864 research outputs found

    Efficient Spatial Keyword Search in Trajectory Databases

    Full text link
    An increasing amount of trajectory data is being annotated with text descriptions to better capture the semantics associated with locations. The fusion of spatial locations and text descriptions in trajectories engenders a new type of top-kk queries that take into account both aspects. Each trajectory in consideration consists of a sequence of geo-spatial locations associated with text descriptions. Given a user location λ\lambda and a keyword set ψ\psi, a top-kk query returns kk trajectories whose text descriptions cover the keywords ψ\psi and that have the shortest match distance. To the best of our knowledge, previous research on querying trajectory databases has focused on trajectory data without any text description, and no existing work has studied such kind of top-kk queries on trajectories. This paper proposes one novel method for efficiently computing top-kk trajectories. The method is developed based on a new hybrid index, cell-keyword conscious B+^+-tree, denoted by \cellbtree, which enables us to exploit both text relevance and location proximity to facilitate efficient and effective query processing. The results of our extensive empirical studies with an implementation of the proposed algorithms on BerkeleyDB demonstrate that our proposed methods are capable of achieving excellent performance and good scalability.Comment: 12 page

    Representation and Exploitation of Event Sequences

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Abstract] The Ten Commandments, the thirty best smartphones in the market and the five most wanted people by the FBI. Our life is ruled by sequences: thought sequences, number sequences, event sequences. . . a history book is nothing more than a compilation of events and our favorite film is just a sequence of scenes. All of them have something in common, it is possible to acquire relevant information from them. Frequently, by accumulating some data from the elements of each sequence we may access hidden information (e.g. the passengers transported by a bus on a journey is the sum of the passengers who got on in the sequence of stops made); other times, reordering the elements by any of their characteristics facilitates the access to the elements of interest (e.g. the publication of books in 2019 can be ordered chronologically, by author, by literary genre or even by a combination of characteristics); but it will always be sought to store them in the smallest space possible. Thus, this thesis proposes technological solutions for the storage and subsequent processing of events, focusing specifically on three fundamental aspects that can be found in any application that needs to manage them: compressed and dynamic storage, aggregation or accumulation of elements of the sequence and element sequence reordering by their different characteristics or dimensions. The first contribution of this work is a compact structure for the dynamic compression of event sequences. This structure allows any sequence to be compressed in a single pass, that is, it is capable of compressing in real time as elements arrive. This contribution is a milestone in the world of compression since, to date, this is the first proposal for a variable-to-variable dynamic compressor for general purpose. Regarding aggregation, a data warehouse-like proposal is presented capable of storing information on any characteristic of the events in a sequence in an aggregated, compact and accessible way. Following the philosophy of current data warehouses, we avoid repeating cumulative operations and speed up aggregate queries by preprocessing the information and keeping it in this separate structure. Finally, this thesis addresses the problem of indexing event sequences considering their different characteristics and possible reorderings. A new approach for simultaneously keeping the elements of a sequence ordered by different characteristics is presented through compact structures. Thus, it is possible to consult the information and perform operations on the elements of the sequence using any possible rearrangement in a simple and efficient way.[Resumen] Los diez mandamientos, los treinta mejores móviles del mercado y las cinco personas más buscadas por el FBI. Nuestra vida está gobernada por secuencias: secuencias de pensamientos, secuencias de números, secuencias de eventos. . . un libro de historia no es más que una sucesión de eventos y nuestra película favorita no es sino una secuencia de escenas. Todas ellas tienen algo en común, de todas podemos extraer información relevante. A veces, al acumular algún dato de los elementos de cada secuencia accedemos a información oculta (p. ej. los viajeros transportados por un autobús en un trayecto es la suma de los pasajeros que se subieron en la secuencia de paradas realizadas); otras veces, la reordenación de los elementos por alguna de sus características facilita el acceso a los elementos de interés (p. ej. la publicación de obras literarias en 2019 puede ordenarse cronológicamente, por autor, por género literario o incluso por una combinación de características); pero siempre se buscará almacenarlas en el espacio más reducido posible sin renunciar a su contenido. Por ello, esta tesis propone soluciones tecnológicas para el almacenamiento y posterior procesamiento de secuencias, centrándose concretamente en tres aspectos fundamentales que se pueden encontrar en cualquier aplicación que precise gestionarlas: el almacenamiento comprimido y dinámico, la agregación o acumulación de algún dato sobre los elementos de la secuencia y la reordenación de los elementos de la secuencia por sus diferentes características o dimensiones. La primera contribución de este trabajo es una estructura compacta para la compresión dinámica de secuencias. Esta estructura permite comprimir cualquier secuencia en una sola pasada, es decir, es capaz de comprimir en tiempo real a medida que llegan los elementos de la secuencia. Esta aportación es un hito en el mundo de la compresión ya que, hasta la fecha, es la primera propuesta de un compresor dinámico “variable to variable” de carácter general. En cuanto a la agregación, se presenta una propuesta de almacén de datos capaz de guardar la información acumulada sobre alguna característica de los eventos de la secuencia de modo compacto y fácilmente accesible. Siguiendo la filosofía de los actuales almacenes de datos, el objetivo es evitar repetir operaciones de acumulación y agilizar las consultas agregadas mediante el preprocesado de la información manteniéndola en esta estructura. Por último, esta tesis aborda el problema de la indexación de secuencias de eventos considerando sus diferentes características y posibles reordenaciones. Se presenta una nueva forma de mantener simultáneamente ordenados los elementos de una secuencia por diferentes características a través de estructuras compactas. Así se permite consultar la información y realizar operaciones sobre los elementos de la secuencia usando cualquier posible ordenación de una manera sencilla y eficiente

    Autonomous Navigation of Mobile Robots in Complex Dynamic Environments

    Get PDF
    Most of the future robots will be mobile, and the main challenge is to develop algorithms for their autonomous navigation as well as for human-robot interactions. The Laboratory for Autonomous Systems and Mobile Robotics (LAMOR) at the Faculty of Electrical Engineering and Computing of the University of Zagreb is involved in the research of such mobile robotic systems, and currently participates in a number of related international and national research projects. This paper addresses the issue of autonomous navigation of mobile robots in complex dynamic environments, providing state of the art of the domain and major LAMOR’s contribution to it. At the end, we present an application example of the autonomous navigation technologies in flexible warehouses, which we have been developing within a Horizon 2020 project SafeLog

    NEW METHODS FOR MINING SEQUENTIAL AND TIME SERIES DATA

    Get PDF
    Data mining is the process of extracting knowledge from large amounts of data. It covers a variety of techniques aimed at discovering diverse types of patterns on the basis of the requirements of the domain. These techniques include association rules mining, classification, cluster analysis and outlier detection. The availability of applications that produce massive amounts of spatial, spatio-temporal (ST) and time series data (TSD) is the rationale for developing specialized techniques to excavate such data. In spatial data mining, the spatial co-location rule problem is different from the association rule problem, since there is no natural notion of transactions in spatial datasets that are embedded in continuous geographic space. Therefore, we have proposed an efficient algorithm (GridClique) to mine interesting spatial co-location patterns (maximal cliques). These patterns are used as the raw transactions for an association rule mining technique to discover complex co-location rules. Our proposal includes certain types of complex relationships – especially negative relationships – in the patterns. The relationships can be obtained from only the maximal clique patterns, which have never been used until now. Our approach is applied on a well-known astronomy dataset obtained from the Sloan Digital Sky Survey (SDSS). ST data is continuously collected and made accessible in the public domain. We present an approach to mine and query large ST data with the aim of finding interesting patterns and understanding the underlying process of data generation. An important class of queries is based on the flock pattern. A flock is a large subset of objects moving along paths close to each other for a predefined time. One approach to processing a “flock query” is to map ST data into high-dimensional space and to reduce the query to a sequence of standard range queries that can be answered using a spatial indexing structure; however, the performance of spatial indexing structures rapidly deteriorates in high-dimensional space. This thesis sets out a preprocessing strategy that uses a random projection to reduce the dimensionality of the transformed space. We use probabilistic arguments to prove the accuracy of the projection and to present experimental results that show the possibility of managing the curse of dimensionality in a ST setting by combining random projections with traditional data structures. In time series data mining, we devised a new space-efficient algorithm (SparseDTW) to compute the dynamic time warping (DTW) distance between two time series, which always yields the optimal result. This is in contrast to other approaches which typically sacrifice optimality to attain space efficiency. The main idea behind our approach is to dynamically exploit the existence of similarity and/or correlation between the time series: the more the similarity between the time series, the less space required to compute the DTW between them. Other techniques for speeding up DTW, impose a priori constraints and do not exploit similarity characteristics that may be present in the data. Our experiments demonstrate that SparseDTW outperforms these approaches. We discover an interesting pattern by applying SparseDTW algorithm: “pairs trading” in a large stock-market dataset, of the index daily prices from the Australian stock exchange (ASX) from 1980 to 2002

    Geovisual analytics for spatial decision support: Setting the research agenda

    Get PDF
    This article summarizes the results of the workshop on Visualization, Analytics & Spatial Decision Support, which took place at the GIScience conference in September 2006. The discussions at the workshop and analysis of the state of the art have revealed a need in concerted cross‐disciplinary efforts to achieve substantial progress in supporting space‐related decision making. The size and complexity of real‐life problems together with their ill‐defined nature call for a true synergy between the power of computational techniques and the human capabilities to analyze, envision, reason, and deliberate. Existing methods and tools are yet far from enabling this synergy. Appropriate methods can only appear as a result of a focused research based on the achievements in the fields of geovisualization and information visualization, human‐computer interaction, geographic information science, operations research, data mining and machine learning, decision science, cognitive science, and other disciplines. The name ‘Geovisual Analytics for Spatial Decision Support’ suggested for this new research direction emphasizes the importance of visualization and interactive visual interfaces and the link with the emerging research discipline of Visual Analytics. This article, as well as the whole special issue, is meant to attract the attention of scientists with relevant expertise and interests to the major challenges requiring multidisciplinary efforts and to promote the establishment of a dedicated research community where an appropriate range of competences is combined with an appropriate breadth of thinking
    corecore