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Abstract: A variety of biological and pharmaceutical studies, such as for anti-cancer drugs, require
the quantification of cell responses over long periods of time. This is performed with time-lapse
video microscopy that gives a long sequence of frames. For this purpose, phase contrast imaging
is commonly used since it is minimally invasive. The cell responses of interest in this study are the
mitotic cell divisions. Their manual measurements are tedious, subjective, and restrictive. This study
introduces an automated method for these measurements. The method starts with preprocessing for
restoration and reconstruction of the phase contrast time-lapse sequences. The data are first restored
from intensity non-uniformities. Subsequently, the circular symmetry of the contour of the mitotic
cells in phase contrast images is used by applying a Circle Hough Transform (CHT) to reconstruct the
entire cells. The CHT is also enhanced with the ability to “vote” exclusively towards the center of
curvature. The CHT image sequence is then registered for misplacements between successive frames.
The sequence is subsequently processed to detect cell centroids in individual frames and use them
as starting points to form spatiotemporal trajectories of cells along the positive as well as along the
negative time directions, that is, anti-causally. The connectivities of different trajectories enhanced by
the symmetry of the trajectories of the daughter cells provide as topological by-products the events of
cell divisions together with the corresponding entries into mitoses as well as exits from cytokineses.
The experiments use several experimental video sequences from three different cell lines with many
cells undergoing mitoses and divisions. The quantitative validations of the results of the processing
demonstrate the high performance and efficiency of the method.

Keywords: phase contrast microscopy; cell motion; cell mitosis; cytokinesis; shape symmetry; mitosis
detection; cell division detection

1. Introduction

Many scientific biological applications as well as preclinical pharmaceutical studies for
drug development including for cancer treatment require the investigation of cell responses
to a variety of stimuli. Some of these responses are cell migration, cell proliferation, as well
as cell differentiation. This study, in particular, is about the detection of the spatiotemporal
events of mitoses and of the accompanying cell divisions and cytokineses. It requires
the observation of these events in samples for long periods of time to be able to draw
the necessary experimental conclusions. An effective way to achieve this is with phase
contrast microscopy.
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1.1. Background on Phase Contrast Imaging for Cell Division

Phase contrast microscopy is the most widely used modality for long term imaging
of cellular processes such as cell migration and cell division. Phase Contrast (PC) is a
transmitted light based technique in which phase shifts created by the cells are translated
into amplitude changes. Unlike fluorescence based methodologies, in which the cell is
illuminated with very high intensity light to excite the fluorophores, phase contrast relies
on the use of low intensity illumination. Thus, the serious issues of phototoxicity and
photodamage elicited under fluorescence excitation are eliminated making phase contrast
a far less invasive and gentle method for long term cellular imaging. In addition, phase
contrast does not require labeling of cells and thus any cell type can easily be imaged
while fluorescence based methodologies require the use of cells which are constitutively
expressing fluorescent proteins, an important limitation. The above coupled with the higher
cost of fluorescence microscopy systems as well as the higher cost of alternative transmitted
light modalities such as Differential Interference Contrast (DIC) have established phase
contrast the method of choice for live cell imaging.

The division of a cell starts with the division of the nucleus, namely, mitosis. It
completes with the cleavage (division) of the cytoplasm into two daughter cells, namely,
with cytokinesis. A cell rounds up starting with mitosis. In phase contrast imaging this
results in a halo effect of increased contrast at the cell boundary. The contrast of the halos
at the boundaries of the daughter cells remains high until cytokinesis completes.

The acquired phase contrast data sets of cell divisions are large and their manual
analysis is tedious, subjective, and restrictive. Thus, this study proposes an automated
method for their analysis. The method requires the reconstruction and restoration of phase
contrast images of cells and the processing of large data sets of time-lapse movies. The
processing is complicated by several factors. The first factor are the imaging artifacts. Other
complicating factors are the varying sizes of the cells in different phases of mitosis and
cytokinesis as well as the high cell density and the varying shapes of the surrounding cells.
A complicating factor is also the motions of the cells that even result in some cells entering
or leaving the field or plane of view.

1.2. Literature Review

An acquired image sequence is first preprocessed to remove imaging artifacts. This
involves noise removal and restoration for intensity non-uniformity [1]. It also involves
preprocessing for cell reconstruction [2–5]. This is followed by the analysis of the data to
detect mitoses and cell divisions. The cell division detection methods can be classified into
tracking-free, tracking-based, hybrid methods, as well as appearance-based with machine
learning and neural networks [6,7]. The tracking-free methods involve the segmentation
and detection of mitotic cells or of cell division events in individual frames. The tracking-
based ones may still involve the segmentation or detection of cells from different frames
of a sequence independently, for example from the first frame. However, tracking-based
methods also involve a subsequent tracking of the cells throughout a sequence by updating
the cells positions and detecting cellular cycle events.

The detection and even segmentation of cells in phase contrast microscopy has been
done using a variety of low level features. It has been performed with morphological
operations either directly [8–11] or in combination with texture features [12]. Other features
that have been used are the intensity histogram [13] and gradient features. More involved
features have been the Histogram of Oriented Gradients (HOG), GIST [14,15], and the
Scale-Invariant Feature Transform (SIFT) [16]. More global shape characterizations and
segmentation methods have been used. These include watersheds [17], symmetry [18],
template matching [19], and statistical decomposition [20,21]. The segmentation has been
performed with explicit modeling of the halo effect, which surrounds cells imaged with
phase contrast microscopy, with active contours [9,11]. In some cases segmentation is semi-
automatic [9,22]. Many of these techniques are tracking-free, independent of spatiotemporal
trajectories, and hence allow causal online tracking [13].
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The results of cell segmentation have been used as candidates to initialize automatic
tracking of the motion of the cells in an image sequence to detect mitoses. The detection
has been performed in a variety of ways. An approach estimates the cell division rate
globally and implicitly from an image sequence based on cell area coverage without
the explicit detection of individual cells or mitotic events [23,24]. Another method uses
mean shift directly on an image sequence for cell event detection or motion tracking
performed in forward or in reverse time direction and hence motion tracking may not be
causal [8]. Spatial segmentation has also been addressed with active contours propagated
in time to follow motion with linear prediction based on Kalman filtering [13,24–28].
Another representation for cell division has been with linear programming [22] or linear
programming combined with level sets [29]. Some tracking-based approaches detect the
lineage of each cell [30].

An alternative representation of tracking-based methods has been with global data
associations between frames in a sequence. These have been established based on features
of the detected or segmented cellular regions. Some methods in this context perform
cell detection with the circle Hough transform for isolated cells [31] or its extension, the
local circle Hough transform, as medial axis transform, to deal with cell detection in
dense samples [1]. The temporal associations have been followed to form spatiotemporal
trajectory segments that may then be linked together [1,32,33]. Such methods result in
implicit detections of mitoses as a topological by-product [1,33]. Some of these tracking-
based methods segment and follow cells using level sets-based active contours methods;
however, they are sensitive to dense samples and have only been able to detect isolated
dividing cells [25,31].

The distinction between the spatial and the temporal dimension is diminished using
global flow networks [30,34]. In an approach resembling stochastic signal processing, a
graph has been used for the detection of the sequence of the different phases of mitosis
and of cell division explicitly with Markov Models (MM) and Hidden Markov Models
(HMM) [35,36]. More elaborate Conditional Random Fields (CRFs) classifiers have also
been used for mitosis detection [37,38]. Further elaborations of these types of classifiers
that have been used are the Event Detection Conditional Random Field (EDCRF) that is
able to not only detect mitosis events, but also to detect the completion of mitosis and the
birth of the daughter cells [39]. Another elaboration has been the Multi-Grained Random
Fields (MGRF) [40]. In addition, Max-Margin Hidden Conditional Random Field (MM-
HCRF) with Max-Margin Semi-Markov Model (MM-SMM) classifiers have been used [41].
These classifiers require extensive training. They also involve at least a time-delay for the
processing of a sequence. Stochastic Markov models have also been used at nano scale [42].

The methods that have been described thus far are geometric, graphical, or statistical.
Beyond these methods that attempt to model the form of the cells and quantify the associ-
ated remaining error for the cellular events [31], many other techniques develop classifiers
directly from the data. Some are based on machine learning methods and others are based
on neural networks. In the context of machine learning, mitoses have been detected with
the AdaBoost ensemble classifier [28]. As an extension to graph-based methods, graph
neural networks have also been used [43]. Convolutional neural networks in 2D (2D CNN)
provide the detection of mitoses in individual frames; however, the method is likely to
lead to either repeated or missed mitoses detections depending on the temporal sampling
points [44]. Features from a 3D Convolutional Neural Network (3D CNN) have been
combined with a Support Vector Machine (SVM) classifier from the context of machine
learning to detect the presence of a single mitosis, however without the ability to tempo-
rally resolve it [45]. A neural architecture that combines Fully Convolutional Networks
(FCN) and 3D CNNs, namely, the F3D-CNN has also been developed [46]. The first step,
FCN, detects areas with candidate divisions. A sequence of these candidates is formed,
since a cell division can span multiple frames, and is then provided to a 3D CNN for cell
division detection.
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To enhance the temporal resolution of the detection, a 2D-U-Net [47] has been used
to extract candidates in space that are then stacked and filtered in time with a Bidirec-
tional Long Short-Term Memory (BLSTM) network to reject false positives [48]. To tempo-
rally resolve a mitosis in a spatiotemporal sequence, convolutional neural networks have
been combined with a Two-Stream Bidirectional Long Short-Term Memory (TS-BLSTM)
network [49–51]. In that method, candidate regions are first extracted and then processed
with the TS-BLSTM using appearance and motion information to jointly detect the presence
of a mitosis as well as to temporally localize it. In a similar vein, to improve temporal
mitosis resolution, patch sequence candidates are extracted that are then processed by
a convolutional neural network in space and subsequently with an LSTM (CNN-LSTM)
along time. The combined results are used to build a 3D probability heat map that is
processed to locate mitotic events. Its training is end-to-end and enables the joint detection
of mitotic event in space and time [52,53]. These methods based on neural networks can
only detect a single mitosis in a candidate spatiotemporal patch, which is a limitation par-
ticularly for dense samples. To address this limitation a method based on 3D CNN, namely,
V-Net [54], computes a mitosis likelihood throughout a spatiotemporal sequence even for
dense samples [55,56]. In another work, combining processing in space and time, a deep
reinforcement learning-based Progressive Sequence Saliency Discovery (PSSD) network is
used to train a Markov Decision Process (MDP) to discover salient frames and temporally
locate mitoses [57].

Machine learning-based methods and neural networks-based methods have several
characteristics in common. They both require extensive training that is computationally
intensive. Machine learning-based methods are sometimes preferred, because they are
often more efficient computationally [28]. Techniques belonging to both of these classes
have been shown to be effective for samples from only a single cell line. This has been
demonstrated particularly from the benchmark that has been developed for validation
that only consists of myoblast cells and involves extensive manual annotations [7]. The
neural networks detections are also sensitive to dense samples and do not provide explicit
spatiotemporal cell information for a complete mitotic event cycle that leads to a cell
division and the associated cytokinesis. This limits the applicability and sufficiency of
neural networks based detections for biological studies of this phenomenon.

1.3. Overview of the Proposed Method and Contributions

An early version of the work on this method has been extended, made more robust,
and validated in this study [1]. The proposed method starts with extensive preprocessing
for restoration and reconstruction. It involves the detection of candidate mitotic cells
or daughter cells centroids in individual frames that are tracked for cell displacements
between frames. This is followed by the detection of candidate cell divisions in individual
frames that are tested to potentially establish a cell division event. The detection and
tracking of mitosis and of the accompanying cell division is the eventual objective of the
proposed method.

The acquired video sequences are first preprocessed to correct for intensity non-
uniformity artifacts due to non-uniform illumination. Subsequently, the halo effect sur-
rounding mitotic cells is detected with Hessian-based image filtering. The principal compo-
nents of the pixelwise Hessians and their eccentricity are used to perform a circle Hough
transform that takes advantage of the circular symmetry of the cells and has several novel-
ties as well [58–60]. The main novelty is that it identifies the pixel-based direction towards
the center of curvature that is used to exclusively “vote” for the interior circle center using
the expected radius of the cells. This makes the transform robust to a dense cell clutter
in a sample. The emphasis of the circle Hough transform, that is also a novelty of the
method, is to be particularly sensitive to the detection of the daughter cells that remain
circular and with a high contrast for a short period of time during cytokinesis. The circle
Hough transform images are then corrected for possible spatial misregistrations due to
shifts among consecutive frames of a sequence.
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A direct processing of the circle Hough transform images provides several cell cen-
troids. The registered centroids are the starting points for cells trajectories extraction. This is
based on pixel associations between pixels locations of successive frames in a sequence. The
pixel associations are established and the cell trajectories are subsequently tracked in both
the positive as well as in the negative time direction. That is, the trajectory extraction is also
anti-causal. Candidates for cell division events are identified as a topological by-product of
joining an already extracted trajectory of a parent cell together with one of its daughter cell
with the trajectory corresponding to the second daughter cell. The trajectory of the second
daughter cell is detected later along the progression of the method. The segment of the new
trajectory joining the pre-existing one is extracted anti-causally. The candidate cell division
events are further tested to establish the division. The method takes advantage of the
symmetry between the daughter cells in cytokinesis and even of the symmetry of the cell
cycle. The implementation of the proposed method emphasizes efficiency. The validation
used fourteen time-lapse phase contrast movie sequences from real biological experiments
of HeLa, Kyoto, and Fibonectin cell lines undergoing mitoses over long periods of time. The
outputs of the method for these sequences were validated quantitatively that demonstrated
the high performance and robustness of the method.

2. Data and Methods

The phase contrast cellular image sequences are processed in a pipeline. The first
step is the restoration of the intensity uniformity along time. This is followed by intensity
uniformity restoration in space. The images are then transformed with an extension of the
circle Hough transform. Both the original and the circle Hough transform image sequences
are used in subsequent processing steps. These are the extraction of cell trajectories as well
as the detection of cell divisions. A summary of the preprocessing steps is given in Figure 1
and a summary of the steps for cell division detection is given in Figure 7.

Figure 1. A block diagram of the preprocessing steps of the method.

2.1. Data

Each image sequence corresponds to a different cell line. The sequences are from a total
of three different cell lines, namely, of HeLa, Kyoto, and Fibronectin cells (the HeLa cell line
was a kind gift from Dr. Katerina Strati (University of Cyprus), which acquired it from ATCC.
The HeLa Kyoto cell line was kindly gifted to our lab by Dr. Niovi Santama (University
of Cyprus). Regarding the Fibronectin null fibroblast cell line, it was a kind gift from Dr.
Reinhard Fässler (Max Planck Institute of Biochemistry)). The cell divisions for the third
type of sequences of Fibronectin cells in Table 1 were synchronized using the cell division
inhibitor RO3306. The imaging was performed using a Carl Zeiss Axiovert 200M inverted
microscope with a motorized stage, which was time sharing among several wells of different
samples. Plan-Apochromatic lenses of magnification 10× and 20× were used, which gave
total image magnification factors together with those of the ocular lens of 100× and 200×,
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respectively. The microscope was used for positive phase contrast microscopy. It was also
linked to a Carl Zeiss AxioCam HRc digital camera. The resolution of the CCD and hence
the size of the images is 1300× 1030pixels or approximately 1.3megapixels. Images were
collected at intervals of 3–5 min for several hours to provide a time-lapse movie sequence.

There are five sequences of the first cell line. They include two sequences that are
from different positions (Fields of View (FOVs)) within the same sample that were imaged
simultaneously during the experiment. Two more sequences were from different positions
within another sample and were imaged simultaneously during the experiment. The last
sequence was from a third sample. There are four sequences of the second cell line. They
include two different positions within the same sample that were imaged simultaneously
during the experiment. The other two sequences were acquired immediately afterwards
from the same sample and they again correspond to different positions that were imaged si-
multaneously during the experiment. There are five sequences of the third cell line. All five
of them show different positions within the same sample that were imaged simultaneously
during the experiment.

The acquisition resulted in a total of τ time-lapse frames, t = 0, . . . τ − 1. A phase-
contrast image sequence is represented by IPC(x, t) : (D, t)→ <, where spatial coordinates
are x ∈ D and D is the domain of the images. The description of the acquisitions is in
Table 1. The processing method also provides an option to decrease the spatial resolution
of the input data to improve the efficiency of subsequent analysis.

Table 1. Description of the acquisitions of the time-lapse sequences.

Property\Seq. Sequcences 1 Sequcences 2 Sequcences 3

Cell type HeLa Kyoto Fibronectin null fibroblast

Inhibitor
synchronized No No RO3306 10 mM

Number of
movies 5 4 5

Inter-frame
time 3 min 3 min 5 min

Average number
of frames 54 90 60

Average of
total time 2 h 42 min 4 h 30 min 5 h

Magnification
microscope

First three movies:
Lens 20× (200×)
Last two movies:
Lens 10× (100×)

Lens 10× (100×) Lens 10× (100×)

Image size
(pixels) 1300× 1030 1300× 1030 1300× 1030

2.2. Restoration of Intensity Uniformity along Time

The illumination of the lamp in phase contrast microscopy may vary along time. The
lamp may also flicker. As a result the brightness of the images not only varies smoothly
along time, but also some of the images may be much darker or brighter than the immedi-
ately adjacent ones in time both before and after.

It is necessary to restore the uniformity of the image intensities along time. This is
achieved by making the average intensity along time uniform. That is, the mean intensity
per frame is preserved along time. However, the total average sequence intensity is also
preserved. To this end, the average intensity of each frame as well as the average intensity
of the entire image sequence are calculated. The intensities of each pixel in a frame are
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multiplied by a correction factor, which is the ratio of the average intensity of the entire
image sequence over the average intensity of the corresponding image. That is,

IPC(x, t)← IPC(x, t)
〈IPC(x′, t′)〉x′ ,t′
〈IPC(x′, t)〉x′

(1)

where t = 0, . . . , τ − 1

gives the sequence with time normalized intensity.

2.3. Restoration of Intensity Uniformity in Space

The intensity of the illumination is assumed to be and to remain uniform in space
for all the frames of a sequence. However, in practice, the illumination in space across
the sample is non-uniform. Hence, the acquired images suffer from spatial intensity non-
uniformities. The non-uniformities are multiplicative and spatially smooth. Moreover, they
cannot be computed directly. This is because they interfere with the inherent variation of
the intensities primarily in the foreground of a sequence. In the analyzed sequences, the
foreground is varying due to the dynamics and proliferation of the many cells present in a
sample. In some frames, a spatial location may correspond to the background and in other
frames the same spatial location may correspond to a cell.

The first objective is to remove the variability of the foreground to isolate a preliminary
version of the background that is assumed constant along time. The background is consid-
ered equivalent to the intensity non-uniformity. The preliminary version of the background,
B(x), is estimated by projecting it along time. To this end the method considers a circle
around every spatial location x of radius approximately equal to that of a prespecified cell
radius ≈ rcell . This circle is the base of a cylinder covering all time in spatiotemporal space.
The median intensity of this spatiotemporal volume becomes the value of B(x).

The preliminary estimate of the background B(x) from the projection may still contain
cells or their remnants from the foreground, particularly in regions occupied by stationary
cells. Hence, B(x) is further processed to estimate a more accurate version of the back-
ground as its inverse that is the spatial intensity non-uniformity correction field. This is
the objective of the remaining steps of the restoration performed with an adaptation of a
Bayesian non-parametric method [61–64]. The histogram of the projection image B(x) is
computed. The effect of the spatial intensity non-uniformity on the histogram is decon-
volved to obtain a gain factor for each intensity in B(x). The gain factors are back-projected
in space to the preliminary background image B(x) to compute a spatial gain field. The
gain field is spatially filtered with a Gaussian filter to give an incremental smooth correction
image. This then multiplies a cumulative correction field V(x), initialized to unity. The
pixelwise multiplication of the correction field V(x) with each frame in the sequence gives
the restored image sequence,

IPC(x, t)← IPC(x, t)V(x)

where t = 0, . . . τ − 1. (2)

The cumulative restoration field V(x) is also scaled to ensure that it has a unit mean and
that the intensity of the 95% of the cumulative histogram of the spatiotemporal volume
is preserved.

The spatial intensity restoration is iterative. The criterion to terminate the restoration
uses the fact that the correction field has approximately unit mean and terminates the
iterations when the standard deviation of the ratio between the correction fields V(x)
of two consecutive iterations is very low, ≈0.3%. The restoration is also terminated at
a maximum allowed number of iterations. This correction is the third step in the block
diagram of the preprocessing in Figure 1. An overview of the steps of the spatial intensity
restoration method is in Figure 2. An example of a frame from the intensity restoration of a
sequence is shown in Figure 3.
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Figure 2. A block diagram of the steps of the method for spatial intensity uniformity restoration.

(a) The first frame of
the sequence, IPC(x, 0).

(b) Initial preliminary projection of the
non-uniformity of the sequence, B0(x).

(c) Final and cumulative smooth
restoration field, V(x).

(d) The restoration of the first
frame in (a), V(x)IPC(x, 0).

Figure 3. Example restoration of a sequence of the third group in Table 1. In (a) is a frame from the
original sequence. The projection of the non-uniformity along time for the first iteration is in (b).
The cumulative restoration field of the entire sequence is in (c). In (d) is the intensity restoration of
the frame in (a). Despite the non-uniformity of the original frame in (a), the restored frame in (d) is
intensity uniform. All images in the figure have an enhanced dynamic range to better demonstrate
the intensity non-uniformity effect and its correct removal.
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2.4. Extended Circle Hough Transform of a Phase Contrast Sequence

The shape of the cells during mitosis and cytokinesis becomes rounded with a well
formed boundary. The imaging of these cells with phase contrast microscopy creates an
approximately circularly symmetric halo effect of high contrast around them. The pixels
along the contour of the halo effect are detected with pixelwise Hessian-based filtering.
This is a convolution of the images with second order Gaussian derivative filters for every
entry of the pixelwise Hessian matrices. The principal components of the Hessian matrix
of a pixel along a cell boundary gives an eigenvector, en, normal to the boundary at that
pixel with a corresponding eigenvalue of large magnitude, λn. The other eigenvector, et, is
tangent to the boundary at that pixel with corresponding eigenvalue of a lower magnitude,
λt. The largest absolute eigenvalue corresponds to the direction normal to the boundary
and satisfies |λn(x)| > |λt(x)|.

In the phase contrast images in this study, the halo effect immediately surrounding the
cells is bright as it is shown in the examples in Figure 5a,b. The bright cross-section of the
contour along en and considering the intensity as relief above the image plane is concave
up and so it corresponds to an eigenvalue, λn, that is negative [65]. That is, along the cell
contours the eigenvalue of largest magnitude is negative. Pixels where the eigenvalue of
largest magnitude is positive are considered noisy and are pruned to zero. A summary of
Hessian filtering over the entire sequence provides,

IH(x, t) =
{
−λn(x) if λn(x) < 0, at t

0 otherwise.
(3)

The entries of these images are used as modulating weights to extend the basic form of the
circle Hough transform.

To further improve the efficiency of the circle Hough transform the set of pixels
that participates in the transform is pruned even further. This is achieved using the
statistics of the histogram of the sequence of the modulating weight images, IH(x, t), given
in Equation (3). This histogram is unimodal with the mode corresponding to the dark
background and the dark inner cytoplasm regions. The bright halo effects surrounding
the mitotic cells correspond to the sidelobe of the higher intensity range. That sidelobe is
detected as the intensity range above the intensity corresponding to the mode plus two
times the full width half maximum of that mode. The pixels with intensities below that
range are pruned and are not considered for the transform. This pruning only causes a
minimal loss of accuracy to the transform and may even improve its accuracy by ignoring
the contributions from noisy pixels.

The basic circle Hough transform [66] is extended to modulate the contribution of
every pixel to the transform by a weight that is spatially localized with a two-dimensional
Gaussian distribution, G(x). The covariance of the Gaussian is aligned with the two
eigenvectors of the Hessian. The direction along en, across the contour for the centroid of
the cell is assigned a standard deviation σn equal to σn = 1.5rcell pixels. The direction along
et, tangent to the boundary smooths the transform and is assigned a standard deviation σt
that is small and equal to a small fraction of the cell radius, but it still has a finite value,
σt = MAX(0.3rcell , 3)pixels.

The transform considers the Gaussians only locally around their mean points relative
to the radius parameter of the cells, rcell . Thus, it contributes to only a subset of the image
domain. It truncates the Gaussian normal to the boundary Gen to 1.75σn and the Gaussian
tangent to the boundary Get to 1.75σt. This not only expedites the transform, but also makes
it more robust with respect to dense cells samples.

The proposed transform has two stages. The first stage for Ic
Hg in Equation (5) trans-

forms both along the positive as well as along the negative directions of the normal axes
for the pixels assumed to be lying along cell contours. It is modulated with a Gaussian
centered on the contour points at x0. The Hough transform of the image is:
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Ic
Hg(x, t) = ∑

x0∈D

(rcell ,rcell/4)

∑
(i,j)=(−rcell ,−rcell/4)

IH(x0, t)×

×Gt(x0 + en ∗ i|x0, σt)× (4)

×Gn(x0 + et ∗ j|x0, σn),

where x = x0 + en ∗ i + et ∗ j,

Gt is the Gaussian along et and Gn is the Gaussian along en. In this resulting transform space,
close to the contours points of the cells there is a higher density value towards the interiors
rather than towards the exteriors of the cells. Sampling this transform space normal and
close to the contours points identifies the direction from the contour points corresponding
to higher transform densities. In the transform, “voting” is along lines normal to the
contours. Hence, the higher densities are towards the centers of curvature [67]. The centers
of curvature for the circular cells are in the directions towards the interiors of the cells. That
is, the first stage provides the directions from the contour points towards the centers of
curvature that are the directions towards the interiors of the cells.

The second stage that gives the final extended transform, IHg, in Equation (6), is only
towards the interiors of the cells. It involves exclusively the directions from the contour
points towards the centers of curvature. Hence, it only uses the positive parts of the normal
axes. The contributions along these semi-axes are also weighted with Gaussians centered
at the estimated centers of the cells, which are at a positive distance rcell from the points of
the contours. The extended circle Hough transform of an image is given by:

IHg(x, t) = ∑
x0∈D

(rcell ,rcell/4)

∑
(i,j)=(0,0)

IH(x0, t)×

×Gt(x0 + en ∗ i|x0 + en ∗ rcell , σt)× (5)

×Gn(x0 + et ∗ j|x0, σn),

where x = x0 + en ∗ i + et ∗ j,

Gt is the Gaussian along et and Gn is the Gaussian along en. The weighting Gaussian, Gn, is
shown schematically in the diagram in Figure 4.

Figure 4. A Gaussian is aligned at x0 with the eigenvector direction corresponding to the largest
Hessian eigenvalue magnitude. Its mean is the estimated center location of the cell, xc, and its
standard deviation is larger than the cell radius, σnormal = 1.5rcell . The Gaussian contributes to the
circle Hough transform.

The extended circle Hough transform is the fourth step in the block diagram of the
preprocessing steps in Figure 1. Two example images that contain many rounded cells in
mitosis and cytokinesis with a high contrast and the extended circle Hough transforms
of these images are shown in Figure 5. It is recommended that the images in Figure 5 be
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viewed using the electronic/digital magnification functionality available. The extensions
make the circle Hough transform images very intense and the cell centroids in these
transform images to have a much higher contrast. After the cell division their contrast
relaxes back to low levels.

Example 1 Example 2

(a) Intensity corrected frame, IPC. (b) Intensity corrected frame, IPC.

(c) Image from largest
Hessian eigenvalue, IH .

(d) Image from largest
Hessian eigenvalue, IH .

(e) Extended circle Hough
transform, IHg.

(f) Extended circle Hough
transform, IHg.

Figure 5. Two examples of phase contrast images transformed using the pixelwise Hessian-based
filtering to the extended circle Hough transform images. The first example is from the second group
of sequences in Table 1 and is shown in (a,c,e). The second example is from the third group of
sequences in Table 1 and is shown in (b,d,f). In the first row, (a,b) are the original phase contrast
images. In the second row (c,d) are the Hessian-based filtered images, IH . In the last row, (e,f) are the
images transformed with the extension of the circle Hough transform, IHg. It is recommended that
the images be viewed magnified.
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2.5. Registration for Translation Transformations

The time-lapse microscopy movies analyzed are acquired over long periods of time.
During that time, there can be a mechanical shift of the sample and the microscope can
be interleaving among several samples. Both of these result in a drift in the relative
location between the sample and the camera that may be accumulating over time. In turn,
this causes cumulative spatial misplacements between the frames of a sequence that are
mainly translations.

This spatial artifact is addressed by registering for global image translations between
consecutive frames of a sequence. The registration is based on the extended circle Hough
transform images that contain a reconstructed and more explicit information about the
sample with the cells being convex as opposed to the phase contrast images where the
cytoplasm has the same intensity as that of the background. The translation of the zeroth
time point frame, IHg(x, 0), is the identity f0 ≡ I ≡ (0, 0). The registration computes the
relative translation ft−1←t between two consecutive frames. The reference frame is that of
the previous time point, IHg(·, t− 1), and the moving frame is the next one, IHg(·, t). The
objective is to spatially normalize the moving frame to the reference one. The sequence of
registrations starts from the first frame and proceeds to the last frame. This gives the total
frame registrations ft ≡ (∆xt, ∆yt), t = 1, . . . , τ− 1. Several possible in-plane translations
are considered with maximum extend 2h. The candidate translations are examined using a
regular spatial subsampling factor δh to improve computational efficiency. The optimal
translation is selected.

The optimal translation is the one with minimal cost over the entire image. The basis
of the cost of a candidate translation is the absolute value of the difference between a
translated frame and the previous one that is the reference. This is the L1-norm of the
difference. The L1-norm is further normalized with respect to the size of the common
domain between the translated frame and the reference one. The trial translations f∗ are
evaluated with exhaustive search to give the optimal one as:

ft−1←t = argmin f∗
‖IHg( ft−1x, t− 1)− IHg( f∗x, t)‖1

‖ ft−1D ∩ f∗D‖1
, (6)

where f∗ ∈ ([−2h, 2h], [−2h, 2h]).

The intersection of the domains of all the registered frames along time is the valid domain
of the image sequence. That is, the valid domain is D f = D ∩ ( f1D) . . . ∩ ( fτ−1D). The
zeroth frame is not moved. The common domain of the sequence after registration with D f
will be a subset of the valid domain of the zeroth image I0, D f ⊆ D.

The registration along a sequence starting from the first frame and finishing at the last
one is repeated several times. This enables corrections for misregistrations that happen
early in time to propagate to later time points. The repetitions of the registrations of the
sequence follow a multiresolution approach. The search starts with a large displacement for
the coarse resolution and completes with a small, local, displacement for the fine resolution.
There are three levels of resolution and the extent of the maximum shift is 2h for all of them.
The initial value is h = 8pixels and the sampling is at δh. Both the extend of the maximum
candidate shifts, 2h, and the number of sampling points for the displacement are refined
to smaller values with the repetitions of the registration of the sequence. The decrease is
linear and gradual to smaller values for finer resolutions with consecutive repetitions of
the sequence registration. The sampling between candidate displacements is kept at δh for
all resolutions.

The iterations over the spatiotemporal volume, t = 1, . . . , τ − 1, continue for a certain
resolution up to the iteration at which the percentage of non-zero to zero optimal transla-
tions between frames over the entire sequence is very low, which implies that it is close to
the optimal translations for a sequence or up to a maximum number of iterations, imax = 9,
for a specific resolution level. It then proceeds to the next finer resolution level until the
finest resolution.
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The transformations ft−1←t, t = 1, . . . , τ − 1, computed with Equation (7), are applied
to the corresponding frames of the phase contrast sequence IPC, the Hessian filtered
sequence IH , and the circle Hough transform sequence IHg for the purposes of subsequent

processing steps. The phase contrast image sequence becomes I f
PC(x, t) = IPC( ftx, t), where

ftx = (x+∆xt, y+∆yt). The Hessian filtered image sequence becomes I f
H(x, t) = IH( ftx, t).

Finally, the circle Hough transform sequence becomes I f
Hg(x, t) = IHg( ftx, t). All three of

them are defined in space only over the valid domain D f . The registration is the last step
of the preprocessing as it is shown in the block diagram in Figure 1. A schematic diagram
of the sequence registration is shown in Figure 6.

Figure 6. A schematic diagram example of the registration for translations (∆x, ∆y) between suc-
cessive frames in an image sequence. Only the overlap domain in white is considered for the
entire sequence.

2.6. Extraction of Cell Centroids

The intensity restored and circle Hough transform registered sequences, as shown in
Figure 7, are used for the extraction of the cell trajectories and the identification of the cell
divisions. The extended circle Hough transform images provide the conditions to detect
the cell centroids. The first condition is that a cell centroid be a local maximum within a
circle of radius rcell in a circle Hough transform image. This condition:

(x, t)cent = {(x, t) : I f
Hg(x, t) > I f

Hg(y, t) ∀‖y− x‖ < rcell} (7)

ensures a local maximum. The second condition uses the cumulative histogram of the
3D spatiotemporal volume of the framewise circle Hough transform sequence, HHg(·).
It requires that a cell centroid be of value that corresponds to at least 98% of HHg(·).
The condition

(x, t)cent = {(x, t) : Hm(I f
Hg(x, t)) > 98%} (8)

ensures that the candidate pixel has a value that is sufficiently high. Both of the two
conditions above are necessary for a point to be classified as a cell centroid. These conditions
in Equations (7) and (8) are drawn in Figure 8.

A spatiotemporal volume is formed I f
Centroid(x, t) with non-zero values only at detected

cell centroid pixels with actual values equal to those of the circle Hough transform images
at those pixels:

I f
Cent(x, t) =

{
I f
Hg(x, t) if (x, t) = (x, t)cent,

0 otherwise.
(9)
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This provides both the centroid pixels and their circle Hough transform values. The
detection of cell centroids and their values is the second step of the processing pipeline in
the block diagram shown in Figure 7.

Figure 7. A block diagram of the steps of the method for cell division detection.

Figure 8. Conditions for cell centroid detection in an extended circle Hough transform image.

2.7. Inter-Frame Associations between Pixels

The detected cell centroids are the starting points for the two trajectory segments. One
proceeds in positive time direction and another in negative time direction. These establish
the location of a cell centroid in previous and in subsequent time points, respectively. The
tracking is performed not only along progressing time, but also anti-causally in the negative
time direction. A cell division is detected as a join of two different trajectories at least one
of which is almost always extracted in the negative time direction.

A cell motion trajectory is based on associations between pixels of successive frames.
They are established by directing inter-frame pixel associations locally towards maxima of
the circle Hough transform of the reference frame. Thus, the associations can be many to
one and do form a function. Along the negative time direction the reference frame is the
previous one and the association function is S−. In the positive time direction the reference
frame is the next frame and the association function is S+.

An association of S− from a pixel at time t, (x, t), in reverse time direction to a pixel
at time t− 1, t → t− 1, is established with a local search in frame t− 1. The search over
candidate displacements ∆x is within a window of radius ‖∆x‖ ≤ 2

3 rcell in the frame of the
previous time point (x, t− 1). The maximum with penalized displacement |∆x| establishes
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an association from pixel (x, t) in the frame at time t to pixel (x′, t− 1). The utility function
for the association to pixel (x′, t− 1) is:

u(x, ∆x, t− 1) = I f
Hg(x + ∆x, t− 1)

(
1− 0.25

‖∆x‖
rcell

)
, (10)

where ‖∆x‖ ≤ rcell. The association is to the pixel which maximizes the utility in Equation (10)
at time t− 1,

(x′, t− 1) = argmax‖∆x‖≤rcell
u(x, ∆x, t− 1), (11)

and location x′. This maximization establishes x′ to be the position of the association
at the previous time point t − 1. That is, the selection is the pixel of maximum circle
Hough transform intensity with penalized displacement. This search, within ‖∆x‖ ≤
2
3 rcell , is repeated three times. It creates a search path in t− 1 that consists of a sequence
of three local maxima and stops at the third maximum. The repetition contributes to
representing not only the motion of a cell, but also possible remnants of misregistration
between successive frames.

A reverse time association from t → t− 1 is an entry in the function S−. The asso-
ciations are computed in a lazy fashion for computational efficiency. They are computed
only if starting from a certain detected or tracked cell centroid it is necessary to compute an
association to continue with the extraction of a cell trajectory.

The same process as in Equations (10) and (11) is used to compute causal associations
S+ from a pixel at time t, (x, t), in forward time direction to a pixel at time t + 1, t →
t + 1. Similarly to Equations (10) and (11), they are established by maximizing utility
u(x, ∆x, t + 1) to give (x′, t + 1) as the association at the next time point t + 1. These inter-
frame pixel association of S+ are also many to one and form a function. Thus, considering
both functions S− and S+ the pixel associations are many to many. They are mainly used
to track cell centroids. The inter-frame pixel associations is the third step of the motion
tracking part of the method summarized in Figure 7.

2.8. Extraction of Cell Trajectories and Detection of Cell Divisions

The temporal associations between pixels of adjacent time points are used to extract
cell trajectories. The trajectories also establish cell centroids in frames where they might
have been originally missed. Furthermore, joining two of these trajectories, extracted
sequentially in the method, at a pixel in space and time gives a cell division candidate.
That is, the joining of two trajectories identifies a candidate for cell division as a topological
by-product. This happens when some of the extracted trajectories are of daughter cells
during cytokineses. The cell division candidate, if verified, is actually immediately before
the cytoplasm division to two daughter cells in cytokinesis and during the telophase of the
mitotic cycle of the cell.

The extraction of the cell trajectories uses the inter-frame pixel associations from S−
and S+, the circle Hough transform images I f

Hg, as well as the cell centroid images I f
Cent.

The starting point, (x, t)start, for the extraction of a cell trajectory is the pixel of maximum
intensity in the sequence of initially extracted centroids,

(x, t)start = max(x,t) I f
Cent(x, t). (12)

This point, (x, t)start, identified as starting point for a trajectory, has to also be at a distance
of at least 3rcell from all previously extracted trajectories.

The trajectory is extracted by progressing both reversely in time with S− as well
as forwards in time with S+. This continues as long as the intensity of the trajectory at
the circle Hough transform image I f

Hg(x, t), from Equation (6) and registered according
to Equation (7), is greater that 20% of the reference Hough intensity that corresponds to
the 95% of the cumulative histogram of the spatiotemporal volume of the circle Hough
transform, 0.2H−1

Hg(0.95).
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In tracking reversely in time with S−, anti-causally, when the newly extracted tra-
jectory approaches a previously extracted trajectory within a distance less than 1.5rcell , it
undergoes a test to examine if this corresponds to a trajectory joining event due to reverse
cell division. That is, whether the two trajectories in that time point are within a single
mitotic cell at telophase immediately before a cell division, in which case they are merged.
The tests involve the Hessian filtered image, I f

H , as well as the circle Hough transform

image, I f
Hg, intensities of the point in the pre-existing trajectory and the point in the newly

tracked one at the same time t. The two points are considered as poles interconnected by
a line segment. The first condition involves the Hessian filtered values, I f

H , and requires
that any point along the line segment be less than that of the average of the two poles. The
second condition involves the circle Hough transform values, I f

Hg, and requires that any
point along the line segment be greater than that of the average of the two poles.

The third and last condition is topological for the trajectories and involves the extend
of the pre-existing trajectory. It requires that the pre-existing trajectory exists for at least
one time point both before and one time point after the time point for which the two points
are investigated for merging due to cell division. This condition ensures that the newly
extracted trajectory segment is not a simple continuation of the pre-existing trajectory.

The cell centroids in I f
Cent from Equation (9) in the region around a newly extracted

trajectory are invalidated within a distance of 3rcell so that no other trajectory is initiated
from that region. The centroid pixel of maximum intensity from the remaining valid
spatiotemporal centroid volume I f

Cent is identified. If it is non-zero, this centroid becomes
the starting point for the extraction of a new trajectory. The sequential extraction of
trajectories continues until the entire of I f

Cent volume becomes zero.
This is the last step of the method, namely, the step of cell trajectory extraction and

cell division identification and is summarized in Figure 7. Figure 9 shows an example
schematic of trajectories both in forward and in reverse time directions as well as a detected
cell division. A flow chart of the method for the sequential extraction of cell trajectories
and cell division detections is shown in Figure 10.

Figure 9. Schematic of a cell division detected from the topological connectivity of two trajectories
one of which corresponds to the trajectory segment of one of the two daughter cells that is extracted
in the negative time direction.
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Figure 10. A flow chart for the sequential extraction of cell trajectories and the detection of cell
divisions. A cell centroid is the starting point for a cell trajectory. The extraction proceeds in both
positive and negative time directions using inter-frame pixel associations. The termination of the
extraction depends on the circle Hough transform value of a tracked centroid in a frame. The
extraction also terminates if it approaches close enough or meets an already extracted trajectory.
In the case of approaching or meeting an already extracted trajectory in negative time direction,
anti-causally, a test examines if it corresponds to a cell division.

3. Experiments

The method has been applied and validated with multiple image sequences of several
cell lines that were acquired over many hours and hence have a large temporal size as
described in Table 1. These sequences are from real biological experiments. The analysis
of the data has multiple processing steps that normally have considerable computational
requirements. To maintain a reasonable running time for the method, despite the extensive
processing required, the implementation of the various steps of the method has been made
efficient. The method is implemented in the C++ programming language. The spatial
resolution of the imaging sequence used is 60% over each spatial axis or 36% over the
whole spatiotemporal volume. The experiments were performed on a laptop with an Intel
Core i7 processor of 2.60 GHz and 16.0 GB of RAM.

3.1. Validation Measures for Cell Division Detection

The objective of the method is to detect mitoses and accompanying cell divisions.
These events are considered for the evaluation as long as they happen in the spatiotemporal
interval imaged to obtain a sequence. In particular, a cell division is considered if the
image sequence contains at least the late phases of mitosis, namely, anaphase and telophase,
as well as the early part of cytokinesis including the cleavage of the cytoplasm into two
daughter cells. The reference quantities considered for the performance evaluation of the
cell division detection method for a sequence are the True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN) detections. The number of TN cells is the
number of cells in the spatiotemporal sequence not undergoing mitosis.

The performance of the system is quantified in terms of the Precision and Recall, the
Sensitivity and Speci f icity, as well as the F1–score. The recall is equivalent to the sensitivity.
The Precision is the fraction of the detected cell divisions that are actually cell divisions and
is given by:

Precision =
TP

TP + FP
. (13)

The Recall is the fraction of the cell divisions that are actually detected out of all the cell
divisions. This is equivalent to the Sensitivity and are given by:
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Recall ≡ Sensitivity =
TP

TP + FN
. (14)

The Speci f icity is the proportion of the cells not undergoing cell division that are not
detected and is given by:

Speci f icity =
TN

TN + FP
. (15)

The F1–score is the harmonic mean of the Precision and the Recall, that is, it is their
average rate:

F1–score =
2(Precision× Recall)

Precision + Recall
. (16)

These quantities are computed for every sequence independently.

3.2. Experimental Performance of the Image Sequences

The data for the validation of the method were fourteen spatiotemporal sequences
corresponding to three different cell lines. Each cell line belongs to a different group.
The description of the first, second, and third groups are in the three columns of Table 1,
respectively. The output of the method for a microscopy sequence is a new movie with
background the original movie with preprocessing and foreground annotations for the
automatically tracked cells that undergo cell division for the duration of the sequence. The
annotation starts from mitosis during metaphase, anaphase, or telophase. The annotations
continue for the tracking of the daughter cells during cytokinesis immediately following the
division of the cytoplasm. A parent during mitosis and prior to cell division is annotated
with a mark of a specific shape, color, and length. The same mark annotates the two
resulting daughter cells. The actual point in space and time before the parent cell divides is
indicated with a thick cross of the same color as that of the cell mark.

Some examples of representative frames from the output sequences from each of the
first, second, and third groups of sequences are shown in Figures 11–13. These frames show
multiple cells in mitosis as well as in cytokinesis both before and after the division of the
cytoplasm. It is recommended that the images in Figures 11–13 be viewed in their original
color and using the electronic/digital magnification functionality available. The sequence
in Figure 11 is of the cell line of the first group of Table 1. It lasted for 3 h 15 min and gave
65 frames. The sequence in Figure 12 is of the cell line of the second group of Table 1. It
lasted for 5 h and gave 100 frames. The sequence in Figure 13 is of the cell line of the third
group of Table 1. It lasted for 5 h and gave 60 frames.

The results of the method for the fourteen sequences were evaluated by a scientist, MD,
with specialty in radiology as well as a PhD in neuroscience and expertise in microscopy
and biomedical quantitative image analysis. The evaluator annotated and counted the
TPs, FPs, and FNs for every movie. These provided the Precision, and the Recall, which is
equivalent to the Sensitivity, as well as the F1–score. The results of the evaluation of the
method with these sequences are in Table 2. The evaluations for the sequences described in
the columns of Table 1 are given in the corresponding groups of rows of Table 2. The results
show that the overall performance of the method is very good. This is shown particularly
by the Precision as well as the F1–score.

The cell divisions that happen before the beginning of the acquisition of the sequence
are not considered even if apparent sibling cells are adjacent in the movies. Similarly,
mitotic cells are ignored if the cleavage of their cytoplasms does not occur before the end
of the sequence. Some FN were identified in the outer field of the movies close to the
borders of the images. The cells close to the boundaries of the images may be blurry due to
artifacts such as spherical aberrations of the lenses present in the outer field as well as due
to artifacts of the outer field specific to phase contrast imaging. The method may also not
detect cell divisions that occur partly beyond the borders of the frames of the registered
sequence, in which case the FNs are ignored. A limited number of FPs were identified
from planes originating from below or above the one imaged due to cells moving in and
out of the imaged plane.
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In many sequences, particularly those with dense samples, the contrast of many of the
cells not undergoing mitosis is low and the cells may even be unnoticeable. In these cases it
is also difficult to discriminate between adjacent cells. Thus, the presence of TN was only
assessed qualitatively. The number of TN cells was still found to be significantly higher
than the number of FP cells, that is, TN >> FP. Thus, the Speci f icity was also very high.

The average time to process the sequences in the first group in Table 1 was ≈16 min,
the average time to process the sequences of the second group in Table 1 was ≈26 min,
and the average time to process the sequences of the third group in the same Table was
≈17 min. This short running time for all the steps of preprocessing and processing of the
whole method demonstrates its efficient implementation.

The 50th frame of the sequence.

Figure 11. Cells detected as dividing from an image sequence of the first group of Table 1. Adjacent
cells with annotations of the same color and shape are siblings. It is recommended that the image be
viewed in color and magnified.

The 56th frame of the sequence.

Figure 12. Cells detected as dividing from an image sequence of the second group of Table 1. Adjacent
cells with annotations of the same color and shape are siblings. It is recommended that the image be
viewed in color and magnified.
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The ninth frame of the sequence.

Figure 13. Cells detected as dividing from an image sequence of the third group of Table 1. Adjacent
cells with annotations of the same color and shape are siblings. It is recommended that the image be
viewed in color and magnified.

Table 2. Evaluation of the performance of the detections of cell divisions.

Seq.\Meas. TP FP FN Precision
Recall ≡

≡ Sensitivity F1–Score

Sequences 1

Sequence 1 8 0 2 1 0.8 0.89

Sequence 2 8 0 0 1 1 1

Sequence 3 9 0 2 1 0.82 0.9

Sequence 4 7 0 2 1 0.78 0.88

Sequence 5 18 0 2 1 0.9 0.95

Sequences 2

Sequence 1 7 0 0 1 1 1

Sequence 2 7 0 1 1 0.86 0.93

Sequence 3 15 0 0 1 1 1

Sequence 4 12 0 1 1 0.92 0.96

Sequences 3

Sequence 1 19 0 1 1 0.95 0.97

Sequence 2 23 0 1 1 0.96 0.98

Sequence 3 17 0 5 1 0.77 0.87

Sequence 4 11 0 3 1 0.79 0.88

Sequence 5 18 3 3 0.86 0.86 0.86

4. Discussion and Future Work

This study is in the context of interpreting dynamic cellular data from phase contrast
microscopy to follow and quantify cell motility and proliferation. In particular, the objec-
tives of the developed method have been to detect mitoses associated with cell divisions as
spatiotemporal events from phase contrast cellular video data. The method takes advantage
of the circular symmetry of mitotic cells, the symmetry of cell division and cytokinesis, as
well as the symmetry of the entire cell cycle.
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4.1. Summary

The method starts with a necessary preprocessing of the image sequences. Individual
frames in a time sequence can be subject to different lighting due to flickering of the
microscopy lamp. Thus, some frames can be brighter or darker with jumps in contrast. The
method accounts for this with normalization of the mean intensities of the frames of the
sequences along time. This is followed by restoration for the spatial distribution of the
intensity non-uniformity of the microscope lamp that is assumed constant along time in
a sequence. The intensity restored images are processed with a circle Hough transform
enhanced with the ability to “vote” only towards the centers of curvature. That is, “vote”
only around the cell centroid in the cell interior. This enhancement improves the robustness
of the transform for a dense cell sample and the discriminability of the cell centroids.

A sufficient number of cell centroids of parents as well as necessarily of daughter
cells are then identified and serve as starting points for the extraction of cell trajectories.
Their extraction proceeds both towards the positive as well as towards the negative time
directions. Therefore, the extraction of a cell trajectory is non-causal. The extraction of
the trajectory of a daughter cell in negative time direction enables the identification of a
candidate cell division as being a connection to an already extracted trajectory consisting
of the motion of its sibling daughter cell together with that of their parent cell. That
is, candidate cell divisions are detected as a by-product of topological connectivity of
trajectories at least one of which is that of a daughter cell extracted in the negative time
direction. Thus, the cell division detection is anti-causal. The candidate cell divisions are
also verified by testing within the corresponding frames that they indeed belong to the
same cell. In cancer cell samples, with abnormalities in the cell cycle, the cell divisions can
lead to more than two daughter cells. Such abnormal cell divisions are also detected by
the proposed method. This is made possible by the more than two to one inter-frame pixel
associations that are possible since they preserve the function property of the associations.
These associations are estimated and followed on a per need basis for trajectory extraction.
The method can detect cell trajectories around the cell division time point as well as a
limited cell ancestry from a grandparent.

A parameter of the method for a sequence is the expected radius of the cells, rcell . The
value of the radius is set by considering the approximate size of the cells in the sample as
well as of the actual image magnifications both optical and digital. The prior knowledge
of the value of rcell tunes the circle Hough transform to improve its discriminability for
the daughter cells as well as its efficiency. The method has been found robust to the value
of rcell . The circle Hough transform is robust to cells which have a convex boundary as
well. The value of rcell is also used to restrict the motion displacement estimates, since
mitotic and dividing cells have limited mobility. The second parameter, set to 98% in
Equation (8) for the circle Hough transform image sequence, affects the cut-off value for
consideration of the cell centroids. The implementation of all of the preprocessing and
processing steps of the method make efficiency considerations. The sequences are spatially
subsampled, the pixels used for the circle Hough transform are pruned, the optimization
for the registration uses spatial subsampling, and the inter-pixel associations are computed
in a lazy fashion. The experiments used fourteen sequences of three different cell lines. The
sequences were processed with the developed cell division detection method. The outputs
were validated quantitatively in terms of Precision, Recall (Sensitivity), F1–score and even
in terms of Speci f icity. The validation demonstrated the high performance of the method.

4.2. Discussion

A cell that rounds up and increases its contrast may be mitotic, but may fail to undergo
cytokinesis. However, not all cells that round up and increase their contrast are mitotic.
Thus the method requires that a detected rounded cell also undergoes cytokinesis that leads
to two detected daughter cells to classify the event as a mitotic cell division. This may miss
some divisions, that is, it may create some FN. However, this is much less than the FP that
would result without the requirement for the presence of two daughter cells.
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The method does not consider adjacent cells as being in cytokineses even if associated
cell divisions appear to have happened immediately before the beginning of the sequence.
It also does not consider mitotic cells even if they divide immediately after the end of the
sequence. Cell divisions close to the image boundary may not be detected and lead to misses
of the method for several reasons. Some cells, particularly close to the image boundaries,
are blurry due to lens distortions and phase contrast imaging limitations. The boundary
effects also limit Hessian filtering. Finally, due to compensation for misregistration shifts,
the domain of some of the frames close to the image boundaries may not be part of the
common domain of the sequence. In the latter two cases, the misses are ignored.

The cell division detection methods can be classified into tracking-based approaches,
tracking-free approaches, and appearance-based approaches [6,31]. There exist trade-offs
between these different types of approaches. Tracking-based methods can better represent
the progression of mitoses and cell divisions over time. However, the performance of
tracking-based methods can be lower for dense samples or in the presence of excessive
cellular motion. They are also non-causal and involve delays in sequence processing. To
address these issues, tracking-free approaches are also used. Tracking-free approaches
suffer from limitations as well, specifically since mitoses and cell divisions are a temporal
sequence of events that cannot be completely analyzed in each frame in time independently.
On the other hand, appearance-based approaches with machine learning and neural net-
works, can detect cell divisions events, even spatiotemporally, robustly to their variations
in appearance. However, appearance-based methods have several limitations. They require
extensive training, they have not been shown able to generalize among cell lines to the au-
thors knowledge, they are sensitive to dense samples, and do not characterize the complete
mitoses and cytokineses events. In addition, in the last two types of approaches, namely,
tracking-free and appearance-based, when treating spatiotemporal frame sequences as
samples, the precise temporal resolutions for the cell divisions becomes weak.

The proposed method benefits from the spatial shapes and symmetries of the cells and
the cell divisions rather than simply treating the sequences as signals or samples. It is also
able to take advantage of the cell trajectories in space and time to robustly and uniquely
detect cell divisions even in dense samples.

4.3. Future Work

The proposed method can be further improved and generalized in a variety of ways.
The method was developed and validated with real experimental movies to demonstrate
its applicability to the practice of a biological laboratory. A benchmark with movies of not
only a single cell line [7,68], but of multiple cell lines, specifically acquired and annotated
for method development can contribute to methodology improvements.

The imaging of the sequences analyzed was performed with positive phase contrast.
This has been considered to interpret the Hessian-based filtering and to adjust the circle
Hough transform as well as several other processing steps. In negative phase contrast,
the appearance of the cells and of the halo effect around them is different. It requires
a generalization in the interpretation of Hessian-based filtering in Equation (3) and of
other subsequent processing steps. In low spatial resolution sequences, the thickness
of the Halo effect at the boundary of the cells is larger and Hessian filtering must be
adjusted accordingly.

The spatial intensity correction method computes the non-uniformity retrospectively
from the entire sequence. To achieve real time intensity correction, the processing could be
made causal by only considering preceding frames of the sequence. Further, the intensity
uniformity restoration over time and over space could be performed jointly to better
preserve contrast in the restored sequence.

The cell division detection with circle Hough transform based on shape symmetry can
be made more specific by detecting circles of only a prespecified radius. That would avoid
false positives from which conventional circle Hough transform in this context suffers due
to “votes” into rings of smaller or larger radii as well as due to cells in interphase that
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may be elongated. A parent cell prior to its division has a larger radius compared to its
daughter cells immediately following the division. Abnormal cell divisions that lead to
three daughter cells have even smaller radii. Thus, it will be productive to extend the cell
detection with multiresolution to consider prespecified cell radii for both before and after
the cell division. Concerning the cell radii, another novelty in the extended circle Hough
transform method would be to not only detect the direction towards the center of curvature,
but also to detect the center of curvature itself. That would obviate the need to specify a
cell radius parameter that is present explicitly or implicitly in most relevant methods in
the literature. The cells in the sequences processed are convex. However, nerve cells can
be concave and can have shapes that resemble some forms of starlike superquadrics [69].
The detection of such cells would require the development of a novel Hough transform
methodology applicable to such superquadrics.

The circle Hough transform sequences are used to establish inter-frame pixel associa-
tions. For sequences with extensive cell motility, the associations can be established with
the contribution of a stochastic motion tracking method as well [42]. The extraction of the
trajectories of the daughter cells that drift apart can also use a stochastic motion tracking
method [42]. The spatiotemporal angle between the trajectories of two daughter cells after
a cell division is symmetric and is a “fingerprint” of a particular cell line. Abnormalities in
the spatiotemporal division angle can also be a “fingerprint” of specific pathologies such as
a wider neuronal precursor division angle for the Miller Diecker Lissencephaly syndrome
that is causing retardation and epilepsy [70]. The spatiotemporal division angle can be
considered as an additional condition in the methodology to determine whether to join two
trajectories to form a cell division to improve the accuracy of the detection.

An abnormal cell division can lead to cell death, namely, apoptosis. The detection
of such events would make the method more representative and further improve its
performance. It would also be informative for high throughput screening applications to
compute overall statistics for a movie, such as the number of cells dividing per minute,
the duration of the cell cycle, the planar orientations of the mitotic axes, and the number
of apoptoses. In a pharmaceutical context, the method can be used to quantify and study
the response of treating cells with compounds whose objective is to affect the cell cycle by
inhibiting mitotic progression or targeting abnormal cell divisions [42]. An example use
would be for the development and screening of anti-cancer drugs.
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