258 research outputs found

    Impact of SARS-CoV-2 on Ambient Air Quality in Northwest China (NWC)

    Get PDF
    SARS-CoV-2 was discovered in Wuhan (Hubei) in late 2019 and covered the globe by March 2020. To prevent the spread of the SARS-CoV-2 outbreak, China imposed a countrywide lockdown that significantly improved the air quality. To investigate the collective effect of SARS-CoV-2 on air quality, we analyzed the ambient air quality in five provinces of northwest China (NWC): Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX) and Qinghai (QH), from January 2019 to December 2020. For this purpose, fine particulate matter (PM2.5), coarse particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were obtained from the China National Environmental Monitoring Center (CNEMC). In 2020, PM2.5, PM10, SO2, NO2, CO, and O3 improved by 2.72%, 5.31%, 7.93%, 8.40%, 8.47%, and 2.15%, respectively, as compared with 2019. The PM2.5 failed to comply in SN and XJ; PM10 failed to comply in SN, XJ, and NX with CAAQS Grade II standards (35 µg/m3, 70 µg/m3, annual mean). In a seasonal variation, all the pollutants experienced significant spatial and temporal distribution, e.g., highest in winter and lowest in summer, except O3. Moreover, the average air quality index (AQI) improved by 4.70%, with the highest improvement in SN followed by QH, GS, XJ, and NX. AQI improved in all seasons; significant improvement occurred in winter (December to February) and spring (March to May) when lockdowns, industrial closure etc. were at their peak. The proportion of air quality Class I improved by 32.14%, and the number of days with PM2.5, SO2, and NO2 as primary pollutants decreased while they increased for PM10, CO, and O3 in 2020. This study indicates a significant association between air quality improvement and the prevalence of SARS-CoV-2 in 2020.The National Natural Science Foundation of China (No. 21667026) and the Social Science Foundation of Xinjiang Production and Construction Corps (No. 18YB13) funded this work

    Spatio-temporal characteristics of PM2.5 and O3 synergic pollutions and influence factors in the Yangtze River Delta

    Get PDF
    Since the implementation of pollution prevention and control action in China in 2013, particulate pollution has been greatly reduced, while ozone pollution has become gradually severe, especially in the economically developed eastern region. Recently, a new situation of air pollution has emerged, namely, enhanced atmospheric oxidation, ascending regional ozone pollution, and increasing particle and ozone synergic pollution (i.e., double-high pollution). Based on the long-term observation data from 2015 to 2021, we examined the spatio-temporal characteristics of urban PM2.5 and O3 pollution in the Yangtze River Delta and quantified the effects of meteorological and non-meteorological factors on pollution in four city clusters using stepwise multiple linear regression models. Temporally, PM2.5 decreased gradually year by year while, O3 increased in city clusters. Spatially, PM2.5 declined from northwest to southeast, while O3 decreased from northeast to southwest. Except for southern Zhejiang, other city clusters suffer from complex air pollution at different levels. In general, pollution intensity and frequency vary with city location and time. Single PM2.5 pollution mostly occurred in northern Anhui. Single O3 pollution occurred in central and southern Jiangsu and northern Zhejiang. Synergic pollutions of PM2.5 and O3 mainly occurred in central Jiangsu. The contributions (90%) of non-meteorological factors (e.g., anthropogenic emission) to PM2.5 decrease and O3 increase are far larger than that of meteorological factors (5%). Relative humidity, sea level pressure, and planetary boundary layer height are the most important meteorological factors to drive PM2.5 changes during pollution. Downward solar radiation, total cloud cover, and precipitation are the most important meteorological factors that affect O3 changes during pollution. The results provide insights into particulate and ozone pollution in the Yangtze River Delta and can help policymakers to formulate accurate air pollution prevention and control strategies at urban and city cluster scales in the future

    Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China : insights gained from long-term measurement

    Get PDF
    As major chemical components of airborne fine particulate matter (PM2.5), organic carbon (OC) and elemental carbon (EC) have vital impacts on air quality, climate change, and human health. Because OC and EC are closely associated with fuel combustion, it is helpful for the scientific community and policymakers assessing the efficacy of air pollution control measures to study the impact of control measures and regional transport on OC and EC levels. In this study, hourly mass concentrations of OC and EC associated with PM2.5 were semi-continuously measured from March 2013 to February 2018. The results showed that annual mean OC and EC concentrations declined from 14.0 to 7.7 mu g m(3) and from 4.0 to 2.6 mu g m(3), respectively, from March 2013 to February 2018. In combination with the data of OC and EC in previous studies, an obvious decreasing trend in OC and EC concentrations was found, which was caused by clean energy policies and effective air pollution control measures. However, no obvious change in the ratios of OC and EC to the PM2.5 mass (on average, 0.164 and 0.049, respectively) was recorded, suggesting that inorganic ions still contributed a lot to PM2.5. Based on the seasonal variations in OC and EC, it appeared that higher OC and EC concentrations were still observed in the winter months, with the exception of winter of 2017-2018. Traffic policies executed in Beijing resulted in nighttime peaks of OC and EC, caused by heavy-duty vehicles and heavy-duty diesel vehicles being permitted to operate from 00:00 to 06:00 (China standard time, UTC + 8, for all times throughout the paper). In addition, the fact that there was no traffic restriction in weekends led to higher concentrations on weekends compared to weekdays. Significant correlations between OC and EC were observed throughout the study period, suggesting that OC and EC originated from common emission sources, such as exhaust of vehicles and fuel combustion. OC and EC levels increased with enhanced SO2, CO, and NOx concentrations while the O-3 and OC levels were enhanced simultaneously when O-3 concentrations were higher than 50 mu g m(-3). Non-parametric wind regression analysis was performed to examine the sources of OC and EC in the Beijing area. It was found that there were distinct hot spots in the northeast wind sector at wind speeds of approximately 0-6 km h(-1), as well as diffuse signals in the southwestern wind sectors. Source areas further away from Beijing were assessed by potential source contribution function (PSCF) analysis. A high-potential source area was precisely pinpointed, which was located in the northwestern and southern areas of Beijing in 2017 instead of solely in the southern areas of Beijing in 2013. This work shows that improvement of the air quality in Beijing benefits from strict control measures; however, joint prevention and control of regional air pollution in the regions is needed for further improving the air quality. The results provide a reference for controlling air pollution caused by rapid economic development in developing countries

    Introduction to Special Issue - In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-2 Beijing)

    Get PDF
    Abstract. The Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) programme is an international collaborative project focusing on understanding the sources, processes and health effects of air pollution in the Beijing megacity. APHH-Beijing brings together leading China and UK research groups, state-of-the-art infrastructure and air quality models to work on four research themes: (1) sources and emissions of air pollutants; (2) atmospheric processes affecting urban air pollution; (3) air pollution exposure and health impacts; and (4) interventions and solutions. Themes 1 and 2 are closely integrated and support Theme 3, while Themes 1-3 provide scientific data for Theme 4 to develop cost-effective air pollution mitigation solutions. This paper provides an introduction to (i) the rationale of the APHH-Beijing programme, and (ii) the measurement and modelling activities performed as part of it. In addition, this paper introduces the meteorology and air quality conditions during two joint intensive field campaigns - a core integration activity in APHH-Beijing. The coordinated campaigns provided observations of the atmospheric chemistry and physics at two sites: (i) the Institute of Atmospheric Physics in central Beijing, and (ii) Pinggu in rural Beijing during 10 November – 10 December 2016 (winter) and 21 May- 22 June 2017 (summer). The campaigns were complemented by numerical modelling and automatic air quality and low-cost sensor observations in the Beijing megacity. In summary, the paper provides background information on the APHH-Beijing programme, and sets the scene for more focussed papers addressing specific aspects, processes and effects of air pollution in Beijing

    Air Pollution Control and Sustainable Development

    Get PDF
    This book brings together the latest research findings on the state of air pollution control and its impact on economic growth in different countries. The book has substantial content and rich discussion. It is suitable for students and researchers at different levels to learn the status of air pollution, governance policies and their effects, and the relationship between pollution control and economic growth in countries around the world

    Air Quality Research Using Remote Sensing

    Get PDF
    Air pollution is a worldwide environmental hazard that poses serious consequences not only for human health and the climate but also for agriculture, ecosystems, and cultural heritage, among other factors. According to the WHO, there are 8 million premature deaths every year as a result of exposure to ambient air pollution. In addition, more than 90% of the world’s population live in areas where the air quality is poor, exceeding the recommended limits. On the other hand, air pollution and the climate co-influence one another through complex physicochemical interactions in the atmosphere that alter the Earth’s energy balance and have implications for climate change and the air quality. It is important to measure specific atmospheric parameters and pollutant compound concentrations, monitor their variations, and analyze different scenarios with the aim of assessing the air pollution levels and developing early warning and forecast systems as a means of improving the air quality and safeguarding public health. Such measures can also form part of efforts to achieve a reduction in the number of air pollution casualties and mitigate climate change phenomena. This book contains contributions focusing on remote sensing techniques for evaluating air quality, including the use of in situ data, modeling approaches, and the synthesis of different instrumentations and techniques. The papers published in this book highlight the importance and relevance of air quality studies and the potential of remote sensing, particularly that conducted from Earth observation platforms, to shed light on this topic

    EXAMINATION OF PHOTOCHEMISTRY AND METEOROLOGY OF ATMOSPHERIC POLLUTANTS FROM THE NORTH CHINA PLAIN

    Get PDF
    Increasingly severe air pollution over metropolitan regions in China has raised attention in light of its local and regional impacts on health and climate. Computer models can simulate complex interactions between photochemistry and meteorology to inform policy decisions in reducing ground-level pollution. However, models rely on an accurate portrayal of emissions that often possess large uncertainties over regions with evolving pollution characteristics. This work is comprised of a quantitative analysis of air pollutants in the North China Plain that strives to improve such uncertainties by identification of important sources and meteorological conditions for pollution through the combination of observations and models. Measurements used in this dissertation focus on in situ observations from the Spring 2016 Air chemistry Research in Asia (ARIAs) campaign, which sampled atmospheric composition across the heavily populated and industrialized Hebei Province in the North China Plain. High amounts of ozone (O3) precursors were found throughout and even above the planetary boundary layer, continuing to generate O3 at high rates to be potentially transported downwind. Evidence for the importance of anthropogenic VOCs on O3 production is presented. Concentrations of NOx and VOCs even in the rural areas of this highly industrialized province promote widespread O3 production and in order to improve air quality over Hebei, both NOx and VOCs should be regulated. The ARIAs airborne measurements also provide a critical opportunity to characterize chlorofluorocarbons (CFCs) over a suspected CFC-11 source region in China, finding mixing ratios were well above 2016 global background levels. Based on correlations of CFCs with compounds used in their manufacture, I identify likely source regions of new CFCs production and release, in violation of the Montreal Protocol. Finally, I examine the influence of meteorology on surface and aloft measurements during ARIAs. A multiday persistent high pressure episode is presented as a case study to examine the influence of regional transport on air quality measured during ARIAs. This dissertation provides valuable information for understanding one of the most polluted regions in China. Coordinated field and modeling efforts can together provide scientific guidance to inform pollution control measures to meet air quality targets in China

    Interpreting changes in anthropogenic emissions underlying abrupt changes in observed air quality using surface and satellite observations and a chemical transport model

    Get PDF
    Effective air quality policy is hindered by inaccurate estimates of precursor emissions, unvalidated, sparse or absent monitoring networks, and uncertain formation pathways of air pollution. Of particular concern are regions with severe air pollution, such as northern China and, large cities in South and Southeast Asia, and large cities in the world with high anthropogenic emissions. This work makes use of field campaign measurements, reference network measurements, satellite observations and a chemical transport model (CTM) to address these knowledge gaps in these regions. In the Beijing-Tianjin-Hebei region (BTH) in northern China, the Chinese government implemented strict emission control measures in autumn-winter 2017/2018 to address fine particulate matter (PM2.5) pollution. PM2.5 reduction targets were met, so these controls are now adopted in other parts of China, even though the relative role of emission controls and meteorology was not assessed. Surface observations of air quality from monitoring networks (validated against field campaign measurements) and the GEOS-Chem CTM were used after addressing large biases in the regional bottom-up anthropogenic emission inventory for China. According to the model, emission controls accounted for less than half (at most 43%) the decline in total PM2.5 while most (57%) was due to interannual variability in meteorology. Specifically, a deeper planetary boundary layer, stronger winds, and lower relative humidity during the emission control period. Emission controls alone would not achieve the PM2.5 reduction targets of 15-25% in this region. Cities in South and Southeast Asia are developing rapidly, but routine, up-to-date and publicly available inventories of emissions are lacking for this region. Nitrogen oxides (NOx) emissions in cities are important precursors to health-hazardous PM2.5 and tropospheric ozone (O3) where it is a greenhouse gas. NOx lifetimes and emissions over 10 large cities in South and Southeast Asia in 2019 were obtained by applying an exponentially modified Gaussian (EMG) approach with a wind rotation technique to the nitrogen dioxide (NO2) tropospheric vertical column densities (VCDs) from the high spatial resolution TROPOspheric Monitoring Instrument (TROPOMI). Annual averaged NOx emissions range from 100 mol s-1 for Delhi, Dhaka and Singapore. This is comparable to the range of emissions estimates for polluted cities in China. Bottom-up NOx emissions from a widely used publicly available global inventory exceed the top-down estimates for most cities. The discrepancy is >100% for Chennai, Singapore and Jakarta. It was only possible to estimate top-down monthly NOx estimates for 3 cities, due to issues with the line density fitting parameters at these fine temporal scales. These ranged from 63 to 148 mol s-1 for Singapore (annual mean 114 mol s-1), 44 to 109 mol s-1 for Jakarta (68 mol s-1), and 26 to 67 mol s-1 for Manila (53 mol s-1). Month-to-month variability is absent in the bottom-up emission estimates. The discrepancies identified in this work need to be resolved to ensure the development of effective policies. Abrupt changes in air quality during COVID-19 lockdowns presented an opportunity to investigate changes in observed PM2.5, NOx and O3 pollution due to interventions. Surface observations of air quality in 11 cities worldwide were analysed. Observed NO2 decreased substantially at urban background and roadside sites in all the cities, by 10-60% at urban background sites, and by 29 53% at roadside sites. In contrast, observed O3 increased in all cities after the lockdowns, by 16-167% at urban background sites and by 20-156% at roadside sites. The percentage changes in observed PM2.5 are -39 to 153% at urban background sites, -41 to 108% at roadside sites, and -34 to 165% at rural sites. But by comparing observations in 2020 to those in 2016-2019 during the equivalent periods, results here demonstrated that the observations of air quality alone cannot represent the changes in emissions due to COVID-19 lockdowns as the impact of meteorology should be considered. Findings in this thesis demonstrate the application of observations from multiple platforms, innovative analytical techniques, and an advanced chemical transport model to abrupt changes in air quality in time and space to better understand air pollution precursor emissions and formation pathways and to interpret the relative contribution from changes in emissions and meteorology. Such information is vital for developing well-informed environmental policies

    Lower Atmosphere Meteorology

    Get PDF
    The Atmosphere Special Issue “Lower Atmosphere Meteorology” deals with the meteorological processes that occur in the layer of the atmosphere close to the surface. The interaction between the biosphere and the atmosphere is made through the lower layer and can greatly influence living beings and materials. The analysis of the meteorological parameters provides a better understanding of processes within the lower atmosphere and involved in air pollution, climate, and weather. The mixed layer height, the wind speed, and the air parcel trajectory have a relevant interest due to their marked impact on population and energy production. The research also comprises aerosols, clouds, and precipitation, analysing their spatiotemporal variations. This issue addresses features of gases in the atmosphere and anthropogenic greenhouse emission estimates, which are also conditioned by the lower atmosphere meteorology

    Emerging Hydro-Climatic Patterns, Teleconnections and Extreme Events in Changing World at Different Timescales

    Get PDF
    This Special Issue is expected to advance our understanding of these emerging patterns, teleconnections, and extreme events in a changing world for more accurate prediction or projection of their changes especially on different spatial–time scales
    • …
    corecore