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Since the implementation of pollution prevention and control action in China in

2013, particulate pollution has been greatly reduced, while ozone pollution has

become gradually severe, especially in the economically developed eastern

region. Recently, a new situation of air pollution has emerged, namely,

enhanced atmospheric oxidation, ascending regional ozone pollution, and

increasing particle and ozone synergic pollution (i.e., double-high pollution).

Based on the long-term observation data from 2015 to 2021, we examined the

spatio-temporal characteristics of urban PM2.5 and O3 pollution in the Yangtze

River Delta and quantified the effects of meteorological and non-

meteorological factors on pollution in four city clusters using stepwise

multiple linear regression models. Temporally, PM2.5 decreased gradually

year by year while, O3 increased in city clusters. Spatially, PM2.5 declined

from northwest to southeast, while O3 decreased from northeast to

southwest. Except for southern Zhejiang, other city clusters suffer from

complex air pollution at different levels. In general, pollution intensity and

frequency vary with city location and time. Single PM2.5 pollution mostly

occurred in northern Anhui. Single O3 pollution occurred in central and

southern Jiangsu and northern Zhejiang. Synergic pollutions of PM2.5 and O3

mainly occurred in central Jiangsu. The contributions (90%) of non-

meteorological factors (e.g., anthropogenic emission) to PM2.5 decrease and

O3 increase are far larger than that of meteorological factors (5%). Relative

humidity, sea level pressure, and planetary boundary layer height are the most

important meteorological factors to drive PM2.5 changes during pollution.

Downward solar radiation, total cloud cover, and precipitation are the most

important meteorological factors that affect O3 changes during pollution. The

results provide insights into particulate and ozone pollution in the Yangtze River

Delta and can help policymakers to formulate accurate air pollution prevention

and control strategies at urban and city cluster scales in the future.
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1 Introduction

The rapid economic growth in past decades has resulted in

considerable industrialization, fast urbanization, and vast fossil

fuel combustion in China, which emits large amounts of

pollutants and then seriously harms air quality and the

environment (Chan and Yao 2008; Chen et al., 2013; Sheehan

et al., 2014; Qu et al., 2017; Li et al., 2018). The Chinese

government has implemented several strict plans of clean air

action and a series of control policies since 2012, such as the

Action Plan for Prevention and Control of Air Pollution and the

Winning Battle for Blue Sky (Chinese State Council 2013b;

Chinese State Council, 2018), to reduce major pollutant

concentrations, prevent air pollution, and improve air quality.

Up to now, air quality has been drastically improved in

economically developed areas in the eastern part of the

country (Zheng et al., 2017; Zheng et al., 2018; Xue et al.,

2019). However, the concentrations of particulate matter in

some cities still fail to meet China’s National Ambient Air

Quality Standards (NAAQS) (MEE 2012) and are far from

meeting the air quality guidelines recommended by the World

Health Organization (WHO 2006). Meanwhile, ozone (O3)

shows an obvious upward trend and becomes the primary

pollutant in most cities, including populous megacities (Li

et al., 2017; Wang et al., 2019; Xu et al., 2019; Zeng et al.,

2019). Numerous studies have proven that high levels of PM2.5

(particulate matter with aerodynamic diameters <2.5 μm) and O3

are harmful to long-term exposed people, animals, and plants

due to raising the risk of mortality (PopeIII et al., 2006; Lepeule

et al., 2012; Canella et al., 2016; Cohen et al., 2017; Poursafa et al.,

2022). Additionally, environmental pollution is found to be a

potential culprit for the high and progressively younger incidence

of some human diseases (Xu et al., 2022). Recently, the synergic

pollution of high concentrations of PM2.5 and O3 has been

frequently observed in China during agricultural biomass

burning periods (Ding et al., 2013) and between late spring

and early autumn (Tie et al., 2019), accompanying higher

atmospheric oxidation and more secondary components

(Zhang H. L. et al., 2015; Song et al., 2017). However, this

new situation of air pollution is puzzling because the

understanding of full chemical reactions is limited.

After years of pollution control efforts, the emission of

primary particulate matter has dramatically reduced in China,

and secondary generation dominates particulate matter

origination in many areas (Wang et al., 2016). Although

secondary PM2.5 and O3 share common precursors, they have

different formation mechanisms. O3 is known to be a typical

secondary component mainly formed by photochemical

reactions of NOx and volatile organic compounds (VOCs) in

the presence of ultraviolet light (Pusede et al., 2015; Wang et al.,

2017). In fact, there exists a complex non-linear relationship

between aerosol and O3, that is, PM2.5 with sophisticated

physicochemical properties affects the formation and loss of

O3 (Stadtler et al., 2018; Li et al., 2019), and in turn, O3 can

impact atmospheric oxidation capacity and thus secondary

aerosol formation (Pathak et al., 2009; Wang et al., 2016).

Furthermore, air pollution is closely linked with climate

change, and they interact through complex approaches in the

atmosphere. For example, the changes in emissions and

meteorological conditions have been confirmed to influence

ambient pollutants together (He et al., 2003; Wang L. et al.,

2015; Khuzestani et al., 2017). Using a multi-resolution emission

inventory for China, Zheng et al. (2018)estimated nationwide

changes of PM2.5, SO2, NOx, and NMVOCs

by −33%, −59%, −21%, and 2% between 2013 and 2017.

Meteorological conditions can affect urban pollution (Tie

et al., 2009), and their role varies with the terrain (Zhao et al.,

2020). In the future, global climate change will exacerbate air

pollution and cause unignorable climate-driven air pollution

mortality (Hong et al., 2019).

O3 as a major pollutant, has a significant impact on the air

quality of the Yangtze River Delta (YRD), accounting for 55.4%

of total days exceeding pollution standards in 2021 (accounting

for 37.2% in 2015) (MEE 2015; MEE 2021). Daytime mean

concentration of O3 and its proportion acting as the major

pollutant have increased significantly year by year due to

rapid urban expansion in the YRD (Gu et al., 2011; Liao

et al., 2015; Han et al., 2017). Previous studies focused on

either particulate matter or O3 pollution events at national or

regional scales (Jiang et al., 2012; Tie et al., 2013; Gao et al., 2016;

Ming et al., 2017; Shu et al., 2017; Dai et al., 2021), but paid less

attention to their double-high pollution (DHP) episodes. Dai

et al. (2021) investigated the DHP events in 25 cities of the YRD

from 2013 to 2019 and found that they are mainly affected by

high humidity, high surface temperature, and low wind speed.

Qin et al. (2021) revealed the spatial distribution, trends, and

meteorological characteristics of DHP periods in the YRD

between 2015 and 2019. In this region, the pollutants show

obvious spatial discrepancy due to different land use types,

urban morphology, geographical location in city

agglomerations (Zhang Q. et al., 2019; Mao et al., 2022), and

strong seasonal variation and temporal correlation between cities

within 250 km (Hu et al., 2014; Shen et al., 2017).

This paper used observation of the major pollutants in the

YRD from 2015 through 2021 to explore the spatio-temporal

pattern of PM2.5 and O3 pollution. The goal is to characterize the

pollution periods and their geographical differences from a

regional city-cluster perspective and unravel the nature of

PM2.5 and O3 synergic pollutions and related drivers,

including meteorological and other factors. The results will
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provide insights into the current situation and upcoming

challenges of air pollution and help policymakers to adopt

further strategies for precise pollution control and prevention.

2 Materials and methods

2.1 Overview of city clusters

The YRD is one of the most economically developed and

populous regions in China, with the largest urban agglomeration,

including 41 cities, such as Shanghai (SH), Nanjing (NJ),

Hangzhou (HZ), Suzhou (SZ), and Hefei (HF), etc. (Figure 1).

The YRD has a complex land cover with plains mainly spreading

in the north and east, and low and middle mountains in the

southwest and south. We analyzed the correlation between PM2.5

and O3 in these 41 cities and then classified them as four city

clusters, that is, Huaibei (HBC), Wanjiang (WJC), Jiangsu-

northern Zhejiang-Shanghai (JZS), and southern Zhejiang

(ZSC), based on high correlation coefficients (R ≥ 0.8) and

similarities in land cover (Figure 1). The spatial differences of

PM2.5 and O3 concentrations are general small inside each city

cluster but large between different city clusters. In addition, the

city that holds the highest correlation coefficients with other

cities in pollutant concentrations was selected as the proxy of one

city cluster for the following analysis (Supplementary Figure S1).

Four typical cities, Huaibei (HB), Hefei (HF), Wuxi (WX), and

Jinhua (JH), were selected as indicators for the above-mentioned

city clusters (Table 1).

2.2 Data of air quality and meteorology

Hourly concentrations of O3, PM2.5, CO, SO2, and NO2 were

taken from the archived data (https://quotsoft.net/air) of the

Ministry of Ecology and Environment of China (Wang 2022). As

part of the Clean Air Action Plan launched in 2013, the

observation network on pollutants covers 496 sites in

74 major cities across the country (Chinese State Council

2013a) and has been extended to more than 2000 sites by

2021. The NAAQS guidelines are strictly abided by

instrument operation and management, data assurance, and

quality control, and SO2, NO2, and CO are monitored at the

same sites as PM2.5 (MEE 2012; Zhang and Cao 2015). Data used

here span from January 2015 to December 2021, and their

statistical validity is assessed by the Ambient Air Quality

Standard (GB 3095-2012) and the trial Technical Specification

for Ambient Air Quality Evaluation (HJ 663-2013) (Yang et al.,

2020). The daily averages of PM2.5, CO, SO2, and NO2 were

computed by their hourly averages at every site that contains

more than 20 h of valid records in 1 day. The 8-h average of O3

concentrations was calculated by its hourly values that possess at

least six serial valid records within every 8 h. The maximum daily

8-h average (MDA8) O3 concentration was determined by 8-h

averages in 1 day that has more than 14 valid records from 8:00 to

24:00 local time (LT).

The meteorological data used in this study came from the

fifth-generation European Center for Medium-Range

Weather Forecasts atmospheric reanalysis (ERA5), with a

horizontal resolution of 0.25° × 0.25°. The meteorological

data in ERA5 are more accurate than other reanalysis data,

notably for meteorological elements at the surface and in the

low troposphere, and thus are currently employed in various

scientific studies (Meng et al., 2018; Song et al., 2020). In order

to minimize the error caused by interpolation, the

neighboring method was used to match the in-situ

observation data of air quality with the nearest grid data of

ERA5 (Liu et al., 2015; Zhu and Yuan 2019). In light of the

method of previous studies (Leung et al., 2018; Li et al., 2019;

Chen et al., 2020), we used 26 meteorological parameters

(Supplementary Table S1) as original candidate predictors

for multiple linear regression (MLR) fitting, averaged over

24 h or daytimes (08:00–17:00 LT).

2.3 Estimation of secondary aerosols

The rapid increase of secondary particulate matter can lead to

heavy pollution events with high PM2.5 loadings (Dao et al.,

2021). In addition, atmospheric precursors experience complex

FIGURE 1
Spatial distribution of 41 cities in the Yangtze River Delta
(YRD), including HBC (yellow), WJC (blue), JZS (pink), and ZSC
(green). The dots with black circles denote four representative
cities (Table 1).
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non-linear chemical reactions in secondary generation under

favorable meteorological conditions. Analytical methods of real-

time PM2.5 monitoring cannot determine all secondary

components. Chang and Lee (2007) used pollutant

observations and employed CO as a tracer for primary

emissions to estimate secondary PM2.5 concentrations at

different photochemical activities. The estimation of

summertime secondary aerosols has been carried out in many

cities in China (Cui et al., 2013; Jia et al., 2017; Li H. L. et al., 2020;

Gu et al., 2022; Yao et al., 2022; Yu et al., 2022), and research has

proven that the method of CO tracer is able to screen primary

PM2.5 and estimate urban-scale secondary PM2.5 concentration.

The formation of secondary particulate matter links closely with

photochemical activity. In particular, O3 has commonly acted as

an index of photochemical reactions to quantify the role of

secondary particulate matter in air quality changes (Turpin

and Huntzicker 1995; Na et al., 2004; Chang and Lee 2007;

Wang Z. S. et al., 2015). Taking CO as a primary tracer and

assuming that the structure of the emission source remains

essentially stable, the larger the PM2.5/CO, the larger the

proportion of secondary-PM2.5 (Chang and Lee 2007; Zhang

Q. Y. et al., 2015). We divided the photochemical activity into

four groups based on the daily hourly maximum of O3

concentration (O3,max): low for below 100 µg m−3, moderate

for 100–160 µg m−3, high for 160–200 µg m−3, and very-high

for above 200 µg m−3. The primary aerosols were estimated

using hourly CO concentrations under different

photochemical activity levels. Meanwhile, the secondary

aerosols were calculated by deducting primary PM2.5 from

observed PM2.5 (Cui et al., 2013; Li K. et al., 2020; Yu et al., 2022).

PM2.5( )s,i � PM2.5( )t,i − COt,i ×
PM2.5

CO
( )

low
(1)

where, i (i = 1,2,3) denotes moderate, high, and very-high

photochemical activity levels, respectively. (PM2.5)s represents

secondary PM2.5 concentration. (PM2.5)t, and COt represent total

concentrations of PM2.5 and CO in the atmosphere. (PM2.5/

CO)low refers to the 25th percentile of hourly ratios for PM2.5/CO

at a low photochemical activity.

2.4 Stepwise multiple linear regression
model

To quantify the influence of meteorology on air quality, we

developed a stepwise MLR model to establish the relationship

between pollutant concentrations and meteorological variables.

The MLR model has been successfully applied in evaluating

meteorological effects on PM2.5 and O3 changes (Tu et al., 2007;

Tai et al., 2010; Xu et al., 2011; Yang et al., 2016; Wang et al.,

2017; Zhao and Wang 2017; Yang et al., 2019; Zhai et al., 2019).

Ci,p,c t( ) � b0,i,p,c +∑N

k�1bk,i,p,c × Metk t( ) + ε (2)

where Ci,p,c(t) is the observed daily pollutant i concentration

(PM2.5 or MDA8 O3) at period p and city c, Metk(t) is one of

the N meteorological predictors, b0 is the intercept term, bk is the

regression coefficient of the k-th meteorological predictor, and ε is

the residual term.

This study used the method of Chen et al. (2020) to obtain the

best meteorological predictor. We minimized the effect of

correlations between predictor variables using variance inflation

factor (VIF) (Altland 1999; Che et al., 2019; Li H. L. et al., 2020)

and based on the Akaike Information Criterion (AIC), adding or

deleting statistical predictor variables to obtain the best fitting

model when AIC reaches a minimum (Kutner et al., 2004).

Supplementary Tables S2, S3 present optimal meteorological

variables, calculated intercepts (b0), regression coefficients (bk),

and adjusted coefficients of determination (R2) for each city and

period. The calculated adjusted R2, which reflects the fraction of

variability described by MLR, is 0.2–0.6 for PM2.5 and 0.5–0.8 for

MDA8 O3, indicating the MLR model works reasonably well.

TABLE 1 Classification of urban agglomerations.

Clusters Cities Representative

Huaibei cluster (HBC) Nine cities: Bozhou (BZ), Suzhou (SZ), Xuzhou
(XZ), Huaibei (HB), Fuyang (FY), Huainan (HN),
Bengbu (BB), Suqian (SQ), Lianyungang (LYG)

Huaibei (HB)

Wanjiang cluster (WJC) Nine cities: Luan (LA), Anqing (AQ), Xuancheng
(XC), Hefei (HF), Chuzhou (CZ), Chizhou (CZ1),
Wuhu (WH), Tongling (TL), Maanshan (MAS)

Hefei (HF)

Jiangsu- northern Zhejiang-Shanghai cluster (JZS) Seventeen cities: Huaian (HA), Nanjing (NJ),
Suzhou (SZ1), Nantong (NT), Zhenjiang (ZJ),
Jiaxing (JX), Ningbo (NB), Changzhou (CZ2),
Yangzhou (YZ), Wuxi (WX), Hangzhou (HZ),
Taizhou (TZ), Huzhou (HZ), Yancheng (YC),
Shaoxing (SX), Shanghai (SH), Zhoushan (ZS)

Wuxi (WX)

Southern Zhejiang cluster (ZSC) Six cities: Jinhua (JH), Huangshan (HS), Quzhou
(QZ), Lishui (LS), Taizhou (TZ1), Wenzhou (WZ)

Jinhua (JH)

Frontiers in Environmental Science frontiersin.org04

Zhu et al. 10.3389/fenvs.2022.1104013

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104013


2.5 Estimation of meteorological and non-
meteorological contributions

The meteorological-driven changes (or trends) of pollutant

concentrations (ΔP) were calculated directly from the predicted

concentration (P(t)) after the MLR model was established:

ΔPi,s,c � ∑N

k�1bk,i,s,c × ΔMetk (3)

whereΔMetk denotes the change (or trend) of the k-thmeteorological

variable. Non-meteorological driven changes (or trends) are mainly

attributed to changes in anthropogenic emissions (Akaike 1969; Seo

et al., 2018) and can be obtained from the difference between

observed (ΔC) and meteorological-driven (ΔP) values. The relative
contribution of each meteorological variable to total meteorological-

driven changes (or trends) was quantified by the ratio of (bk ×ΔMetk)

to ΔP. The meteorological variable with the largest contribution was

considered the meteorological variable with the largest impact on

PM2.5 and O3 changes or trends.

3 Results and discussion

3.1 Characteristics of PM2.5 and O3
pollutions

3.1.1 Trends of PM2.5 and O3 concentrations
In almost all cities of the YRD, PM2.5 shows a downward

trend from 2015 through 2021 (Supplementary Figure S2), and

the proportion of cities with PM2.5 exceeding the standard (ES) of

air quality (annual mean PM2.5 larger than 35 μg m−3) descends

from 95.1% to 51.2%. The annual mean of PM2.5 concentration

was highest (66 μg m−3) in Hefei in 2015 and in Fuyang

(49 μg m−3) in 2021. Meanwhile, MDA8 O3 shows an upward

trend in 2015–2019 and then a downward trend in 2020–2021,

and the proportion of cities with MDA8 O3 ES of air quality

(MDA8 O3 90Per larger than 160 μg m−3) in total cities ascents

from 41.5% to 80.5% and then descends to 68.3%. The 90Per of

MDA8 O3 was the highest (196 μg m
−3) in Yangzhou in 2015 and

in Changzhou (195 μg m−3) in 2021. On the other hand, in terms

of spatial distribution pattern, PM2.5 generally reduced from

northwest to southeast, while O3 reduced from northeast to

southwest.

Figure 2 depicts the inter-annual variations of PM2.5 and O3

concentrations in the YRD. PM2.5 decreased by 24.1%, 34.1%,

40.1%, and 39.1% between 2015 and 2021 in HBC,WJC, JZS, and

ZSC city clusters, respectively, especially in the JZS, with the most

notable reduction. Obviously, PM2.5 in the HBC city cluster is

much higher than others (Figure 2A), and most cities in this

cluster suffer from severe particle pollution because of large coal

consumption as they are located in coal-producing areas. In

contrast, PM2.5 in the ZSC city cluster is far lower than that in

other city clusters due to natural vegetation coverage (Figure 2A).

In particular, Lishui, Wenzhou, and Taizhou have already met

the NAAQS. PM2.5 of the HBC city cluster increased slightly

before 2017 (Figure 2A). In fact, most cities in Anhui province

showed an increase of PM2.5 at the same time, especially in

Fuyang, Huaibei, and Suzhou. It is worth noting that Xuzhou,

FIGURE 2
Inter-annual variations of (A)mean PM2.5 and (B)MDA8O3 90Per in four city clusters and the YRD during 2015–2021. Black dotted lines denote
the Class II of air quality standards (GB3095-2012).
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situated at the junction of Jiangsu, Shandong, Henan, and Anhui

provinces, is vulnerable to non-local pollutants transported from

remote sources and thus has a relatively higher PM2.5 level than

surrounding cities. On the other hand, Xuzhou is the only

southern city that is allowed to provide centralized heating in

winter, which is bound to coal-fired emission pollution (Wang

et al., 2020).

MDA8 O3 shows a tipping point in 2019, with a rising trend

before 2019 and a falling trend afterward (Figure 2B). The

increasing rates were 22.2%, 66.9%, 1.7%, and 3% in the HBC,

WJC, JZS, and ZSC city clusters, respectively, from 2015 through

2021. The MDA8 O3 in the JZS city cluster exceeded the NAAQS

and kept fluctuating at a high level (Figure 2B), indicating that

the urban group has been suffering from serious O3 pollution for

a long time. By contrast, the rising trend of MDA8 O3 in the ZSC

city cluster was insignificant, and all cities met the NAAQS

(Figure 2B). The most notable increase of MDA8 O3 occurred

in the WJC city cluster, especially in 2016, with an increase of

43 μg m−3 (Figure 2B), which is mainly attributed to

anthropogenic emissions. On the whole, the ZSC city cluster

has the best air quality in the YRD, whereas others have varying

severity of combined PM2.5 and O3 pollution.

Figure 3 presents inter-monthly variations of mean PM2.5

and MDA8 O3 concentrations. PM2.5 and MDA8 O3 show

contrary long-term trends on a monthly-scale. Previous studies

have found that high particulatematter loadings usually match low

O3 concentrations in the cold season (Sun L. et al., 2019), and low

particulate matter loadings match high O3 concentrations in the

warm season (Li et al., 2016). PM2.5 generally exhibits high levels in

winter and low levels in summer due to fossil fuel combustions in

the cold season and turbulent vertical mixing (Ding et al., 2013;

Yue et al., 2015; Zhang et al., 2018), usually reaching peaks in

December or January and troughs in July, with a single-peak-valley

pattern. The increased emissions during the winter heating period

in North China can exacerbate particulate matter pollution in the

Yangtze River Delta through the long-range transport of pollutants

(Zhang H. L. et al., 2015; Zhao et al., 2015). The monthly PM2.5 of

the ZSC city cluster fluctuates slightly around 40 μg m−3, far less in

magnitude compared with other city clusters (Figure 3A).

Meanwhile, PM2.5 in these city clusters had almost no

difference in the first 2 years (2015-2016), but an obvious

difference in the following 5 years (2017-2021), especially in the

months before and after the peak. Except for July and August, the

median PM2.5 of all city clusters is higher than 35 μg m−3,

indicating that most cities in the YRD suffer from PM2.5

pollution to some extent.

MDA8 O3 continues to rise with double-peak-valley

fluctuations, with the peaks in May or June and September,

FIGURE 3
Inter-monthly variations ofmonthlymean (A) PM2.5 and (B)MDA8O3 in four city clusters during 2015–2021. Black dotted lines denote the linear
trendlines of the whole YRD.
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and the troughs in July and December (Figure 3B). The closer to

the peak month, the greater the difference in concentrations

among four city clusters. High temperature, low relative

humidity and intense solar radiation enhance O3 formation in

summer, whereas the meteorological conditions unfavorable to

photochemistry and increasing NO titration suppress O3 yield

(Yang et al., 2021).

Figure 4 shows the ratios of major pollutants from 2015 through

2021 relative to 2015 as the reference in Huaibei, Hefei, Wuxi, and

Jinhua cities. PM2.5 exhibited a consistent decline in Hefei, Wuxi,

and Jinhua. However, it rose dramatically before 2017 and then

turned to a continuous decline in Huaibei (Figure 4A). In all four

cities, MDA8 O3 showed an increase before 2019 and subsequently

decreased, a time point of COVID-19 occurrence (the beginning of

December 2019). Hefei has the greatest increase from 2015 through

2019, with an increment of almost 80% (Figure 4B), far higher than

the growth of the other three cities. NO2 showed long-term changes

similar to O3. On the whole, SO2 reduced year by year at an average

range of 53.9%–73.7%, and CO gradually decreased by 22.6%–

41.2%. The reasonable explanation is the emission reduction of

primary pollutants and related precursors by the implementation of

the air cleaning plan since 2013, including efficient control methods

such as tightening industrial emissions, modernizing industrial

boilers, retiring outdated industrial capacity, and encouraging

clean fuels in the residential sector (Lang et al., 2017; Shao et al.,

2018; Zhai et al., 2019; Zhang T. et al., 2019). Since the outbreak of

COVID-19, human activities were reduced due to disease control

regulations that lasted throughout 2020 and 2021 (Wang and Zhang

2020).

3.1.2 Intensity of PM2.5 and O3 pollutions
According to the Class II of NAAQS, we defined the single

particulate matter pollution (uni-PM2.5) as the day with only

daily PM2.5 exceeding 75 μg m
−3, the single O3 pollution (uni-O3)

as the day with only MDA8 O3 exceeding 160 μg m−3, and the

synergic pollution of particulate matter and O3 (bi-PM2.5-O3) as

both PM2.5 and MDA8 O3 above the aforementioned standards

in a day (i.e., DHP pollution). Figures 5A–C shows the

cumulative days of uni-PM2.5, uni-O3 and bi-PM2.5-O3 in the

YRD from 2015 through 2021. Overall, from a spatial

perspective, the total number of uni-PM2.5 days decreased

gradually from northwest to southeast in the YRD region,

with the maximum number of days found in the north,

including northern Anhui and northern Jiangsu provinces

(Figure 5A). The uni-O3 increased form northeast to

southwest, with the maximum number of days in the central

YRD, including southern Jiangsu, Shanghai, and northern

Zhejiang (Figure 5B). The bi-PM2.5-O3 days mainly occurred

in northern Anhui and Jiangsu provinces, especially on the line

from Bozhou to Shanghai (Figure 5C). From seasonal

perspective, the uni-PM2.5 days mostly occurred in winter

(November-February). However, the uni-O3 days mainly

appear in warm seasons (April -September), with two peaks

in May, June and September (Supplementary Figure S3). The bi-

PM2.5-O3 days mainly occur from late spring to early summer

and late autumn, similar to O3 pollution, with more distinct and

obvious two peaks in April and October (Supplementary Figures

S3, S4). Serious bi-PM2.5-O3 pollution always occurred in the

cities in central and southern Jiangsu province in April, whereas

in the cities in northern Anhui province, bi-PM2.5-O3 pollution

occurred in October (Supplementary Figure S4). The uni-PM2.5

days significantly decreased year by year in every city, especially

in the HBC and WJC city clusters (Supplementary Figure S5A).

Except for the ZSC city cluster, the uni-O3 days increased in the

other three city clusters, peaked in 2019, and then decreased until

2021 (Supplementary Figure S5B). Among them, the WJC city

FIGURE 4
Inter-annual variations of pollutants annual mean concentration ratios of 2015–2021 relative to the reference (2015) for (A) Huaibei, (B) Hefei,
(C) Wuxi, and (D) Jinhua cities.

Frontiers in Environmental Science frontiersin.org07

Zhu et al. 10.3389/fenvs.2022.1104013

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104013


cluster has the most rapid growth, indicating an increasing

severity of O3 pollution in recent years. The bi-PM2.5-O3 days

have prominent inter-annual changes and appear notably in

2015 and 2018 (Supplementary Figure S5C).

Figures 5D–F show the frequency statistics of pollution

intensity of uni-PM2.5, uni-O3, and bi-PM2.5-O3 in YRD

from 2015 through 2021. PM2.5 concentrations were higher

during uni-PM2.5 than bi-PM2.5-O3. However, opposite to

particulate matter, MDA8 O3 concentrations were lower

during uni-O3 than bi-PM2.5-O3, which is similar to the

results of Qin et al. (2021) and Awang et al. (2018). Figures

5G–I present the cumulative polluted days and the

percentages of total ES days in city clusters from

2015 through 2021. The HBC city cluster has the most

FIGURE 5
Cumulative days of air quality exceeding standard (ES) for cities (A–C), frequency statistics of ES intensity for the YRD (D–F), and total ES days
and ES rates for four city clusters (G–I) during 2015–2021. (A,D,G) are ES of only PM2.5, (B,E,H) are ES of onlyMDA8O3, and (C,F,I) are ES of both PM2.5

and MDA8 O3. The ES intensity was determined by the ratio of difference (between a pollutant concentration and corresponding standard) to the
standard.
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serious uni-PM2.5, with a total of 496 polluted days (19.4%).

The JZS and HBC city clusters exhibit the most severe uni-O3,

with percentage of 13.2% (338 days) and 13.7% (325 days).

Meanwhile, the HBC and JZC city clusters have the worst bi-

PM2.5-O3 pollution, with a total of 28 days (1.1%) and 25 days

(1%). Qin et al. (2021) reported that the highest frequency of

bi-PM2.5-O3 pollution appeared in Shanghai and the lowest in

Anhui in the YRD. This inconsistency with our results may be

related to the discrepancy in the pollution region divisions

concerned.

3.2 Potential influence between PM2.5
and O3

Atmospheric oxidation refers to the ability of the atmosphere

to remove pollutants through oxidation reactions, and strong

atmospheric oxidation can promote the formation of secondary

pollutants and particle aging (Levy 1971). In this study, we

introduced OX (OX = O3 + NO2) to describe the atmospheric

oxidative capacity (Cheung and Wang 2001; Clapp and Jenkin

2001; Herndon et al., 2008; Zhang et al., 2012), and to analyze the

relationship between O3 and atmospheric oxidation. PM2.5

concentrations were almost the same in four typical cities in

April and October, but O3, O3/Ox ratio, and the Pearson

correlation coefficients between O3 and Ox were generally

higher in April than those in October (Figure 6; Table 2),

indicating that O3 had a more obvious contribution to

atmospheric oxidation in April and varied significantly

between cities. The O3/Ox ratios greater than 0.5 indicated

that atmospheric oxidation was mainly dominated by O3.

Figure 7 shows the proportions of estimated secondary

components in PM2.5 for four typical cities in April and

October under different photochemical activity levels. The

insignificant changes in primary PM2.5 indicated that the

structure of primary emission sources in these cities remained

stable. The proportions of secondary particulate matter in

October were generally greater than that in April in Hefei,

Wuxi, and Jinhua cities, but it was the opposite in Huaibei

city, with high photochemical activities. Hefei city had the

smallest proportion of secondary particulate matter. The

higher the photochemical activity levels, the larger the

proportion of secondary components in PM2.5. The results

indicate that the generation and accumulation of secondary

particulate matter have increasing significance on PM2.5

concentrations and demonstrate that secondary PM2.5 links

closely with O3 in a synergistic manner.

Based on the observation data of cities in the YRD, PM2.5 was

divided into low (≤35 µg m−3), medium (35–75 µg m−3), and high

(>75 µg m−3) levels. Figure 8 shows the diurnal variations of the

O3 change rate calculated using hourly O3 concentrations at the

above three PM2.5 levels. The daily trends of O3 change rates were

FIGURE 6
PM2.5, O3, andOX (=O3+NO2) concentrations of Huaibei, Hefei, Wuxi, and Jinhua cities in April andOctober from 2015 through 2021. The upper
and lower boundaries of the box represent the 75th and 25th percentiles, respectively. The short line within the box represents the median. The
whiskers represent the 10th and 90th percentiles. The square represents the average.
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TABLE 2 O3, OX (OX = O3 + NO2) averages and ratios of O3/OX as well as correlations (R) between OX and O3 in April and October over 2015–2021 in Huaibei,
Hefei, Wuxi, and Jinhua.

Huaibei Hefei

Month O3 Ox O3/Ox R O3 Ox O3/Ox R

April 89.9 120 0.75 0.95** 69.1 114 0.61 0.87**

October 65.2 107.2 0.61 0.91** 53.6 103.2 0.52 0.79**

Wuxi Jinhua

Month O3 Ox O3/Ox R O3 Ox O3/Ox R

April 83 130 0.64 0.89** 73 111.1 0.66 0.93**

October 62.1 105.8 0.59 0.77** 64.3 103.2 0.62 0.91**

**Passing the significant levels p < 0.01.

FIGURE 7
Proportions of secondary components in ambient PM2.5 (primary plus secondary) under different photochemical activities in (A) Huaibei, (B)
Hefei, (C) Wuxi, and (D) Jinhua cities in April and October from 2015 through 2021.
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almost the same in the four cities at different PM2.5 levels, that is,

zero from 22:00 to 7:00 LT, positive from 7:00 to 16:00 LT, and

negative from 16:00 to 22:00 LT. The daily variations of O3

concentrations exhibited a single-peak-valley pattern, with the

peak occurring at 11:00–12:00 LT and the trough at 17:00–18:

00 LT. This was probably due to changes in solar radiation, traffic

emissions, the amount of NOx and VOCs precursors, NO

titration effect on O3 consumption, photochemical reactions,

etc. Several studies (Deng et al., 2011; Cai et al., 2013; Zhao et al.,

2018) have shown that high concentrations of PM2.5 absorb and

weaken total solar radiation, reducing the rate of photochemical

reactions and thus inhibiting O3 production. While Figure 8

depicts that with the increase of PM2.5 loadings, the peak range of

O3 variability gradually broadens, implying that the increase of

PM2.5 concentration in these cities can promote O3 production to

some extent in April and October. Additionally, Chi (2018) and

Zhu (2018) discovered that an increase in aerosol raises the

concentration of O3 in conditions of clear skies and light

pollution. This demonstrates once more that there is no

straightforward linear link between aerosols and O3

concentration.

3.3 Driver contributions to PM2.5 and O3
pollutions

3.3.1 Meteorological and non-meteorological
contributions

Figure 9A shows the changes in annual mean PM2.5

concentrations from 2015 through 2021 in four typical cities.

A significant decline of annual mean PM2.5 was observed in

Huaibei, Hefei, Wuxi, and Jinhua cities, with a reduction of

12.21 μg m−3, 29.09 μg m−3, 28.48 μg m−3, and 23.61 μg m−3

between 2015 and 2021, respectively. Among them, the

FIGURE 8
Diurnal variations of O3 increment (next minus previous) at three PM2.5 levels in (A)Huaibei, (B)Hefei, (C)Wuxi, and (D) Jinhua cities in April and
October from 2015 through 2021. Positive and negative indicate the production and loss of ozone.

Frontiers in Environmental Science frontiersin.org11

Zhu et al. 10.3389/fenvs.2022.1104013

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1104013


contributions of non-meteorological changes to PM2.5 decrease

were estimated to be 12.01 μg m−3, 28.85 μg m−3, 27.82 μg m−3,

and 23.15 μg m−3, respectively, accounting for more than 90% of

the total decrease. Zhang X. et al., 2019 reported that the

improvement of air quality on PM2.5 is primarily due to

anthropogenic emission reductions of SO2, NOx, BC, OC, and

primary particles. Therefore, implementing pollution control

measures is crucial to lowering PM2.5 loadings and reducing

pollution (Zhang Q. et al., 2019; Chen et al., 2020; Li K. et al.,

2020). The PM2.5 of Huaibei decreased the most because of a

significant increase in 2017 due to massive anthropogenic

emissions (Supplementary Figure S6A). Compared with 2015,

the PM2.5 of Huaibei, Hefei, Wuxi, and Jinhua cities decreased by

0.2 μg m−3, 0.24 μg m−3, 0.66 μg m−3, and 0.46 μg m−3 due to

changes in meteorological conditions, accounting for less than

5% of the total reduction (Figure 9A). Weather and climatic

changes are conducive to PM2.5 reduction, but do not lead to a

substantial improvement in air quality (Zhang T. et al., 2019).

However, in specific years, for example, Huaibei in 2016, Wuxi in

2018, and Hefei in 2019, the impact of meteorological conditions

on PM2.5 outweighed that of anthropogenic emissions

(Supplementary Figure S6A). Therefore, the inter-annual

variability in meteorology must be considered in designing

future control strategies to improve air quality (Ding et al., 2019).

Figure 9B shows the annual mean MDA8 O3 from

2015 through 2021 for four typical cities. The average

MDA8 O3 increased significantly by 5 μg m−3, 36.66 μg m−3,

and 15.3 μg m−3 in Huaibei, Hefei, and Wuxi cities,

respectively, but it decreased by 1.64 μg m−3 in Jinhua. The

non-meteorological change contributed to the increase of

MDA8 O3 by 7.85 μg m−3, 36.42 μg m−3, and 14.16 μg m−3 in

Huaibei, Hefei, and Wuxi cities, accounting for 73%, 99%, and

93% of total changes, respectively. MDA8 O3 in Jinhua decreases

by 6.43 μg m−3 due to non-meteorological changes (Figure 9B).

O3 pollution was possibly dominated by the NOx-limited

mechanism due to good vegetation coverage in local and

surrounding regions. Previous studies have suggested that one

reason for the O3 increase is that low PM2.5 loadings reduce

sunlight scattering and absorption in the atmosphere, increasing

ultraviolet radiation arriving at the ground and leading to high

O3 concentrations (Dickerson et al., 1997; Li et al., 2011; Tao

et al., 2014). In addition, slowing aerosol sinks of hydrogen

FIGURE 9
Contributions of meteorological-driven and non-meteorological factors to (A) PM2.5 and (B) MDA8 O3 changes between 2015 and 2021 in
Huaibei, Hefei, Wuxi, and Jinhua. Observed annual PM2.5 andMDA8O3 from 2015 through 2021 are shown in solid bars and black numbers. The black
values represent the increase or decrease in observed PM2.5 and MDA8 O3 between 2015 and 2021. The red bars and values represent
meteorological-driven changes in PM2.5 or MDA8 O3 between 2015 and 2021, while those in blue represent non-meteorology changes.
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peroxide radicals can promote O3 formation (Li et al., 2019).

Furthermore, increasing VOCs emissions and reducing NOx

titration over urban areas can result in high O3 concentrations

(Fu et al., 2019; Sun W. W. et al., 2019). As shown in Figure 9B,

the meteorological-driven changes in MDA8 O3 are estimated to

be −2.85 µg m−3, 0.24 µg m−3, 1.14 μg m−3 and 4.79 μg m−3 in

Huaibei, Hefei, Wuxi and Jinhua cities, respectively.

Meteorological conditions have a greater effect on O3 than on

PM2.5, varying with city and time (Supplementary Figure S6).

3.3.2 Meteorological-driven trends of PM2.5

and O3

PM2.5 has a positive correlation with O3 at high

temperatures and a negative correlation at low temperatures

(Zhang et al., 2018; Chen et al., 2019; Yang et al., 2021). In

general, the synergic pollution of particulate matter and O3

occurs in April and October (Supplementary Figures S3, S4).

Figure 10A shows the annual and monthly trends of PM2.5

concentrations from 2015 through 2021. The mean PM2.5 trend

observed in Huaibei, Hefei, Wuxi, and Jinhua cities

were −1.7 μg m−3yr−1, −4.6 μg m−3yr−1, −4.2 μg m−3yr−1,

and −3.8 μg m−3yr−1, with meteorological factor contributions

of 0.05 μg m−3yr−1, 0.05 μg m−3yr−1, 0.11 μg m−3yr−1,

and −0.01 μg m−3yr−1, respectively. The changes in

meteorological conditions caused an increase or decrease of

particulate matter, and their relative contributions for April and

October are estimated to be 21% and −21% in Huaibei, 11%

and −12% in Hefei, 20% and 3% in Wuxi, and −5% and 21% in

Jinhua. We further identified the most important

meteorological factors that affect the long-term PM2.5 trend.

For example, in Huaibei, the 2-m relative humidity

(RH2, −1.35% yr−1) was responsible for 49% of total

meteorological contributions in April, and the planetary

boundary layer height (PBLH, −6.8 m yr−1) was responsible

FIGURE 10
Contributions of meteorological-driven and non-meteorological factors to trends of annual, April, and October (A) PM2.5 and (B) MDA8 O3 in
Huaibei, Hefei, Wuxi, and Jinhua cities from 2015 through 2021. The contribution of the most influential meteorological factors (percentage) to the
total meteorological-driven trend is marked in red.
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for 34% in October. As for Hefei, the primary meteorological

factor to drive the long-term PM2.5 trend was the daytime

PBLH (−12.29 m yr−1), which accounted for 45% of

meteorological contributions in October, while sea level

pressure (SLP, 0.77 hPa yr−1) was the primary factor in April.

As for Wuxi, the most important meteorological factor was SLP

(0.68 hPa yr−1) accounting for 61% of meteorological

contributions in April, while daytime total cloud cover

(TCC, −0.03% yr−1) accounted for 31% of meteorological

contributions in October. For Jinhua, the precipitation

changes (−0.03 mm yr−1) could explain 43% of the

meteorological-driven PM2.5 trend in April, and the daytime

PBLH (15.07 m yr−1) could explain 56% of the change in

October.

Supplementary Figures S7A,B present PM2.5 changes relative

to the previous year (increment) for April and October. SLP and

RH play prominent roles in the PM2.5 increment in April when

meteorological impacts outweigh non-meteorological effects,

whereas PBLH is prominent in October. According to Chen

et al. (2020), the most significant changes in favorable climatic

circumstances for improving PM2.5 air quality are lowering RH2

and deepening PBLH. The deep boundary layer can enhance the

diffusion of pollutants through turbulent transport and vertical

mixing, which reduces PM2.5 pollution (Liu et al., 2018; Su et al.,

2018; Miao et al., 2019). Particularly in periods of heavy winter

pollution, the formation of secondary particles is inhibited by a

reduction in water vapor, which ultimately results in a reduction

in PM2.5 (Song et al., 2018). On the other hand, high RH

promotes aerosol hygroscopic growth and hastens gaseous

pollutant transformation into secondary aerosol components

(Cheng et al., 2015; Qiao et al., 2016).

Figure 10B displays the growth rates of yearly and monthly

MDA8 O3 from 2015 through 2021. The mean growth trends of

MDA8 O3 were +2.42 μg m−3yr−1, +4.87 μg m−3yr−1, +2.7

μg m−3yr−1, and +0.83 μg m−3yr−1 in Huaibei, Hefei, Wuxi, and

Jinhua cities, respectively, in which the contributions from

meteorology were −0.3 μg m−3yr−1 (−12%), +0.26 μg m−3yr−1

(5%), +0.34 μg m−3yr−1 (12%), and +0.43 μg m−3yr−1 (52%).

The non-meteorological contributions are positive for all

cities. The fact that the non-meteorological contribution in

Hefei was significantly more than the meteorological

contribution suggested that anthropogenic activity was directly

responsible for worsening O3 pollution. The meteorology

contributions to MDA8 O3 growth trends in April and

October are estimated to be 65% and −4% for Huaibei, 7%

and 35% for Hefei, 41% and 68% for Wuxi, and 64% and 82% for

Jinhua. Further investigation was conducted to identify the most

important meteorological factors to O3 changes. The daytime

surface solar radiation (SSRD) played the most important role in

meteorologically induced MDA8 O3 changes (−0.2 W m−2 yr−1),

accounting for 46% of the change in April in Huaibei, while the

SLP (0.41 hPa yr−1) accounted for 37% in October. The primary

meteorological factor was total precipitation (−0.02 mm yr−1),

accounting for 44% of meteorological contributions for Hefei in

April, and TCC (−0.01% yr−1) 26% of meteorological

contributions in October. As for Wuxi, the daytime SSRD

(0.21 Wm−2 yr−1) could explain 39% and 43% of the total

meteorological contributions for April and October,

respectively. As for Jinhua, the most significant meteorological

factor was precipitation (−0.03 mm yr−1), attributing to 52% in

April, and daytime SSRD (0.13 Wm−2 yr−1) for 42% in October.

Supplementary Figures S7C, D show the meteorological

driven MDA8 O3 changes relative to the previous year for

April and October. Solar radiation and cloud cover are the

major meteorological factors that impact O3 concentrations in

April and October. Previous studies have shown a direct positive

correlation between temperature and O3, that is, higher

temperature accelerates biological emissions of precursors and

chemical reaction rate and, in turn, promotes O3 production (Aw

and Kleeman 2003; Gupta and Mohan 2015). Similarly, intense

solar radiation accelerates chemical reactions and raises O3 levels

(Chang et al., 2019). In addition to the reduced downward

ultraviolet radiation on the ground, through aqueous phase

chemistry and photochemistry, clouds can diminish O3 by

improving oxidant elimination and lowering tropospheric

oxidation capacity (Lelieveld and Crutzen 1990). Low RH2

increases O3 because certain complicated chemical reactions

are inhibited at high humidity levels. Furthermore, low RH2 is

always accompanied by less cloudiness to speed up the

photochemical synthesis of O3 (Camalier et al., 2007). O3 can

also be significantly impacted by 500 hPa winds, for example, in

the case of Huaibei in October 2020 and 2021, because wind fields

have the potential to significantly affect O3 and its precursors

through transportation (Lu et al., 2019; Liu and Wang 2020).

4 Conclusion

This study investigated the spatio-temporal characteristics of

urban PM2.5 and O3 pollution in the Yangtze River Delta, and

developed stepwise multiple linear regression models to quantify

meteorological and non-meteorological contributions to

pollution. In light of spatial heterogeneity, the four city

clusters are classified and employed to compare uni-PM2.5,

uni-O3, and bi-PM2.5-O3 at a regional scale. From 2015 to

2021, PM2.5 declines, but MDA8 O3 rises gradually at

different rates in the four city clusters. The uni-PM2.5 mainly

occurs in winter and decreases from northwest to southeast. The

uni-O3 mainly occurs in warm times from April to October and

decreases from northeast to southwest. The bi-PM2.5-O3 usually

appears in April and October and covers central and southern

Jiangsu province. The contribution of non-meteorological factors

to pollution changes is far greater than meteorological factors.

We also found that PM2.5 links closely with O3 in a

synergistic manner in YRD. That is, the higher the

photochemical activity levels, the larger the proportion of
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secondary components in PM2.5. And the increase of PM2.5

concentration in these cities can promote O3 production to

some extent in April and October. Meteorological conditions

have a greater effect on O3 than on PM2.5, varying with city and

time. Among them, the contributions of non-meteorological

changes to PM2.5 decrease were more than 90% of the total

decrease in four cities. However, the impact of meteorological

conditions on PM2.5 outweighed that of anthropogenic emissions

in specific years. Therefore, the inter-annual variability in

meteorology must be considered in designing future control

strategies to improve air quality. SLP and RH play prominent

roles in the PM2.5 increment in April when meteorological

impacts outweigh non-meteorological effects, whereas PBLH is

prominent in October. Solar radiation and cloud cover are the

major meteorological factors that impact O3 concentrations in

April and October. Key meteorological factors vary by location

and time, and should be taken into account in future more

refined pollution control.

It is evident from the findings above that the effects of on-

and non-meteorological factors on particle and O3 pollution vary

from time to place. Determining the roles of natural and

anthropogenic factors will help us to formulate future

prevention and control policies to air pollution better aiming

at one city or one region. It should be noted that the real

contributions of natural and anthropogenic changes cannot be

ideally differentiated due to the complexity of atmospheric

processes. Therefore, it is necessary to accurately evaluate the

contribution of meteorology and corresponding atmospheric

processes to air pollution in the future.
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