and Geometrical Approaches to Visual Motion Analysis

    Get PDF
    From 13.07.2008 to 18.07.2008, the Dagstuhl Seminar 08291 ``Statistical and Geometrical Approaches to Visual Motion Analysis\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping

    Get PDF
    Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high-curvature transitions between activated and non-activated brain regions. In this paper, we introduce a class of inhomogeneous Markov random fields (MRF) with spatially adaptive interaction weights in a space-varying coefficient model for fMRI data. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, is carried out through efficient MCMC simulation. An application to fMRI data from a visual stimulation experiment demonstrates the performance of our approach in comparison to Gaussian and robustified non-Gaussian Markov random field models

    Spatiotemporal Identification of Cell Divisions Using Symmetry Properties in Time-Lapse Phase Contrast Microscopy

    Get PDF
    A variety of biological and pharmaceutical studies, such as for anti-cancer drugs, require the quantification of cell responses over long periods of time. This is performed with time-lapse video microscopy that gives a long sequence of frames. For this purpose, phase contrast imaging is commonly used since it is minimally invasive. The cell responses of interest in this study are the mitotic cell divisions. Their manual measurements are tedious, subjective, and restrictive. This study introduces an automated method for these measurements. The method starts with preprocessing for restoration and reconstruction of the phase contrast time-lapse sequences. The data are first restored from intensity non-uniformities. Subsequently, the circular symmetry of the contour of the mitotic cells in phase contrast images is used by applying a Circle Hough Transform (CHT) to reconstruct the entire cells. The CHT is also enhanced with the ability to “vote” exclusively towards the center of curvature. The CHT image sequence is then registered for misplacements between successive frames. The sequence is subsequently processed to detect cell centroids in individual frames and use them as starting points to form spatiotemporal trajectories of cells along the positive as well as along the negative time directions, that is, anti-causally. The connectivities of different trajectories enhanced by the symmetry of the trajectories of the daughter cells provide as topological by-products the events of cell divisions together with the corresponding entries into mitoses as well as exits from cytokineses. The experiments use several experimental video sequences from three different cell lines with many cells undergoing mitoses and divisions. The quantitative validations of the results of the processing demonstrate the high performance and efficiency of the method

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Semiparametric Bayesian models for human brain mapping

    Get PDF
    Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Carlo inference are promising tools.The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian models for the analysis of fMRI data. Most approaches focus on important but separate temporal or spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim, we suggest a complete spatiotemporal model for analysing fMRI data within a unified semiparametric Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach and demonstrates its computational feasibility

    DIGITAL INPAINTING ALGORITHMS AND EVALUATION

    Get PDF
    Digital inpainting is the technique of filling in the missing regions of an image or a video using information from surrounding area. This technique has found widespread use in applications such as restoration, error recovery, multimedia editing, and video privacy protection. This dissertation addresses three significant challenges associated with the existing and emerging inpainting algorithms and applications. The three key areas of impact are 1) Structure completion for image inpainting algorithms, 2) Fast and efficient object based video inpainting framework and 3) Perceptual evaluation of large area image inpainting algorithms. One of the main approach of existing image inpainting algorithms in completing the missing information is to follow a two stage process. A structure completion step, to complete the boundaries of regions in the hole area, followed by texture completion process using advanced texture synthesis methods. While the texture synthesis stage is important, it can be argued that structure completion aspect is a vital component in improving the perceptual image inpainting quality. To this end, we introduce a global structure completion algorithm for completion of missing boundaries using symmetry as the key feature. While existing methods for symmetry completion require a-priori information, our method takes a non-parametric approach by utilizing the invariant nature of curvature to complete missing boundaries. Turning our attention from image to video inpainting, we readily observe that existing video inpainting techniques have evolved as an extension of image inpainting techniques. As a result, they suffer from various shortcoming including, among others, inability to handle large missing spatio-temporal regions, significantly slow execution time making it impractical for interactive use and presence of temporal and spatial artifacts. To address these major challenges, we propose a fundamentally different method based on object based framework for improving the performance of video inpainting algorithms. We introduce a modular inpainting scheme in which we first segment the video into constituent objects by using acquired background models followed by inpainting of static background regions and dynamic foreground regions. For static background region inpainting, we use a simple background replacement and occasional image inpainting. To inpaint dynamic moving foreground regions, we introduce a novel sliding-window based dissimilarity measure in a dynamic programming framework. This technique can effectively inpaint large regions of occlusions, inpaint objects that are completely missing for several frames, change in size and pose and has minimal blurring and motion artifacts. Finally we direct our focus on experimental studies related to perceptual quality evaluation of large area image inpainting algorithms. The perceptual quality of large area inpainting technique is inherently a subjective process and yet no previous research has been carried out by taking the subjective nature of the Human Visual System (HVS). We perform subjective experiments using eye-tracking device involving 24 subjects to analyze the effect of inpainting on human gaze. We experimentally show that the presence of inpainting artifacts directly impacts the gaze of an unbiased observer and this in effect has a direct bearing on the subjective rating of the observer. Specifically, we show that the gaze energy in the hole regions of an inpainted image show marked deviations from normal behavior when the inpainting artifacts are readily apparent
    corecore