70 research outputs found

    Research on prevention and control methods of land subsidence induced by groundwater overexploitation based on three-dimensional fluid solid coupling model—a case study of Guangrao County

    Get PDF
    Land subsidence is an environmental geological phenomenon with slowly decreasing ground elevation, The North China Plain is one of the areas with the most serious land subsidence in China, and Guangrao County is one of the subsidence centers. This paper is based on the hydrogeological and engineering geological data of Guangrao County, the groundwater monitoring data for many years and the land subsidence monitoring data, systematically analyzes the dynamic characteristics of groundwater, the distribution and evolution of land subsidence, and the correlation between groundwater exploitation and land subsidence development in different layers of this area. Based on Biot porous medium consolidation theory, establishes a three-dimensional fluid solid coupling numerical model of land subsidence in Guangrao County, restores the development process of land subsidence, predicts and analyzes the subsidence evolution law under different groundwater exploitation schemes, and proposes targeted prevention and control measures. The research results show that: the shallow groundwater forms a cone of depression with Guangbei Salt Field as the center, and the deep groundwater forms an elliptical regional cone of depression with the urban area as the center. The ground is gradually formed two small settlement areas with the urban area of Guangrao County and Guangbei Salt Field as the settlement center, and there is a trend of interrelated expansion. The three-dimensional fluid solid coupling model of land subsidence accurately restored the development process of land subsidence in the study area, predicted that under the current groundwater exploitation conditions, by 2040, the settlement of Guangrao urban settlement center will increase to 1,350 mm, forming a large regional funnel centered around the urban area, and gradually developing and expanding around. Prohibition of groundwater exploitation in the main funnel area is a more reasonable and effective exploitation plan to prevent the development of land subsidence

    Land Use Conflict Detection and Multi-Objective Optimization Based on the Productivity, Sustainability, and Livability Perspective

    Get PDF
    Land use affects many aspects of regional sustainable development, so insight into its influence is of great importance for the optimization of national space. The book mainly focuses on functional classification, spatial conflict detection, and spatial development pattern optimization based on productivity, sustainability, and livability perspectives, presenting a relevant opportunity for all scholars to share their knowledge from the multidisciplinary community across the world that includes landscape ecologists, social scientists, and geographers. The book is systematically organized into the optimization theory, methods, and practices for PLES (production–living–ecological space) around territorial spatial planning, with the overall planning of PLES as the goal and the promotion of ecological civilization construction as the starting point. Through this, the competition and synergistic interactions and positive feedback mechanisms between population, resources, ecology, environment, and economic and social development in the PLES system were revealed, and the nonlinear dynamic effects among subsystems and elements in the system identified. In addition, a series of optimization approaches for PLES is proposed

    (Section A: Planning Strategies and Design Concepts)

    Get PDF
    This paper uses four years of ecosystem classification data, from 2000, 2005, 2010 and 2015, to analyse the spatiotemporal variation characteristics of the ecosystems of counties and cities in the Min Delta urban agglomeration over 15 years across four aspects, including changes in the ecosystem area for each period, a transfer matrix of the counties and cities, the comprehensive dynamic ecosystem index, and the forces driving these changes. The results show that: (1) from 2000 to 2015, the total area of farmland, forest and shrub ecosystems in the Min Delta urban agglomeration decreased, while the total area of urban, wetland and grassland ecosystems has increased. There are spatiotemporal differences and patterns in the area change and transfer of various ecosystems. The series of scales and proportion of ecosystem types in the counties and cities of the Min Triangle show that there is a two-way transfer between farmland and urban ecosystems. In addition, there are spatiotemporal differences in the transfer of these two ecosystems. Forest ecosystems are transferred into farmland, urban and grassland ecosystems at different levels. In the eastern part of the Min Triangle, wetlands are mostly transferred to urban ecosystems, and the western regions are mostly transferred to forests and farmland. (2) For the comprehensive dynamic index of the Min Delta urban agglomeration, from 2000 to 2015, the degree of ecosystem dynamics was higher in each period than the previous, and the dynamics in the eastern and central parts were higher than those in the west and south for the same period. From 2000 to 2005, the comprehensive dynamic index was below 0.2%. The dynamic index of Longhai in Xiamen and Zhangzhou increased significantly from 2005 to 2010 from that of the previous period, and their values all exceeded 0.9%. From 2010 to 2015, the area with a large change in the dynamic index expanded to the east and south from the central area of Xiamen. The dynamics in the northwest did not sufficiently increase. (3) The GDP, value of agricultural production, forestry, and fisheries, secondary and tertiary industries, urbanization rate, and permanent residents are important factors influencing ecosystems. The driving effects of these socioeconomic indicators and urban population development have different degrees of significance on farmland, urban, forest and wetland ecosystems during different periods of the Delta\u27s urban agglomeration

    Potential impact of climate change and water resources development on the epidemiology of schistosomiasis in China

    Get PDF
    Schistosomiasis japonica, caused by the blood fluke Schistosoma japonicum, has been endemic in China since ancient times. An estimated 11 million people were infected in the mid-1950s. Recognizing the huge public health significance and the economic impact of the disease, the central government of China implemented a large-scale control programme, which has been sustained and constantly adapted over the past half century. Today, the endemic areas are mainly confined to the lake and marshland regions along the Yangtze River in five provinces, namely Jiangsu, Anhui, Jiangxi, Hunan and Hubei. It is estimated that currently about 800,000 people are infected and that 40 million people are at risk of infection. Historically, the northern geographical limit where schistosomiasis transmission occurred was around the 33°15’ N latitude (e.g. in Baoying county, Jiangsu province), governed by low temperature thresholds. Based on various climate models, the Intergovernmental Panel of Climate Change (IPCC) recently concluded that the Earth has warmed by approximately 0.6°C over the past 100 years. This unusual warming has been particularly pronounced during the last three decades. There is growing consensus that the global trend of climate warming will continue in the 21st century. It has been suggested that climate change could impact on the distribution of the intermediate host snail of S. japonicum, i.e. Oncomelania hupensis. The frequency and transmission dynamics of schistosomiasis can also be affected by waterresource development and management. Among others, the South-to-North Water Transfer (SNWT) project” is currently under construction in China, which intends to divert water from South (the snail-infested Yangtze River) to North (Beijing and Tianjing) via the lakes of Gaoyou, Hongze and others. The implementation and operation of this project could further amplify the negative effects of climate change and facilitate the northward spread of O. hupensis. The main objective of this PhD thesis was to explore the potential impact of climate change and the SNWT project on the future distribution of schistosomiasis japonica, particularly in eastern China. The techniques used were geographic information system (GIS) and remote sensing (RS), coupled with Bayesian spatial statistics, which have become key tools for disease mapping and prediction. First, we reviewed the application of GIS/RS techniques for the epidemiology and control of schistosomiasis in China. The applications included mapping prevalence and intensity data of S. japonicum at a large scale, and identifying and predicting suitable habitats for O. hupensis at a small scale. Other prominent applications were the prediction of infection risk due to ecological transformations, particularly those induced by floods and water-resource development projects, and the potential impact of climate change. We discussed the limitations of the previous work, and outlined potential new applications of GIS/RS techniques, namely quantitative GIS, WebGIS and the utilization of emerging satellite-derived data, as they hold promise to further enhance infection risk mapping and disease prediction. We also stressed current research needs to overcome some of the remaining challenges of GIS/RS applications for schistosomiasis, so that further and sustained progress can be made towards the ultimate goal to eliminate the disease from China. Second, recognizing the advantages of combining GIS/RS techniques with advanced spatial statistical approaches, we developed Bayesian spatio-temporal models to analyze the relationship between key climatic factors and the risk of schistosomiasis infection. We used parasitological data collected annually from 1990 to 1998 by means of cross-sectional surveys carried out in 47 counties of Jiangsu province. Climatic factors, namely land surface temperature (LST) and normalized difference vegetation index (NDVI), were obtained from satellite sensors. Our analysis suggested a negative association between NDVI and the risk of S. japonicum infection, whereas an increase in LST contributed to a significant increase in S. japonicum infection prevalence. Third, in order to better understand the changes in the frequency and transmission dynamics of schistosomiasis in a warmer future China, a series of laboratory experiments were conducted to assess the effect of temperature on the parasite-intermediate host snail interaction. We found a positive linear relationship between the development of. S. japonicum larvae harboured in O. hupensis and temperature. In snails kept at 15.3°C, S. japonicum larvae tend to halt their development, while peak development occurs at 30°C. The temperature at which half of the snails were in hibernation is 6.4°C. A statistically significant positive association was observed between temperature and oxygen intake of O. hupensis at temperatures below 13.0°C. We also detected a logistic relationship between snails’ oxygen intake and their hibernation rate. Our results underscored the important role temperature plays both for the activity of O. hupensis and the development of S. japonicum larvae harboured in the intermediate host snail. Fourth, to substantiate the claim that global warming might alter the frequency and transmission dynamics of S. japonicum in China, we conducted a time-series analysis from 1972-2002, using temperature data from 39 counties of Jiangsu province. Using annual growing degree days (AGDDs) with a temperature threshold of 15.3°C, we forecasted changes in S. japonicum transmission. The final model included a temporal and a spatial component. The temporal trend consisted of second order polynomials in time plus a seasonality component, while the spatial trend was formed by second order polynomials of the coordinates plus the thin plate smoothing splines. The AGDDs of S. japonicum in 2003 and 2006 and their difference were calculated. The temperatures at the 39 locations showed an increasing temporal trend and seasonality with periodicities of 12, 6 and 3 months. The predicted AGDDs increased gradually from north to south in both 2003 and 2006. The increase in AGDD was particularly pronounced in the southern part of the study area. Our results suggest that alterations in the transmission intensity of S. japonicum in south Jiangsu will be more pronounced than in the northern part of the province. Fifth, we further assessed the potential impact of climate change on the distribution of O.hupensis via a spatially-explicit analytical approach. We employed two 30-year composite datasets comprising average monthly temperatures collected at 623 meteorological stations throughout China, spanning the periods 1961-1990 and 1971-2000. Temperature changes were assessed spatially between the 1960s and the 1990s for January, as this is the critical month for survival of O. hupensis. Our results show that the mean January temperatures increased at 590 stations (94.7%), and that China’s average January temperature in the 1990s was 0.96°C higher than 30 years earlier. The historical 0-1°C January isotherm, which has been considered the approximate northern limit of S. japonicum transmission, has shifted from 33°15’ N to 33°41’ N, expanding the potential transmission area by 41,335 km2. This translates to an estimated additional 21 million people at risk of schistosomiasis. Two lakes that form part of the SNWT project are located in this new potential transmission area, namely Hongze and Baima. Finally, we applied GIS/RS techniques to predict potentially new snail habitats around the lakes of Hongze and Baima, as well as Gaoyou lake, which is considered as a habitat where O. hupensis could re-emerge. A model based on flooding areas, NDVI and a wetness index extracted from Landsat images was developed to predict the snail habitats at a small scale. A total of 163.6 km2 of potential O. hupensis habitats were predicted around the three study lakes. In conclusion, our work suggests that global warming and a major water-resource development project could impact on the distribution of S. japonicum and its intermediate host snail in China and demonstrates that the combination of GIS, RS and Bayesian spatial statistical methods is a powerful approach in estimating their extent. The predictions can serve as a basis for health policy makers and disease control managers, and can be of use in the establishment and running of schistosomiasis surveillance systems. It is further suggested that an efficient early warning system should be set up in potential new endemic areas to monitor subtle changes in snail habitats due to climate change and major ecological transformations, and to assure the early detection of emerging and re-emerging schistosomiasis

    Spatial-Temporal Variability of Soil Organic Matter in Urban Fringe over 30 Years: A Case Study in Northeast China.

    Get PDF
    The study on soil organic matter (SOM) is of great importance to regional cultivated land use and protection. Based on data collected via continuous and high-density soil samples (0-20 cm) and socio-economic data collected from household survey and local bureau of statistics, this study employs geostatistics and economic statistical methods to investigate the spatial-temporal variation of SOM contents during 1980-2010 in the urban fringe of Sujiatun district in Shenyang City, China. We find that: (1) as to temporal variation, SOM contents in the study sites decreased from 30.88 g/kg in 1980 to 22.63 g/kg in 2000. It further declined to 20.07 g/kg in 2010; (2) in terms of spatial variation, the closer to city center, the more decline of SOM contents. Contrarily, SOM contents could even rise in outer suburb area; and (3) SOM content variation may be closely related to human factors such as farmers’ land use target and behaviour including inputs of chemical and organic fertilizers, types of crops and etc. These findings are conductive to grasp the overall trend of SOM variation and the influence of farmers’ land use behaviour on it. Furthermore, they could provide support for policymakers to agricultural planning and land use monitoring, which consequently aids the improvement of soil quality and food production in the urban fringe areas

    Sustainable Water Use in Arid Agricultural Areas Based on System Dynamics and Water Footprint: a Case Study of Zhangjiakou City, China

    Get PDF
    The water resource is an indispensable natural capital for human production and life. On the one hand, insufficient water resources and uneven temporal and spatial distribution in arid agricultural areas are the objective reasons for restricting social and economic development and fragile ecological environment. On the other hand, socio-economic development occupies a large amount of ecological water, especially the unscientific planning and unreasonable expansion of irrigated agriculture, which makes a large amount of water wasted. Therefore, in this study, Zhangjiakou, China, a city with less than 400 m3 of water per capita per year, was taken as a case study area to explore the sustainable use of water in arid agricultural areas from the perspective of blue water (surface water and groundwater) and green water (soil water). First, a complex system dynamics model, reflecting the relationships between the water resources subsystem and other socioeconomic subsystems in Zhangjiakou City, was established using Vensim PLE to simulate water demand (2015-2035) in four designed alternative development scenarios: the Current Development Scenario (CDS), the Economic Priority Scenario (EPS), the Water-saving Priority Scenario (WPS), and the Balanced Development Scenarios (BDS). Secondly, with the help of CropWat 8.0, the water footprint and its spatiotemporal characteristics and variations of the main crops in Zhangjiakou City for 2005, 2010, and 2015 were estimated. Furthermore, an in-depth analysis of blue water, green water, and food productivity and economic benefits of water footprint was further investigated by introducing three new indicators, i.e., green water footprint occupancy rate, blue water footprint deficit, and virtual water consumption per GDP. Finally, from the perspective of the ecological zone, the spatiotemporal matching characteristics of agricultural water footprint and socioeconomic factors were analyzed using the Gini coefficient and imbalance index. The main findings are as follows: The variables related to irrigation farmland are the main driving factors of water demand, especially the area and the average water consumption of irrigated land. Therefore, reducing the area of irrigated farmland and improving the efficiency of agricultural irrigation water will be the main direction of water-saving in Zhangjiakou City. But it is vital to consider various factors, e.g., agricultural GDP and farmers’ income, to determine the degree of reduction of irrigation area. Besides, in the four development scenarios, regardless of which development model is chosen, the water demand per ten thousand yuan GDP will eventually fall to around 20 m3 in 2035. Therefore, reducing water demand only by slowing down economic growth cannot improve the efficiency of water use, and even result in inefficiency of water supply capacity. Zhangjiakou City should adopt a dynamic and efficient water-saving model that not only sustains regional socio-economic development but also protects ecological security in the whole Beijing-Tianjin-Hebei region. The total water footprint requirement of Zhangjiakou City increased from 1.671 billion m3 in 2005 to 1.852 billion m3 in 2015, of which the ratio of green water to blue water was around two. The total water footprint requirement in the counties of the mountainous Bashang area is lower than those of the Baxia area, and the gap between them was further expanding. The green water footprint occupancy rate in counties of the Bashang area was 43%-49%, with an average of 44%, while it was 51%-59% in counties of the Baxia area, with an average of 54%. The highest green water footprint occupancy rate in a year was from May to August, at 58%-83%. In terms of blue water footprint deficit, in general, it was lower in the Bashang area than in the Baxia area. The changing trends in food production and economic benefits of water footprint were not always the same. Therefore, it is necessary to consider them simultaneously when developing policies from the perspective of water footprint. The agricultural water footprint of Zhangjiakou City increased from 3.61billion m3 in 2005 to 5.30 billion m3 in 2015, an increase of 1.69 billion m3, of which the water footprint of animal products increased by 1.59 billion m3. Therefore, in addition to continuing to optimize the planting structure, implement efficient water-saving irrigation measures, and control the water footprint of crops, the government needs to strictly prohibit overload grazing and develop modern animal husbandry to reduce the water footprint of animal products, especially in counties of high-altitude ecological zones I, II and IV. The Gini coefficient and the imbalance index of agricultural water footprint and socioeconomic factors indicate that the spatial distribution of agricultural water footprint and planting area, population, agricultural GDP was relatively balanced, but there were still some significant differences. It means that the adjustment of the agricultural structure in each county requires a comprehensive consideration of multiple socioeconomic factors

    TOPICS IN MODELLING ADAPTATION DYNAMICS OF CHINESE AGRICULTURE TO OBSERVED CLIMATE CHANGE

    Get PDF
    Chinese farmers have adopted multiple adaptation measures to mitigate the negative impact of, and to capture the opportunities brought by, the observed climate change in the last several decades. Such adaptations will continue in the coming decades given the foreseeing climate change. Scientifically assessing such dynamism of suitable agricultural adaptation requires unprecedented efforts of the research community to simulate and predict the interactions among crop growth dynamics, the environment and crop management, and cropping systems at and across various scales. This calls for efforts aiming to quantify the interactions of agro-ecological processes across different scales. This dissertation intends to make scientific contributions in this direction. The leading goal of this dissertation is to develop a cross-scale modeling framework that is capable of incorporating the field agricultural advances into the design and evaluation of regional cropping system adaptation strategies. It then applies this framework to identify feasible cropping system adaptation strategies under observed warmer climate and quantify their potential benefits to the grain production and water sustainability in the major cropping regions in north China. Three objectives of this study are: (1) Develop a cross-scale model-coupling framework between the site level DSSAT model and the regional level AEZ model to improve the AEZ performance in capturing the northern expansion of japonica rice under a warmer climate in the Northeast China Plain. (2) Construct a new wheat-maize cropping systems adaptation strategy to meet the double challenge of maintaining the regional grain production level and recovering local groundwater table in the semi-arid North China Plain, where the persistent overexploitation of groundwater has caused severe environmental damages. (3) Establish a dynamic adaptation strategy to identify the desired water sustainable cropping systems across different localities and to meet the challenge of recovery local groundwater table and minimize the output losses of wheat and then total grain production in the Hebei Plain, where the irrigation water shortage has threatened wheat production and thus potentially compromising China’s food security. This dissertation will improve our understanding of the interactions and interlinkage across multi-scale agro-ecosystems in mitigating the environmental risks associated with the irrigation-intensive farming and in adapting to climate change. The cropping systems adaptation strategies proposed by this dissertation provide scientific basis for future agricultural adaptation policy design compatible with local agro-climatic, land and soil conditions across China

    Climate Change and Environmental Sustainability-Volume 4

    Get PDF
    Anthropogenic activities are significant drivers of climate change and environmental degradation. Such activities are particularly influential in the context of the land system that is an important medium connecting earth surface, atmospheric dynamics, ecological systems, and human activities. Assessment of land use land cover changes and associated environmental, economic, and social consequences is essential to provide references for enhancing climate resilience and improving environmental sustainability. On the one hand, this book touches on various environmental topics, including soil erosion, crop yield, bioclimatic variation, carbon emission, natural vegetation dynamics, ecosystem and biodiversity degradation, and habitat quality caused by both climate change and earth surface modifications. On the other hand, it explores a series of socioeconomic facts, such as education equity, population migration, economic growth, sustainable development, and urban structure transformation, along with urbanization. The results of this book are of significance in terms of revealing the impact of land use land cover changes and generating policy recommendations for land management. More broadly, this book is important for understanding the interrelationships among life on land, good health and wellbeing, quality education, climate actions, economic growth, sustainable cities and communities, and responsible consumption and production according to the United Nations Sustainable Development Goals. We expect the book to benefit decision makers, practitioners, and researchers in different fields, such as climate governance, crop science and agricultural engineering, forest ecosystem, land management, urban planning and design, urban governance, and institutional operation.Prof. Bao-Jie He acknowledges the Project NO. 2021CDJQY-004 supported by the Fundamental Research Funds for the Central Universities and the Project NO. 2022ZA01 supported by the State Key Laboratory of Subtropical Building Science, South China University of Technology, China. We appreciate the assistance of Mr. Lifeng Xiong, Mr. Wei Wang, Ms. Xueke Chen, and Ms. Anxian Chen at School of Architecture and Urban Planning, Chongqing University, China
    • 

    corecore