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Summary   

The water resource is an indispensable natural capital for human production and life. On 

the one hand, insufficient water resources and uneven temporal and spatial distribution in arid 

agricultural areas are the objective reasons for restricting social and economic development and 

fragile ecological environment. On the other hand, socio-economic development occupies a 

large amount of ecological water, especially the unscientific planning and unreasonable 

expansion of irrigated agriculture, which makes a large amount of water wasted. Therefore, in 

this study, Zhangjiakou, China, a city with less than 400 m3 of water per capita per year, was 

taken as a case study area to explore the sustainable use of water in arid agricultural areas from 

the perspective of blue water (surface water and groundwater) and green water (soil water). 

First, a complex system dynamics model, reflecting the relationships between the water 

resources subsystem and other socioeconomic subsystems in Zhangjiakou City, was established 

using Vensim PLE to simulate water demand (2015-2035) in four designed alternative 

development scenarios: the Current Development Scenario (CDS), the Economic Priority 

Scenario (EPS), the Water-saving Priority Scenario (WPS), and the Balanced Development 

Scenarios (BDS). Secondly, with the help of CropWat 8.0, the water footprint and its 

spatiotemporal characteristics and variations of the main crops in Zhangjiakou City for 2005, 

2010, and 2015 were estimated. Furthermore, an in-depth analysis of blue water, green water, 

and food productivity and economic benefits of water footprint was further investigated by 

introducing three new indicators, i.e., green water footprint occupancy rate, blue water footprint 

deficit, and virtual water consumption per GDP. Finally, from the perspective of the ecological 

zone, the spatiotemporal matching characteristics of agricultural water footprint and 

socioeconomic factors were analyzed using the Gini coefficient and imbalance index. The main 

findings are as follows: 

The variables related to irrigation farmland are the main driving factors of water demand, 

especially the area and the average water consumption of irrigated land. Therefore, reducing 

the area of irrigated farmland and improving the efficiency of agricultural irrigation water will 

be the main direction of water-saving in Zhangjiakou City. But it is vital to consider various 

factors, e.g., agricultural GDP and farmers’ income, to determine the degree of reduction of 

irrigation area. Besides, in the four development scenarios, regardless of which development 

model is chosen, the water demand per ten thousand yuan GDP will eventually fall to around 

20 m3 in 2035. Therefore, reducing water demand only by slowing down economic growth 

cannot improve the efficiency of water use, and even result in inefficiency of water supply 
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capacity. Zhangjiakou City should adopt a dynamic and efficient water-saving model that not 

only sustains regional socio-economic development but also protects ecological security in the 

whole Beijing-Tianjin-Hebei region. 

The total water footprint requirement of Zhangjiakou City increased from 1.671 billion m3 

in 2005 to 1.852 billion m3 in 2015, of which the ratio of green water to blue water was around 

two. The total water footprint requirement in the counties of the mountainous Bashang area is 

lower than those of the Baxia area, and the gap between them was further expanding. The green 

water footprint occupancy rate in counties of the Bashang area was 43%-49%, with an average 

of 44%, while it was 51%-59% in counties of the Baxia area, with an average of 54%. The 

highest green water footprint occupancy rate in a year was from May to August, at 58%-83%. 

In terms of blue water footprint deficit, in general, it was lower in the Bashang area than in the 

Baxia area. The changing trends in food production and economic benefits of water footprint 

were not always the same. Therefore, it is necessary to consider them simultaneously when 

developing policies from the perspective of water footprint. 

The agricultural water footprint of Zhangjiakou City increased from 3.61billion m3 in 2005 

to 5.30 billion m3 in 2015, an increase of 1.69 billion m3, of which the water footprint of animal 

products increased by 1.59 billion m3. Therefore, in addition to continuing to optimize the 

planting structure, implement efficient water-saving irrigation measures, and control the water 

footprint of crops, the government needs to strictly prohibit overload grazing and develop 

modern animal husbandry to reduce the water footprint of animal products, especially in 

counties of high-altitude ecological zones I, II and IV. The Gini coefficient and the imbalance 

index of agricultural water footprint and socioeconomic factors indicate that the spatial 

distribution of agricultural water footprint and planting area, population, agricultural GDP was 

relatively balanced, but there were still some significant differences. It means that the 

adjustment of the agricultural structure in each county requires a comprehensive consideration 

of multiple socioeconomic factors. 

Keywords: Arid agricultural areas; System dynamics; Water footprint; Blue water; Green 

water; Zhangjiakou City 
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Zusammenfassung 

Die Wasserressourcen sind ein unverzichtbares natürliches Kapital für die Produktion und 

das Leben der Menschen. Einerseits sind unzureichende Wasserressourcen und deren 

ungleichmäßige zeitliche und räumliche Verteilung in ariden landwirtschaftlichen Gebieten die 

objektiven Ursachen für die Einschränkung der sozialen und wirtschaftlichen Entwicklung und 

des fragilen ökologischen Umfelds. Andererseits nimmt die sozioökonomische Entwicklung 

eine große Menge an ökologischem Wasser in Anspruch, insbesondere durch die 

unwissenschaftliche Planung und die unangemessene Ausweitung der 

Bewässerungslandwirtschaft wird eine große Menge Wasser verschwendet. Daher wurde in 

dieser Studie Zhangjiakou, China, eine Stadt mit weniger als 400 m3 Wasser pro Kopf und Jahr, 

als Fallbeispielsgebiet herangezogen, um die nachhaltige Nutzung von Wasser in semiarid-

ariden landwirtschaftlichen Gebieten aus der Perspektive von blauem Wasser 

(Oberflächenwasser und Grundwasser) und grünem Wasser (Bodenwasser) zu untersuchen. 

Zunächst wurde mithilfe von Vensim PLE ein komplexes Systemdynamikmodell erstellt, das 

die Beziehungen zwischen dem Teilsystem Wasserressourcen und anderen sozioökonomischen 

Teilsystemen in der Stadt Zhangjiakou widerspiegelt, um den Wasserbedarf (2015-2035) in vier 

alternativen Entwicklungsszenarien zu simulieren: das Current Development Scenario (CDS), 

das Economic Priority Scenario (EPS), das Water Saving Priority Scenario (WPS) und das 

Balanced Development Scenario (BDS). Zweitens wurden mit Hilfe von CROPWAT 8.0 der 

Wasserfußabdruck sowie seine raumzeitlichen Eigenschaften und Variationen der 

Anbaukulturen in der Stadt Zhangjiakou für 2005, 2010 und 2015 geschätzt. Darüber hinaus 

wurde eine eingehende Analyse der Produktivität von blauem Wasser, grünem Wasser und 

Lebensmitteln sowie des wirtschaftlichen Nutzens des Wasserfußabdrucks untersucht, indem 

drei neue Indikatoren eingeführt wurden: die Belegungsrate des grünen Wasserfußabdrucks, 

das Defizit des blauen Wasserfußabdrucks und der virtuelle Wasserverbrauch pro BIP. 

Schließlich wurden für ökologische Zonen die raum-zeitlichen Übereinstimmungsmerkmale 

des landwirtschaftlichen Wasserfußabdrucks und sozioökonomische Faktoren unter 

Verwendung des Gini-Koeffizienten und des Ungleichgewichtsindex bestimmt. Die 

wichtigsten Ergebnisse sind die folgenden:  

Die Variablen im Zusammenhang mit der Bewässerung von Ackerland sind die 

Hauptfaktoren für den Wasserbedarf, insbesondere die Fläche und der durchschnittliche 

Wasserverbrauch von bewässertem Land. Daher werden die Reduzierung der bewässerten 

Ackerfläche und die Verbesserung der Effizienz des landwirtschaftlichen 
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Bewässerungswassers die Hauptrichtung der Wassersparmaßnahmen in der Stadt Zhangjiakou 

sein. Es ist jedoch wichtig, verschiedene Faktoren zu berücksichtigen, z. B. das 

landwirtschaftliche BIP und das Einkommen der Landwirte, um den Grad der Verringerung der 

Bewässerungsfläche zu bestimmen. Außerdem wird in den vier Entwicklungsszenarien, 

unabhängig davon, welches Entwicklungsmodell gewählt wird, der Wasserbedarf pro 

zehntausend Yuan BIP im Jahr 2035 auf etwa 20 m3 sinken. Ein reduzierter Wasserbedarf nur 

durch die Verlangsamung des Wirtschaftswachstums wird die Effizienz der Wassernutzung 

nicht erhöhen; vielmehr kann das sogar zu vermehrter Ineffizienz der Wasserversorgung führen. 

Die Stadt Zhangjiakou sollte ein dynamisches und effizientes Wassersparmodell einführen, das 

nicht nur die regionale sozioökonomische Entwicklung unterstützt, sondern auch die 

ökologische Sicherheit in der gesamten Region Peking-Tianjin-Hebei schützt.  

Der Gesamtbedarf des Wasserfußabdrucks der Stadt Zhangjiakou stieg von 1,671 

Milliarden m3 im Jahr 2005 auf 1,852 Milliarden m3 im Jahr 2015, wovon das Verhältnis von 

grünem Wasser zu blauem Wasser bei etwa zwei lag. Der Gesamtbedarf des 

Wasserfußabdrucks in den Landkreisen des bergigen Bashang-Gebietes war geringer als in dem 

Baxia-Gebiet, und der Abstand zwischen ihnen wurde weiter vergrößert. Die Auslastung des 

grünen Wasserfußabdrucks in den Bezirken des Bashang-Gebiets betrug 43% bis 49% mit 

einem Durchschnitt von 44%, während sie in den Bezirken des Baxia-Gebiets 51% bis 59% mit 

einem Durchschnitt von 54% betrug. Die höchste Auslastung des grünen Wassers in einem Jahr 

lag zwischen Mai und August bei 58% bis 83%. In Bezug auf das Defizit an blauem Wasser 

war es im Gebiet von Bashang im Allgemeinen niedriger als im Gebiet von Baxia. Die sich 

ändernden Trends der Lebensmittelproduktion und die wirtschaftlichen Vorteile des 

Wasserfußabdrucks waren nicht immer gleich. Daher müssen sie gleichzeitig berücksichtigt 

werden, wenn Strategien unter dem Gesichtspunkt des Wasserfußabdrucks entwickelt werden.  

Der landwirtschaftliche Wasserfußabdruck der Stadt Zhangjiakou stieg zwischen 2005 

und 2015 von 3,61 Milliarden m3 auf 5,30 Milliarden m3, ein Anstieg von 1,69 Milliarden m3, 

wovon der Wasserfußabdruck für tierische Produkte um 1,59 Milliarden m3 zunahm. Daher 

muss sich  die Regierung neben der weiteren Optimierung der Anbaustruktur, der Umsetzung 

effizienter wassersparender Bewässerungsmaßnahmen und der Kontrolle des 

Wasserfußabdrucks von Kulturpflanzen widmen sowie die Überweidung strikt verbieten und 

eine moderne Tierhaltung entwickeln, um den Wasserfußabdruck tierischer Produkte zu 

verringern, insbesondere in den hoch gelegenen ökologischen Zonen I, II und IV. Der Gini-

Koeffizient und der Ungleichgewichtsindex des landwirtschaftlichen Wasserfußabdrucks 
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sowie sozioökonomische Faktoren weisen darauf hin, dass die räumliche Verteilung des 

landwirtschaftlichen Wasserfußabdrucks und der Anbaufläche, der Bevölkerung und des 

landwirtschaftlichen BIP relativ ausgeglichen war, es jedoch immer noch einige signifikante 

Unterschiede gab. Dies bedeutet, dass die Anpassung der Agrarstruktur eine umfassende 

Berücksichtigung mehrerer sozioökonomischer Faktoren erfordert. 

Keywords: Arid agricultural areas; System dynamics; Water footprint; Blue water; Green 

water; Zhangjiakou City 
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1. Introduction 

1.1 Problem Statement 

The water resource is an indispensable natural capital for human production and life 

(Tuninetti et al., 2019). However, with the rapid growth of the global population, the 

transformation of human lifestyles, consumption patterns approaching high-water-consuming 

foods, and unreasonable ways of water extraction and utilization, as well as climate change, 

water resources are under increasingly severe pressure (Karandish et al., 2020; Liu et al., 2017; 

Ma et al., 2020a; Sun et al., 2013). The shortage of available water resources not only restricts 

sustainable socioeconomic development but also poses a serious threat to ecological and 

environmental security (Liu et al., 2015; Vorosmarty et al., 2010). The water resource crisis has 

evolved into one of the most concerning resources and environmental issues in the world, which 

is considered to be the biggest challenge facing mankind in this century (Vogel et al., 2015). 

Therefore, “ensure water availability and sustainable development” is set as one of the 2030 

sustainable development goals (SDGs) (Ma et al., 2020b; van Vliet et al., 2017). It is predicted 

that 47% of the population will live in countries and regions with severe water shortages by 

2030 (Connor, 2015), due to the extremely unequal distribution of global freshwater resources. 

In this context, “virtual water” has been heralded as the answer to this imbalance (Whitney and 

Whitney, 2018), which has aroused great interest of scholars in the fields of water resource 

management, agricultural production, environmental assessment, etc. 

The complex system that humans rely on for survival can be divided into two major 

systems: the socio-economic system and the eco-environment system (Choi et al., 2017; Liu, 

Jianguo et al., 2007). The optimal allocation of water resources is to regard the human-nature 

system as an organically connected whole, and rationally allocate the water demand or 

consumption of the socio-economic and eco-environment system, so as to ensure the healthy 

development of the social economy while satisfying the self-repair ability of the ecological 

system (Elshafei et al., 2015; Sivapalan et al., 2012). On the one hand, insufficient water 

resources and uneven temporal and spatial distribution in arid agricultural areas are the 

objective reasons for restricting social and economic development and fragile ecological 

environment (Elshafei et al., 2015). On the other hand, the subjective reason for the shortage of 

water resources is that the economic development occupies a large amount of ecological water 

(Lund, 2015), especially the unreasonable development of irrigated agriculture, which makes a 

large amount of water wasted (A and Dall'erba, 2020; Zhang and Guo, 2016). Therefore, a 

scientific and reasonable analysis of the utilization of local water resources and a reasonable 



 

8 

allocation of industrial, agricultural, domestic, and ecological water among the limited water 

resources are the fundamental way out to solve the above problems (Bekchanov et al., 2017; 

Wang et al., 2018), which leads to an increasing application of system dynamics in integrated 

water resource management (Zomorodian et al., 2018). 

1.2 State of the Art 

1.2.1 System dynamics  

The relationships between human and natural systems are bi-directional (Srinivasan et al., 

2013). The impact of human activities on natural systems is changing the way we view and 

manage the earth’s resources (Winz et al., 2008; Yang et al., 2018). With the challenges of 

population expansion, rapid urbanization, and climate change, water resources, as an 

irreplaceable resource for human-nature systems, are becoming increasingly scarce (Jiang, 

2015). This will not only significantly affect regional sustainable development but also poses a 

serious threat to the well-being of future generations (Brown et al., 2015; Kotir et al., 2016; 

Yang et al., 2017). The contradiction between water supply and water demand has become a 

global challenge for human beings for a long time now and in the future, especially in 

developing countries and regions with large population sizes and dry climates (Zhang et al., 

2020). 

The research on water resources can be roughly summarized into two categories (Sun et 

al., 2017): surface and ground water, and sustainable utilization of water resources (David and 

Tobin, 2017; Döll and Fiedler, 2008; Larson et al., 2009). First, studies of surface water and 

groundwater are mostly related to climate change, overexploitation of groundwater, and the 

impact of water supply projects on the hydrological environment. Hagemann et al. (2013) 

studied the Colorado River basin using a global climate-hydrological model and found that 

climate change was not the only factor affecting the hydrological cycle. Hashemy Shahdany et 

al. (2018) taking the Zayandeh-Rud River basin in Iran as a case, discussed the effect of 

improving operational performance in irrigation canals to overcome groundwater 

overexploitation. Zhang (2009) evaluated the environmental impactions of the South-to-North 

Water Diversion Project and concluded that the Chinese government must establish a long-term 

environmental monitoring network. Second, the evaluation methods of sustainable use of water 

resources mainly include water poverty index (WPI), water stress index (WSI), and water 

resources carrying capacity (WRCC). WPI, first used by Sullivan (2002), is measured using 

five components “Resources”, “Access”, “Capacity”, “Use”, and “Environment”. It has been 

widely used as a holistic tool to assess water resources available at different scales from 
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international and national scales (Jemmali, 2018; Jemmali and Matoussi, 2013; Jemmali and 

Sullivan, 2014) to district and basin (Manandhar et al., 2012; Van Ty et al., 2010) scales. WSI 

can be used to assess the extent of water scarcity faced by the region’s society, economy and 

environment systems, such as Han and Ruan (2002) selected nine indicators from these three 

systems and conducted a comparative analysis of the water resources pressure in 31 

administrative regions of mainland China. WRCC refers to the maximum human activity level 

that available water resources can support without causing ecological and environmental 

degradation while maintaining an adequate standard of living (Naimi Ait-Aoudia and 

Berezowska-Azzag, 2016). A number of studies have been carried out in this aspect, especially 

in areas where there is a negative gap between water supply and water demand (Li et al., 2016; 

Ren et al., 2016; Yang et al., 2015). 

In recent years, the interaction between social, environmental, and water systems has 

become more intense and complex due to the explosive demand for water resources (Blair and 

Buytaert, 2016; Brown et al., 2015; Choi et al., 2017; Ghodsvali et al., 2019). In this context, 

for a better understanding of the dynamic relationships of the coupled human-environmental 

system, the system dynamics (SD) model is becoming more and more popular in water 

resources planning and management, because many other models based on linear causality 

cannot provide the mental and structural framework to solve complex problems in multiple 

systems (Duran-Encalada et al., 2017; Fang et al., 2019; Ghashghaie et al., 2014). SD was 

initially proposed by Forrester (1958) for simulating industrial and urban dynamics. It not only 

enables users to understand the extent to which each variable affects the system and subsystems 

but also can capture the interaction of various model components (Zomorodian et al., 2018). 

According to Zomorodian et al. (2018), the application of SD in water resources mainly falls 

into two categories: predictive simulation models and descriptive integrated models. The 

former focuses on the water resources system itself but lacks mutual feedback from economic, 

ecological, and social subsystems (Hoekema and Sridhar, 2013; Safavi et al., 2009; 

Teegavarapu and Simonovic, 2014). The latter focuses on the impact of factors from various 

subsystems on the water supply and demand systems, such as climate change, urbanization, 

economic development, and population growth (Gao et al., 2016; Hagemann et al., 2013; Qi 

and Chang, 2011). 

1.2.2 Virtual water and water footprint  

Virtual water (VW) refers to the freshwater consumed by a product or service in its place 

of origin, and which is then traded and transported to another region embedded in these products 
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or services (Allan, 1993). The volume of global trade has continued to expand since the 20th 

century, resulting in an increasing amount of virtual water exchange through commodities 

(Shtull-Trauring and Bernstein, 2018). VW theory has thus laid a solid foundation for 

accurately measuring the real water consumption of a country or region. Meanwhile, by seeing 

water itself as an internationally traded commodity, it also offers an alternative way for water-

poor regions to effectively solve the shortage of water resources by importing "freshwater" 

through international trade (Allan, 1998). 

However, VW has received relatively little attention until "water footprint (WF)" was 

proposed and introduced to international researchers (Hoekstra, 2003). Based on VW theory, 

WF represents the total amount of water consumed by a country (region or individual) in a 

given period, including the water contained in all products and services, which is an analog to 

the concept of ecological footprint proposed by the Canadian economist Willian E. Rees in the 

early 1990s (Hoekstra, 2017; Hoekstra et al., 2019). WF is a supplement to traditional 

measurement indicators of water consumption due to the following features it possesses: (1) It 

made a connection between physical water and VW, and extended VW assessment from the 

geographical scale (country, region, and watershed) to the individual and product scale. (2) It 

expanded the boundary of water resources research from the consumption of blue WF to green 

WF and gray WF (Chapagain et al., 2006; Qian et al., 2019). Blue WF means water comes from 

surface water or groundwater; Green WF means water comes from precipitation which is stored 

in the soil; Gray WF means water used to assimilate pollutants (Hoekstra et al., 2011). By doing 

this, the problems of insufficient research on green water and independent evaluation of water 

quality and quantity have been solved, thereby broadening the evaluation system and 

connotation of water resources (Qian et al., 2019). (3) It linked water resources assessment with 

human consumption patterns (Song et al., 2020; Wang et al., 2019). Calculating the real 

occupancy of water resources from the perspective of consumption, which can help people 

understand the meaning of VW and increase their awareness of saving water (Hoekstra and 

Mekonnen, 2012). Because of the above advantages, WF has been widely concerned by 

scholars around the world since its introduction and has become one of the important indicators 

for measuring and evaluating the environmental impact of human activities. 

The research methods of VW and WF are similar, which can be summarized as two types 

of “bottom-up” and “top-down” (Lovarelli et al., 2016; Vanham and Bidoglio, 2013). The 

"bottom-up" methods are mainly used in the agricultural sector, that is, using crop growth 

models such as CropWat (Hoekstra and Hung, 2002; Ma et al., 2020b; Zeng et al., 2012), EPIC 
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(Liu, Junguo et al., 2007), AquaCrop (Chukalla et al., 2015; Zhuo et al., 2016), and LPJmL 

(Fader et al., 2011) to calculate crop growth water footprint, including blue WF and green WF. 

The “top-down” approaches, similar to life cycle assessment (LCA), are mainly based on the 

inter-sector input-output (IO) tables. Input-output models are used (including single-region 

input-output models and multi-regional input-output models) to measure direct and indirect 

WFs and VW flow between all sectors. Therefore, the bottom-up approach is mainly suitable 

for estimating the WF of agricultural products. A large body of physical water from irrigation 

is consumed during the growth of crops. The top-down approach can take the VW (indirect 

water resources) contained in the raw materials between sectors into account, it is thus suitable 

for estimating the regional water consumption of all sectors and VW flows between countries 

and regions.  

The research on VW and WF has extended from the initial global, national, or regional 

level to small watersheds, cities, and single products, and from a single annual evaluation to 

inter-annual comparative research. As for the research content, it has gone from quantitative 

accounting of crop WF, regional VW flow, to qualitative analysis of WF sensitivity and inter-

regional VW flow driving factors. In general, VW and WF research has developed rapidly in 

the past two decades, which has attracted the increasing attention of international scholars. In 

addition to research articles, there are also some reviews, which qualitatively elaborate and 

explain VW and WF research in terms of conceptual interpretation, research content, research 

objects, and research scale (Vanham et al., 2019). 

However, few academic endeavors have been made from the perspective of bibliometric 

statistics. As far as I know, only Zhang et al. (2017) conducted a bibliometric study of WF in 

2006-2015, but it did not include VW. The WF mostly refers to water consumed in the local 

production process, and the VW refers to the water embedded in the product being transported 

to other regions, that is, the WF has a feature of ‘static’, while the VW has a feature of ‘dynamic’. 

The essence of WF accounting is still VW accounting, and it can even be said that VW 

accounting is the basis of WF accounting (Hoekstra and Chapagain, 2006). Therefore, the two 

concepts complement each other and it is necessary to analyze both at the same time. For this 

reason, please see Chapter 2 for the bibliometric analysis of virtual water and water footprint 

research. 
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1.3 Research goals and objectives 

1.3.1 Research goals  

Provide scientific support for coordinating conflicts between regions and industrial 

sectors is a general scientific goal. Due to the scarcity of water resources in arid areas, there 

are often conflicts in the demand for water resources between upstream and downstream areas 

or between industrial sectors. It is unlikely to solve the water shortage only by transferring water 

from outside, which requires coordination and cooperation between upstream and downstream 

areas and different industrial sectors within the region. Based on system dynamics and water 

footprint theory, exploring the demand for water resources under different industrial layouts 

and agricultural planting patterns will provide a scientific basis for achieving coordinated and 

balanced development of the entire region.  

Provide scientific support for regional sustainable development is another general 

scientific goal. In the process of social and economic development, blindly pursuing economic 

benefits and ignoring the relationship between water resources and ecological environment 

systems are the root causes of many problems such as deterioration of the ecological 

environment, forest degradation, loss of biodiversity, and groundwater overexploitation. 

Despite the shortage of water resources in arid areas, the water consumption per unit of GDP is 

often higher than the national average. Also, in arid areas, there are always unsound water 

resources protection laws and regulations, which leads to poor water resources management. 

Research on the sustainable utilization of water resources is of great significance to the 

conservation of water resources and to alleviate the deterioration of the ecological environment 

in arid areas, thereby providing a strong guarantee for regional sustainable development. 

1.3.2 Research objectives 

       Zhangjiakou City is located in the northwest of Hebei Province, China, with an annual per 

capita water resource of less than 400 m3. The shortage of water resources not only severely 

restricts the local economic development but also poses a threat to the ecological security of the 

capital of Beijing, because it is the geo-ecological protection barrier and water source for 

Beijing. This research thus takes Zhangjiakou City as an example, and the main research 

objectives are as follows:  

(1) Based on the “Two-zone Planning” of Zhangjiakou City, a system dynamics model 

will be established to simulate the water demand of various departments in Zhangjiakou City 

from 2020 to 2035 under different development scenarios.  



 

13 

(2) According to water footprint theory, the water footprint requirement of the main crops 

in Zhangjiakou City will be estimated with the help of CropWat 8.0, and its characteristics of 

spatial distribution and dynamic changing trends for 2005, 2010, and 2015 will be identified. 

Besides, water footprint food productivity and water footprint economic benefits will be 

investigated.  

        (3) For the first time, from the ecological zone perspective, the distribution and matching 

characteristics of agricultural water footprint and socioeconomic factors (planting area, 

population, and agricultural GDP) in each county (district) using mathematical models, i.e., 

Gini coefficient and imbalance index will be analyzed, and the suitable measures and policies 

for sustainable agricultural development for counties (districts) will be proposed accordingly.  

1.4 Research approaches 

(1) Literature reading and data collection. Mastering the following aspects by reading a 

large number of Chinese and English literature is the basis for this research: a) analyzing the 

main content and main methods of research in arid agricultural areas; b) clarifying system 

dynamics and water footprint research methods and their applications; c) identifying the 

problems facing Zhangjiakou's water resources; d) collecting relevant policy documents and 

data needed by the research 

(2) Scenario analysis. Based on the current situation and future planning of Zhangjiakou 

City, this study sets four development scenarios from the perspectives of water supply and 

demand, and the water demand and water use efficiency in these four scenarios are evaluated.  

(3) Quantitative analysis. The Vensim PLE, CropWat 8.0, and Gini coefficient models are 

used to quantitatively estimate and analyze Zhangjiakou's water demand, agricultural water 

footprint, and the matching features between agricultural water footprint and socioeconomic 

factors. 

(4) Comparative analysis. Many research results, e.g. water demand and agricultural water 

footprint, in this study have undergone comparative analysis from the different spatial and 

temporal scales. 

1.5 Research structure and framework 

1.5.1 Research structure 

This research is divided into seven chapters, as follows: 
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Chapter 1 is the introduction. This chapter mainly introduces the research background, 

state of the art, research goals and objectives, research approaches, and technical framework. 

Chapter 2 is the bibliometric analysis of virtual water and water footprint. Given the 

significance of water footprint theory in this study, this chapter conducts a detailed quantitative 

analysis of the past and current status of virtual water and water footprint research using 

CiteSpace, and the future research trends are further discussed. 

Chapter 3 is the introduction of the study area. This chapter introduces the basic situation 

of Zhangjiakou City, including geographical location, topography, social and economic 

development, and the current status of water resource utilization. 

Chapters 4⁠–⁠6 are the results of this research. Chapter 4 firstly identifies the sensitivity 

factors of water resource utilization in Zhangjiakou City and then conducts scenario simulations 

on the water resources demand of different departments in Zhangjiakou City from 2020 to 2035. 

Chapter 5 investigates the temporal and spatial distribution characteristics of crop water 

footprints in Zhangjiakou City from 2005 to 2015, and then the food production and economic 

benefits of crop water footprints are discussed. Based on the Gini coefficient, Chapter 6 

investigates the temporal and spatial matching characteristics of agricultural water footprint and 

socio-economic indicators (planting area, GDP, and population). 

Chapter 7 is the section of conclusions and future work. This chapter mainly summarizes 

the conclusions of the whole research and proposes future research directions. 
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1.5.2 Research framework 

 

Figure 1.1 Research framework 
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2. Past, present, and future of virtual water and water footprint 

In the face of a huge amount of literature, the qualitative literature analysis method has 

certain limitations of subjectivity and one-sidedness, and cannot comprehensively, objectively, 

and intuitively reflect the research trends and dynamic development of a field. The application 

of modern scientometrics and information metrology technology can conduct a multivariate 

and historical dynamic analysis of massive literature. Mapping Knowledge Domains is one of 

the important methods of document analysis and visualization (Wu et al., 2019). In recent years, 

the development of literature analysis tools represented by CiteSpace has provided an effective 

way for the big data measurement analysis and visual display of literature (Chen, 2018). 

CiteSpace can identify research frontiers, detect research characteristics and evolution trends, 

and identify the interactive relationship between different research topics through co-citing 

literature and collaborative network analysis. Since its release, the software has been widely 

used in document measurement and analysis and data visualization (Zhang et al., 2020). At 

present, it has been gradually applied in the fields of geography, ecology, and the environment 

(Fang et al., 2017; Hu et al., 2019; Zhang et al., 2017; Zhang et al., 2020). 

2.1 Research objectives 

With the help of CiteSpace, this study attempts to use the knowledge map to display the 

research literature of VW and WF, find out the key literature, and make a further summary and 

analysis of the VW and WF research since they were proposed. It aims to reveal the development 

path and research trend of VW and WF more objectively, provide a new perspective for the 

exploration of research frontiers and hot spots in this field, and deliver some innovative clues and 

suggestions for future research.  

The main research objectives are to (1) investigate the development trajectory of VW and 

WF research, including the number of articles and research fields; (2) clarify the team and 

distribution of VW and WF research, including major countries, institutions, and research teams; 

(3) summarize the temporal and spatial dynamics of the research topics and research hotspots 

of VW and WF; and (4) explore the current deficiencies and future development directions of 

VW and WF research. 
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2.2 Materials and methods 

2.2.1 CiteSpace 

CiteSpace was developed by Chen (2014) to analyze and visualize scientific literature. It 

can extract and analyze the hidden information of keywords, topics, authors, institutions, cited 

documents, cited authors, cited journals, and other information, and visually present relevant 

information with the help of visual knowledge maps. Through the convergence of this 

information, it can show the development path of a field and the relationships of 

interdisciplinary fields in a certain period, and fully reveal the research status of this field, which 

helps to understand and predict research hotspots and frontiers. In addition to information 

science and library science, CiteSpace has been increasingly used in economics, sociology, 

geography, and environmental science (Chen, 2018). 

In the knowledge map of CiteSpace, N represents the number of network nodes, and the 

color and size of the nodes represent the year and quantity. E represents the number of 

connections. Modularity is a reflection of network structure. When the value of the modularity 

larger than 0.3, it means that the network community structure is remarkable. The value of 

silhouette is an index for measuring network homogeneity. When it is greater than 0.5, 

indicating that the clustering result is reasonable. Regarding the Keyword Co-appearance 

Analysis map, Li et al. (2017) believe that frequency is the number of occurrences of words in 

the analyzed documents. The distribution of keyword frequency can reflect the frequency of 

citations or the number of articles published in a certain field. The fields with the most published 

articles or the most frequently cited articles are often research hotspots. 

The main indicators used in this article include betweenness centrality and burst terms. 

Betweenness centrality is an indicator that reflects the importance of a node, indicating that the 

node serves as the number of shortest paths between the other two nodes. The higher the 

betweenness centrality of a node, the greater its influence in the network. Generally, nodes 

whose betweenness centrality is greater than or equal to 0.1 are regarded as key nodes. Burst 

terms refer to research terms that appear to have a sudden and rapid increase in frequency, and 

it can more accurately reveal research frontiers than keywords due to their dynamic change 

characteristics over time. The emergence of burst terms indicates that scholars have discovered 

new research fields and research perspectives during this period, and thus appear as academic 

frontiers, which are often shown in red in the knowledge map. 
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2.2.2 Data collection 

The Web of Science Core Collection (WOSCC) is considered as a reliable database for 

visual analysis (Hu et al., 2019). Water footprint and virtual water usually appear in the title of 

research in this field in the form of fixed phrases. Therefore, we first searched for all 

publications containing the phrases “virtual water” or “water footprint” in the title from 1993 

to 2020, and then we manually removed publications unrelated to virtual water and water 

footprint research. Finally, a total of 1,592 publications were retrieved on 22 July 2020. 

2.3 Results 

2.3.1 Characteristics of publication outputs 

In general, the number of annual publications can reflect the importance of a particular 

field and the degree of attention it receives. As shown in Figure 2.1, although VW was proposed 

as early as 1993, the first publication retrieved was in 1998. This is an editorial in which Allan 

(1998) explained the strategic significance of VW from the perspective of “the definition of 

water deficit, the relationship between water and food, and water resources and politics”, and 

VW could be a global way to address regional water deficits. He argued that reducing the rate 

of population growth and water-intensive food consumption is the fundamental solution to 

water shortages. 

It was not until the WF theory was developed in 2002 that clarify the team and distribution 

of VW and WF research gradually began to receive more attention. As of July 2020, there were 

a total of 1,592 publications on VW and WF, showing an increasing trend overall. Among them, 

the annual average number of publications was only 7.4 in 1998–2008, while it was 126.5 in 

2009–2019. It indicates that after 2008, the year that Allan won the Stockholm Water Award 

for virtual water, the research on VW and WF grew rapidly.  

These publications were classified into 12 types, of which there were 1,252 articles, 

accounting for 79%; 143 proceedings papers, accounting for 9%; 35 reviews, accounting for 

2%; and 162 other publications, accounting for 10%.  
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Figure 2.1 The number of publications of virtual water and water footprint 

In terms of disciplines, although VW and WF are concerned with the sustainable use of 

water resources, there are up to 618 publications in the field of environmental science, 

accounting for 46% (Figure 2.2), followed by water resources (371, 28%), engineering 

environmental (241, 18%), and green sustainable science technology (235, 17%). This shows 

that VW and WF have become important methods and indicators in the field of environmental 

impact assessment, and WF has therefore been regarded as one of the environmental footprint 

indicators. 

 

Figure 2.2 The number of publications on different subjects 

2.3.2 Cooperative network analysis 

2.3.2.1 Contribution of country analysis 

As shown in Figure 2.3, a total of 84 countries have published articles in the field of VW 

or WF, and the density of cooperation networks among countries is 0.0813. In terms of 

publication time, the United States published the earliest article in 2001. Other countries with 

earlier publication times include Japan (2002), the United Kingdom (2003), Italy (2003), France 
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(2003), Sweden (2004), the Netherlands (2005), China (2005), and India (2005). China is the 

most productive country with the largest number of 344 articles, accounting for 27%, followed 

by the United States (245, 20%), the Netherlands (139, 11%), and Italy (105, 8%).  

 

Figure 2.3 Cooperative network among countries (the size of the node represents the number of articles, and the 

location of the node represents the time when the earliest article was published) 

In terms of influence, the betweenness centralities of the Netherlands (0.33), USA (0.29), 

China (0.23), Germany (0.22), Sweden (0.11), and the United Kingdom (0.10) are higher than 

or equal to 0.1, which indicates that these six countries played the most influential role in the 

field of VW and WF research. Although the number of articles published in the Netherlands is 

smaller than that of China and the United States, the betweenness centrality is greater than that 

of China and the United States, highlighting the leading role of the Netherlands in this field. 

Through further analysis, a total of 414 funds have supported research on VW and WF over 

the past ten years, of which 377 funds came from China, accounting for 91%, while only 37 

funds came from other countries or institutions, accounting for 9%. This could explain why 

research on VW and WF developed rapidly in China after 2010. 

2.3.2.2 Contribution of the institutions 

In terms of research institutions, of the 11 institutions in the top 10 in terms of the number 

of articles, there are eight in China, and one in the Netherlands, Singapore, and Japan. As shown 

in Figure 2.4, the institution that published the most articles was the University of Twente (94). 
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The institutions ranked second to tenth are the Chinese Academy of Sciences (80), Beijing 

Normal University (55), Hohai University (39) and Northwest Agriculture and Forestry 

University (33), University of Chinese Academy of Sciences (28), National University of 

Singapore (26), China Agricultural University (19), Beijing Forestry University (19), Shanghai 

Jiaotong University (14) and the National Institute for Environmental Studies, Japan (14). In 

terms of influence, only the betweenness centralities of the Chinese Academy of Sciences (0.22) 

and University of Twente (0.17) were higher than 0.1, reflecting the key role of these two 

institutions in the field of VW and WF research. The betweenness centralities of Beijing Normal 

University (0.09) and Hohai University (0.08) were close to 0.1, which is expected to become 

the core institution of VW and WF research. Overall, the density of institutional cooperation 

networks is only 0.0099, indicating that cooperation among institutions is relatively low. 

Through further analysis, it can be seen that closely cooperating institutions are often in the 

same country or city. 

 

Figure 2.4 Cooperative network among institutions 

2.3.2.3 Contribution of authors 

The authors’ co-occurrence analysis can identify cooperation and mutual citation relations 

between core figures and other researchers. In total, 40 authors have published more than 5 

articles (Figure 2.5). Among them, A Y HOEKSTRA published 82 articles, far ahead of second-
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place P T WU (25), which exemplifies the dominant status of Hoekstra, the introducer of the 

water footprint. The authors with the third, fourth, and fifth place are M M MEKONNEN (21), 

A K CHAPAGAIN (18), and LA ZHUO (13). It can be seen that the cooperation between the 

authors is generally poor, mainly concentrated in the same country and department, and presents 

a relatively fixed cooperative relationship. The two most prominent research groups are led by 

A Y HOEKSTRA and P T WU. LA ZHUO is the link between the two groups because she has 

studied in these two institutions. Therefore, strengthening the exchange and learning among 

researchers will help to improve the international cooperation and influence of VW and WF 

research.  

 

Figure 2.5 Collaborative network among authors 

2.3.3 The evolution of the frontier on VW and WF research 

2.3.3.1 Keywords analysis 

Keywords represent the core topics of the article and can better reflect the research hotspots. 

Visual analysis of keywords in a certain field can intuitively present the research frontier and 

dynamic evolution path. As shown in Figure 2.6, in the keywords network for VW and WF 

research, there are 149 nodes, 265 connections, and a density of 0.024. Among them, there are 

31 keywords with an occurrence frequency greater than 50.  

The largest node is “water footprint”, which has appeared 408 times. The nodes closely 

connected to it are virtual water (269) and flow (122), indicating that the WF is the development 

and continuation of VW theory. The second-largest node is “consumption (348)”. The main 

nodes connected to it are resource (248), trade (201), impact (189), environmental impact (78), 

energy (98), and food (69), indicating that research of VW and WF focuses on the consumption 
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of resources, especially energy and food, and its environmental impact has also received 

increasing attention. 

In terms of influence, the node “agriculture” has the highest betweenness centrality of 0.44, 

and it has entered the top 50 keywords since 2004, reflecting that VW and WF research has 

been mainly concentrated in the agricultural sector. Land had the second-highest betweenness 

centrality of 0.40, which entered the top 50 keywords for the first time in 2012. This is because 

the land is another important resource in agricultural production, and agricultural water 

resources research cannot conduct without consideration of factors such as land productivity. 

Climate change (0.29) and sustainability (0.17) also had a greater influence in the keyword 

network, reflecting that research on virtual water and water footprint was increasingly 

concerned with sustainable development in the context of climate change. 

 

Figure 2.6  Keywords with a frequency of more than 50 

2.3.3.2 Burst terms analysis 

Burst terms are extracted from keywords, titles, abstracts, etc., which are often used to 

judge the development trajectory and trend of a field. As shown in Table 2.1, there were 24 

burst terms in the field of VW and WF. These burst terms can be divided into three time periods 

(2003–2010, 2011–2015, and 2016–2020). The three burst terms with the highest strength are 
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virtual water (11.34), water resources management (6.90), and environmental impacts (6.85), 

which respectively represent research hotspots in different periods.  

In 2003–2010, The burst terms reflected that the research hotspots at this stage were mainly 

based on VW theory, focusing on water-food nexus and international trade. The input-output 

analysis was the representative method. In 2011–2015, the burst terms reflected that the research 

hotspots at this stage were dominated by WF theory, mainly focusing on the estimation of crop 

water footprint, environmental impact assessment. Research on the combination of water 

footprint and other footprint indicators at this stage began to attract attention. In 2016–2020, the 

burst terms reflected that research hotspots at this stage were more closely integrated with 

sustainable development, and researchers were trying to apply VW and WF to traditional water 

resources management. The LCA method has received more and more attention at this stage. 

However, the overall duration of each prominent word was relatively short, reflecting that 

systematic research in these fields has not yet been formed. 

Table 2.1 Burst terms of virtual water and water footprint research 

Burst Terms Strength Begin Year End Year 2003—2020 

virtual water 11.34  2003 2008 ■■■■■■□□□□□□□□□□□□ 

food security 5.33  2004 2008 □■■■■■■□□□□□□□□□□□ 

food production 5.75  2005 2014 □□■■■■■■■■■■□□□□□□ 

water supply 3.91  2007 2013 □□□□■■■■■■■□□□□□□□ 

global water resources 3.52  2007 2012 □□□□■■■■■■□□□□□□□□ 

input-output analysis 3.68  2009 2011 □□□□□□■■■□□□□□□□□□ 

international trade 6.26  2010 2012 □□□□□□□■■■□□□□□□□□ 

greenhouse gas 3.52  2011 2012 □□□□□□□□■■□□□□□□□□ 

crop water footprint 3.26  2013 2015 □□□□□□□□□□■■■□□□□□ 

Water footprint assessment 3.53  2014 2016 □□□□□□□□□□□■■■□□□□ 

environmental impacts 6.85  2014 2016 □□□□□□□□□□□■■■□□□□ 

water productivity 6.11  2014 2016 □□□□□□□□□□□■■■□□□□ 

water demand 3.13  2014 2016 □□□□□□□□□□□■■■□□□□ 

agricultural production 4.36  2015 2017 □□□□□□□□□□□□■■■□□□ 

water requirement 4.70  2015 2016 □□□□□□□□□□□□■■□□□□ 

irrigation 5.11  2015 2016 □□□□□□□□□□□□■■□□□□ 

water stress 5.90  2016 2017 □□□□□□□□□□□□□■■□□□ 

water resources management 6.90  2016 2018 □□□□□□□□□□□□□■■■□□ 

water pollution 6.67  2016 2017 □□□□□□□□□□□□□■■□□□ 

sustainable development 6.26  2017 2020 □□□□□□□□□□□□□□■■■■ 

grey water footprint 3.84  2017 2020 □□□□□□□□□□□□□□■■■■ 

total water footprint 5.85  2018 2020 □□□□□□□□□□□□□□□■■■ 

water scarcity footprint 5.48  2018 2020 □□□□□□□□□□□□□□□■■■ 

life cycle assessment 6.11  2018 2020 □□□□□□□□□□□□□□□■■■ 
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2.3.4 Co-citation analysis 

As shown in Figure 2.7, 30 publications have been cited more than 50 times by these 1,252 

articles, of which Hoekstra is the first or corresponding author of 15 articles. In terms of the 

number of citations, the book “The water footprint assessment manual” published in Earthscan 

by Hoekstra et al. (2011) has the highest citations of 421. The book introduces in detail the 

“Goals and Scope of WF Evaluation”, “WF Account”, “WF Sustainability Evaluation” and how 

different stakeholders, such as consumers, farmers, enterprises, and governments, can reduce 

WFs.  

In terms of time, the earliest publication with citations of more than 50 is a book of “Water 

footprints of nations”, which was published by Chapagain and Hoekstra (2004). It is also the 

most influential publication with a betweenness Centrality of 0.6. The book estimated the WF 

of each country in 1997–2001 and concluded that the WF of a country is mainly affected by 

climate conditions, agricultural structure, and consumption patterns. 

In addition to the research group of Hoekstra, the most influential publication is “national 

water footprint in an input-output framework: A case study of China 2002” with third-place of 

betweenness Centrality (0.35), which was published by Zhao et al. (2009). In this article, the 

national WFs of all industry departments were calculated, which was divided into 23 sectoral 

units per the input-output table. On this basis, a new indicator of national WF intensity was 

proposed to evaluate the intensities of water use in different sectors for an accurate water-saving 

strategy. 

In addition to the research group of Hoekstra, the most cited publication is “Assessing the 

environmental impacts of freshwater consumption in LCA”, ranking eighth with 88 citations, 

which is published by Pfister et al. (2009). Based on LCA, this paper has developed a method 

to assess the impact of freshwater consumption on the environment from the three dimensions 

of human health, ecosystem production, and water resources, which is also very useful for 

researchers to assess the environmental impacts of VW and WF. 



 

33 

 

Figure 2.7 Publications cited more than 50 times by these 1,252 articles 

2.4 Discussion 

2.4.1 Problems 

In recent years, research on VW and WF has received extensive attention (Hoekstra et al., 

2019; Zhang et al., 2017). However, it can be known from this study that most of the research 

is mainly conducted in a few nations of China, the United States, and the Netherlands, and even 

in individual institutions and research groups in these countries, and there is little cooperation 

between them. In theory, research of VW and WF should be given more attention in water-

scarcity countries and regions, such as the Middle East, Central Asia, and Africa, because the 

original intention of VW is to provide an alternative method for solving water shortages in 

water-scarce regions (Allan, 1998). It is thus necessary for international academic groups to 

strengthen exchanges and cooperation, especially between developed and developing countries, 

water-rich and water-poor countries (regions), to further promote the development of VW and 

WF. 
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Currently, most research on VW and WF is published in journals in the field of ecological 

environment and sustainable development (Hoekstra, 2017). This reflects that research on VW 

and WF is still in the stage of theoretical exploration and improvement, and has not been widely 

adopted in the optimal allocation of water resources utilization. It is well known that VW, as an 

intangible but actually existing resource, always participates in the flow of water resources. It 

should be incorporated into the water conservancy planning together with physical water to 

promote the rational planning and management of water resources, so as to better meet the needs 

of economic development. “VW flow” is essentially the circulation of the water resources 

“embedded” in the product in the socio-economic system, including blue water and green water. 

Although it is estimated that 80% of water consumption in agricultural production comes from 

green water, green water has not received corresponding attention in traditional water resources 

research. We believe that the “VW flow” phenomenon can be regarded as the secondary 

distribution of water resources, especially for precipitation. Therefore, it should become one of 

the focuses of social water cycle research, and only by incorporating it into the social water cycle 

can VW and WF research is recognized and funded by policymakers. 

The “bottom-up” method has been well applied for calculating crop WF (Lovarelli et al., 

2016), while it has been difficult to estimate the WF of animal products and industrial products. 

This is because various existing hydrological, ecological, and crop models can be directly 

applied to crop WF calculation, and data acquisition is relatively easy. Although the application 

of hybrid technology based on the LCA method in recent years has provided novel ideas for 

solving the VW calculation of animal products and industrial products (Boulay et al., 2013), 

they are still in the initial stage. The quantification of water consumption of animal products 

and industrial products is still the frontier of future research on VW and WF. Regarding the 

“top-down” method, the input-output model is mainly used to investigate VW consumption 

between different industrial sectors and VW flow between regions. However, because this 

method requires input-output tables, it is currently only applicable to some countries and large 

regional studies. Therefore, how to calculate the VW consumption of various industrial sectors 

in small areas lacking input-output data will still be a challenge for future research on VW and 

WF. 

2.4.2 Future research trends 

2.4.2.1 Water–food–energy–land–climate nexus 

Water, energy, and food (WEF) are indispensable resources supporting human life and 

socio-economic development (Liang et al., 2019). In recent decades, the use of water, energy, 
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and food, and their interrelationships have received increasing attention due to population 

growth, urbanization, and changes in the dietary pattern (Conway et al., 2015; Scanlon et al., 

2017). The WEF nexus approach is a novel perspective to address the complex interactions and 

to identify synergies and trade-offs between these sectors (Hanes et al., 2018) (Figure 2.8). It is 

increasingly prominent on the agenda of policymakers (Li and Ma, 2020), partly related to the 

SDGs of the post-2015 agenda (Zhang et al., 2019). 

However, at present, almost all studies on WEF only consider blue water and ignore green 

water. As mentioned before, regarding global food production, green water is the main 

contributor and plays a more prominent role than blue water. In the context of climate change, 

global warming will affect regional water resources and agricultural patterns through changes 

in rainfall and its spatial distribution, thereby affecting food production and energy use 

(Howells et al., 2013). 

Land, as an important input element in agricultural production, has also been included in 

some WEF nexus studies in recent years. Moreover, changes in land use and land cover can 

contribute to climate change by affecting the biogeochemical and biophysical processes of 

ecosystems, and then the climate changes land-use patterns by affecting food production and 

environmental pollution in ecosystems (Arneth et al., 2014). 

Therefore, it is essential to continue to explore the dynamic relationship of “water-food-

energy-land-climate” from the perspective of WF. For example, in the context of climate 

change, we can adjust and simulate crop planting patterns based on land resources and water 

resources endowment (including green water), and explore the relationship between food 

production, economic benefits, energy consumption, and environmental impacts. 
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Figure 2.8 The water–food–energy–land–climate nexus 

2.4.2.2 Footprint family and planet boundary 

In the past two decades, the introduction of the concept of the ecological footprint has driven 

the development of other footprint indicators in the field of resource utilization and environmental 

impact assessment (Vanham et al., 2019). A series of footprint indicators such as water footprint, 

carbon footprint, nitrogen footprint, energy footprint, land footprint, and biodiversity footprint 

came into being (Fang et al., 2015; Mekonnen et al., 2020; Siddik et al., 2020), which have 

substantially enriched the quantitative assessment indicators of the influence of human activities 

on the ecosystem (O’Neill et al., 2018). 

However, the occupation of various natural capitals by human activities and the 

interference with ecosystems are not independent of each other. Therefore, Galli et al. (2012) 

conducted a detailed comparison of ecological footprint, water footprint, and carbon footprint 

for the first time in 2012, and the concept of footprint family was proposed. The footprint family 

is a series of index clusters, which track the pressure of human activities on the ecosystem from 

multiple perspectives. Subsequently, Čuček et al. (2012) reviewed the definition, methods, and 

measurement units of various types of footprint indicators comprehensively, and proposed a 

series of social and economic footprint indicators in addition to environmental indicators. 

Hoekstra and Wiedmann (2014) put forward the concept of maximum sustainable footprint, 

which provides a reference basis for quantitative assessment of the environmental sustainability 

of human activities. Based on the theory of LCA, Ridoutt et al. (2015) argued that all footprint 

indicators should be able to support the comprehensive evaluation of environmental impact 
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characterized by a single value. The concept of footprint family measures the resource 

occupancy and the environmental impacts of human activities from the perspective of 

consumption, but most footprint indicators lack corresponding carrying capacity indicators that 

can be used to assess whether they exceed the threshold of sustainable development. 

To explore whether the increasingly serious resource and environmental problems such as 

carbon emissions, water resource utilization, and climate change have exceeded the sustainable 

“boundary”, Rockstrom et al. (2009) proposed the concept of planetary boundaries from the 

perspective of carrying capacity. Based on this concept, the study for the first time clarified the 

biophysical critical thresholds or tipping points of several global resource and environmental 

issues and received extraordinary attention and discussion (Erb et al., 2012; Lewis, 2012). The 

concept of planetary boundary makes up for the shortcomings of environmental carrying 

capacity indicators that have not been comprehensive enough for a long time. Due to their 

respective advantages and strong complementarities (Figure 2.9), the combined research of the 

footprint family and the planetary boundary has gained momentum in recent years (Dao et al., 

2018; Li et al., 2019; Vanham et al., 2019).  

Therefore, in the future, it is not only imperative to strengthen the research on the 

integration of WF and other footprint indicators, but also need to measure the “critical threshold” 

of sustainable water use from the perspective of VW and WF. 

 

Figure 2.9 Sustainability assessment based on footprint family and planetary boundaries 
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2.4.2.3 Material metabolism 

The interplay between human activities and ecosystems in the given region is likened to a 

metabolic process of “material exchange and energy transfer” (Wolman, 1965). The most 

commonly used method of material metabolism research is material flow analysis (MFA), which 

involves the source, path, and sink of material circulation (Hashimoto and Moriguchi, 2004). 

Material metabolism research investigates the natural resources entering the socio-economic 

system and the pollutants discharged into the eco-environment system through material flow 

analysis, thereby evaluating the interaction between human activities and the natural environment. 

The material flow account is currently a more systematic account system for measuring the use 

of human material and its impact on the natural environment. It has been applied at global, 

national, and city scales (Allesch and Brunner, 2017; Condeixa et al., 2017; Song et al., 2019; 

Sun et al., 2017) and has formed a relatively complete theoretical method system. 

The social water cycle is defined as the circulation process of water in the socio-economic 

system (Qin et al., 2014), which generally includes four subsystems: water supply, water use, 

drainage, and sewage reuse. There is a large body of water transfer in the social water cycle is 

in the form of VW (D'Odorico et al., 2020), and closely related to socioeconomic development. 

The exploration of the mechanism of VW flow is a pivot of the study of the social water cycle, 

and it is also the entry point to truly understand the driving mechanism and evolution of the 

social water cycle. 

However, in previous material metabolism studies, VW was basically not considered in the 

water resource account and the amount of water (gray WF) used to absorb the pollutants carried 

in industrial wastewater and domestic sewage was not estimated. In fact, physical water 

consumption only accounts for a small part of the regional water cycle, while VW hidden in 

products or services accounts for more than 90% (Graham et al., 2020). Therefore, in the future, 

it is vital to introduce material flow analysis methods into the study of regional VW and WF 

(Figure 2.10) to make up for the deficiencies of traditional physical water and virtual water 

separate evaluation. Based on the theory of material metabolism, integrating VW and physical 

water into the evaluation of the social water cycle, studying the complex coupling mechanism 

of them, and exploring its driving mechanism will still be the frontiers of VW and WF research. 
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Figure 2.10 The metabolic process of regional physical and virtual water 

2.4.2.4 Telecoupling sustainability assessment 

Sustainable development is the biggest challenge facing humanity in the 21st century (Wu, 

2013). It is necessary to comprehensively consider the three dimensions of economy, society, 

and the environment to measure the sustainable development level of a region (Figure 2.11). 

With regard to water use, this means not only ensuring the domestic water demand of different 

interest groups (social equity) and the normal operation of economic production (economic 

efficiency) but also controlling water pollution within standard thresholds (environmental 

limits).  

In the modern world, distant regions are interconnected and influenced by one another in 

many ways (Liu et al., 2013), and resource allocation is driven by forces of supply and demand 

in the market economy system. The “social-economic-environmental” system in a region is 

inextricably linked to the “social-economic-environmental” system in other regions through 

trade (Figure 2.11). For example, the China-US trade war has not only led to rising consumption 

costs for both sides, and it also has caused or would cause major impacts on the agricultural 

structure, farmers’ income, and ecosystem services in other countries. To understand this kind 

of interconnected effect, the framework of telecoupling was proposed by Liu et al. (2013), 

which is employed to evaluate the social, economic, and environmental interactions between 

distant human-natural systems. This is considered to be a new perspective to solve 

multidimensional challenges facing global sustainable development (Hull and Liu, 2018).  
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In terms of VW and WF research, Chapagain et al. (2006) assessed the influence of global 

consumption of cotton products on water resources in cotton-producing countries from 1997 to 

2001 and concluded that about 84% of cotton WF in the EU 25 countries came from outside, 

with significant effects in Uzbekistan and India. Chapagain and Orr (2009) investigated the 

impact of Spanish tomato consumption in the EU on Spanish freshwater resources and argued 

that this impact has local features, which depend on the local agro-climatic characteristics, 

water resources, and total yield of tomatoes. However, these studies were only based on the 

perspective of water resource utilization, without considering economic benefits and 

environmental impacts. Therefore, as the concept of telecoupling has received increasing 

attention in recent years, it should and will become the new frontier of VW and WF research.  

 

Figure 2.11 Telecoupling framework for research on virtual water and water footprint 

2.5 Conclusions 

Based upon the Web of Science Core Collection, this study employs CiteSpace to 

quantitatively analyze and visualize information about countries, institutions, and authors that 

have conducted VW and WF research over the past two decades, and the changing 

characteristics of research hotspots are analyzed through keywords and burst terms. On this 

basis, the future research frontiers of VW and WF are further predicted. The main results are as 

follows: 

As of July 2020, there were 1,592 publications on VW and WF, showing an increasing 

trend overall. The annual average number of publications was only 7.4 in 1998–2008, while it 

was 126.5 in 2009–2019. Among them, up to 618 publications belong to environmental science, 
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accounting for 46%, followed by water resources (371, 28%), engineering environmental (241, 

18%), and green sustainable science technology (235, 17%), which shows that VW and WF 

have become important methods and indicators of environmental impact assessment. 

In total, 84 countries have published research articles on VW and WF. Although China was 

the most productive country with a total of 344 articles, and 8 of the 11 institutions with the 

most articles were in China, the Netherlands had the largest influence with a betweenness 

centrality of 0.33, indicating its leading position. Hoekstra has published 82 articles, far ahead 

of second-place P. T. WU (25), and he was also the first author, corresponding author, or co-

author of half of the publications that have been cited more than 50 times by 1,252 articles, 

which exemplifies his dominant role in the field of VW and WF. 

It is essential to strengthening cooperation between developed and developing countries, 

water-rich countries (regions), and water-poor countries (regions), and to incorporate VW into 

social water cycle research. Besides, future research should also be conducted from the 

perspectives of the “water-food-energy-land-climate nexus”, “footprint family and planet 

boundary”, “material metabolism theory”, and “telecoupling sustainability assessment”. 
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3. Study area  

3.1 Geographic features 

Zhangjiakou City is located in the northwest of Hebei Province, China. Its coordinates are 

39°30'-42°10'N, and 113°50'-116°30'E (Figure 3.1). The elevation of Zhangjiakou City 

decreases from northwest to southeast. The Yinshan Mountains divide the city into two different 

geomorphic units, namely the Bashang area and the Baxia area. The Bashang area is part of the 

Inner Mongolia Plateau, with an average elevation of 1,368 m. It includes Chabei District, 

Saibei District, Guyuan County, Kangbao County, Zhangbei County, and the northern part of 

Shangyi County, with a total area of 11,656 km2, accounting for about 31.5%. The Baxia area 

includes Qiaoxi District, Qiaodong District, Xuanhua District, Xiahuayuan District, Wanquan 

District, Chongli District, Huaian County, Huailai County, Yu County, Yangyuan County, 

Zhuolu County, Chicheng County, and the southern part of Shangyi County, with an average 

altitude of 681 m. It has a total area of 25,309 km2, accounting for about 68.5%. The Bashang 

area is characterized by a lower temperature that is suitable for planting crops with a shorter 

growing time, such as vegetables; while the Baxia area is characterized by a higher temperature 

that is suitable for planting crops with a longer growing time, such as corn.  

There are five water systems in Zhangjiakou City: Yongding River system, Chaobai River 

system, Daqing River system, Neilu River system, and Luan River system. The Yongding River 

system has 108 rivers in Zhangjiakou City, with a total drainage area of 17,924 km², accounting 

for 48.7%. Yanghe River and Sanggan River are its main tributaries, which are the main water 

sources for economic development in Zhangjiakou. The Chaobai River system is mainly 

composed of two tributaries of the Bai River and the Hei River, with a drainage area of 5,763 

km², accounting for 15.6%. The Bai River and Hei River flow into Miyun Reservoir in Beijing 

after confluence in Yanqing County. The Daqing River Basin covers an area of 1,159 km², 

accounting for 3.1%. The Shandian River basin covers an area of 971 km², accounting for 2.6%. 

The Neilu River system is distributed in the Bashang area, with a drainage area of 11,021km², 

accounting for 29.9%. 
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Figure 3.1 The location of Zhangjiakou City 

3.2 Socioeconomic characteristics 

3.2.1 Population 

From 1949 to 2015, the total registered population of Zhangjiakou City increased from 

2.33 million to 4.69 million. Before 2000, the population grew rapidly, with an average annual 

growth of 43,000, while after 2000, the population growth rate slowed down, with an average 

annual growth of 13,000. The proportion of the non-agricultural population has been rising, 

accounting for about 36% by 2015 (Table 3.1). In terms of spatial distribution, the population 

density of the Bashang area is generally greater than that of the Bashang area (Zhangjiakou 

Economic Yearbook, 2000-2016).  
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Table 3.1 Total population (TP) and share of non-agricultural population (SNAP) from 2005 to 2015 

Regions 
2000 2005 2010 2015 

TP SNAP TP SNAP TP SNAP TP SNAP 

Qiaodong District 248,321 83% 263,203 84% 277,707 85% 283,304 87% 

Qiaoxi District 243,567 86% 234,781 86% 238,111 87% 241,585 91% 

Xuanhua District  290,537 81% 299,618 82% 315,270 85% 320,757 84% 

Xiahuayuan District 68,955 54% 67,806 57% 67,890 60% 66,779 64% 

Xuanhua County  299,441 8% 297,731 16% 309,285 16% 307,344 19% 

Zhangbei County 372,187 10% 372,836 17% 384,322 20% 385,580 19% 

Kangbao County 283,276 8% 280,630 10% 280,547 16% 274,268 16% 

Guyuan County 231,334 9% 224,187 12% 232,150 13% 231,512 16% 

Shangyi County 190,913 11% 189,749 14% 194,338 24% 191,619 23% 

Yu County 461,284 10% 462,710 14% 488,930 16% 502,841 24% 

Yangyuan County 276,129 10% 275,120 17% 280,899 28% 274,983 31% 

Huaian County 246,498 11% 242,013 23% 246,564 33% 246,448 31% 

Wanquan County  218,474 11% 219,605 19% 226,253 18% 225,021 30% 

Huailai County 331,757 18% 338,634 28% 352,526 30% 359,896 37% 

Zhuolu County 331,177 12% 330,677 15% 345,784 16% 352,159 25% 

Chicheng County 280,801 8% 280,777 9% 293,867 17% 299,324 23% 

Chongli County  123,269 12% 122,824 19% 125,217 21% 126,649 24% 

Zhangjiakou City 4,497,920 24% 4,502,901 29% 4,659,660 33% 4,690,069 36% 

Note:  means that, in 2016, Wanquan County and Chongli County were renamed Wanquan District and Chongli District 

respectively, and Xuanhua District and Xuanhua County were combined as new Xuanhua District. 

3.2.2 Economy 

From 1949 to 2016, Zhangjiakou's GDP increased from 0.12 billion to 146.6 billion yuan. 

The share of the primary, secondary, and tertiary industries changed from 64%: 12%: 24% to 

18%: 37%: 45%. The rapid development of the tertiary industry enabled it to replace the 

secondary industry as a pillar industry in Zhangjiakou in 2015 (Table 3.2). In recent years, 

agricultural development in Zhangjiakou City has made considerable progress. From 2005 to 

2016, the output value of the primary industry has increased from 15.3 billion yuan to 26.6 

billion yuan (Zhangjiakou Economic Yearbook, 2017). 
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Table 3.2 GDP of Zhangjiakou City from 1949 to 2016 

Year 
GDP (10,000 yuan) 

GDP per capita (yuan) 
Total Primary Secondary Tertiary 

1949 12,044 7,690 1,426 2,928 52 

1955 33,044 15,319 8,869 8,856 124 

1960 61,646 15,018 34,924 11,704 215 

1965 46,066 20,810 13,031 12,225 151 

1970 85,897 37,068 32,417 16,412 251 

1975 111,665 45,547 42,066 24,052 302 

1980 123,205 33,186 58,971 31,048 321 

1985 245,081 79,848 106,458 58,775 607 

1990 550,216 130,803 244,895 174,518 1,313 

1995 1,494,939 360,403 640,417 494,119 3,448 

2000 2,263,400 333,833 924,669 1,004,898 5,066 

2005 4,258,052 651,225 1,859,269 1,747,558 10,185 

2010 9,664,158 1,529,389 4,151,817 3,982,952 22,517 

2015 13,635,443 2,436,682 5,455,837 5,742,924 30,840 

2016 14,659,911 2,660,151 5,471,658 6,528,102 33,142 

3.3 Water resources and water use 

3.3.1 Water resources 

Zhangjiakou City belongs to an arid and semi-arid area. The annual per capita water 

resources are less than 400 m³, about one-fifth of the national average, which is in an 

internationally recognized state of extreme water shortage (the annual per capita water 

resources are less than 500 m³). From 1956 to 2016, the average annual rainfall in Zhangjiakou 

City was 408 mm, and the amount of evaporation (about 2,000 mm) was 4-5 times that of 

rainfall. Therefore, the shortage of water resources has become an important factor in restricting 

its social and economic development. 

Surface water resources refer to the dynamic water volume of surface water bodies such 

as rivers, lakes, and glaciers that are formed by local precipitation and can be renewed year by 

year, while groundwater resources refer to the dynamic water volume of groundwater that 

participates in the water cycle and can be renewed year by year. As shown in Table 3.3, 

according to the "Water Resources Evaluation Report of Zhangjiakou City, Hebei Province", 

from 1980 to 2013, it is calculated that the average surface water resources were 1.162 billion 

m3 and the average groundwater resources were 1.191 billion m³. Due to the mutual 

transformation between surface water and groundwater, after deducting the repetitive amount 

of mutual transformation, the multi-year average water resources of Zhangjiakou City were 

1.555 billion m³. 
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Table 3.3 Multi-year average water resources in Zhangjiakou City 

  
Area 

(km2) 

Precipitation 

(million m3) 

Surface water 

(million m3) 

Groundwater 

(million m3) 

Total water resources 

(million m3) 

Kangbao County 3,336 1,159 19 68 74 

Zhangbei County 4,185 1,609 74 154 182 

Guyuan County 3,646 1,490 69 99 142 

Shangyi County 2,649 1,016 72 56 92 

Huaian County 1,757 714 55 85 103 

Wanquan County 1,164 473 44 39 54 

City area 780 302 25 19 48 

Chongli District 2,347 1,072 71 38 63 

Xuanhua District 2,146 878 66 101 113 

Huailai County 1,799 694 69 100 97 

Zhuolu County 2,802 1,251 164 145 150 

Yu County 3,185 1,292 147 108 161 

Yangyuan County 1,839 687 46 58 59 

Chicheng County 5,330 2,500 241 122 214 

Zhangjiakou City 36,965 15,127 1,162 1,192 1,555 

3.3.2 Water supply and water use 

According to the Zhangjiakou Water Resources Bulletin (2005-2017), from 2005 to 2017, 

the total water supply in Zhangjiakou City dropped from 1.089 billion m³ to 905 million m³ 

(Table 3.4). In 2017, the water supply volume of surface water, groundwater, and other water 

sources were 235, 651, and 20 million m3, respectively, that is, groundwater was the main 

source of water supply. As shown in Table 3.4 and Figure 3.2, from 2005 to 2017, farmland 

irrigation water consumption accounted for the largest proportion of Zhangjiakou's total water 

consumption, but it dropped from 71% to 68%; industrial water consumption dropped from 14% 

to about 9%; and residential water consumption has increased significantly in recent years, from 

7% to 12%.   

In general, in terms of water supply, Zhangjiakou City is still facing problems such as the 

imbalance of the water supply structure and excessive proportion of groundwater sources. In 

recent years, the planting area of high water-consuming crops has expanded rapidly from 

66,800 ha in 2000 to 103,300 ha in 2015. Agricultural irrigation is the main factor of 

groundwater overexploitation, and the expansion of irrigation area has further aggravated the 

excessive exploitation of groundwater. In terms of water use, farmland irrigation uses a lot of 

water, and the proportion of agricultural water use is still higher than the national average, 

which also means that the agricultural sector has a larger potential for water-saving. Besides, 

the current per capita domestic water use is relatively low. With the continuous progress of 
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urbanization and changes in residents’ lifestyles, it is expected that domestic water demand will 

increase. 

Table 3.4 Water supply and water use in Zhangjiakou City from 2005 to 2017 

Year 

Water supply (10,000 cubic meters) Water use (10,000 cubic meters) 

Surface 

water 
Groundwater 

Other 

sources 

Total 

supply 
Primary Secondary Tertiary Domestic  Environment 

Total 

use 

2005 35,774 72,121 1,036 108,931 84,292 15,302 501 8,709 127 108,931 

2006 33,801 78,373 1,321 113,494 84,955 17,406 596 10,444 94 113,494 

2007 33,918 81,401 158 115,477 87,608 18,252 869 8,513 234 115,477 

2008 32,718 80,249 158 113,125 85,546 17,531 1,029 8,055 964 113,125 

2009 27,206 79,879 1 107,085 82,798 14,094 898 8,822 473 107,085 

2010 27,026 77,768 1 104,795 82,466 12,500 1,056 8,144 628 104,795 

2011 28,014 77,284 1,035 106,333 82,605 13,041 1,045 9,327 315 106,333 

2012 27,537 76,262 1,768 105,568 80,145 13,597 1,353 9,675 798 105,568 

2013 27,535 71,846 1,710 101,091 75,437 12,942 1,948 9,663 1,102 101,091 

2014 26,444 67,639 1,335 95,418 71,485 11,260 1,998 9,691 1,183 95,418 

2015 24,665 67,562 1,621 93,848 70,283 10,074 1,699 10,303 1,469 93,848 

2016 24,764 64,988 1,593 91,330 67,530 9,522 1,588 11,225 1,465 91,330 

2017 23,468 65,067 1,969 90,504 67,112 8,738 1,777 11,321 1,557 90,504 

 

Figure 3.2 Water use of different sectors in Zhangjiakou City from 2005-2017 

3.4 Future plan of development 

Zhangjiakou and Beijing are connected by the Taihang Mountains-Yanshan Mountains. 

Guanting Reservoir and Miyun Reservoir are two important water sources in Beijing. 96% of 

the water volume of Guanting Reservoir and 46% of the water volume of Miyun Reservoir 

comes from the river system located in the upper reaches of Zhangjiakou City. Therefore, the 

natural geographical pattern determines the important position of Zhangjiakou City in 

ecological protection, that is, protecting the ecological environment of Zhangjiakou means 
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protecting the ecological environment of the capital Beijing. In January 2017, when Chinese 

President Xi Jinping inspected Zhangjiakou, he requested that Zhangjiakou be developed into 

the capital's water conservation functional zone and ecological environment support zone. Since 

then, on the basis of other regional economic development and environmental protection plans, 

the government of Zhangjiakou City formulated a future development plan, namely the "Capital 

Water Conservation Functional Zone and Ecological Environment Support Zone Construction 

Planning (2019-2035)", referred to as the “Two-zone Planning”. 

The plan put forward clear and rigid requirements for the social and economic 

development and ecological environmental protection indicators of Zhangjiakou City in the 

next 15 years. The main indicators are shown in Table 3.5. In terms of water resource utilization, 

agricultural water consumption should be reduced from 650 million m3 in 2018 to 600 million 

m3 in 2022, and then be controlled within 600 million m3 by 2035. Industrial water consumption 

should not exceed the level of 2018, and then be firmly controlled within 80 million m3. 

Domestic water consumption should be controlled within 160 million m3 in 2022 and 200 

million m3 in 2035 respectively. 

Table 3.5 The main indicators of the “Two-zone Planning” of Zhangjiakou City 

Indicators 
Year 

2018 2022 2035 

1 Groundwater extraction volume (100 million m3) 6.3 5.8 5.8 

2 Agricultural water use (10 million m3) 6.5 6 6 

3 Industrial water use (100 million m3) 0.8 0.8 0.8 

4 Domestic water use (100 million m3)  1.3 1.6 2 

5 Other water use (100 million m3)  0.2 0.4 0.4 

6 Total water use (100 million m3)  8.8 8.8 9.2 

7 Forest area (10,000 mu1)  2,157  2,760  3,035  

8 Grassland area (10,000 mu)  1,595  1,695  1,775  

9 Wetland area (10,000 mu) 345 346 351 

10 PM2.5 (μg/m3) 29 252  25 

11 Ammonia nitrogen emissions (10,000 tons) 0.47 0.42 0.3 

12 Surface water quality compliance rate (%) 100 100 100 

13 Urbanization rate (%) 57.24 ≥ 60 - 

14 The per capita disposable income of urban residents (10,000 yuan) 3.12 4 10 

15 The per capita disposable income of rural residents (10,000 yuan) 1.15 1.6 4.6 

16 The share of tertiary industry GDP (%) 51.5 55 ≥ 60 

17 Total energy consumption (10,000 tons of standard coal) 1,445  1,623  1,879  

18 Energy consumption per 10,000 yuan GDP (tons of standard coal) 0.93 0.75 - 

19 Water consumption per ten thousand yuan GDP (ton) 57.2 41 - 

20 The share of renewable energy in total energy consumption (%) 23 30 50 

Note: 1.1ha = 15 mu; 2. Only for Winter Olympic area 
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4. Sensitive factors identification and scenario simulation of water demand 

4.1 Research problem and objectives 

There has been a body of studies on the system dynamics (SD) model in water resources 

simulation at various scales, from regional (Jeong and Adamowski, 2016; Kotir et al., 2016; 

Liu et al., 2015; Sahin et al., 2015; Susnik et al., 2012; Wei et al., 2016) to national and global 

(Duran-Encalada et al., 2017; Kelly et al., 2019; Sun et al., 2017). However, most of the studies 

have not been closely integrated with the policies and plans of local governments, resulting in 

poor feasibility of the research results and weak guidance for local sustainable development 

practices. Therefore, Zhangjiakou, a city with extremely scarce water resources, was selected 

as the study case in this study to make up this gap. 

Zhangjiakou City has less than 400 m3 of water per capita per year, which has not only 

severely constrained the economic development but also threatened regional ecological security, 

due to it is the geo-ecological barrier and water sources for the capital Beijing. In 2017, it was 

identified as “the water conservation function zone and ecological environment support zone 

of the capital city” by the central government of China. In 2019, the Chinese government further 

formulated a medium-term plan for the development of Zhangjiakou City (2019-2035), referred 

to as the “Two-zone Planning”, which placed strict and specific restrictions on water 

consumption and water use efficiency in various sectors, including agriculture, industry, and 

households. Moreover, the 2022 Winter Olympic Games will be jointly held in Beijing and 

Zhangjiakou, making the task of water-saving and water efficiency improvement more 

important and urgent for the local government policymakers. Therefore, the research objectives 

of this study are: (1) Identify and analyze the impact of different factors on the water demand 

of Zhangjiakou City. (2) Establish a system dynamics model to simulate the water demand of 

various departments in Zhangjiakou City from 2020 to 2035 under the four development 

scenarios. (3) Estimate the pressure on water resources under the four development scenarios. 

The research results are expected to provide specific and feasible guidance for the 

implementation of the “Two-zone Planning”, and to contribute to the sustainable use of water 

resources in Zhangjiakou City and its surrounding areas. In addition, the research also aims to 

increase researchers' awareness of integrating with local development policies when simulating 

water demand, thereby enhancing the practicality of the research results.  
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4.2 Methods and data sources 

4.2.1 Methods  

4.2.1.1 System dynamics simulation 

The SD model consists of four types of variables: state variables, rate variables, auxiliary 

variables and constants, and a series of equations reflecting the relationship between these 

variables. The simulation process can be summarized as five steps (Figure 4.1): (1) determine 

the research objective; (2) establish the model, determine the system boundary and the causal 

relationship between the variables; (3) model validation, qualitative and quantitative test; (4) 

scenario simulation, determine the control variables (sensitivity analysis) and set different 

development scenarios; (5) analysis of results. 

 

Figure 4.1 The modeling process of system dynamics 

4.2.1.2 Zhangjiakou system dynamics model 

(1) Water use structure 

The water cycle usually consists of water supply, water use, as well as wastewater treatment 

and reuse. Figure 4.2 simply shows the causal relationship between them in Zhangjiakou City. 
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Water resources include local water and inbound water, while the available water resources 

need to be reduced by outbound water and environmental flows. Environmental flow refers to 

the amount of water that is necessary to maintain the ecological and environmental services of 

rivers and lakes. Water use mainly includes five sectors from the three sub-systems of 

population, economy, and ecological environment, that is, domestic, agriculture, industry, 

urban public, and eco-environment. Finally, some of the wastewater from the population and 

economic sub-systems can be reused after treatment. All of these components are dynamically 

interrelated with each other. 

 

Figure 4.2 Relationships of water resource subsystem and other subsystems in Zhangjiakou City 

(2) Establishment of model 

Based on the development status and “Two-zone Planning”, Vensim-PLE, a classical 

software of system dynamics, is used to establish the simulation model of water demand in 

Zhangjiakou City, abbreviated as ZSD (Figure 4.3). The simulation is from 2005 to 2035, and 

the modeling time step is 1 year, where the strategic planning time is from 2015-2035. It 

consists of four subsystems: population, economic, agriculture (irrigation land, forestry, and 

animal husbandry), and water (water supply, water demand, and water pollution and reuse), 

including 8 status variables, 7 rate variables, 39 auxiliary variables, 8 table Functions (lookup) 

and 30 constants, as well as 54 equations. The variables and their relationships can be found in 

Table S1. 
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Figure 4.3 System dynamics model of Zhangjiakou City 

4.2.1.3 Model evaluation and sensitivity analysis 

(1) Model evaluation 

In this study, the absolute relative error (ARE) is employed for model performance 

validation. 

𝐴𝑅𝐸 = |
(𝑆𝑖−𝑅𝑖)

𝑅𝑖
| (4-1) 

where Ri and Si represent the observed value and the simulated value of variable i, respectively. 

(2) Sensitivity analysis 

To identify which variables (constants) in the ZSD model have greater impacts on the water 

demand of Zhangjiakou City, we use the “univariate” method in the sensitivity analysis function 

of Vensim DSS, that is, the value of each variable is changed independently, while the values 

of others are held constant. Sensitivity analysis not only helps us to select key variables for 
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scenario setting scientifically but also to improve the understanding of the relationships between 

input and output variables in the SD model, which will contribute to the formulation of policies 

(Susnik et al., 2012). 

4.2.1.4 Water stress index (WSI) 

There have been many methods for regional water stress assessment. The ratio of water 

demand to water availability can be a relatively straightforward reflection of whether the 

number of water resources is surplus or deficit. Therefore, it is used in this study to measure the 

pressure of water resources in different development scenarios. The formula is: 

𝑊𝑆𝐼 =
𝑇𝑊𝐷

𝑇𝐴𝑊
  (4-2) 

where TWD and TAW represent the total water demand and the total available water, 

respectively. When WSI is greater than 1, it means water resources are in a state of deficiency; 

when WSI is less than 1, it means water resources are in the surplus state; when WSI is equal to 

1, it means water resources supply and demand are just balanced. 

4.2.2 Data sources 

The basic socio-economic data mainly come from the Zhangjiakou Economic Yearbooks 

(2006-2016) (The People's Government of Zhangjiakou City, 2006-2016), including urban and 

rural population, output values of various sectors and so on. Water resources, irrigation 

farmland, and livestock are collected from the Water Resources Bulletins (2005-2016) 

(Zhangjiakou Water Resource Bureau, 2006-2016), including water supply, water consumption 

and water efficiency in various sectors, and the areas of different irrigation land. In addition, 

the data required for the simulation phase (2015-2035), except the initial values same as 2015, 

such as urbanization rates, economic development rates, and water quotas for various 

departments involved in the model, are set according to government reports, “Two-zone 

Planning” and local standards “Norm of water intake (2016)” of Hebei Province. 

4.3 Results  

4.3.1 Model validation 

To conduct the model validation, the water demand from 2005-2015 is simulated, with 

2005 as the base year. Table 4.1 shows the absolute relative errors (AREs) between the 

simulated and observed values for 2010 and 2015. The AREs of most variables are within 10%, 

indicating that the ZSD model has a good performance to reflect the behavior of the simulated 

system. Here, the ARE of industrial GDP is greater than 10% in 2015, that is because the 
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industrial GDP used in the Zhangjiakou Economic Yearbook (2016) is very likely a mistake. 

According to the annual government report, the industrial growth rate in 2015 was 4.2%, 

however, the industrial GDP in the Zhangjiakou Economic Yearbook (2016) was 44.17 billion 

yuan, even lower than 47.56 billion yuan in 2014. If this is adjusted according to the industrial 

growth rate in the government report, the industrial GDP in 2015 should be 49.56 billion yuan. 

Table 4.1 Absolute relative errors (AREs) of the main variables between the simulated and observed values 

Variables 

2010 
 

2015 

Simulated 

value 

Observed 

value 
ARE 

 

Simulated 

value 

Observed  

value 
ARE 

Total population (104 persons) 462 466 0.9% 
 

474 469 1.0% 

Rural population (104 persons) 309 314 1.4% 
 

303 298 1.6% 

Urban population（104 persons） 152 152 0.2% 
 

171 171 0.1% 

Total GDP (108 yuan) 961.3 966.4 0.5% 
 

1495.3 1363.5 9.7% 

Agricultural GDP(108 yuan) 143.1 152.9 6.4% 
 

250.2 243.7 2.7% 

Secondary industry GDP (108 yuan) 399.3 415.2 3.8% 
 

655.2 545.6 20.1% 

Industrial GDP(108 Yuan) 338.9 352.5 3.9% 
 

544.1 441.7 23.2% 

Construction industry GDP (108 yuan) 60.5 62.7 3.6% 
 

111.1 104.9 5.9% 

Tertiary industry GDP(108 yuan) 418.8 398.3 5.1% 
 

589.8 574.3 2.7% 

Domestic water demand(108 m3) 0.8132 0.8144 0.2% 
 

1.0435 1.0323 1.1% 

Rural domestic water demand(108 m3) 0.4405 0.4426 0.5% 
 

0.4647 0.4583 1.4% 

Urban domestic water demand(108 m3) 0.3727 0.3718 0.2% 
 

0.5788 0.5768 0.4% 

Agriculture water demand (108 m3) 8.2422 8.2465 0.1% 
 

7.0342 7.0282 0.1% 

Industrial water demand (108 m3) 1.2031 1.2500 3.8% 
 

1.0882 1.0074 8.0% 

Construction water demand (108 m3) 0.0357 0.0372 4.1% 
 

0.0255 0.0244 4.7% 

Tertiary water demand(108 m3) 0.0712 0.0683 4.2% 
 

0.1475 0.1455 1.3% 

Environment water demand (108 m3) 0.0623 0.0628 0.7% 
 

0.1483 0.1469 0.9% 

Urban public water demand (108 m3) 0.1069 0.1056 1.2% 
 

0.1730 0.1699 1.8% 

Total water demand(108 m3) 10.4276 10.4794 0.5% 
 

9.4872 9.3848 1.1% 

Total wastewater discharge(108 m3) 0.8228 0.8420 2.3% 
 

0.9862 0.9357 5.4% 

4.3.2 Sensitivity analysis 

Based on the ZSD model and other studies on water demand simulation (Li et al., 2019; 

Sun et al., 2017; Wei et al., 2012), twelve constant variables that may have the strongest impacts 

on the total water demand are selected. To identify the extent of the impacts, these 12 variables 

are further analyzed using the sensitivity analysis function in Vensim DSS. The initial value of 

each variable is the same as the observed value in 2015, and its value range is determined 

through historical data and related planning (especially the “Two-zone Planning”). The results 

are shown in Figure 4.4, where yellow, green, blue, and gray represent confidence intervals of 
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0-50%, 50%-75%, 75%-95%, and 95%-100%, respectively. The greater the bandwidth in the 

graph, the more sensitive the total water demand is to the variables. 

It is obvious that different variables have very different impacts on total water demand, 

which can be divided into four categories: 

(1) Per capita water quota. The urbanization rate of Zhangjiakou City was 52% in 2015, 

and the proportion of the urban population will further increase as the urbanization process 

continues. In addition, the per capita water quota for urban residents is 50-140 m3/day, while it 

is only 40-60 m3/day for rural. Therefore, the total water demand is more sensitive to the per 

capita water quota of urban residents than to that of rural residents. 

(2) GDP growth rate. The sensitivities of total water demand to the growth rate of GDP of 

different sectors from large to small are industry, tertiary industry, and construction. There are 

two main reasons: First, the output values are significantly different, and the output value of the 

construction industry is much smaller than that of the industrial and tertiary industries. Second, 

the water consumption per unit of industrial output value is 12-23 m3 per 10,000 yuan, while it 

is less than 3 m3 per 10, 000 yuan for the tertiary industry and construction industry. 

(3) Irrigation area and water quota per ha. Although the irrigated land and the vegetable 

field have the same ranges of water quota, both are 1500-4500 m3/ha, and the irrigated land 

area reduction rate range (-0.05, 0) is smaller than the vegetable field area reduction rate range 

(-0.1, 0), but the total water demand is more sensitive to the area reduction rate and water quota 

of irrigated land than to those of the vegetable field. This is because the area of irrigated land 

is much larger than that of the vegetable field. In 2015, the area of irrigated land was 4.8 times 

that of vegetable fields. 

(4) The number of livestock. The proportion of livestock water consumption is relatively 

small, which was only 3.4% in 2015, so the total water demand is less sensitive to the number 

of livestock, whether it is large livestock or small livestock. 

In general, irrigated land has the greatest impact on total water demand. Because of the 

large amount of water use of irrigated land, which was 497 million m3 in 2015, accounting for 

53%, resulting in the total demand for water resources being most sensitive to the two variables 

related to it. 
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Figure 4.4 Results of sensitivity analysis 

4.3.3 Scenarios simulation 

4.3.3.1 Scenarios setting 

In line with the planning period of the two districts of Zhangjiakou City, the simulation 

time of water demand is 2015-2035, with 2015 as the base year. For most variables, the initial 

values are derived from the Economic Yearbooks and the Water Resources Bulletins, and for 

the rest of the variables, they are set based on historical data or reference to relevant government 

plans (Table S1). 

Based on the sensitivity analysis, 15 variables are selected as control variables to set four 

development scenarios: Current development scenario (CDS), Economic priority scenario 

(EPS), Water-saving priority scenario (WPS), and Balanced development scenarios (BDS). The 

main characteristics of each scenario are as follows: (1) In CDS, except for the urbanization 

rate and industrial GDP water quota, the other variables are consistent with 2015. (2) In EPS, 

the economic growth rates are higher than the CDS. Moreover, due to the current low water use 
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of per capita and inadequate irrigation of farmland, the per capita water quota and the water 

quota for all types of irrigated farmland are also set higher than the current situation. (3) In 

WPS, the economic growth rates and urbanization rates are lower than CDS, and the areas of 

the three types of irrigated farmland are rapidly reduced. (4) In BDS, the economic growth rates 

are between EPS and WPS, and the reduction rates of the three types of irrigated farmland are 

lower than WPS. The values of these 15 variables in each scenario are shown in Table 4.2. 

Table 4.2 Values of control variables in four development scenarios 

Variables Units Time CDS EPS WPS BDS 

Per capita water quota of urban residents L/person/day – 93 120 100 110 

Per capita water quota of rural residents L/person/day – 42 60 50 60 

Industrial growth rate % – 4.6 5.6 3.6 5.1 

Construction industry growth rate % – 7.3 8.3 6.3 7.3 

Tertiary industry growth rate % – 8.1 9.1 7.1 8.1 

Agriculture growth rate % – 3.3 4.3 2.3 3.3 

Paddy field reduction rate % – 0 0 -50 -25 

Irrigated land reduction rate % – 0 0 -2 -1 

Irrigated land water quota m3/ha – 2,790 3,240 2,340 2,565 

Vegetable field reduction rate % – 0 0 -3 -1.5 

Vegetable field water quota m3/ha – 3,450 3,900 3,000 3,150 

Number of large livestock Million – 0.75 0.95 0.65 0.85 

Number of small livestock Million – 11.59 13.59 10.59 12.59 

Urbanization rate % 2015 52 52 52 52 

  2020 60 62 58 60 

  2022 62 65 60 62 

  2025 65 68 62 65 

  2030 70 73 67 70 

  2035 72 75 69 72 

Per unit of industrial GDP water use m3*10−4 yuan−1 2015 22.8 22.8 22.8 22.8 

  2025 18 20 15 18 

    2035 12 15 10 12 

4.3.3.2 Simulation results 

(1) Population subsystem 

With a natural population growth rate of 3.07‰, the total population of Zhangjiakou City 

will increase from 4.69 million in 2015 to 4.99 million in 2035. Meanwhile, the rate of 

urbanization is also rising, resulting in an increase of domestic water use in every scenario. 

Domestic water demands from large to small are EPS (191 million m3), BDS (174 million m3), 

WPS (154 million m3), and CDS (143 million m3) (Figure 4.5a). The gap in domestic water 
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demand between urban and rural will further expand, and the ratio of them will increase from 

2.0-2.4 in 2015 to 4.5-6.0 in 2035 (Figure 4.5b). 

(2) Economic subsystem 

The growth rates of total GDP from high to low are EPS (7.4%), BDS (6.5%), CDS (6.4%), 

and WPS (5.4%), resulting the total GDP will reach 567 billion yuan, 482 billion yuan, 471 

billion yuan, and 390 billion yuan, respectively (Figure 4.5c). The structure of contribution rates 

of primary, secondary, and tertiary industries to GDP will change from 18%: 40%: 42% in 2015 

to 10%: 32%: 58% (CDS, EPS, and WPS) and 10%: 34%: 56% (BDS) in 2035. 

The industrial water demands from high to low are EPS (197 million m3), BDS (143 million 

m3), CDS (130 million m3), and WPS (90 million m3) in 2035 (Figure 4.5d). It shows a declining 

trend only in WPS. The urban public water demands increase in each scenario, from high to 

low are EPS (76 million m3), BDS (63 million m3), CDS (63 million m3), and WPS (52 million 

m3) in 2035 (Figure 4.5e). 

(3) Agricultural subsystem 

In CDS and EPS, agricultural water demands remain at 704 million m3 and 808 million m3, 

of which the proportions of farmland irrigation are 91.2% and 91.5%, respectively (Figure 4.5f). 

In WPS, the area of paddy fields, irrigated land, and vegetable fields decreased at an 

average annual rate of 50%, 2%, and 3%, respectively, resulting in a reduction in agricultural 

water demand from 604 million m3 to 399 million m3, and the proportion of water demand for 

farmland irrigation will drop from 90.3% to 85.3% (Figure 4.5g, Figure 4.5h, and Figure 4.5i). 

In BDS, the paddy fields, irrigated land, and vegetable fields are reduced at an average 

annual rate of 25%, 1%, and 1.5%, respectively, while the number of livestock is increased to 

ensure that the GDP growth rate of the primary industry remains unchanged. At this time, the 

agricultural water demand will decrease from 656 million m3 to 527 million m3, and the 

proportion of water demand for farmland irrigation will drop from 90.0% to 87.7%. 

(4) Ecological environment subsystem 

Since the per capita ecological environment water demand is set to 3.13 m3 in the four 

scenarios, the ecological environment water demand increased from 14.7 million m3 to 15.6 

million m3 with the increase of population in each scenario (Figure 4.5j). 

The total amount of wastewater discharged is increasing in every scenario, from high to 

low are EPS (235 million m3), BDS (190 million m3), CDS (169 million m3), and WPS (146 
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million m3) in 2035 (Figure 4.5k). The wastewater mainly comes from urban domestic water 

and industry sectors, and the proportion of them will drop from 93%-94% to 83%-85% with 

the change of GDP. 

(5) Total water demand 

In CDS and EPS, the total water demand will increase from 954 million m3 and 1,097 

million m3 to 1,057 million m3 and 1,288 million m3 (Figure 4.5l), and the proportion of 

agricultural water demand will drop to 67% and 63%, respectively. 

In WPS and BDS, the total water demand will drop from 866 million m3 and 936 million 

m3 to 710 million m3 and 924 million m3, and the proportion of agricultural water demand will 

drop to 56% and 57% respectively. 
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Figure 4.5 The simulation results of four development scenarios 
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4.3.3.3 Water stress index 

In the water supply subsystem, the amount of inbound water and outbound water from 2015 

to 2035 are set according to the “Two-zone Planning” of Zhangjiakou City. The total water 

resources of the extraordinary wet year, normal year, and extraordinary dry year are the 

maximum value of 17.01, the average value of 14.51, and the lowest value of 11.42 from 2008 

to 2016, respectively. Besides, due to the over-exploitation of water resources in Zhangjiakou 

City, from the perspective of sustainable development, the environmental flow coefficients of 

the extraordinary wet year, the normal year, and the extraordinary dry year are set to 0.2, 0.25, 

and 0.3, respectively, which are slightly higher than the proportion of unused water in 

Zhangjiakou City for many years. 

As shown in Figure 4.6, in general, the water stress indexes in the four scenarios from high 

to low are EPS, CDS, BDS, and WPS. In the extraordinary wet year, the water stress indexes 

of the four development scenarios are between 0.5 and 1, indicating that the water resources are 

in surplus. In the normal year, the water stress indexes of CDS and EPS will rise continually, 

and it is going to exceed 1 in CDS and is always greater than 1 in EPS. The water stress indexes 

in WPS and BDS are between 0.6 and 1.0 and will decline continually. In the extraordinary dry 

year, the water stress indexes of CDS, EPS, and BDS are always greater than 1, while it is less 

than 1 after 2019 in WPS. 

 

Figure 4.6 Water stress index of four development scenarios 
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4.4 Discussion 

4.4.1 Comparison with the “Two-Zone Planning” 

The industrial growth rates of Zhangjiakou City in this study are set between 3.6%-5.6%, 

slightly lower than 6% in the “Two-Zone Planning”. Because it has been declining in recent 

years, from 5.9% in 2014 to 2% in 2017, which is very difficult to keep an average annual 

growth rate of 6% until 2035. Nevertheless, considering that the current GDP of Zhangjiakou 

City is lagging behind in eleven cities in Hebei Province and facing the requirements of 

economic growth, we still set the industrial growth rate higher than 2017. 

In 2015, the industrial water quota of Zhangjiakou City was 22.8 m3, while the national 

average level was 58.3 m3, which means that Zhangjiakou City’s industrial water efficiency has 

been at the leading level in the country, even exceeding some developed countries. Therefore, 

the average annual rate of water consumption per ten thousand yuan industrial GDP in this 

study is set around 3%, which is lower than that of the “Two-zone Planning” (6%). In fact, in 

terms of industrial water conservation, the current focus should be on how to adjust the 

industrial layout and structure to achieve a matching of the water resources distribution and 

industrial water demands. 

The irrigated land is planned to reduce 64,667 ha (36.2%) by 2022 in the “Two-zone 

Planning”. The area of irrigated land, according to the sensitivity analysis, is indeed the biggest 

factor affecting the demand for water resources. However, the reduction rate of irrigated land 

should not be so fast because it is a very important factor to guarantee food security and 

residents’ income. Therefore, in this study, we make a modest adjustment of the reduction rate 

of irrigated land. The area of irrigated land will be reduced by 59,333 ha and 32,667 ha by 2035 

in WPS and BDS, respectively. 

In terms of water resources efficiency, the total GDP in the “Two-zone Planning” will 

increase from 136.35 billion yuan in 2015 to 407.50 billion yuan in 2035, resulting in a decrease 

in water consumption per ten thousand yuan GDP from 68.79 m3 in 2015 to 21.66 m3 in 2035. 

At the same time, the proportion of unused water resources will also drop from 41% in 2015 to 

56% in 2035. Although it will indeed save water resources, will it cause a waste of water supply 

capacity? As shown in Figure 8, the water demand per ten thousand yuan GDP in the four 

scenarios varied from 63 m3 to 80 m3 in 2015, and the difference will become smaller and 

smaller over time, reaching from 18 m3 to 23 m3 in 2035. This means no matter which scenario 

is chosen, the water demand per ten thousand yuan GDP will eventually fall to about 20 m3 in 
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2035 as the economy grows. If lower water demand is achieved only by slowing economic 

growth, the water resources efficiency will not be improved, and it may also result in the waste 

of water supply capacity. Therefore, Zhangjiakou City should choose a coordinated 

development model to balance economic development and water conservation. 

 

Figure 4.7 Water demand per unit of GDP 

4.4.2 Policy suggestions for sustainable water use 

In general, Zhangjiakou City should take the water resources carrying capacity as the 

primary consideration for regional economic development and ecological security of Beijing 

city. It is vital to assess the current status of water resources carrying capacity on the county 

scale from the perspectives of total water use, water use efficiency, and water pollution, so as 

to promote the structural adjustment and optimization of water use. In the meantime, the 

management concept should shift from the water supply side to the water demand side, from 

extensive water use to intensive water use. 

Reduction of agricultural water use. According to the sensitivity analysis, the agricultural 

water-related indicators are most sensitive to the total water demand in Zhangjiakou City. That 

is to say, the agricultural sector has the largest water-saving potential. Therefore, there is a need 

to reduce the area of irrigated farmland. In this process, the correlation between the crop 

structure, food production, and agricultural income, as well as other factors must be considered 

to achieve maximum benefits. In addition, it is also essential to strictly control the planting area 

of high-water-consumption crops, vigorously promote water-saving renovation, and develop 

high-efficiency water-saving irrigation such as large-scale sprinkler irrigation, micro-irrigation, 

and high-standard pipe irrigation. 

Targeted control of industrial water use. On the one hand, it is crucial to strictly limit the 

entry of high-water-consuming industries and enterprises, and focus on the promotion of water-
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saving technologies in high-water-consuming industries such as thermal power, building 

materials, and food, to ensure the continuous decrease of the total industrial water consumption. 

On the other hand, comprehensive strategies should be adopted in future water management, 

such as industrial transformation and upgrading, optimization of industrial layout, upgrading of 

water-saving technology, and strengthen long-term water consumption planning and quota 

management. 

Urban public and ecological water conservation. First, the water-saving technological 

transformation of key water use sectors should be accelerated, such as schools, hospitals, hotels, 

restaurants, car washes, and ski resorts. Second, the government needs to promote the 

construction of recycled water utilization projects actively. For example, the water recycling 

systems should be set up in new communities and give priority to the use of recycled water and 

rainwater in urban greening, municipal environmental sanitation, and ecological landscapes. 

Besides, it is also important to optimize the layout of urban pipeline networks, replace severely 

aged water supply pipeline facilities, and reduce water leakage during water supply. 

4.5 Conclusions  

In this study, a complex system dynamics model (ZSD) reflecting the relationships between 

the water resources subsystem and other subsystems in Zhangjiakou City, such as population, 

economy, and environment subsystem, is established by using Vensim PLE, a system dynamics 

software. Then the ZSD model is employed to simulate water demand (2015-2035) in four 

designed alternative development scenarios. The main conclusions are as follows: 

According to the sensitivity analysis, the variables related to irrigation farmland are the 

main driving factors of water demand, especially the area and the average water consumption 

of irrigated land. Therefore, reducing the area of irrigated farmland and improving the 

efficiency of agricultural irrigation water will be the main direction of water-saving in 

Zhangjiakou City. However, it is vital to consider various factors to decide to what degree to 

reduce the area of irrigation farmland, such as agricultural output value and farmers’ income. 

The total water demand will rise continually in CDS and EPS, and the proportion of 

agricultural water demand will drop to 67% and 63%, respectively. Meanwhile, it will decline 

continually in WPS and BDS, and the proportion of agricultural water demand will drop to 56% 

and 57%, respectively. 

In the extraordinary wet year, the water stress indexes of the four scenarios are between 

0.5 and 1.0, which means that water resources are sufficient. In the normal year, the water stress 
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indexes will rise continually in CDS and EPS, and it is always greater than 1.0 in EPS, while 

the water stress indexes will decline continually in WPS and the BDS, changing between 0.6 

and 1.0. In the extraordinary dry year, the water stress indexes are only less than 1.0 in WPS 

after 2019. 

Regardless of which development model is chosen, the water demand per ten thousand 

yuan GDP will eventually fall to around 20 m3 in 2035. Therefore, reducing water demand only 

by slowing down economic growth cannot improve the efficiency of water use, and even result 

in inefficiency of water supply capacity. Zhangjiakou City should adopt a dynamic and efficient 

water-saving model that not only sustains regional socio-economic development but also 

protects ecological security in the whole Beijing-Tianjin-Hebei region. 
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Appendix 

Table S1. Variables and equations in the ZSD model. 

Variables Units Equations 

Population subsystem   

Total population 104 persons INTEG (Population growth, 469) 

Population growth 104 persons Total population * Population natural growth rate 

Rural population 104 persons Total population * (1-Urbanization rate) 

Urban population 104 persons Total population* Urbanization rate 

Urbanization rate % See Table 3 

Population nature growth rate ‰ 3.07 

Per capita water quota of urban residents L/person/day See Table 3 

Per capita water quota of rural residents L/person/day See Table 3 

Urban domestic water demand 108 m3 
(Urban population*10000*Per capita water quota of 

urban residents*365/1000)/100000000 

Rural domestic water demand 108 m3 
(Rural population*10000*Per capita water quota of rural 

residents*365/1000)/100000000 

Domestic water demand 108 m3 
Urban domestic water demand + Rural domestic water 

demand 

Economic subsystem   

Industrial GDP 108 yuan INTEG (Industrial GDP increment, 442) 

Industrial GDP increment 108 yuan Industrial GDP*Industrial growth rate 

Industrial growth rate % See Table 3 

Per unit of industrial GDP water use m3 See Table 3 

Industrial water demand 108 m3 
(Industrial GDP*10000*Per unit of industrial GDP water 

use)/100000000 

Construction industry GDP 108 yuan INTEG (Construction industry GDP, 105) 

Construction industry GDP increment 108 yuan 
Construction industry GDP*Construction industry 

growth rate 

Construction industry growth rate % See Table 3 

Per unit of construction industry GDP 

water use 
m3 

With Lookup ( Time, ( [ ( 2015, 1) - ( 2035, 3 ) ], ( 2015, 

2.3 ), ( 2035, 2 ) ) 

Construction industry water demand 108 m3 
(Construction industry GDP*10000*Per unit of  

construction industry GDP water use)/100000000 

Secondary industry GDP 108 yuan Industrial GDP + Construction industry GDP 

Secondary industry water demand 108 m3 
Industrial water demand + Construction industry water 

demand 

Tertiary industry GDP 108 yuan INTEG (Tertiary industry GDP increment, 574) 

Tertiary industry GDP increment 108 yuan Tertiary industry GDP*Tertiary industry growth rate 

Tertiary industry growth rate % See Table 3 

Per unit of tertiary industry GDP water 

use 
m3 

With Lookup ( Time, ( [ ( 2015, 1) - ( 2035, 3 ) ], ( 2015, 

2.5 ), ( 2035, 2.2 ) ) 

Tertiary industry water demand 108 m3 
(Tertiary industry GDP*10000*Per unit of  tertiary 

industry GDP water use)/100000000 

Urban public water demand 108 m3 
Construction industry water demand + Tertiary industry 

water demand 

Agricultural GDP 108 yuan INTEG (Agricultural GDP increment, 244) 

Agricultural GDP increment 108 yuan Agricultural GDP*Agricultural growth rate 

Agricultural growth rate % See Table 3 

Total GDP 108 yuan 
Agricultural GDP + Secondary industry GDP + Tertiary 

industry GDP 

Per capita GDP yuan Total GDP/Total population 

Per unit of GDP water use m3*10−4*yuan−1 Total water demand/Total population 

Agricultural subsystem   

Paddy field area ha INTAG (Paddy field reduction, 2707) 

Paddy field reduction ha Paddy field area*Paddy field reduction rate 

Paddy field reduction rate % See Table 3 

Irrigated land area ha INTAG(Irrigated land reduction, 178473) 

Irrigated land reduction ha Irrigated land area*Irrigated land reduction rate 

Irrigated land reduction rate % See Table 3 

Vegetable field area ha INTAG (Vegetable field reduction, 37533) 

Vegetable field reduction ha Vegetable field area*Vegetable field reduction rate 

Vegetable field reduction rate % See Table 3 
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Paddy field water quota m3/ha 5535 

Irrigated land water quota m3/ha See Table 3 

Vegetable field water quota m3/ha See Table 3 

Paddy field water demand 108 m3 Paddy field area*Paddy field water quota/100000000 

Irrigated land water demand 108 m3 Irrigated land area*Irrigated land water quota/100000000 

Vegetable field water demand 108 m3 
Vegetable field area*Vegetable field water 

quota/100000000 

Total irrigation water demand 108 m3 
Paddy field water demand + Irrigated land water demand 

+ Vegetable field water demand 

Pasture irrigation area ha 300 

Pasture water quota m3/ha 1785 

Pasture water demand 108 m3 
Pasture irrigation area*10000*Pasture water 

quota/100000000 

Irrigation area of forest and fruit land ha 14520 

Forest and fruit land water quota m3/ha 1860 

Forest and fruit land water demand 108 m3 
Irrigation area of Forest and fruit land *10000*Forest 

and fruit land water quota/1000000000 

Number of large livestock 104 head See Table 3 

Large livestock water quota L/head/day 40 

Large livestock water demand 108 m3 
(Number of large livestock*10000*Large livestock water 

quota per day*365/1000)/100000000 

Number of small livestock 104 head See Table 3 

Small livestock water quota L/head/day 5 

Small livestock water demand 108 m3 
(Number of small livestock*10000*Small livestock 

water quota per day*365/1000)/100000000 

Livestock water demand 108 m3 
Large livestock water demand + Small livestock water 

demand 

Fish pond area ha 80 

Fish pond water quota m3/ha 30,000 

Fish pond water demand 108 m3 Fish pond area*10000*Fish pond area/100000000 

Agricultural water demand 108 m3 

Total irrigation water demand + Forest and fruit land 

water demand 

+Pasture water demand + Livestock water demand + Fish 

pond water demand 

Water resources subsystem   

Local water resources 108 m3 
Extremely wet year (17.01)/Average climatic year 

(14.51)/Extremely wet year (11.42) 

Inbound water resources 108 m3 time 

Total water resources 108 m3 Local water resources + Inbound water resources 

Outbound water resources 108 m3 time 

Environmental flow coefficient % 
Extremely wet year (0.20)/Average climatic year 

(0.25)/Extremely wet year (0.30) 

Environmental flow  108 m3 Total water resources*Environmental flow coefficient 

Total available water supply 108 m3 
Total water resources-Outbound water resources-

Environmental flow +Wastewater reuse 

Total water demand 108 m3 

Agricultural water demand + Industrial water demand + 

Urban public water demand 

+Domestic water demand + Eco-environmental water 

demand 

Eco-environmental water demand 108 m3 
Per capita eco-environmental water demand*Total 

population*10000/100000000 

Per capita eco-environmental water 

demand 
m3 3.13 

Water stress index – Total water demand/Total available water supply 

Urban domestic wastewater coefficient – 0.61 

Urban domestic wastewater  108 m3 
Urban domestic water demand*Urban domestic 

wastewater coefficient 

Tertiary industry wastewater coefficient – 0.45 

Tertiary industry wastewater  108 m3 
Tertiary industry water demand*Tertiary industry 

wastewater coefficient 

Construction industry wastewater 

coefficient 
– 0.46 

Construction industry wastewater  108 m3 
Construction industry water demand*Construction 

industry wastewater coefficient 

Industrial wastewater coefficient – 0.51 
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Industrial wastewater 108 m3 
Tertiary industry water demand*Industrial wastewater 

coefficient 

Total wastewater 108 m3 

Urban domestic wastewater +Tertiary industry 

wastewater +Construction industry wastewater + 

Industrial wastewater 

Wastewater treatment rate % 
With Lookup (Time, ( [ ( 2015, 0 ) - ( 2035, 100 ) ], 

( 2015, 91.3 ), ( 2020, 97 ), ( 2022, 100), ( 2035, 100) ) 

Total wastewater treatment 108 m3 Total wastewater*Wastewater treatment rate 

Wastewater reuse rate % 

With Lookup (Time, ( [ ( 2015, 0) - ( 2035, 0.7 ) ], 

( 2015, 0.25 ), ( 2020, 0.3), (2022, 0.35), (2025, 0.4), 

(2030, 0.55), (2035, 0.6) ) 

Wastewater reuse 108 m3 Total wastewater treatment*Wastewater reuse rate 

Note: “-” stands for dimensionless. 
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5. Spatiotemporal supply-demand characteristics and economic benefits of 

crops water footprint  

5.1 Problem and objectives 

5.1.1 Research problem 

There is a wealth of research that has focused extensively on the water footprint of a variety 

of crops, but three shortcomings are remained to illuminate. First, the blue water footprint 

received considerable attention, and many indicators were introduced to analyze it deeply (Cao 

et al., 2017; Cao et al., 2018; Cao et al., 2014; Hoekstra and Zhuo, 2017; Zhuo et al., 2016a; 

Zhuo et al., 2016b), while few indicators were used to analyze the characteristics of the green 

water footprint in detail,  despite green water is the major contributor to crops water footprint 

(Chu et al., 2017; Wei et al., 2016). Secondly, most of the studies did not consider or mention 

whether the irrigation farmland is fully irrigated or not, resulting in the calculated water 

footprint higher than the actual water footprint, especially in arid areas. Although a few studies 

have taken this into account, using actual irrigation water as the blue water footprint, however, 

further using it as the blue water footprint requirement (BWFr) to measure the extent of blue 

water scarcity is unreasonable. It is obvious that the actual irrigation water consumption cannot 

represent the water requirement of crop growth, due to water shortage and the imperfect 

infrastructures during the period of crop growth. Thirdly, so far one of the most common 

indicators for measuring crop water footprint is the virtual water content per unit of yield (also 

known as water footprint per unit of yield, VWY) (Zeng et al., 2012), which is used to depict 

the water footprint production efficiency from food yields perspective. However, besides food 

yields, the economic benefits also play a very critical role for the government and farmers to 

decide whether to plant one crop or not (Ren et al., 2018). Therefore, it is vital to calculate 

virtual water content per unit of output value (VWV), which can represent the water footprint 

economic benefits. VWY and VWV can reflect the productivity of water footprint from 

different perspectives, and their relationship is also worthy of discussion.  

5.1.2 Research objectives 

Zhangjiakou city, a semi-arid region with less than 400 m3 water per capita, which is lower 

than the internationally recognized extreme water shortage standard (500 m3), is located in the 

upstream of Beijing in northern China. The issue of water scarcity not only seriously restricts 

the local social and economic development but also poses a great threat to drinking water safety 

in the capital city of Beijing due to their close geographical relationship. The main research 
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objectives of this study are as follows: (1) to estimate the water footprint requirement for the 

main crops with the help of CropWat 8.0, and identify its characteristics of spatial distribution 

and dynamic changing trends in Zhangjiakou City for 2005, 2010, and 2015. (2) to analyze the 

green water, blue water, and water footprint economic benefits using the three new indicators, 

i.e., green water footprint occupancy rate (GWFor), blue water footprint deficit (BWFd), and 

virtual water consumption per output value (VWV). (3) to enrich crop water footprint indicators 

and provide an alternative way for agricultural water conservation in Zhangjiakou city from the 

perspective of water footprint.  

5.2 Methods and data sources 

5.2.1 Methods 

CropWat 8.0, developed by the Land and Water Development Division of the UN Food 

and Agriculture Organization (FAO), can be employed to calculate the water requirement of 

crop growth in every stage. Therefore, it was the first step to calculate the crop water footprint 

requirement in this study (Figure 5.1).  
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ETc: crop evapotranspiration; Pe: effective precipitation； IWR: irrigation water requirement; GDP: gross 

domestic product; TWFr: total water footprint requirement; TWFc: total water footprint consumption; BWFr: blue 

water footprint requirement; GWFr: rain-fed farmland green water footprint; GWFi: irrigation farmland green 

water footprint; BWFc: blue water footprint consumption; BWFd: blue water footprint deficit; GWFor: green 

water footprint occupancy rate; VWY: water footprint per unit of yield; VWYgr: rain-fed farmland green water 

footprint per unit of yield; VWYgi: irrigation farmland green water footprint per unit of yield; VWYbc: blue water 

footprint per unit of yield; VWV: water footprint per unit of GDP; VWVgr: rain-fed farmland green water footprint 

per unit of GDP; VWVgi: irrigation farmland green water footprint per unit of GDP; VWVbc: blue water footprint 

per unit of GDP. 

Figure 5.1 Logic relationship of main variables and technical roadmap 

5.2.1.1 Water footprint 

(1) Green water footprint  

The amount of crop evaporation was calculated by CropWat 8.0 every 10 days, and the 

amount of green water evaporation every 10 days is equal to the minimum between the effective 

precipitation and the crop evapotranspiration. Effective precipitations were calculated using 

USDA SCS (United States Department of Agriculture Soil Conservation Service) method by 

default in CropWat 8.0, which are different among counties. The total green water footprint 

(GWFt) is equal to the sum of the irrigation farmland green water footprint (GWFi) and the 

rain-fed farmland green water footprint (GWFr). 

𝐸𝑇𝑔 = ∑𝑚𝑖𝑛(𝐸𝑇𝑐 , 𝑃𝑒)  (5-1) 

𝐺𝑊𝐹𝑖 = 10𝐴𝑖 × 𝐸𝑇𝑔  (5-2) 

𝐺𝑊𝐹𝑟 = 10𝐴𝑟 × 𝐸𝑇𝑔  (5-3) 

𝐺𝑊𝐹𝑡 = 𝐺𝑊𝐹𝑖 + 𝐺𝑊𝐹𝑟  (5-4)                                                        

where ETg (mm) is the 10-day total green water evaporation; ETc (mm) and Pe (mm) are the 

10-day crop water evaporation and effective precipitation, respectively; Ai (ha) and Ar (ha) are 

the crop planting area of irrigation and rain-fed farmland, respectively; 10 is the coefficient 

from mm to m3/ha. 

(2) Blue water footprint  

Currently, there are two main methods for calculating the BWF of irrigation farmland. The 

first one is to multiply the amount of blue water evaporation requirement calculated by CropWat 

8.0 by the irrigated area, since crops are often cannot fully irrigated, especially in arid areas, so 

actually, it is the blue water footprint requirement (BWFr). The second one is to use the actual 
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irrigation water consumption as the blue water footprint, but the irrigation water is not all 

consumed by crops, due to inevitable factors such as evaporation and infiltration, causing waste 

of water resources during the irrigation process. In other words, it is not the real blue water 

footprint consumption (BWFc) of crops. Based on this, BWFr and BWFc will be calculated, 

analyzed, and discussed separately in this study.  

𝐸𝑇𝑏 = ∑𝑚𝑎𝑥(0,  𝐸𝑇𝑐 − 𝑃𝑒)  (5-5) 

𝐵𝑊𝐹𝑟 = 10𝐴𝑟 × 𝐸𝑇𝑏  (5-6) 

where ETb (mm) is the total blue water evaporation;  

𝐵𝑊𝐹𝑐 = 𝑊𝑖 × 𝜂 (5-7) 

Where Wi is the actual irrigation water consumption, and η is the effective utilization coefficient 

of irrigation water. 

(3) Total water footprint 

Correspondingly, the total water footprint includes the total water footprint requirement 

(TWFr) and the total water footprint consumption (TWFc). 

𝑇𝑊𝐹𝑟 = 𝐵𝑊𝐹𝑟 + 𝐺𝑊𝐹𝑖 + 𝐺𝑊𝐹𝑟 (5-8) 

𝑇𝑊𝐹𝑐 = 𝐵𝑊𝐹𝑐 + 𝐺𝑊𝐹𝑖 + 𝐺𝑊𝐹𝑟                    (5-9) 

5.2.1.2 GWF occupancy rate and BWF deficit  

(1) GWF occupancy rate 

From the perspective of ecological hydrology, Sun et al. (2010) proposed the green water 

occupation index, which considered that the total amount of green water is equal to the total 

amount of precipitation minus the amount of blue water (the total amount of water resources) 

in the whole region. However, the green water that can be used by crops is only part of the 

precipitation that falls on the planting area. Therefore, this study proposed a formula for 

calculating the green water footprint occupancy rate based on the planting area. 

𝐺𝑊𝐹𝑜𝑟 =
∑𝐺𝑊𝐹

10𝑃∑𝐴
× 100%                                          (5-10) 

Where GWFor is GWF occupancy rate, P (mm) is precipitation, ∑GWF and ∑A are the sum of 

the green water footprint and planting area of crops, respectively.  

(2) Blue water footprint deficit 
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At present, studies on the blue water footprint only calculate the requirement or 

consumption of blue water, which cannot reflect the extent of blue water scarcity. Therefore, 

drawing on the concept of ecological footprint deficit, we propose the blue water footprint 

deficit (BWFd). It will reflect the blue water shortage when the irrigation farmland is fully 

irrigated.  

𝐵𝑊𝐹𝑑 =
(𝐵𝑊𝐹𝑟−𝐵𝑊𝐹𝑐)

𝜂
                    (5-11) 

When BWFd is less than zero, it represents a blue water footprint surplus. The larger the BWFd, 

the bigger the blue water shortage. 

5.2.1.3 Virtual water content 

(1) Virtual water content per unit of yield 

The virtual water content per unit of yield is also called water footprint per unit of yield 

(VWY). It consists of three parts: the blue water footprint per unit of yield (VWYbc), the 

irrigation farmland green water footprint per unit of yield (VWYgi), and the rain-fed farmland 

green water footprint per unit of yield (VWYgr). 

𝑉𝑊𝑌𝑏𝑐 =
𝐵𝑊𝐹𝑐

𝑌
  (5-12) 

𝑉𝑊𝑌𝑔𝑖 =
𝐺𝑊𝐹𝑖

𝑌
       (5-13) 

𝑉𝑊𝑌𝑔𝑟 =
𝐺𝑊𝐹𝑟

𝑌
                                            (5-14) 

𝑉𝑊𝑌 = 𝑉𝑊𝑌𝑏𝑐 + 𝑉𝑊𝑌𝑔𝑖 + 𝑉𝑊𝑌𝑔𝑟                                                 (5-15) 

where Y is the crop yield. 

(2) Virtual water consumption per output value 

For comparing the characteristics of the virtual water consumption per output value at the 

same price, it is necessary to eliminate the impact of price changes on the gross domestic 

product (GDP) of crops. 

a. GDP comparable calculation 

Based on 2005, the total GDP of crops in 2010 and 2015 were revised. By calculation, 

when 2005=1, 2010 and 2015 were 1.56 and 2.04 respectively. 

𝐺𝐷𝑃2010 = 𝐺𝐷𝑃2005 × 1.56                                                (5-16) 
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𝐺𝐷𝑃2015 = 𝐺𝐷𝑃2005 × 2.04                                      (5-17) 

where GDP2005 is the actual GDP of crops in 2005. 

b. Virtual water consumption per unit of GDP 

The virtual water consumption per unit of GDP (VWV), equals to the water footprint 

divided by GDP, and also consists of three parts, will reflect the economic benefits of the water 

footprint. 

𝑉𝑊𝑉𝑏𝑐 =
𝐵𝑊𝐹𝑐

𝐺𝐷𝑃
                                         (5-18) 

𝑉𝑊𝑉𝑔𝑖 =
𝐺𝑊𝐹𝑖

𝐺𝐷𝑃
                                                                 (5-19) 

𝑉𝑊𝑉𝑔𝑟 =
𝐺𝑊𝐹𝑟

𝐺𝐷𝑃
                                                                  (5-20) 

𝑉𝑊𝑉 = 𝑉𝑊𝑉𝑏𝑐 + 𝑉𝑊𝑉𝑔𝑖 + 𝑉𝑊𝑉𝑔𝑟                                            (5-21) 

where VWVbc is the blue water footprint per unit of GDP, VWVgi is the irrigation farmland 

green water footprint per unit of GDP, and VWVgr is the rain-fed farmland green water 

footprint per unit of GDP. 

5.2.2 Data sources  

The meteorological parameters required for the Cropwat 8.0 model include relative 

humidity, wind speed, and sunshine hours were obtained from Zhangjiakou City Economic 

Yearbooks (2006, 2011, 2016), which originally collected from 14 local weather stations. The 

maximum and minimum temperatures of every county were obtained from this weather website 

(http://www.tianqi.com/qiwen/city_zhangjiakou/). The parameters of crops, such as sowing 

and harvesting date, root depth, crop coefficient, growth period, crop height, were modified in 

accordance with the actual situation of Zhangjiakou city based on CropWat 8.0 default values 

and the FAO Irrigation and drainage paper 56 “Crop evapotranspiration – Guidelines for 

computing crop water requirements” (Allan et al., 1998). 

The data, e.g., the planting area of crops in irrigation farmland and rain-fed farmland, 

yields, and the regional Gross Domestic Product, were all obtained from the Zhangjiakou 

Economic Yearbooks (2006, 2011, 2016). The data of actual water consumption of irrigation 

and utilization efficiency were obtained from the Zhangjiakou City Water Resources Bulletin 

(2006, 2011, 2016) and related government reports. 

http://www.tianqi.com/qiwen/city_zhangjiakou/
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5.3 Results 

5.3.1 Distribution of water footprint requirement  

As shown in Figure 5.2, in 2005-2015, the total water footprint requirement of crops in 

Zhangjiakou City increased from 1.671 billion m3 to 1.852 billion m3, with an average annual 

growth rate of 1.03%. The water footprint requirement of irrigation farmland increased by 0.232 

billion m3, of which the blue water footprint requirement (BWFr) increased from 0.526 billion 

m3 to 0.661 billion m3, and the green water footprint requirement (GWFi) increased from 0.290 

billion m3 to 0.387 billion m3. The water footprint requirement of rain-fed farmland (GWFr) 

decreased from 0.854 billion m3 to 0.803 billion m3. As a result, the water footprint requirement 

of irrigation farmland increased from 49% to 57%, and the water footprint of rain-fed farmland 

decreased from 51% to 43%. 

 

Figure 5.2 Total water footprint requirement of crops in 2005-2015 
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5.3.1.1 Spatial patterns of water footprint requirement  

In general, the relationships between water footprint requirement and altitude were 

negatively correlated (Figure 5.3). That is, the water footprint requirement of higher altitude 

counties was lower than that of lower altitude counties, and the gap between them was 

expanding. During the study period, the average water footprint requirement per country in the 

Bashang area increased from 0.101 billion m3 to 0.105 billion m3 (Figure 5.2a), while it 

increased from 0.130 billion m3 to 0.147 billion m3 in the Baxia area (Figure 5.2c). Among 

them, the water footprint requirement of Chongli County, Shangyi County, Wanquan County, 

and Chicheng County decreased, and other counties increased. In 2015, the county with the 

highest water footprint requirement was Zhuolu County (0.205 billion m3), with a contribution 

rate of 11%; the county with the lowest water footprint requirement was Chongli County (0.041 

billion m3), with a contribution rate of 2%. 

In terms of the source of water footprint, the contribution rate of water footprint 

requirement from rain-fed farmland positively correlated with altitude. That is, in general, the 

higher the altitude, the greater the proportion of water footprint requirement from rain-fed 

farmland in this area; the proportion of water footprint requirement from irrigation farmland is 

exactly the opposite. But this feature was gradually weakening (Figure 5.3). From 2005 to 2015, 

the proportion of WFr from rain-fed farmland decreased from 78% to 51% in the Bashang area, 

while it remained at 40%-43% in the Baxia area. In 2015, the three counties with the highest 

proportion of water footprint requirement from rain-fed farmland were Chicheng County (73%), 

Shangyi County (72%) and Wuyuan County (63%); the three counties with the highest 

proportion of water footprint requirement from irrigation farmland were Wanquan County 

(79%), municipal districts (77%) and Zhangbei County (71%).  
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Figure 5.3 Spatial distribution of water footprint requirement of crops in 2005-2015 

5.3.1.2 Water footprint requirement of different crops  

During the study period, the water footprint requirement of beans and vegetables in 

Zhangjiakou city decreased from 0.133 billion m3 and 0.134 billion m3 to 0.079 billion m3 and 

0.095 billion m3, respectively. It was increasing in other crops, but the difference in growth 

rates was significant. The water footprint requirement of potatoes had the largest increase of 

47%, from 0.227 billion m3 to 0.333 billion m3, while the water footprint requirement of oil 

crops had the smallest increase of 8%, from 0.121 billion m3 to 0.131 billion m3.  

Due to the large difference of the planted areas, the contribution rates of water footprint 

requirements were very different in crops, especially between the Bashang area and Baxia area 

(Figure 5.4 and Figure 5.5). In the Bashang area, the contribution rate of potatoes increased 

from 25% to 44%, while vegetables and beans decreased from 18% and 11% to 9% and 5%, 

respectively, and fruits was the smallest, only accounting for 1%-3%. In the Baxia area, the 

contribution rate of cereals was always the largest, accounting for 62%-66%, while vegetables 

was the smallest, accounting for 3%-4%. 

Regarding the blue water footprint (BWFr), in the Bashang area, the contribution rate of 

vegetables dramatically decreased from 70% to 10%, and potatoes and cereals increased from 

5% and 12% to 25% and 40%, respectively. In the Baxia area, the contribution rates of cereals 

had been the largest, accounting for 68%-73%, while other crops were stable. 

Regarding the total green water footprint (GWFt), in the Bashang area, the contribution 

rate of cereals decreased from 34% to 29%, and potatoes increased from 28% to 42%. In the 
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Baxia area, the contribution rate of cereals had also been the largest as BWFt, maintaining at 

58%-63%, followed by fruits, maintaining at around 20%. 

According to the above analysis, the contribution rates of cereals BWFr and vegetables 

BWFr were higher than those of GWFt, which means that these two types of crops needed more 

blue water (irrigation water) than green water. The contribution rates of other crops BWFr were 

less than the contribution rate of GWFt, which means that these crops were more dependent on 

green water (rainwater) to growth. 

 

 

 

Figure 5.4 Total water footprint requirement and contribution rate in the Bashang area 
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Figure 5.5 Total water footprint requirement and contribution rate in the Baxia area 
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of 44%, while it was 51%-59% in the counties of the Baxia area, with an average of 54%. 
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March and from November to December, since the growth periods of main crops were between 

April and October. The green water footprint occupancy rate was the highest from May to 

August, with a multi-year average of 58%-83%; and it was 20%, 15%, and less than 1% in 

April, September, and October, respectively. In addition, due to differences in climate and the 

planting area of crops, the green water footprint occupancy rate in the Bashang area from May 

to June was higher than in the Baxia area, and vice versa in other months. 

 

Figure 5.6 Green water footprint occupancy rate in counties 

 

Figure 5.7 Green water footprint occupancy rate in months 

5.3.2.2 Blue water footprint deficit  

The blue water footprint deficit of Zhangjiakou city decreased from 0.544 billion m3 in 

2005 to 0.480 billion m3 in 2010 due to the improvement of irrigation water efficiency. With 

0%

20%

40%

60%

80%

Z
h

a
n

g
b

ei

K
a
n

g
b

ao

G
u

y
u

a
n

S
h

an
g
y

i

C
h

o
n

g
li

D
is

tr
ic

ts

X
u
a
n
h
u
a

Y
u

Y
a

n
g

y
u

an

H
u

a
ia

n

W
a
n
q
u
an

H
u

a
il

a
i

Z
h

u
o

lu

C
h

ic
h

en
g

Bashang area Baxia area

G
re

en
 w

at
er

 f
o

o
tp

ri
n

t 
o

cc
u

p
an

cy
 r

at
e 

(%
)

Counties

2005 2010 2015

0%

20%

40%

60%

80%

100%

Apr. May June July Aug. Sept. Oct.

G
re

en
 w

at
er

 f
o
o
tp

ri
n
t 

o
cc

u
p
an

cy
 r

at
e 

(%
)

Month

Bashang area

Baxia area

Zhangjiakou city



 

89 

the rapid expansion of the irrigated area, however, the improvement of water use efficiency was 

not enough to offset the increase of water demand due to irrigation farmland expanding after 

2010, resulting the blue water footprint deficit increased to 0.612 billion m3 in 2015 and the 

situation of blue water shortage has become more severe. 

At the level of counties (Figure 5.8), the blue water footprint deficits of counties in the 

Bashang area were generally lower than that of counties in the Baxia area. Some counties in the 

Bashang area were even in the state of blue water surplus before 2015, while the counties of 

the Baxia area had always been in the state of blue water deficit. It was the largest in Yangyuan 

County (located in Baxia area), which increased from 0.088 billion m3 to 0.116 billion m3. It 

was the smallest in Shangyi County (located in the Bashang area), which decreased from 0.08 

billion m3 to 0.04 billion m3. 

In terms of crops (Figure 5.9), the blue water footprint of cereals, beans, and fruits 

decreased, while it increased in potatoes, oil crops, and vegetables. Among them, cereals were 

the largest, with an average annual blue water deficit of 0.363 billion m3, while vegetables were 

the smallest, even in the state of blue water surplus in 2005 and 2010, with 0.06 billion m3 in 

2015. 

 

Figure 5.8 Blue water footprint deficit in counties 
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Figure 5.9 Blue water footprint deficit of crops 

5.3.3 Water footprint productivity 

5.3.3.1 Virtual water content per unit of yield   

As shown in Figure 5.10, the virtual water content per unit of yield (VWY) decreased from 

0.331 m3/kg in 2005 to 0.195 m3/kg in 2015 in Zhangjiakou city, of which green water comes 

from rain-fed farmland (VWYgr) decreased from 0.199 m3/kg to 0.103 m3/kg, green water 

comes from irrigation farmland (VWYgi) decreased from 0.068 m3/kg to 0.050 m3/kg, and blue 

water (VWYbc) decreased from 0.065 m3/kg to 0.043 m3/kg. As a result, the proportion of 

green water decreased from 80% to 78%, and the proportion of blue water increased from 20% 

to 22%. In the Bashang area, the virtual water content decreased from 0.205 m3/kg to 0.091 

m3/kg, of which the proportion of VWYgr decreased from 77% to 64%, the proportion of 

VWYgi increased from 8% to 21%, and the proportion of VWYbc remained at around 15%. In 

the Baxia area, the virtual water content decreased from 0.505 m3/kg to 0.393 m3/kg, of which 

the proportion of VWYgr decreased from 51% to 43%, the proportion of VWYgi decreased 

from 27% to 24%, and the proportion of VWYbc increased from 22% to 34%. The virtual water 

contents of Yangyuan County and Kangbao County were the highest (0.89 m3/kg) and lowest 

(0.06 m3/kg) in 2015, respectively. 
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Figure 5.10 Spatial distribution and structure of virtual water content per unit of yield 

In terms of corps, as shown in Figure 5.11, during the study period, the multi-year average 

of virtual water contents from high to low were beans (2.40 m3/kg), oil (2.38 m3/kg), cereals 

(0.82 m3/kg), potatoes (0.78 m3/kg), fruits (0.46 m3/kg), and vegetables (0.04 m3/kg). Regarding 

changing trends, the virtual water content of all crops decreased, among them, the potatoes 

decreased from 1.36 m3/kg to 0.78 m3/kg, with the largest decrease of 91%, while the cereals 

decreased from 0.892 m3/kg to 0.807 m3/kg, with the smallest decrease of 10%. In terms of blue 

water content, the VWYbc of vegetables and fruits decreased, while VWYbc of other crops 

increased. The proportion of VWYbc in vegetables had been the largest, although it decreased 

from 58% to 38%; the proportion of VWYbc in fruits had been the smallest, it also decreased 

from 7% to 5%. In addition, the average VWYbc of each crop in the Bashang area was lower 

than that in the Baxia area. Apart from vegetables, the proportion of VWYbc in the Bashang 

area was only 7%, while it was 26% in the Baxia area.  
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Figure 5.11 Virtual water content per unit of yield in different crops  

5.3.3.2 Water footprint consumption per output value  

The water footprint consumption per output value (VWV) of Zhangjiakou city dropped 

from 3,380 m3/104 yuan in 2005 to 2,183 m3/104 yuan in 2010 and then increased to 2,344 

m3/104 yuan in 2015, which was different from the virtual water content per unit of yield 

(continuous decline). The contribution rate of green water decreased from 80% to 78%, and the 

contribution of blue water increased from 20% to 22%, which was the same as the virtual water 

content per unit of yield. The VWV decreased from 2,811 m3/104 yuan to 1,394 m3/104 yuan in 

the Bashang area, with a decrease of 50%, while it decreased from 3,811 m3/104 yuan to 3,164 

m3/104 yuan in the Baxia area, with a decrease of only 17%. Chongli County had the largest 

decline of 65%, decreased from 3062 m3/104 yuan to 2,004 m3/104 yuan; Municipal districts had 

the smallest decline, decreased from 2,197 m3/104 Yuan to 2,155 m3/104 Yuan, and only 

dropped 2%. However, not every county’s VWV declined. The VWV of Wanquan County and 

Yangyuan County increased from 4,148 m3/104 yuan and 6,350 m3/104 yuan to 4306 m3/104 

yuan and 8382 m3/104 yuan, respectively.   

In terms of spatial differences in contribution rate (Figure 5.12), in the Bashang area, the 

proportion of VWVgr decreased from 77% to 64%, the proportion of VWVgi increased from 

8% to 21%, and the proportion of VWVbc remained stable at around 15%. In the Baxia area, 

the proportion of VWVgr decreased from 51% to 49%, the proportion of VWVgi remained 

stable at around 27%, and the proportion of VWVbc increased from 22% to 24%. Therefore, in 

general, the total green water content was relatively stable, but the proportion of GWFr and 

GWFi had changed greatly, showing that GWFr decreased and GWFi increased.  
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Figure 5.12 Spatial distribution and structure of virtual water content per unit of GDP 

As shown in Figure 5.13, in 2005-2015, the VWV of cereals, beans, and oil crops 

decreased first and then increased, while the VWV of potatoes, vegetables, and fruits decreased 

continuously. Multi-year average values of VWV from high to low were beans (8,697 m3/104 

yuan), oil crops (8,391 m3/104 yuan), cereals (5,590 m3/104 yuan), potatoes (3,062 m3/104 yuan), 

fruits (2,356 m3/104 yuan) and vegetables (540 m3/104 yuan). In addition, in 2005, only the 

VWV of potatoes in the Bashang area was lower than that in the Baxia area, while in addition 

to potatoes, there were beans, oil crops, and vegetables in 2015. In terms of blue water and 

green water proportion, the proportion of blue water was the highest (53%) in vegetables, while 

it was the lowest (6%) in fruits.  

 

Figure 5.13 Virtual water content per unit of GDP in different crops 
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5.4 Discussion 

5.4.1 Differences between water footprint requirement and consumption 

The CropWat 8.0 is developed for estimating the amount of water evaporation (water 

requirement) of crops at each growth stage under local climatic conditions, e.g., soil 

temperature and sunshine hours, and for guiding agricultural irrigation. However, due to water 

shortage and imperfect water supply infrastructures, crops cannot always be fully irrigated, 

especially in arid and semi-arid regions like Zhangjiakou. Therefore, in this study, to distinguish 

it from the actual consumption of crop water footprint, we propose the concept of water 

footprint requirement. Since the difference between the two comes from whether the crops are 

fully irrigated, this study further proposes the concept of blue water footprint deficit (BWFd).  

In Zhangjiakou City, the main crops planting area increased from 544,527 ha in 2005 to 

565,010 ha in 2015, of which the irrigation area increased from 141,560 ha to 182,933 ha. There 

is no doubt that this process would inevitably lead to an increase of water requirement for crops, 

which is confirmed by our results that it increased from 1.671 billion m3 to 1.852 billion m3. In 

addition, 20 890 ha of rain-fed farmland was converted to irrigation farmland over the study 

period, resulting in blue water footprint deficit increased from 0.544 billion m3 to 0.612 billion 

m3. Therefore, controlling the expansion of farmland, or even returning farmland to forests, is 

the primary task of Zhangjiakou City to reduce the water demand of crops. At the same time, it 

is necessary to restrict the conversion of dry land into paddy fields and irrigated land. In terms 

of spatial differences, the irrigation area increased from 30,202 ha to 55,320 ha in the Bashang 

area, while it increased from 111,359 ha to 127,612 ha in the Baxia area. That is, the irrigation 

area in the Baxia area was always much larger than that in the Bashang area, so the BWFd of 

counties in the Baxia area was higher than that in the Bashang area. That is, the Baxia area is 

the key area for agricultural water saving in Zhangjiakou City. It is vital to vigorously increase 

the irrigation water utilization rate by increasing investment in irrigation facilities, improving 

management level, and changing irrigation methods. Meanwhile, it is also necessary to slow 

down the growth rate of irrigated farmland in the Bashang area. 

5.4.2 The contribution rate of blue water and green water  

In Zhangjiakou City, although the virtual water content per unit of yield (VWY) decreased 

from 0.331 m3/kg in 2005 to 0.195 m3/kg in 2015, the contribution rate of blue water and green 

water has always remained about 20% and 80%, respectively. This is because, from 2005 to 

2015, the irrigation area of Zhangjiakou City was only 26% -32%, that is, most crops were still 
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growing in rain-fed farmland, and only consumed green water. Therefore, the contribution rate 

of green water footprint of crops was always much higher than that of blue water footprint, and 

how to make full use of green water resources is of vital importance to the sustainable 

development of agriculture.  

In Zhangjiakou City, green water occupancy rates were only 48%-60% and showed a 

significant spatial and temporal difference during the study period. Because the precipitation 

from May to September accounts for 80% of the annual total precipitation, and the temperature 

in these months is also the most suitable time for crop growth, so the green water occupancy 

rates were higher than other months. In addition, due to the higher altitude and the lower 

accumulated temperature, the green water occupancy rate was higher than 70% from May to 

July in the Bashang area, while from May to August in the Baxia area. Therefore, the possibility 

of improving the utilization of green water from May to July is limited, because evaporation 

and part of precipitation will inevitably form runoff. However, it might be suitable for some 

crops to grow in August and September, especially in the Bashang area, because the average 

temperature in these two months is 20 and 15 degrees, respectively. The green water occupancy 

rate is introduced in this study will provide a novel way of thinking for the research of the green 

water utilization.  

5.4.3 Food productivity and economic benefits of water footprint 

Virtual water content per unit of yield (VWY) and water footprint consumption per output 

value (VWV) can be considered as food productivity and economic productivity of water 

footprint, respectively. The VWY has been analyzed in almost all existing studies, but the VWV 

was largely neglected. There are three possible reasons. Firstly, the development of the water 

footprint concept derived from virtual water, and the virtual water was proposed to explore the 

characteristics of the flow of water embedded in products in international trade. Secondly, the 

analysis of the water footprint from the perspective of food would be easy to make comparisons 

between countries and regions. Thirdly, with the explosive growth of the global population, 

food security issues are receiving more and more attention, and the accessibility of freshwater 

is the biggest challenge for food production.  

However, the economic benefits of crop water footprint should get more attention because 

higher food productivity does not necessarily mean higher economic benefits. Economic 

benefits are always changing due to unstable crop prices, the cost of labor, and other production 

factors. Based on the results, the relationship between VWY and VWV in Zhangjiakou city can 

be summarized into three types: (a) Mutual match among crops, which means when the VWY 
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of one crop is lower (higher), the VWV is also lower (higher), such as fruits and oils. (b) 

Mismatch among crops. In 2005, the VWY of potatoes was higher than cereals, but the VWV 

of potatoes was lower than that of cereals. Therefore, whether to plant potatoes or vegetables 

depends on the priority of food production and economic benefits. (c) Mismatch among regions, 

that is, the VWY and VWV of the same crop did not match in different regions. In 2005, VWY 

of vegetables in the Bashang area (0.045 m3/kg) was lower than that in the Baxia area (0.054 

m3/kg), while VWV of vegetables in the Bashang area (792 m3/104 yuan) was higher than that 

in Baxia area (591 m3/104 yuan). That means, for vegetables, water footprint food production 

efficiency in the Bashang area was higher than that in the Baxia area, but the water footprint 

economic benefits were reversed. Therefore, it is clear that significantly different policies could 

be made from two perspectives (VWY or VWV).  

5.5 Conclusions 

In this study, with the help of CropWat 8.0, the water footprint and its spatiotemporal 

characteristics and variations of the main crops in Zhangjiakou city for 2005, 2010, and 2015 

were estimated. Furthermore, an in-depth analysis of blue water, green water, and food 

productivity and economic benefits of water footprint was further analyzed by introducing three 

new indicators, i.e., green water footprint occupancy rate, blue water footprint deficit, and 

virtual water consumption per GDP. It is expected to make a contribution to sustainable water 

management for Zhangjiakou city ad broaden crop water footprint research. The main results 

are as follows: 

(1) The results of this study agree with previous studies in terms of the importance of green 

water in crop production. The total water footprint requirement of Zhangjiakou city increased 

from 1.671 billion m3 in 2005 to 1.852 billion m3 in 2015, of which the ratio of green water to 

blue water was around two, which means green water plays a greater role than blue water. 

Besides, the total water footprint requirement in the counties of the mountainous Bashang area 

is lower than those of the Baxia area, and the gap between them was further expanding. 

(2) Cereals, as the main staple food, had the largest water footprint requirement in 

Zhangjiakou city, accounting for 52%-55%. Meanwhile, the water footprint requirement of 

potatoes increased the fastest, with an increase of 47%, which is a result of large-scale planting 

in recent years. The crop with the highest proportion of blue water was vegetables, but it 

declined from 55% to 40% gradually, while the crop with the highest proportion of green water 

was fruits, accounting for 83%-85%. 
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(3) By introducing the green water footprint occupancy rate, we found there were 

significant differences between the Bashang area and the Baxia area in terms of green water 

use. The green water footprint occupancy rate in counties of the Bashang area was 43%-49%, 

with an average of 44%, while it was 51%-59% in counties of the Baxia area, with an average 

of 54%. The highest utilization rates of green water in a year was from May to August, which 

were 58%-83%. In terms of blue water footprint deficit, it dropped from 0.544 billion m3 in 

2005 to 0.480 billion m3 in 2010 and then increased to 0.612 billion m3 in 2015. In general, it 

was lower in the Bashang area than in the Baxia area.  

(4) From 2005 to 2015, the virtual water content per unit of yield dropped from 0.331 

m3/kg to 0.195 m3/kg continuously, while the virtual water consumption per output value 

dropped from 3,380 m3/104 yuan to 2,183 m3/104 yuan and then rose to 2,344 m3/104 yuan. In 

other words, the changing trends of water footprint food productivity and water footprint 

economic benefits were not always the same. The relationships between them in Zhangjiakou 

city were mainly in three forms: mutual match among crops, mismatch among crops, and 

mismatch among counties. Therefore, it is vital to consider them simultaneously when 

developing policies from the perspective of water footprint. 
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6. Agricultural water footprint and socioeconomic matching evaluation 

from the perspective of ecological zones 

6.1 Problem and objectives 

6.1.1 Research problem 

In the past two decades, research on agricultural water footprint has experienced changes 

from global and national scales (Bulsink et al., 2010; Chapagain et al., 2006; Hoekstra and 

Hung, 2002; Huang et al., 2019; Mekonnen and Hoekstra, 2018) to regional and watershed 

scales (Chu et al., 2017; Zeng et al., 2012; Zhuo et al., 2014). Most studies focused too much 

on virtual water transfer, that is, reducing the consumption of local water resources by importing 

agricultural products (Zhang et al., 2017). However, in the context of food security also facing 

severe challenges globally, it is impossible for all regions to solve water scarcity through food 

imports. Especially in areas where agricultural production plays a great role in economic growth, 

and rural residents’ income is heavily dependent on agriculture (Su et al., 2020). The 

optimization of water resources management should be closely integrated with the resources 

and environmental conditions of regional natural ecosystems and implement targeted strategies 

that are suitable for regional characteristics, this is why the ecological function zoning theory 

is constantly being accepted worldwide (Chen et al., 2016; Faheem et al., 2019; Ibidhi and Ben 

Salem, 2018). 

The ecological function zoning is a way to divide a region into areas with different 

ecological characteristics according to the pattern of the ecological system, ecological 

environment sensitivity, and the spatial differentiation of ecosystem service functions (Zhai et 

al., 2016). Its purpose is to identify the types and functions of different ecosystems in the region 

and the driving factors that cause such differences, which is a prerequisite for the formulation 

of specific development plans and ecological environmental protection measures suitable for 

each type of ecological zone (Chen et al., 2016). However, few studies have considered local 

ecological function planning when analyzing agricultural water footprint and its spatial 

distribution characteristics, especially in combination with socioeconomic factors, which is a 

key to achieving sustainable development of regional social ecosystems (Ibidhi and Ben Salem, 

2018; Langarudi et al., 2019). Therefore, the research purpose of this study is to take 

Zhangjiakou City as an example to make up for this gap. 
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6.1.2 Research objectives 

Zhangjiakou City, located in Hebei Province, northwestern China, is a vital water resource 

and ecological function area in the Beijing-Tianjin-Hebei region. With the development of 

Beijing-Tianjin-Hebei integration, the deterioration of the ecological environment and the 

decline of water conservation functions in the region have become increasingly significant, 

especially the shortage of water resources, which has seriously restricted the sustainable 

development of the socioeconomic system. Based on natural resources and geographic 

characteristics, all of the counties (districts) are classified into six ecological zones in 

Zhangjiakou City (Figure 6.1). The objectives of this study are: (1) to estimate and evaluate the 

agricultural water footprint of each county (district) in Zhangjiakou City in 2005 and 2015; (2) 

to analyze the distribution and matching characteristics of agricultural water footprint and 

socioeconomic factors (planting area, population, and agricultural GDP) in each county (district) 

using mathematical models, i.e., Gini coefficient and imbalance index firstly; (3) to propose 

suitable measures and policies for sustainable agricultural development in counties (districts) 

based on the ecological zone to which they belong.  

 

Figure 6.1 Geographical location and ecological function zoning map of Zhangjiakou  
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6.2 Methods and data sources 

6.2.1 Methods 

6.2.1.1 Crop water footprint 

Because the gray water footprint has no effect on crop growth, only blue and green water 

was taken into consideration for calculation. Water requirements for crop growth are mainly 

related to the meteorological environment, crop types, soil conditions, crop types, and harvest 

times, and are usually estimated using the CropWat 8.0 model recommended by the Food and 

Agriculture Organization (FAO) of the United Nations (Zeng et al., 2012). In CropWat 8.0, first 

of all, the required information of climate, rainfall, and crop growth need to be entered in the 

Climate, Rain and Crop modules, and then the evapotranspiration (ETc) of crop growth can be 

obtained in the CWR (Crop Water Requirements) module, with every ten days as a unit. In this 

study, when the effective rainfall is larger than ETc, it is assumed that the crop growth only 

consumes rainwater, i.e., green water; when the effective rainfall is less than ETc, it is assumed 

that all the effective rainfall is consumed. 

(1) Blue water footprint 

Zhangjiakou City is an arid region, and crops are generally under-irrigated, which means 

blue water consumption is less than the blue water demand. Therefore, the blue water footprint 

was calculated based on actual irrigation water use. Taking the loss of water resources during 

transportation and other processes into account, the blue water footprint (BWF) is calculated as 

follows: 

𝐵𝑊𝐹 = 𝑊𝑖 × 𝜂                                                            (6-1) 

Where Wi is the actual amount of irrigation water, and η is the effective utilization coefficient. 

(2) Green water footprint  

𝐸𝑇𝑔 = ∑𝑚𝑖𝑛(𝐸𝑇𝑐 , 𝑃𝑒)                                                                               (6-2) 

𝐺𝑊𝐹 = 10𝐴 × 𝐸𝑇𝑔                                                                               (6-3) 

where ETg (mm) is the green water evaporation, which is calculated every 10 days during the 

growth period; ETc (mm) and Pe (mm) are the 10-day crop water evaporation and effective 

precipitation, respectively; A represents the planting area of crop; factor 10 is the coefficient 

that converts water depth (mm) to water volume (m3hm-2).                                           
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6.2.1.2 Animal products water footprint 

The water footprint of animal products includes two parts: the water consumption in the 

animal breeding stage and in the post-processing of animal products. It is related to many factors 

such as animal types, breeding methods, and breeding areas, and the calculation process is 

complicated. Here we refer to the results of Hoekstra (2003) (Table 6.1), and the water footprint 

of animal products is calculated as follows: 

 𝑊𝐹𝑎𝑛𝑖 = 𝑈𝑊𝐹 × 𝑌                                                                (6-4) 

Where n is the type of animal products, UWF is the virtual water content per kilogram of the 

animal products, and Y is the weight of animal products.  

Table 6.1 Water footprint calculation factor of animal products 

Crops Beef Equidae meat Pork Mutton Poultry Milks Eggs Fishes 

UWF（m3 / kg） 12.56 5.67 2.21 5.2 3.65 3.55 1 3.11 

6.2.1.3 Spatial heterogeneity analysis of water footprint and socioeconomic factors 

(1) Gini coefficient 

The Gini coefficient was proposed by the Italian economist Gini (1912) based on the 

concept of the Lorenz curve. According to the definition of the Gini coefficient, we introduce 

“the Gini coefficient of water footprint and socioeconomic factors” to identify the spatial 

difference between the regional agricultural water footprint and various socioeconomic factors. 

It is calculated as follows: 

𝐺𝑖𝑛𝑖 = ∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1 + 2 ∑ 𝑋𝑖(1 − 𝑉𝑖) − 1𝑛

𝑖=1                                        (6-5) 

Where n represents the number of ecological zones; Xi and Yi represent the percentage of 

socioeconomic factors (planting area, population, and agricultural GDP) and water footprint of 

ecological zone i in Zhangjiakou City, respectively; Vi represents the cumulative percentage of 

the water footprint.  

(2) Water footprint and socioeconomic factors imbalance index  

The Gini coefficient can only reflect the overall spatial matching degree of the water 

footprint and socioeconomic factors. Therefore, for figuring out the specific imbalance in each 

county of Zhangjiakou City, we introduce the water footprint and socioeconomic factors 

imbalance index, which is calculated as follows: 

𝐼𝑖 =
𝑌𝑖

𝑋𝑖
                                                                                                   (6-6) 



 

103 

where Ii represents the imbalance index of county i. When Ii >1, it means that water footprint 

consumption of per unit planting area  (per capita or per unit GDP) is higher than the average 

level of Zhangjiakou City; When Ii <1, it means that per unit of planting (per capita or per unit 

of GDP) water footprint consumption is less than the average level of Zhangjiakou City. The 

closer Ii is to 1, the higher the matching degree between the water footprint and the 

socioeconomic factors. 

6.2.2 Data sources 

According to the characteristics of terrain, landforms, and the type of land use, 

Zhangjiakou was classified into six ecological function zones in the city’s 13th Five-Year Plan 

(2016-2020) in 2015, which are represented by I, II, III, IV, V and VI for simplicity (Figure 

6.1). As shown in Table 6.2, there were great spatial heterogeneities in these six ecological 

zones, regardless of irrigation rate, the percentage of agricultural water use or socioeconomic 

factors. Therefore, it is of great significance to analyze the spatial difference of the dynamic 

evolution of the agricultural water footprint from the perspective of the ecological zone. 

Table 6.2 Socioeconomic characteristics of the six ecological zones of Zhangjiakou City in 2015 

Ecological 

zone 

GDP (billion 

yuan) 

Planting area 

 (1,000 ha)  

Irrigation 

rate 

Population  

(1,000 person) 

Agricultural water use （10,000 m3) 

Irrigation  Animal In total 
Percentage in all 

sectors  

I 10.4  149.7  21% 851  8,372  1,030  9,402  81% 

II 4.1  76.7  20% 232  3,372  295  3,667  80% 

III 3.6  40.6  51% 1,137  10,026  217  10,243  50% 

IV  4.6  62.1  4% 426  3,533  326  3,859  58% 

V 10.3  220.4  41% 1189  26,495  887  27,382  84% 

VI 7.4  126.8  32% 855  15,081  404  15,486  87% 

CropWat 8.0 was used to calculate evaporation and effective rainfall during crop growth. 

The data required mainly includes meteorological and crop parameters. Meteorological data 

such as relative humidity, sunshine duration, wind velocity, and precipitation were obtained 

from Zhangjiakou Economic Yearbooks (The People's Government of Zhangjiakou City, 2006-

2016), average maximum temperature and average minimum temperature were obtained from 

the weather website (http://www.tianqi.com/qiwen/city_zhangjiakou/). The parameters of 

crops, such as sowing and harvesting date, root depth, crop coefficient, growth period, crop 

height, were modified based on the data provided by FAO  according to the actual situation in 

Zhangjiakou (Allan et al., 1998). In addition, socioeconomic factors, such as the crops planted 

area, the output of animal products, and GDP, were derived from the Zhangjiakou Economic 

Yearbooks (2006, 2011, 2016). The data of actual water consumption of irrigation and 
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utilization efficiency were derived from the Zhangjiakou City Water Resources Bulletin 

(Zhangjiakou Water Resource Bureau, 2006-2016) and other related government reports. 

6.3 Results 

6.3.1 General characteristics of the agricultural water footprint 

The total agricultural water footprint of Zhangjiakou City increased from 3.61 billion m3 

in 2005 to 5.30 billion m3 in 2015, an increase of 1.69 billion m3, of which the crop water 

footprint increased from 1.42 billion m3 to 1.52 billion m3, an increase of only 98 million m3, 

and the water footprint of animal products increased from 2.19 billion m3 to 3.78 billion m3, an 

increase of 1.59 billion m3 (Figure 6.2). As a result, the contribution rate of crop water footprint 

dropped from 39% in 2005 to 29% in 2015. The main reason for the slow growth of the crop 

water footprint is that the planting area has increased by only 3.7% (from 0.553 million ha to 

0.565 million ha) due to the limited cultivated area. However, with the transformation of 

residents' dietary structure during the process of urbanization and economic development, the 

animal husbandry industry has developed rapidly, and the output of animal products has 

increased by 102.2% (from 0.94 million tons to 1.90 million tons), resulting in a rapid increase 

of animal products water footprint.  

In terms of spatial differences, the agricultural water footprint was always the largest in 

Zhangbei County (increased from 0.599 billion m3 to 0.688 billion m3) and the smallest in 

Chongli County (increased from 0.155 billion m3 to 0.203 billion m3) (Figure 6.2). The 

contribution rate of crops to the total agricultural water footprint declined in each county, while 

it increased from 40% to 47% in the area of districts. Regarding ecological zones, the 

agricultural water footprint was the largest in ecological zone V (1.73 billion m3) and the 

smallest in ecological zone IV (0.405 billion m3) in 2015, accounting for 48% and 11% of 

Zhangjiakou City, respectively. The contribution rate of crop water footprint was the highest 

(34%) in ecological zone IV and the lowest (21%) in ecological zone I in 2015. 
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Figure 6.2 Agricultural water footprint in Zhangjiakou City 

6.3.2 Spatiotemporal changes of the crop water footprint 

6.3.2.1 Crop water footprint composition 

From 2005 to 2015, the structure of the crop water footprint was in a relatively stable state. 

Among them, the water footprint of cereals was always the largest, slowly increasing from 

0.699 billion m3 to 0.829 billion m3, and the contribution rate increased from 49% to 54%, 

which means cereals were the main contributor to crop water footprint in Zhangjiakou City. 

The water footprint of beans was the smallest, slowly decreasing from 0.112 billion m3 to 0.064 

billion m3, and the contribution rate dropped from 8% to 4%. 

In terms of spatial differences, from 2005 to 2015, the crop water footprint increased in 

ten counties (districts) and declined in the other four counties without showing obvious 

characteristics associated with the ecological zone (Figure 6.3). The largest region of crop water 

footprint thus has changed from Zhangbei County (0.180 billion m3) in the ecological zone I to 

Huailai County (0.185 billion m3) in the ecological zone V. Regarding ecological zones, the 

crop water footprint in ecological zone V was always the largest, and the contribution rate has 

increased from 30% to 36%. The crop water footprints in ecological zone II and V were the 

smallest, and the contribution rates were only 9% in 2015.  



 

106 

In terms of water footprint structure, the contribution rates of cereal in all counties of 

ecological zone III, V and VI were always higher than 50%, and they increased from 72%, 57%, 

and 58% to 80%, 66%, and 61% in these ecological zones, respectively (Figure 6.4); while the 

contribution rates of cereal in most counties of ecological zone I, II, and IV were always less 

than 50%, and they were getting smaller and smaller in these ecological zones, from 27%, 40%, 

and 48% decreased to 25%, 34%, and 46%, respectively. The decline of contribution rates of 

the cereal water footprint was mainly due to the continuous increase of the water footprint of 

potatoes. 

 

Figure 6.3 Crops water footprint in Zhangjiakou City 

 

Figure 6.4 The contribution rate of crops water footprint in Zhangjiakou City 

6.3.2.2 Blue and green water footprint 

The irrigated area of the major crops increased from 0.141 million ha in 2005 to 0.183 

million ha in 2015, which accounted for 26% and 32% of the total planting area, respectively. 

Therefore, as shown in Figure 6.5, the contribution rate of green water footprint was always 

about four times higher than the blue water footprint. In terms of spatial difference, the 

ecological zone V had the largest share of green water footprint, which increased from 29% to 

35%, while the ecological zone III had the smallest share, which has been maintained at 6% to 
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7%. The ecological zone V had the largest share of blue water footprint, which increased from 

32% to 39%, while the ecological zone II had the smallest share of blue water footprint, which 

was always below 5%. In 2015, the share of blue water consumption in the ecological zones III, 

V, and VI totaled 76%. This is because these three ecological zones were the main irrigation 

areas, and the proportion of irrigated farmland is higher than in other ecological zones. 

 

Figure 6.5 Share of crops blue and green water footprint in 2005 and 2015 

6.3.3 Water footprint of animal products 

As shown in Figure 6.6a, the water footprint of each type of animal products has been 

rising from 2005 to 2015. Milk products had the largest water footprint and the fastest growth 

rate, increasing from 0.535 billion m3 to 1.26 billion m3. Fish products had the smallest water 

footprint, increasing from 0.022 billion m3 to 0.041 billion m3. 

It is obvious that the water footprint of animal products has increased in every county 

(district), but the growth rates were significantly different (Figure 6.6b). The water footprint of 

animal products was always the largest in Zhangbei County (increased from 0.420 billion m3 to 

0.581 billion m3), while it was always the smallest in Chongli County (increased from 0.031 

billion m3 to 0.067 billion m3). In general, the water footprint of animal products in counties of 

ecological zone I, V, and VI was higher than it in the other counties, and the total contribution 

rate of these three ecological zones has increased from 73% to 75%. 

In addition, the structure of the water footprint of the eight major animal products varies 

significantly in each area (Figure 6.7). The total water footprint of beef, pork, and mutton in the 

ecological zone IV has been declining, but it was still higher than 64%, while it was less than 

35% in the ecological zones II and III. The water footprint of equine was the largest in the 
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ecological zone IV but only accounted for 6-7%. The proportions of the milk water footprint in 

the ecological zones I and II have been expanding, from 35% and 60% to 55% and 72%, 

respectively. The water footprints of poultry-related products, such as poultry meat and eggs, 

were very small in the ecological zones I and II, accounting for less than 7%. The proportions 

of fish water footprint were very small in all ecological zones. 

 

Figure 6.6 The water footprint of animal products in Zhangjiakou City 

 

Figure 6.7 The contribution rate of animal products water footprint in Zhangjiakou City 

6.3.4 The spatial relationship of water footprint and socioeconomic factors 

6.3.4.1 Gini Coefficient 

(1) Crop water footprint and planting area 

As shown in Figure 6.8a and Figure 6.8b, from 2005 to 2015, the Gini coefficient of crop 

water footprint and planting area increased from 0.12 to 0.14, indicating a “high balance” 

distribution pattern of the crop water footprint on the county scale. Regarding blue water and 

green water, the Gini coefficient of blue water footprint and planting area slightly increased 

from 0.33 to 0.34, indicating that the blue water footprint of crops was in a “relatively 

reasonable” spatial distribution pattern. Meanwhile, the Gini coefficient of green water 
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footprint and planting area increased from 0.09 to 0.11, which means that the spatial distribution 

of green water footprint always remained in a “high balance” state. Therefore, in general, the 

spatial distribution of the green water footprint was more balanced than the blue water footprint 

during the research period. 

(2) Agricultural water footprint and population. 

As shown in Figure 6.8c and Figure 6.8d, the Gini coefficient of agricultural water 

footprint and population increased from 0.12 in 2005 to 0.16 in 2015, which means the spatial 

distribution of agricultural water footprint and the population was in a “high balance” state. The 

Gini coefficient of the crop water footprint and the population increased from 0.23 to 0.26, 

indicating that the spatial distribution of the crop water footprint and the population was in a 

“relative balance” state. The Gini coefficient of the water footprint of animal products and 

population increased from 0.30 to 0.32, which indicates that the distribution of water footprint 

of animal products and the population was always in a “relatively reasonable” state. In general, 

the spatial balance degree of agricultural water footprint and the population was moving 

towards a more unbalanced trend. 

(3) Agricultural Water Footprint and GDP 

As shown in Figure 6.8e and Figure 6.8f, the Gini coefficient of agricultural water footprint 

and agricultural GDP rose from 0.08 in 2005 to 0.15 in 2015, indicating that the spatial 

relationship between agricultural water footprint and agricultural GDP was always in a “high 

balance” state in county scale. In terms of crops, the Gini coefficient of crop water footprint 

and crops GDP increased from 0.15 to 0.27, indicating that the spatial distribution of crop water 

footprint and crops GDP dropped from a “high balance” state to a “relative balance” state. In 

terms of animal products, the Gini coefficient of the water footprint and GDP of animal products 

increased from 0.14 to 0.21, which indicates that the spatial relationship of them changed from 

“high balance” to “relative balance”. In general, the spatial matching degree of the water 

footprint and animal products GDP was higher than that of the water footprint and crops GDP. 
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Figure 6.8 Lorentz curve of water footprint and socioeconomic factors in Zhangjiakou City 

6.3.4.2 Imbalance index 

(1) Water footprint and planting area 

As shown in Figure 6.9a, the imbalance indexes of the blue water footprint and planting 

area were always less than 1 in the counties of ecological zones I, II, and IV from 2005 to 2015, 

indicating the amount of blue water per unit area of cultivated land in these counties was lower 

than the average level. Meanwhile, the imbalance indexes of the blue water footprint and the 

planting area were always greater than 1 in most counties of ecological zones III, V, and VI, 

which means the amount of blue water per unit area of cultivated land in these counties was 

higher than the average level. 

Regarding green water, as shown in Figure 6.9b, the imbalance index of green water 

footprint and planting area was less than 1 only in four counties (Kangbao, Shangyi, Zhangbei, 
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and Yu) in 2005, while it was less than 1 in half of the counties in 2015. In general, the 

imbalance index of green water footprint and planting area was more concentrated near the 

absolute balance line, which also confirms that the spatial distribution of green water was more 

balanced. 

 (2) Agricultural water footprint and population 

As shown in Figure 6.9c, it is obvious that the imbalance index of agricultural water 

footprint and population was far less than 1 in districts area, indicating that per-capita 

agricultural water footprint was far below the average level during the research period. This is 

due to the high population density in the city center. The imbalance index of agricultural water 

footprint and population decreased in all counties of ecological zones I, II, III, and IV, 

indicating that per-capita agricultural water footprint decreased in these counties; while it 

increased in most counties of ecological zones V and VI, indicating that per-capita agricultural 

water footprint increased in these counties.    

 (3) Agricultural water footprint and GDP 

As shown in Figure 6.9d, the imbalance index of agricultural water footprint and 

agricultural GDP was more concentrated around the absolute balance line in 2005 than in 2015, 

indicating that the differences in the consumption of water footprint per unit of GDP were 

increasing among counties. The imbalance index of agricultural water footprint and agricultural 

GDP decreased in almost all counties (except Zhangbei) of ecological zones I, II, III, and IV, 

indicating that the consumption of water footprint per unit of GDP was decreasing in these 

counties; while it increased in all counties of ecological zones V and VI, indicating that the 

consumption of water footprint per unit of GDP was increasing in these counties. 
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Figure 6.9 The imbalance index between water footprint and socioeconomic factors  

6.4 Discussion 

6.4.1 Recommendations for sustainable development 

Cultivated land and grassland are the main types of land use in counties of ecological zone 

I, which account for 42% and 47% in total in Zhangjiakou City, respectively. From 2005 to 

2015, the water footprint of crops decreased from 0.34 billion m3 to 0.25 billion m3. This is 

because the government has vigorously implemented conversation measures to return farmland 

to forests and grasslands to restore the ecological environment. The planting area has been 

reduced from 0.174 million ha to 0.150 million ha. Meanwhile, the area of irrigated land was 

reduced by planting drought-resistant potatoes instead of water-consuming vegetables, and the 

water-saving technology of dropper was actively promoted. However, the water footprint of 

animal products has increased from 0.650 billion m3 to 0.946 billion m3, especially dairy 

products have increased from 0.230 billion m3 to 0.520 billion m3. Therefore, in addition to 

continuing to optimize the planting structure, implement efficient water-saving irrigation 

measures, and control the water footprint of crops, the government needs to strictly prohibit 

overload grazing and develop modern animal husbandry from the perspective of water 

resources carrying capacity. 



 

113 

In Guyuan County, the ecological zone II, the crop water footprint increased from 0.125 

billion m3 to 0.136 billion m3. Compared with ecological zone I, the government needs to 

strengthen the implementation of measures to return farmland to forests and grasslands to save 

water. In addition, due to the rapid increase in the milks water footprint, the water footprint of 

animal products in this area increased from 0.170 billion m3 to 0.328 billion m3. Therefore, the 

government should accelerate the adoption of measures such as prohibiting grazing, rotation 

grazing, and captives to strictly control overgrazing of grasslands and prevent grassland 

degradation. It should also limit the scale of animal husbandry development from the 

perspective of water conservation. 

The ecological zone III is the political, economic, and cultural center of Zhangjiakou, with 

the largest population density and a high-level economic development. It is also the main area 

of high-quality cultivated land. The crop water footprint decreased from 0.141 billion m3 to 

0.126 billion m3, of which the proportion of cereal water footprint increased from 72% to 80%, 

while the water footprint of animal products increased from 0.220 billion m3 to 0.310 billion 

m3. The government thus needs to use the technological advantages of this region to explore 

effective ways to increase the irrigation coefficient of crops, improve the agricultural ecological 

environment, establish green ecological agriculture, and improve the efficiency of water 

resource utilization. 

In Chongli County and Chicheng County, the ecological zone IV, woodland and grassland 

are the main types of land use, accounting for 54% in total. There are three rivers, Heihe, Baihe, 

and Honghe, which are important water supply sources for Beijing. From 2005 to 2015, the 

crop water footprint remained around 0.137 billion m3, and the water footprint of animal 

products increased from 0.196 billion m3 to 0.268 billion m3. In addition to the protection of 

natural ecosystems and enhancement of water conservation functions, the government needs to 

control the cultivated area of crops, optimize the production and management methods of 

animal husbandry, and strictly control the number of animals based on water resources carrying 

capacity. 

The counties of ecological zone V are the main area for agricultural development, 

accounting for 25% of the total arable land in Zhangjiakou City. From 2005 to 2015, the water 

footprint of crops increased from 0.420 billion m3 to 0.545 billion m3, and the water footprint 

of animal products increased from 0.542 billion m3 to 1.18 billion m3, which made ecological 

zone V has the largest agricultural water footprint and the fastest growth rate among the six 

ecological zones. Therefore, these counties need to actively develop ecological agriculture, 
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promote the development of water-saving and efficient agriculture, and build high-tech 

agriculture to save water around key industries such as vegetables, animal husbandry, and fruit 

processing. 

Yu County and Zhuolu County are located in the south of Zhangjiakou City, the ecological 

services such as natural forest water conservation and soil and water conservation have 

weakened because of the impact of human activities. From 2005 to 2015, the crops water 

footprint increased from 0.261 billion m3 to 0.327 billion m3, and the animal products water 

footprint increased from 0.410 billion m3 to 0.725 billion m3. Therefore, these two counties 

need to continue to strengthen forest construction, prohibit land reclamation on slope land, and 

improve water conservation capacity. Meanwhile, the government should actively implement 

water-saving irrigation technologies to control the increase of the water consumption of the 

plantation industry and optimize the structure of animal husbandry based on the virtual water 

content of the feed. 

6.4.2 Relationships of water footprint and socioeconomic factors 

In terms of planting area, the crop water footprint and the planting area were always in a 

“high balance” state, indicating that the water consumption per unit of cultivated land in all 

counties was relatively close. The spatial distribution of green water and planting area always 

remained in a stable state of “high balance”, it only means that the green water consumption 

per unit area was quite close in all counties. It is still vital to optimize the structure of the 

planting industry to improve the use of precipitation. Meanwhile, the balance between the blue 

water footprint and the planting area declined slightly. This is mainly due to the reduction of 

irrigated land in the counties of Bashang area and the increase in the proportion of rainfed and 

dripper farmland, which has led to the reduction of irrigation water in the area. Through the 

analysis of the imbalance index, the crop water footprint per unit area in counties of ecological 

zone III was much higher than the average level of Zhangjiakou City, especially the blue water 

footprint. Therefore, it is necessary to use various water-saving measures and technologies to 

focus on improving the efficiency of the water footprint in these counties. 

In terms of population, the agricultural water footprint and the Gini coefficient of the 

population remained stable and were always in a “high balance” state. According to the analysis 

of imbalance degree, the per capita agricultural water footprint was larger than the average level 

in most counties of ecological zones I, II, V and VI, while it was lower than the average level 

in counties of ecological zones III and IV. Therefore, it is necessary to actively reduce the 
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agricultural water footprint in areas of ecological zones I, II, V, and VI from the perspective of 

population, especially in ecological zones I and II. 

In terms of GDP, the Gini coefficient of water footprint and GDP of animal products was 

always smaller than the Gini coefficient of water footprint and GDP of crops, indicating that 

the distribution of water footprint of animal products was more balanced than crop water 

footprint in terms of GDP. This is mainly due to the difference in planting structure and price 

of crops, which led to a poor balance of the water footprint of the crops per unit of GDP in these 

counties. Through the analysis of imbalance degree, the agricultural water footprint per unit of 

GDP in most counties of ecological zones I, II, and IV was lower than the average level in 

Zhangjiakou, while the agricultural water footprint per unit of GDP in most counties of 

ecological zone VI was higher than the average level in 2015. Therefore, from the perspective 

of economic development, it is vital to give priority to optimizing the structure of planting and 

animal husbandry in counties of ecological zone VI to maximize the economic benefits of water 

footprint.  

However, it needs to be emphasized that the adjustment of the agricultural structure in 

each county requires comprehensive consideration of multiple socioeconomic factors, which is 

similar to the research result of Fernández et al. (2020) that the market value and local 

environmental conditions should be considered at the same time in irrigation management. For 

example, the water footprint consumption per unit planting area in counties of ecological zone 

III was much higher than the average level, but the per capita water footprint and the per-unit 

GDP water footprint were far below the average level.  

6.5 Conclusions 

Zhangjiakou City is in a critical period of economic transformation and development. The 

shortage of water resources has become a serious factor restricting the sustainable development 

of society and the economy. The water footprint theory was employed to calculate and analyze 

the dynamic evolution of agricultural water use in the scale of ecological function zone in 2005 

and 2015, and the spatiotemporal matching characteristics of agricultural water footprint and 

socioeconomic factors were analyzed using the Gini coefficient and the imbalance index. The 

main results are: 

The agricultural water footprint of Zhangjiakou City increased from 3.61 billion m3 to 5.30 

billion m3, an increase of 1.69 billion m3, of which the water footprint of crops increased by 
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only 0.098 billion m3, while the water footprint of animal products increased by 1.59 billion m3, 

indicating that animal products will have a more significant impact on the use of water resources. 

The cereal water footprint has always been a major contributor to the crop water footprint, 

with an increasing contribution rate from 49% to 54%. Products of milk and eggs are the main 

drivers of the increase in the water footprint of animal products, with an increasing total 

contribution rate from 46% to 55%. The spatial differentiation of the agricultural water footprint 

is significant. In 2015, the contribution rate of the cereal water footprint was less than 50% in 

counties of high-altitude ecological zones I, II, and IV, while it was higher than 50% in counties 

of low-altitude ecological zones III, V, and VI. In general, the contribution rate of milk water 

footprint was higher in counties of high-altitude ecological zones I and II and IV than in 

counties of low-altitude ecological zones III, V, and VI.   

The Gini coefficient and imbalance index of agricultural water footprint and 

socioeconomic factors indicate that the spatial distribution of agricultural water footprint and 

planting area, population, agricultural GDP was relatively balanced, but there were still some 

significant differences. For example, the water footprint consumption per unit planting area in 

counties of ecological zone III was much higher than the average level, but the per capita water 

footprint and the per-unit GDP water footprint were far below the average level, which indicates 

that adjustment of the agricultural structure in each county requires a comprehensive 

consideration of multiple socioeconomic factors.  
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7. Conclusions and future work 

7.1 Conclusions 

Zhangjiakou City is in a critical period of economic transformation. The shortage of water 

resources has become a serious factor restricting the sustainable development of society and the 

economy. It is not only unlikely to solve the water shortage by transferring water from outside 

but also needs to deliver water to Beijing, which means the only way to solve the water dilemma 

is coordination and cooperation between upstream (Bashang) and downstream (Baxia) areas 

and different industrial sectors within the region. In this thesis, based on system dynamics and 

water footprint theory, the demand for water resources under different industrial layouts and 

agricultural planting patterns was investigated, which could provide a scientific basis for 

achieving coordinated and balanced development of the entire city.  

Based on system dynamics, the agricultural water-related indicators are the most sensitive 

factors to the total water demand in Zhangjiakou City. That is to say, the agricultural sector has 

the largest water-saving potential. There is a need to reduce the area of irrigated farmland. 

However, in this process, the correlation between the crop structure, food production, and 

agricultural income, as well as other factors must be considered to achieve maximum benefits. 

The four development scenarios established through the integration of the “Two-zone Planning” 

provided specific and feasible alternatives for the sustainable development of Zhangjiakou City. 

But it is noted that no matter which scenario is chosen, as the economy grows, the water demand 

per 10,000 yuan of GDP will eventually drop to about 20 m3 by 2035. This means that if only 

by slowing down economic growth to achieve lower water demand, not only the water use 

efficiency cannot be improved, but it may also lead to a waste of water supply capacity. 

In view of the fact that agricultural production has responsible for the largest utilization of 

water resources in Zhangjiakou City. With the help of CropWat 8.0, the water footprint and its 

spatiotemporal characteristics and variations of the main crops for 2005, 2010, and 2015 were 

estimated. Furthermore, from the perspective of the ecological zone, the spatiotemporal 

matching characteristics of agricultural water footprint and socioeconomic factors were 

analyzed using the Gini coefficient and imbalance index. In Zhangjiakou City, although the 

virtual water content per unit of yield decreased from 0.331 m3/kg in 2005 to 0.195 m3/kg in 

2015, the contribution rate of blue water and green water has always remained about 20% and 

80%, respectively. Therefore, how to make full use of green water resources is of vital 

importance to the sustainable development of agriculture. The agricultural water footprint of 
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Zhangjiakou City increased from 3.61 billion m3 to 5.30 billion m3, an increase of 1.69 billion 

m3, of which the water footprint of animal products increased by 1.59 billion m3. Therefore, in 

addition to continuing to optimize the planting structure, implement efficient water-saving 

irrigation measures, and control the water footprint of crops, the government needs to strictly 

prohibit overload grazing and develop modern animal husbandry to reduce the water footprint 

of animal products, especially in counties of high-altitude ecological zones. 

7.2 Limitations and future work 

There are several limitations in this study, which are also the directions of future work. 

First, the relationship of agriculture GDP and the area of the irrigated farmland should be 

reflected in the system dynamics model (Chapter 4), but we failed to achieve it due to the lack 

of data. Because agriculture consists of crop farming, forestry, and animal husbandry, and there 

are both irrigation farmland and rain-fed farmland in crop farming, and the areas of various 

crops are changing every year. In Zhangjiakou City, however, there were only total yield and 

GDP data for each crop that can be used, without distinguishing between irrigation farmland 

and rain-fed farmland. It is thus very difficult to get the contribution rate of different types of 

irrigation farmland to the agriculture GDP and the inherent relationship between them. Second, 

due to the same reason, in Chapter 5, the comparative analysis of economic benefits and food 

production of crop water footprint from the perspective of irrigated crops and rain-fed crops 

cannot be achieved. It is necessary to improve this in future research when data are available, 

which can contribute to adjusting the structure of crops for water conservation. Third, with the 

decrease of the virtual water content of crops, the virtual water contained in animal feed should 

also be continuously decreasing. However, a constant virtual water coefficient was used in 

Chapter 6 to calculate the water footprint of animal products. Although it is common in the 

current water footprint research of animal products, it should be improved in future work.   

7.3 Summarizing the results regarding the goals and the objectives 

Research goal 1: Provide scientific support for coordinating conflicts between regions 

and industrial sectors is a general scientific goal.  

In Chapter 4, based on the “Two-zone Planning” of Zhangjiakou City, a system dynamics 

model has been established, and then the water demand (2020 - 2035) of various sectors, i.e., 

agriculture, industry, urban public, residents, and the environment has been estimated under 

four development scenarios. By doing this, the research results have achieved the goal of 
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providing policymakers with scientific support for resolving conflicts in the use of water 

resources between regions and sectors. 

Research goal 2: Provide scientific support for regional sustainable development is 

another general scientific goal. 

First, the results of Chapter 4 could help local government to mitigate the conflict of water 

use between different sectors. Second, in Chapter 5 and Chapter 6, the green water was 

introduced through water footprint theory to draw more attention to the utilization of rainwater 

resources in arid areas, and the spatiotemporal differences in water footprint economic benefits 

were also analyzed. In general, the results of these three chapters could provide scientific 

support for the sustainable development of the socio-economic system. 

Objective 1: Based on the “Two-zone Planning” of Zhangjiakou City, a system dynamics 

model will be established to simulate the water demand of various departments in Zhangjiakou 

City from 2020 to 2035 under different development scenarios.  

In Chapter 4, the system dynamic model of Zhangjiakou City has been successful 

established. The sensitive factors of total water use were identified based on this model, that is, 

the variables related to irrigation farmland are the main driving factors of water demand. Then 

the water demand (2020 - 2035) was estimated under four development scenarios, The results 

show that the total water demand will rise continually in CDS and EPS, and the proportion of 

agricultural water demand will drop to 67% and 63%, respectively. Meanwhile, it will decline 

continually in WPS and BDS, and the proportion of agricultural water demand will drop to 56% 

and 57%, respectively. 

Objective 2: According to water footprint theory, the water footprint requirement of the 

main crops in Zhangjiakou City will be estimated with the help of CropWat 8.0, and its 

characteristics of spatial distribution and dynamic changing trends for 2005, 2010, and 2015 

will be identified. Besides, water footprint food productivity and water footprint economic 

benefits will be investigated.  

In Chapter 5, the water footprint requirement of the main crops in Zhangjiakou City was 

estimated with the help of CropWat 8.0. The water footprint requirement increased from 1.671 

billion m3 in 2005 to 1.852 billion m3 in 2015, of which the ratio of green water to blue water 

was around two. The water footprint requirement in the counties of the high-latitude Bashang 

area was lower than that of the low-latitude Baxia area, and the gap between them was further 

expanding. The changing trends of water footprint food productivity and water footprint 
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economic benefits were not always the same. Therefore, it is vital to consider them 

simultaneously when developing policies from the perspective of water footprint. 

        Objective 3: For the first time, from the ecological zone perspective, the distribution and 

matching characteristics of agricultural water footprint and socioeconomic factors (planting 

area, population, and agricultural GDP) in each county (district) using mathematical models, 

i.e., Gini coefficient and imbalance index will be analyzed, and the suitable measures and 

policies for sustainable agricultural development for counties (districts) will be proposed 

accordingly.  

In Chapter 6, from the perspective of the ecological function zones, the agricultural water 

footprint of 2005 and 2015 has been estimated, and the spatiotemporal matching characteristics 

of agricultural water footprint and socioeconomic factors (planting area, population, and 

agricultural GDP) were investigated using the Gini coefficient and the imbalance index. The 

agricultural water footprint increased from 3.61 billion m3 to 5.30 billion m3, an increase of 

1.69 billion m3, of which the water footprint of animal products increased by 1.59 billion m3. 

The spatial distribution of agricultural water footprint and planting area, population, agricultural 

GDP was relatively balanced, but there were still some significant differences. For example, 

the water footprint consumption per unit planting area in counties of ecological zone III was 

much higher than the average level, but the per capita water footprint and the per-unit GDP 

water footprint were far below the average level, which indicates that adjustment of the 

agricultural structure in each county requires a comprehensive consideration of multiple 

socioeconomic factors. 

 

 

 


