
Representation and Exploitation
of Event Sequences

Autor: Tirso Varela Rodeiro
Tesis doctoral UDC / 2020

Directores:
Antonio Fariña Martínez
Miguel Rodríguez Luaces

Representation and Exploitation
of Event Sequences

Autor: Tirso Varela Rodeiro
Tesis doctoral UDC / 2020

Directores:
Antonio Fariña Martínez
Miguel Rodríguez Luaces

PhD thesis supervised by
Tesis doctoral dirigida por

Antonio Fariña Martínez
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1352
Fax: +34 981 167160
fari@udc.es

Miguel Rodríguez Luaces
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 981 167000 ext. 1254
Fax: +34 981 167160
luaces@udc.es

Miguel Rodríguez Luaces y Antonio Fariña, como directores, acreditamos que esta
tesis cumple los requisitos para optar al título de doctor internacional y autorizamos
su depósito y defensa por parte de Tirso Varela Rodeiro cuya firma también se
incluye.

iii

iv

A Víctor Solís,

seguimos yendo, amigo; seguimos yendo.

v

vi

Para el niño, enamorado de mapas y
estampas, el universo es igual a su
vasto apetito.

Charles Pierre Baudelaire

El mapa no es el territorio.

Alfred Korzybski

No creo que el mundo haya
mejorado gracias a nosotros,
tampoco creo que nadie llore
nuestra muerte, no hemos realizado
muchas buenas acciones... pero,
¿cuánta gente ha viajado lo que
nosotros y visto lo que nosotros?

Peachy Carnehan / Michael Caine

Beati hispani quibus vivere est
bibere.

Julius Caesar Scaliger

vii

viii

Acknowledgements

I cannot begin this thesis without making a brief aside to remember all
those people who have contributed to such an event. I feel compelled to
share the credit (or blame) of this big step for man and insignificant
leap for mankind.

Following the footsteps of Proust, I’ll start from the beginning. The
doctoral diploma will also belong to María de los Ángeles and José
Antonio; authors of my days, and consequently, as authors of this
research as I am.

Obviously, acknowledgements extend to the different branches —and
twigs (Mael and Catalina)— of my lush family tree, paying special
attention to the linage of Grandal and the D’Vinte dynasty. There are
three gentlemen whose role during this long journey deserve a special
mention: Francisco Rodeiro, source of inspiration during the process;
José Vasco, provider of a reliable steed when my chores took me to the
green meadows of Pocomaco and doctor Lorenzo Varela, family pioneer
in the study of users flow in public transport and permanently exiled
on the Scandinavian coasts because of it.

Once the blood ties are dispatched I must speak of the spinal cord of
that brief period of time where everything had a golden glow under the
protection of a rubber fortress. The names of the heroes and heroines of
those deeds still echo between the walls of my heart: Noa, Dani, Iván,
Gonzalo, Patri, Víctor, Anxo, Ana. . .

The next point is a sneak peek of the research introduced in this
thesis, an exercise on aggregated compression of subjects that should not
be forgotten: liceists, vallisoletanos, marines, australians, the IT crowd

ix

x

and people from Canterbury. In addition to Rebeca Vegara, because of
that issue that cannot be named.

Of course, I am grateful to the Databases Lab for supporting me
along the path, highlighting the support of Miguel Luaces, Antonio
Fariña and Nieves Brisaboa since without them this thesis would have
never been possible. Besides them, every member of the clan deserves to
be on this page, from Carlos and the Enxenio Football Team to Daniil;
with special mention to the actors of the Caceres cabin: Fernando, the
idyll from Tenerife; David, the apostate; Álex, the inca explorer and
Adrián, from the Anxeriz party commission.

I would also like to thank Diego Seco, María Andrea Rodríguez-
Tastets, Hideo Bannai and Andrew Turpin who opened the gates of
their kingdoms, gave me the keys to their cities and allowed me to
establish a base camp where I could feel safe in the ends of the world.
Other important international mentions are: Gonzalo Navarro, Nicola,
Gilberto, Carlos, Claudio, Pedro, Isyed, Jose, Diego Díaz and —mainly—
Sindy (still my wife within the glorious state of Nevada).

An allusion to the Polish command is mandatory: Emilio, Toni,
Zas and Montesquieu The Rascal. With them I achieved that aura of
invincibility that governed this journey from Szewska Street in Krakow
to that hangar on the outskirts of Melbourne.

Last, and therefore most important, appreciation for the usual gang:
Borja, outgoing and womanizer; Cristina and Souto, honest dancers;
Luís, spider-man; Felipe and Dani, the Fuji-san advocates; Jose and Fai,
the pirate kings; Canedo and Martín, spark plug mechanics; Money and
Quel, the flying dutchwomen and Castellanos, the poet. Nevertheless,
from this last group there are five people who deserve to top this long
list of supporters:

• Eva V. F., the sibyl able to read polylactic acid phalanges.
• Andrea F. A., the voice of reason during this Odyssey.
• Pablo R. P., the man who finally walked the 1000 miles.
• Ana M. X., the sister who drowned her twin in the Danube.
• Armando C. P., the light that illuminated my route worldwide.

Agradecimientos

No puedo comenzar esta publicación sin pararme un breve momento
a recordar a todas aquellas personas que han contribuido a tal evento,
sintiéndome obligado a compartir el mérito (o la culpa) de este gran
paso para el hombre e insignificante paso para la humanidad.

Siguiendo los pasos de Proust, comenzaré por el principio. El diploma
doctoral pertenecerá honoríficamente a María de los Ángeles y José
Antonio, autores de mis días; y en consecuencia, tan autores de esta
investigación como yo mismo.

Evidentemente, los agradecimientos se extienden a las diferentes ra-
mas —y ramitas (Mael y Catalina)— de mi frondoso árbol genealógioco,
prestando especial atención al linaje de los Grandal y la dinastía D’Vinte.
De entre todos ellos, me gustaría hacer destacar tres caballeros que
marcaron una pequeña diferencia durante este arduo camino. El primero,
Franciso Rodeiro, fuente de inspiración durante este proceso. El segundo,
José Vasco, proveedor de un fiable corcel cuando mis quehaceres me
llevaron hasta los verdes prados en los aledaños de Pocomaco. Por
último, el doctor Lorenzo Varela, pionero familiar en adentrarse en el
estudio del flujo de usuarios en transporte público y exiliado por ello de
forma permanente en las costas escandinavas.

Una vez despachados los lazos de sangre debo hablar de la médula
espinal de aquel breve lapso de tiempo donde todo tenía un resplandor
dorado al amparo de una fortaleza de caucho. Los nombres de los héroes
y heroínas de aquellas gestas aún retumban entre las paredes de mi
cabeza: Noa, Dani, Iván, Gonzalo, Patri, Víctor, Anxo, Ana. . .

Lo siguiente es un avance forzoso de la investigación aquí presentada,
un ejercicio de compresión agregada de sujetos que no deben caer en el

xi

olvido: liceistas, vallisoletanos, militares, australianos, informáticos y
gentes de Canterbury. Amén de Rebeca Vegara, por lo de aquella vez.

Por supuesto, debo agradecer al Laboratorio de Base de Datos el
haber permitido esta hazaña, destacando el apoyo de Miguel Luaces,
Antonio Fariña y Nieves Brisaboa sin el que esta tesis nunca hubiese
sido posible. Además de ellos, cada miembro del clan merece estar en
esta página, desde Carlos y el Enxenio F.C. hasta Daniil; con mención
especial a los actores del camarote cacereño: Fernando, el idilio tinerfeño;
David, el apóstata; Álex, el inca y Adrián, de la comisión de fiestas de
Anxeriz.

Gracias también a Diego Seco, Maria Andrea Rodríguez-Tastets,
Hideo Bannai y Andrew Turpin que me abrieron las puertas de sus
reinos, me entregaron las llaves de sus ciudades y me permitieron
establecer un campamento base donde sentirme seguro en los confines
del mundo. Otras menciones internacionales de importancia son:
Gonzalo Navarro, Nicola, Gilberto, Carlos, Claudio, Pedro, Isyed, Jose
y —principalmente— Sindy (todavía mi mujer en el estado de Nevada).

Es obligatoria la mención al comando polaco: Emilio, Toni, Zas y
el bribón de Montesquieu. Con ellos alcancé ese halo de invencibilidad
que rigió esta andanza desde la calle Szewska de Cracovia hasta aquel
hangar en las afueras de Melbourne.

Por último, y por ello más importante, reconocer a los de siempre:
Borja, sociable y mujeriego; Cristina y Souto, danzarines y honrados;
Luís, el hombre araña; Felipe y Dani, amigos de Fuji-san; Jose y Fai, los
reyes del pirata; Canedo y Martín, mecánicos de bujías; Money y Quel,
las holandesas errantes y Castellanos, el poeta. No obstante, de este
último grupo son cinco las personas que merecen rematar esta larga
lista de simpatizantes a la causa:

• Eva V. F., la sibila capaz de leer falanges de ácido poliláctico.
• Andrea F. A., la voz de la razón durante (casi) toda esta odisea.
• Pablo R. P., el hombre que finalmente caminó las 1000 millas.
• Ana M. X., la hermanísima que ahogó a su gemelo en el Danubio.
• Armando C. P., la luz que iluminó mi ruta alrededor del mundo.

xii

Abstract

The Ten Commandments, the thirty best smartphones in the market and
the five most wanted people by the FBI. Our life is ruled by sequences:
thought sequences, number sequences, event sequences. . . a history book
is nothing more than a compilation of events and our favorite film is
just a sequence of scenes. All of them have something in common, it
is possible to acquire relevant information from them. Frequently, by
accumulating some data from the elements of each sequence we may
access hidden information (e.g. the passengers transported by a bus
on a journey is the sum of the passengers who got on in the sequence
of stops made); other times, reordering the elements by any of their
characteristics facilitates the access to the elements of interest (e.g. the
publication of books in 2019 can be ordered chronologically, by author,
by literary genre or even by a combination of characteristics); but it
will always be sought to store them in the smallest space possible.

Thus, this thesis proposes technological solutions for the storage
and subsequent processing of events, focusing specifically on three
fundamental aspects that can be found in any application that needs
to manage them: compressed and dynamic storage, aggregation
or accumulation of elements of the sequence and element sequence
reordering by their different characteristics or dimensions.

The first contribution of this work is a compact structure for the
dynamic compression of event sequences. This structure allows any
sequence to be compressed in a single pass, that is, it is capable of
compressing in real time as elements arrive. This contribution is
a milestone in the world of compression since, to date, this is the
first proposal for a variable-to-variable dynamic compressor for general

xiii

xiv

purpose.
Regarding aggregation, a data warehouse-like proposal is presented

capable of storing information on any characteristic of the events in a
sequence in an aggregated, compact and accessible way. Following the
philosophy of current data warehouses, we avoid repeating cumulative
operations and speed up aggregate queries by preprocessing the
information and keeping it in this separate structure.

Finally, this thesis addresses the problem of indexing event sequences
considering their different characteristics and possible reorderings. A new
approach for simultaneously keeping the elements of a sequence ordered
by different characteristics is presented through compact structures.
Thus, it is possible to consult the information and perform operations
on the elements of the sequence using any possible rearrangement in a
simple and efficient way.

Resumen

Los diez mandamientos, los treinta mejores móviles del mercado y las
cinco personas más buscadas por el FBI. Nuestra vida está gobernada
por secuencias: secuencias de pensamientos, secuencias de números,
secuencias de eventos. . . un libro de historia no es más que una sucesión
de eventos y nuestra película favorita no es sino una secuencia de
escenas. Todas ellas tienen algo en común, de todas podemos extraer
información relevante. A veces, al acumular algún dato de los elementos
de cada secuencia accedemos a información oculta (p. ej. los viajeros
transportados por un autobús en un trayecto es la suma de los pasajeros
que se subieron en la secuencia de paradas realizadas); otras veces, la
reordenación de los elementos por alguna de sus características facilita
el acceso a los elementos de interés (p. ej. la publicación de obras
literarias en 2019 puede ordenarse cronológicamente, por autor, por
género literario o incluso por una combinación de características); pero
siempre se buscará almacenarlas en el espacio más reducido posible sin
renunciar a su contenido.

Por ello, esta tesis propone soluciones tecnológicas para el al-
macenamiento y posterior procesamiento de secuencias, centrándose
concretamente en tres aspectos fundamentales que se pueden encontrar
en cualquier aplicación que precise gestionarlas: el almacenamiento
comprimido y dinámico, la agregación o acumulación de algún dato
sobre los elementos de la secuencia y la reordenación de los elementos
de la secuencia por sus diferentes características o dimensiones.

La primera contribución de este trabajo es una estructura compacta
para la compresión dinámica de secuencias. Esta estructura permite
comprimir cualquier secuencia en una sola pasada, es decir, es capaz

xv

xvi

de comprimir en tiempo real a medida que llegan los elementos de la
secuencia. Esta aportación es un hito en el mundo de la compresión ya
que, hasta la fecha, es la primera propuesta de un compresor dinámico
“variable to variable” de carácter general.

En cuanto a la agregación, se presenta una propuesta de almacén
de datos capaz de guardar la información acumulada sobre alguna
característica de los eventos de la secuencia de modo compacto y
fácilmente accesible. Siguiendo la filosofía de los actuales almacenes de
datos, el objetivo es evitar repetir operaciones de acumulación y agilizar
las consultas agregadas mediante el preprocesado de la información
manteniéndola en esta estructura.

Por último, esta tesis aborda el problema de la indexación de
secuencias de eventos considerando sus diferentes características y
posibles reordenaciones. Se presenta una nueva forma de mantener
simultáneamente ordenados los elementos de una secuencia por diferentes
características a través de estructuras compactas. Así se permite
consultar la información y realizar operaciones sobre los elementos
de la secuencia usando cualquier posible ordenación de una manera
sencilla y eficiente.

Resumo

Os dez mandamentos, os trinta mellores móbiles do mercado e as
cinco persoas máis buscadas polo FBI. As secuencias gobernan a nosa
vida: secuencias de pensamentos, secuencias de números, secuencias de
eventos. . . un libro de historia non é máis que unha sucesión de eventos
e o noso filme favorito só é unha secuencia de escenas. Todas elas teñen
algo en común, pódese extraer información relevante de todas elas. Ás
veces, é posíbel acceder a información oculta acumulando algún dato (p.
ex. os viaxeiros transportados por un autobús nun traxecto son a suma
dos pasaxeiros que se subiron na secuencia de paradas realizadas); outras
veces, a reordenación dos elementos por algunha das súas características
facilita o acceso a elementos de interés (p. ex. a publicación de obras
literarias no 2019 pode ordenarse cronoloxicamente, por autor, por
xénero literario ou incluso por unha combinación de características);
pero sempre se buscará almacenalas no espacio máis reducido posíbel.

Por iso, esta tese propón solucións tecnolóxicas para o almacenamento
e posterior procesamento de secuencias, centrándose en tres aspectos
fundamentais que se poden atopar en calquera aplicación que precise
xestionalas: o almacenamento comprimido e dinámico, a agregación
ou acumulación de algún dato sobre os elementos da secuencia e
a reordenación dos elementos da secuencias polas súas diferentes
características ou dimensións.

A primeira contribución deste traballo é unha estrutura compacta
para a compresión dinámica de secuencias. Esta estrutura permite
comprimir calquera secuencia nunha soa pasada, é dicir, é capaz de
comprimir en tempo real a medida que van chegando os elementos da
secuencia. Esta achega é un fito no mundo da compresión xa que, ata a

xvii

data actual, é a primeira proposta dun compresor dinámimco “variable
to variable” de carácter xeral.

En canto á agregación, preséntase unha proposta de almacén de datos
capaz de gardar a información sobre algunha característica dos eventos
da secuencia de modo compacto e sinxelamente accesible. Seguindo
a filosofía dos almacéns de datos actuais, o obxectivo é evitar repetir
operacións de acumulación e axilizar as consultas agregadas mediante o
preprocesado da información manténdoa nesta estrutura.

Por último, esta tese aborda o problema da indexación de secuencias
de eventos considerando as súas diferentes características e posíbles
reordenacións. Preséntase unha nova forma de manter simultáneamente
ordenados os elementos da secuencia por diferentes características a
través de estruturas compactas. Permítese así consultar a información
e realizar operacións sobre os elementos da secuencia usando calquera
ordenación posíbel dunha forma sinxela e eficiente.

xviii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 6
1.3 Structure of the Thesis 9

2 Basic concepts and technologies 11
2.1 Basic structures . 12

2.1.1 Bitvectors . 12
2.1.2 LOUDS . 13

2.2 Text compression . 14
2.2.1 End-Tagged Dense Code 15
2.2.2 Dynamic End-Tagged Dense Codes 17
2.2.3 Semi-static variable-to-variable compression . . . 19

2.3 Index structures . 21
2.3.1 FM-index . 21
2.3.2 Wavelet Tree . 24

2.4 Data aggregation . 27
2.4.1 Data Warehouses 27
2.4.2 OLAP . 30
2.4.3 Summed Area Tables 33
2.4.4 CMHD . 34

3 Application contexts 37
3.1 Text compression . 38
3.2 Public transportation . 41
3.3 Mobile Workforce Management 45

xix

xx Contents

4 Dynamic variable-to-variable compression (D-V2V) 51
4.1 Dynamic variable-to-variable compressor 52

4.1.1 Parsing algorithm 53
4.1.2 Encoding procedure 56
4.1.3 Receiver procedure 60

4.2 Experiments . 63
4.2.1 Space requirements and memory usage 64
4.2.2 Compression and decompression times 65

4.3 Conclusions . 66

5 Total matrices (T-Matrices) 69
5.1 General-purpose accumulative matrices 69
5.2 T-Matrices in public transportation 73

5.2.1 Data structures 73
5.2.2 Experimental evaluation 76

5.2.2.1 Experimental dataset 76
5.2.2.2 Space requirements 78
5.2.2.3 Performance at query time 79

5.3 T-Matrices in mobile workforce management 80
5.3.1 Data structures 80
5.3.2 Experimental evaluation 84

5.3.2.1 Experimental datasets 85
5.3.2.2 Space requirements 86
5.3.2.3 Performance at query time 86

5.4 Conclusions . 87

6 Event sequence indexing 89
6.1 Introduction . 89
6.2 Indexing with Wavelet Trees 91
6.3 Reducing the space . 94
6.4 Experimental evaluation 96

6.4.1 Problem setup . 97
6.4.2 Baseline representation 98
6.4.3 Experiments and results 99

6.5 Conclusions . 102

Contents xxi

7 Conclusions and future work 103
7.1 Conclusions . 103
7.2 Future work . 106

A Publications and other research results 109

B Resumen del trabajo realizado 113
B.1 Introducción . 113
B.2 Motivación . 116
B.3 Contribuciones . 117
B.4 Trabajo futuro . 119

Bibliography 122

xxii Contents

List of Figures

1.1 Snow’s map of cholera deaths in the Broad Street
area. The water pump is located at the intersection
of Broad and Cambridge Street. Black bars
reflect the number of deaths. 1854. (Source:
https://johnsnow.matrix.msu.edu/book_images12.php) . 3

2.1 A bitvector and its three operations: Rank, Select and
Access. 12

2.2 A hierarchy tree coded as a LOUDS bitvector. 14

2.3 BWT and FM-Index example: Given the text “abra-
cadabra$” we show the cyclical shifts of the BTW matrix
and highlight F and L. Also, we show how to find all the
occurrences of the pattern “bra” using backward search. . 23

2.4 Wavelet tree for sequence S = 〈6 3 5 4 0 1 5 2 7 6 7 0 6 3〉. . . 25

2.5 Picture from a 1962 internal General Electric
document explaining the idea of random access
storage using pigeon holes as a metaphor. (Source:
https://wp.sigmod.org/?p=688) 29

2.6 Sales information of a clothing enterprise characterized by
three dimensions (product, region and time) represented
using a data cube (left) and a classic table (right). 32

2.7 Common Data Warehouse structure [VZ13]. 32

xxiii

xxiv List of Figures

2.8 Summed Area Tables detailed geometrical explanation:
Figure2.8(b) represents the aggregated matrix built over
the simple matrix depicted in Figure 2.8(a). The non-
aggregated matrix needs to compute each cell within the
submatrix individually in order to calculate the total sum
of the area shaded in blue. The aggregated representation
can solve the operation in constant time using the greater
value of the submatrix minus the non selected areas (left
and top) plus the small area that was subtracted twice. . 34

2.9 CMHD example storing the amount of products sold
attending the region and type of product. Left figure
represents the conceptual model of the structure, the gold
tree serves as the conceptual information saved and the
vectors are the actual data stored. 35

3.1 Entity-Relationship diagram modeling the elements of a
public transportation network and user trips made along
it. 43

3.2 Network example where two different lines share stops
along their routes. 44

3.3 Trajectory annotated with semantic activities. [BLPP17] 48

4.1 Non-terminal creation example. 53

4.2 Sequence of events during the parsing of a text with
D-V2V. KS stores the words and phrases that appeared
previously in the text while RS is a buffer trying to obtain
the largest known sequence for the incoming text. 54

4.3 Tree used during compression when processing the
sentence: “the more I know about you the more I
know about me”. The black branches in the tree rep-
resent its stage after processing the word “you”. 55

List of Figures xxv

4.4 Structures used during compression when processing
the sentence: “the more I know about you the more
I know about me”. left and right are either pointers to
previous occurrences or containers of a new word and a
void pointer, freq is the frequency of each symbol, voc
represents the codes to be sent while pos and top are
auxiliary structures to simplify updates and insertions. . 57

4.5 Structures used during decompression when processing
the sentence: “the more I know about you the more
I know about me”. It is simpler than the sender as it
only has to be synchronized with it keeping the table
ordered by frequency. 61

5.1 T-Matrix applied to a generic sequence S of bi-
dimensional events. 70

5.2 An example of how a T-Matrix and a Diff T-Matrix are
binded. In this representation, central column (B) values
remain the same and the other columns are calculated as
additions (right side columns) or subtractions (left side
columns). For instance, Aλ = 11 - 5 = 6 and Cλ = 11 +
4 = 15. 71

5.3 An example of how to sample a T-Matrix. Rows α and
λ remain unchanged in both matrices and all the other
rows in Blocks T-Matrix are calculated differentially with
respect to them. For instance, Cβ = 3 + 2 = 5. 72

5.4 Public transport information stored into the three T-
Matrices flavors: the original accumulative matrix (Sum),
the relative matrix (Diff) and the sampled matrix (Blocks). 74

5.5 T-Matrices comparison. Logarithmic scale measured in
nanoseconds. 79

5.6 Naive matrix representation with appearing activities
described. 81

5.7 Structures involved in semantrix. 82
5.8 Baseline+ example. 85
5.9 Space measurements. 86
5.10 Times for pattern queries (left), and times for aggregation

queries (right). 87

xxvi List of Figures

6.1 Reordering multidimensional events through stacked
wavelet trees. Highlighted sequences are the resulting
sequence after a dimensional reorganization. Vertical
dotted lines mark the corresponding area to each value
of the dimension (remaining within it the previous order
as secondary). 92

6.2 Schema of the wtmap solution for a sequence of 2 days, 2
employees, 4 activities and 10 time instants per day.
The current WT orders the input attending activity
lexicographical order. Highlighted elements are those
visited to count the time-instants devoted by e2 to activity
A during d2, which are 4. 95

B.1 Mapa de las muertes por cólera del doctor Snow. La
bomba de agua está localizada en la intersección de Broad
Street con Cambridge Street. Las barras negras reflejan
el número de muertos en cada zona. 1854. (Fuente:
https://johnsnow.matrix.msu.edu/book_images12.php) . 115

List of Tables

2.1 ETDC distributes words in blocks according to their
frequency. Shorter codes are assigned to symbols on
higher blocks. 17

2.2 Auxiliary array C for column L in the matrix of Figure 2.3. 23
2.3 Auxiliary structure to compute the number of occurrences

of character c in the prefix L[1..k] (Occ(c,k)) in constant
time. 24

4.1 D-V2V parsing process step by step for the text “the
more I know about you the more I know about me”. RS
is a buffer trying to obtain the largest known sequence,
KS is the symbol dictionary and last column reflects what
the receiver gets. 59

4.2 D-V2V decompressing step by step the sentence “the
more I know about you the more I know about me”.
It is important to note how the column “Received” is
synchronized with the column “Sent” in Table 4.1. 62

4.3 Compression ratio (%) with respect to the size of the
plain text dataset. 64

4.4 Memory usage (in MiB) at compression and decompression. 65
4.5 Compression and decompression times (in seconds). . . . 66

5.1 Space requirements for the common structures. 78
5.2 Space requirements for each T-Matrices variant. 78

6.1 Example of reorderings with dimensions Day, Employee
and Activity . 93

xxvii

xxviii List of Tables

6.2 Space required by all the datasets (sizes in MB) 100
6.3 Query times for access (Acc) and counting queries. Times

in µs/query . 101

Chapter 1

Introduction

A long time ago, long before the advent of Kindles and iPads, mankind
managed to bend space and time with the invention of clay tablets.
This little gadget allowed to enclose an abstract thought in a physical
and easily transportable medium. We all know, or at least imagine,
the impact caused by this invention in the societies of our ancestors:
education, treaties, accounting, letters, legends. . . Tablets improved over
time, from the use of different materials (wood, metal, etc.) to the
inclusion of a spatula on the back of the stylus1 to erase what was written.
However, this excellent tool had one significant drawback: very limited
writing space. Even if it was written on both sides, long texts could
not fit. Therefore, the longer the text to be written, the more tablets
were necessary, with the corresponding complications that this entails
(prize, weight, more likely to lose any of the tablets leaving a disjointed
text. . .). It would take centuries for the invention of a new mechanism
to deal with these obstacles: papyrus. These plant fiber constructions
were thin, flexible, light and, despite having only one usable face, a
single roll of usual dimensions could contain a complete Greek tragedy.
Besides, papyrus can be rolled up, storing a large amount of text in
little space. Just like writing has evolved to store more information
in less space, the proposals in this thesis continue to battle against
spatial limitations by storing data in flexible, thin and compact “virtual
papyri” that have additional functionalities such as querying, ordering

1The needle used to write over clay tablets.

1

2 Chapter 1. Introduction

and aggregating its contents.

The incorporation of papyri into society also brought new dilemmas
to be solved; for example, in the Great Library of Alexandria there were
so many papyri stored that it was impossible to find a specific work. To
solve this problem it was necessary to establish an order and organize
somehow the chaotic library. Zenodotus, first director of the library of
Alexandria, contributed to the resolution of this problem by naming each
part of Homer’s poems using alphabetically arranged letters for the first
time. A little later, Callimachus, Zenodotus’ successor, would invent
the first book catalogs, labeling them as “Pinakes”. The Callimachus
system divided works into six literary genres and five types of prose, and
within each category, the works were arranged alphabetically by author.
The impact of this small reorganization was such that variations of the
original “Pinakes” continued to be used until the 19th century. Following
the ideas of the power in reorganization by different dimensions, this
thesis uses a similar approach to improve query and search times. Like
the work of the librarians of Alexandria, if the information is organized
by the appropriate dimensions it will be really simple to find what we
are looking for. Thus, we provide a new indexing structure that allows
to rearrange information according to the particular needs of different
queries and different contexts easing the search.

Centuries later, a cholera outbreak occurred in England in the autumn
of 1848, causing great mortality. At that time, the mode of transmission
of this disease was not known, confronting two theoretical currents. On
the one hand, there were those who argued that cholera was acquired
by contact with the patient or with their belongings. On the other
hand, there were those who thought that certain atmospheric conditions,
especially the winds, transmitted toxic fumes from one place to another.
Dr. John Snow, who did not trust any of these theories, set out to find
the real cause of the infection; this is how the idea of the popularly
known as the “cholera map” arose (Figure 1.1). Following the trail of
a severe outbreak in the south of the city, Dr. Snow made a map of
the sector, in which he marked the points corresponding to deaths from
cholera and the different existing drinking water pumps, graphically
demonstrating the spatial relationship between cholera deaths and the

1.1. Motivation 3

Figure 1.1: Snow’s map of cholera deaths in the Broad Street area.
The water pump is located at the intersection of Broad and Cambridge
Street. Black bars reflect the number of deaths. 1854. (Source:
https://johnsnow.matrix.msu.edu/book_images12.php)

Broad Street pump. Finally, the study of the pump showed that 20
feet underground, a sewer pipe passed very close to the water source
of the pump and that leaks existed between the two water courses.
Thus, in the wake of doctor Snow, systems in charge of gathering and
aggregating data to provide hidden information in the individual events
are common nowadays. This thesis introduces new approaches to tackle
this same problem focusing on aggregating large amounts of data without
compromising query speed.

1.1 Motivation

As the introduction implied, this thesis addresses three of the main
problems that can be found in the exploitation of general sequences
and, particularly, in event sequences: dynamic compression, indexing
by multiple dimensions and aggregated data exploitation. An event se-
quence can be described conceptually as a one-dimensional arrangement

4 Chapter 1. Introduction

of a series of elements, each of which represents an event that generally
occurs at a particular time. In addition to time, we can usually find
other dimensions, characteristics or attributes with different values for
each event.

Consider, as an example of event sequences, the publications of
literary works written in Spain during the Golden Age (16th and 17th
centuries). The publication of each work constitutes an event that, in
addition to the temporal parameter, has other relevant characteristics
such as author or literary genre. This event sequence does not have
repeated elements, but it could happen in other types of elements.
Another example is the case of a sequence of words in a text to be
transmitted, each word can be seen as an event with a transmission
time beside other characteristics such as size, syntactic category, etc.
Generalizing, an event sequence is an ordered list of elements as:

E1
a,i,...x;E2

b,j,...y;E3
a,k,...z;E4

c,i,...y; . . .

Where the superscript identifies the event and the subscripts a, b, c
identify its values for characteristic 1, values i, j, k for characteristic 2
and values x, y, z for characteristic n. The previous examples show a
property of the sequences, they can have a high degree of repetition that
could be exploited by compression techniques. For example, existing
compressors for English texts can exploit that some words appear much
more often than others reducing the size of the original text to a third
part of its size.

Although chronological order in event sequences is always useful,
alternative organizations often suit better. Considering the Spanish
Golden Age publications, the obvious order is chronologically by date
of publication, but it could be also useful to order them by author and
then by time or by literary genre and author or a combination of these
or other characteristics. This combination of dimensions allows an order
hierarchy such as first novels, next plays and last poems; then, within
each genre, alphabetical order by authors and, finally, chronological
order in a third level. Also, it could be possible to rearrange the hierarchy
for other exploitation interests in any combination of dimensions: author
in the first level and then order by genre; date in first place, next author
and last genre, etc. A system able to handle this varying configurations

1.1. Motivation 5

of the same data would be really useful.
On the other hand, some applications that work on event sequences

may need a quantitative analysis, that is, they need the count of
how many events with certain characteristic exist during an interval
(temporal or from any other dimension). For example, an application
that needs to solve queries like “How many plays Lope de Vega wrote?”
or “How much the amount of works published by Cervantes is?”.
Obviously, in these short sequences it could be affordable to sequentially
count the works that match the criteria, but for most other cases it
might be necessary to precalculate the data and store it separately as
it is done by data warehouses. Therefore, there is a need of a solution
able to compete against classic data warehouse techniques considering
space compression at the same time. Besides, those classic solutions
do not save the original order of the information limiting the possible
range of queries. There is a lack of aggregated solutions in the state
of the art capable of handling queries of the form “How many times a
poem from Quevedo was published right after a poem of Gongora?”.

Ultimately, a considerable amount of events may have among their
characteristics some with spatial nature (e.g. the sequence of street
segments2 traveled every day by a fleet of taxis). Namely, adding space-
time dimensions to the event sequences let us use aggregation procedures
to extract accumulative space-time knowledge easily. In such context,
an event could be the movement of a particular taxi through a segment
and the associated characteristics could be date and time, driver license
and the identifier of the particular street segment. It is important to
note that in this case the considerations on the compression needs of
the sequence apply as well as its reorganization and accumulation for
solving complex queries. For example, ordering the event sequence
chronologically could be useless, but reordering the sequence by driver
first with a chronological order on a second level would allow us to
recover the trajectory of each taxi trivially. It could be also interesting
to have a first level order by days and within each day an order by driver
to rebuild the routes of each day. Again, it could be really convenient to
precalculate the aggregation of events with common characteristics (e.g.
segment identifier) in order to quickly solve queries as “How many times

2Considering a street segment as the section between two road crossings with no entrances or
exits.

6 Chapter 1. Introduction

the street segment X has been traversed in the last month?” or “How
many times has driver #47 passed through segment Y in the last week?”.
Given that the set of street segments is constant, its sequence grows
with a high repetition rate. Thus, it would be extremely advantageous
to have a method to compress the sequence of street segments traversed
by a driver each day.

1.2 Contributions

This thesis defines strategies and efficient technologies to represent
general event sequences in order to take care of some exploitation needs
that are not satisfied in the state of the art. These three needs are:

• Dynamic Compression. We designed and implemented a
dynamic variable-to-variable compressor (D-V2V) that can be
used in real-time transmission scenarios where it is not possible to
preanalyze the sequence as in other static approaches.
Sequence compression is an active research field where many
strategies have been devised (typically classified into statistical
and dictionary based). Nevertheless, most of them are static or
semi-static compressors (they need at least two passes over the
sequence to calculate symbol frequencies and build a model). There
are a few dynamic statistical compressors ([Fal73, Gal78, Far05])
but those compressors are focused on symbol frequency and
do not take advantage of recurring sequences of symbols as
grammar-based compressors do ([ZL77, ZL78, LM99]). Namely,
statistical compressors assign variable-length codes to input
symbols (e.g. each word) exploiting frequency distribution while
dictionary-based compressors assign fixed length codes to variable
length symbol sequences, hence, taking advantage of repeated
sequences. Therefore, these compressors are called fixed-to-variable
compressors and variable-to-fixed compressors respectively.
This thesis introduces a variable-to-variable compressor that takes
advantage not only of variable-length event sequence repetitions but
also of their frequency distribution. There is already a semi-static
variable-to-variable compressors [BFL+10]. However, this work

1.2. Contributions 7

introduces the first general-purpose dynamic variable-to-variable
compressor able to exploit the existence of subsequences of co-
occurring elements while still assigning variable-length codewords
that will be shorter (following a statistical approach) for the most
frequent symbols. In order to compare the efficiency of this proposal
with other state of the art solutions, we have used word sequences
since other competitors were not able to handle generic event
sequences.

• Aggregation of preprocessed values. In this research line we
proposed and tested a general-purpose compact structure (Total
Matrices) which is able to solve multidimensional aggregated queries
in constant time.
Our work is based on a technique presented 35 years ago [Cro84] to
improve texture-map computations with the help of an aggregated
matrix representation. In our research, we have generalized this
technique to accumulate the number of event occurrences with
characteristics matching a particular dimensional criteria. Namely,
our proposal can efficiently handle multidimensional range queries
without degrading performance. Besides, as part of the space
reduction concern of this thesis, several compressed options for
Total Matrices are introduced.
To demonstrate the general character of our approach, this method
was used to solve aggregated queries in two different relevant
application domains: public transportation and mobile workforce
management.
In the former scenario, events of the non-aggregated sequence
represent the passenger boardings (or alightings) on a particular
bus in a particular stop and time. Total Matrices allow to answer
queries about how many passengers boarded (or alighted) on a
range of consecutive stops of a particular line during the journeys of
a given time interval (e.g. rush hour) or on a range of consecutive
stops (e.g. suburban stops). Thus, public transportation decision-
makers can easily exploit demand information for each line or stop
during any time interval.
On the other hand, we introduced drivers’ matrices on logistics in

8 Chapter 1. Introduction

order to exploit truck drivers activities (e.g. driving in slow traffic,
driving off planned route, visiting a customer’s facility, etc.). It is
important to note that these activities are semantic annotations for
the trajectory performed by each truck. In this context, the events
of the sequences are the activities, i.e. the semantic label for each
segment of the truck trajectory. Besides the activity label, these
events have other dimensions of interest such as worker identifier,
start time, duration, etc.

• Multiple indexing of event sequences. We have created an
indexing method (Stacked Wavelet Trees) based on concatenating
several indexing trees such as the output of one tree is the input
of another, each one reorganizing the data based on a different
dimension.

As it has been previously stated, the order of event sequences may
change depending on the exploitation needs that we are aiming to
solve, even being necessary several different orders depending on
the domain. For instance, if the goal is to retrieve the trajectory
of a taxi driver during a particular day, the best approach would
be to order the sequence of street segments traversed by taxi
drivers during a year first by day and, within each day, order the
elements by driver. Yet, if we aim to know which drivers traversed
a particular street during the evening, the best order would be to
sort those segments first by street segment and a second level order
by time. Note that it is only possible to create an index for the
event sequence once the sequence is ordered. Our approach, based
on wavelet trees, enables to index event sequences in a flexible way
allowing their exploitation by the order that best suits each query.

In addition to study compression, aggregation and indexation of
event sequences, this thesis has faced real problems that can be solved
with these techniques. Thus, an additional contribution of the thesis is
the modeling of real problems as sequences of events and their solution
using the techniques proposed in the thesis.

1.3. Structure of the Thesis 9

1.3 Structure of the Thesis

The structure of the thesis is as follows. First, in Chapter 2 some
state of the art technologies used for this thesis are presented (e.g.
bitvectors, wavelet trees, etc). Highlighting the practical approach
of this work, Chapter 3 describes the application domains where
our proposals were employed and the obstacles they can overcome.
Chapter 4 introduces our dynamic variable-to-variable compressor and
its experimental evaluation on texts written in natural language. Our
technique based on aggregation and its applications are explained in
Chapter 5 along with the experimental results obtained in the fields
of public transportation and mobile workforce management. Chapter
6 covers the novel indexing approach based on wavelet trees and its
evaluation, also in the mobile workforce management domain. Finally,
this manuscript concludes with two appendices: Appendix A lists the
relevant works published during the development of this thesis and
Appendix B includes a brief summary of this text in Spanish as it is
required by the current regulations of the PhD program this work is
submitted to.

10 Chapter 1. Introduction

Chapter 2

Basic concepts and
technologies

This chapter briefly describes some state of the art knowledge and some
structures that were used as building blocks of our work and will be
mentioned in the following sections. These previous contributions may
be classified into four main categories:

• Basic structures. In Section 2.1, we focus in two basic components
such as bitvectors, that are present in most compact data structures,
and a compressed representation of trees named LOUDS, that are
of interest in further sections to represent hierarchies of elements.

• Text compression. The most relevant ancestors of our dynamic
variable-to-variable compressor are detailed in Section 2.2.

• Index structures. Section 2.3 takes care of two self-indexing
structures that will be of great interest in Chapter 5 and Chapter 6.

• Data aggregation. Finally, Section 2.4, provides a general overview
of classic data warehouses as well as some interesting aggregated
structures.

All these popular proposals will converge in future chapters of this
thesis either as part of a new contribution or as a baseline to test our
results against a robust well-known adversary.

11

12 Chapter 2. Basic concepts and technologies

2.1 Basic structures

This section contains a brief explanation of two basic tools such as
bitvectors, which not only permit to represent a sequence of binary
events but also to efficiently perform some basic operations that make
them a fundamental part of many compact data structures, and LOUDS,
a bitvector-based compact representation of ordered trees that not only
yield optimal space, but also supports navigation.

2.1.1 Bitvectors

Bitvectors are the basic components of many compact data structures
and, also, a keystone along this thesis. A bitvector B[1, n] is a sequence
of zeroes and ones of length n. The following operations are expected
to be supported:

• rank1(B, i) returns the number of set bits in B[1..i]. Alternatively,
rank0(B, i) = i − rank1(B, i) and also B[i] = rank1(B, i) −
rank1(B, i− 1).

• select1(B, i) returns the position in 1..n where the ith 1 occurs.
Therefore, rank1(B, select1(B, i)) = i.

• access(B, i) returns the original value B[i].

Figure 2.1: A bitvector and its three operations: Rank, Select and Access.

Rank and Select can be supported in constant time by using o(n)
extra bits [Jac89, Mun96]. There also exist compressed bitvector
representations of B [RRR02, RRS07, OS07, GGG+07, Nav16, Góm20]
with support to the three operations defined.

2.1. Basic structures 13

Among them, the compressed representation due to Raman, Raman,
and Rao (RRR) [RRS07] exploits zero-order compression and permits
to store a bitvector B in total space nH0(B)+o(n) bits, while providing
constant-time access, rank and select operations. Other compressed
representations exploit bitvector sparseness to further reduce space
needs [OS07] or even are tailored to deal with bitvectors containing long
runs of zeros and ones [Nav16, Góm20].

2.1.2 LOUDS

Level Order Unary Degree Sequence (LOUDS) [Jac89] introduced a new
effective approach to encode ordered trees achieving the asymptotic
optimum of two bits per node. The tree structure is represented by
drawing the degree of each node in (left-to-right) level-order. Unary
codes [Sal07] are used to encode the degree sequence, i.e. a degree is
represented by the string 1r0, being r a repetition of degree - 1 ones.
An example can be seen in Figure 2.2 where it is depicted a hierarchy
tree and its LOUDS representation in bitvector D. The root level of
the tree contains only one (10 in unary) node, the root node, and has
not to be explicitly stored. In the first level we have 3 entries (1110 in
unary), for each of them, we have two children in the next level (which
translates in the unary code to 110− 110− 110) and so on.

As each node is represented as a 1 at its parent encoding it will
be necessary n− 1 ones (excluding the root node); besides, as all the
unary sequences that encode the degree of each node end with a 0
(there are n 0s) the total length of the encoded sequence of degrees
would be 2n− 1 bits for a tree with n nodes. This encoding procedure
based on a bitvector that contains unary codes brings the capability of
using supports rank and select operations to enable the basic navigation
through the tree. As an example, it would be simple to calculate in the
bitvector of Figure 2.2 the position of the first child of “Desserts” (4-th
node counting the root) as select0(D, rank1(D, 4)) + 1 = select0(D, 4) +
1 = 11 + 1 = 12.

In Section 2.4.4 we will show how LOUDS is used as a main
component of the CMHD, a state of the art solution for data aggregation.

14 Chapter 2. Basic concepts and technologies

Figure 2.2: A hierarchy tree coded as a LOUDS bitvector.

2.2 Text compression

Text compression is an important subarea of data compression that has
traditionally faced two main interest. On the one hand, it pursued the
target of reducing the size of the source text as much as possible, even
at the expense of sacrificing compression and decompression efficiency
([Shk02, Wel84]). On the other hand, the raise of text retrieval systems
([WMB94, BYRN08]) showed that it could become interesting to trade
some loss of compression effectiveness by the capability of being able
to handle a text database in compressed form. Therefore, the new
requirements were to be fast at both compression and decompression and
also to allow direct searches to perform efficiently within the compressed
text (without the need for a prior decompression). This lead to the
development of new semi-static word-based text compressors such as
Word-based Huffman [Mof89], Tagged Huffman [dMNZB00] and, finally,
End-Tagged Dense Code (ETDC) [Far05, BFNP07] which become the
most suitable compressor for text databases.

All of them were word-based semi-static compressors that parsed the
source text to gather the different input words and their frequency, that
allowed to encode them using a variable-length coding that assigned

2.2. Text compression 15

shorter codewords to the most frequent words. Since the codeword
given to a word did not vary along the database, direct searches were
possible by compressing the searched pattern and then searching for
such compressed pattern within the compressed text.

To improve the compression ratios of ETDC, while still retaining
some searching capabilities and decompression performance, a variable-
to-variable compressor (V2Vc) [BFL+10] was created based on the idea
of compressing not only words (as in ETDC) but also phrases of words.

In a different scenario, targeting at real-time compression, new
dynamic compressors based on ETDC were also developed [Far05,
BFNP10]. Even though we will discuss text compression scenario later
on Section 3.1, we will present here ETDC, DETDC and V2Vc as the
ancestors of the dynamic compressor that makes up one of the main
contributions of this thesis and will be presented in Chapter 4.

2.2.1 End-Tagged Dense Code

As stated above, End-Tagged Dense Code (ETDC) [Far05, BFNP07] is
a semi-static word-based compression technique. Basically, it performs
a first pass over the input text to gather the different words (vocabulary
of words) and their number of occurrences. Then, it sorts the words of
the vocabulary decreasingly by frequency and, following a dense-coding,
it assigns shorter codewords to the more frequent words. Finally, in
a second pass over the source text it replaces the input words by the
corresponding codeword, hence obtaining compression.

The main contribution of ETDC was the definition of a dense coding
to create byte-oriented codewords (i.e. codewords are sequences of bytes
rather than sequences of bits), despite previous alternatives such as
Plain Huffman or Tagged Huffman, that used Huffman algorithm [Huf52]
to obtain prefix-free1 encodings. The advantage of the dense coding
scheme of ETDC came from the idea of marking the first bit of the last
byte of a codeword with a 1, whereas the first bits of the remaining
bytes were set to 0. This made ETDC a prefix coding without the need
for using Huffman coding (as in TH) and provided synchronization

1A prefix-free encoding ensures that no codeword is a prefix of a longer codeword, which is an
useful property to support efficient decoding, as no look-aheads are required because each symbol
is uniquely decodable.

16 Chapter 2. Basic concepts and technologies

capabilities that enabled both direct access to the compressed text (and
consequently random decompression from any offset) and the possibility
of performing fast compressed text searches by using Boyer-Moore-
type searches [Hor80]. In addition, the coding schema of ETDC no
longer depends on the actual number-of-occurrences of a word (as in
Huffman coding) but only on the rank of each word in the decreasingly-
sorted vocabulary, what makes it simple and fast. Below, we show
how byte-wise codewords are assigned to each word, assuming such a
decreasingly-sorted vocabulary of words.

• The first 128 words from the vocabulary (i.e. words ranked from
position 0 to 127) are sequentially assigned 1-byte codewords from
10000000 (byte value 128) to 11111111 (byte value 255). Note that
the first bit of the (unique) last byte is set to 1. This is depicted
in Table 2.1.

• Words ranked from 27 = 128 to 27 + 27 × 27 − 1 = 16511 are
sequentially assigned two-byte codewords from 000000000:10000000
(word ranked 128); 000000000:10000001 (word ranked 129);... to
011111111:11111111 (word ranked 16511). The first byte of each
codeword has a value in the range [0, 127] (i.e. with the first bit
set to zero) and the second byte contains values within [128, 255]
(i.e. with the first bit set to one).

• Word ranked 27 + 27 × 27 = 16512 is assigned the first tree-byte
codeword 000000000:000000000:10000001, and so on.

The simple encoding schema introduced by ETDC and the fact of
depending on the rank of the symbols within the sorted vocabulary
rather than on their actual frequency values, allowed also the definition
of on-the-fly encoding and decoding algorithms such that:

• ci ← encode(i) receives the word rank i and returns the assigned
codeword in time proportional to |ci| = O(log8 i).

• i←decode(ci) receives a codeword ci and, again in time proportional
to |ci|, returns the rank i of the corresponding symbol within the
sorted vocabulary.

2.2. Text compression 17

Word rank Codeword assigned # Bytes # Words
0
1
2
...
27 − 1 = 127

10000000
10000001
10000010
...
1111111

1 27

27 = 128
129
130
...
27 ∗ 27 + 27 − 1 = 16511

00000000:10000000
00000000:10000001
00000000:10000010
...
01111111:11111111

2 27 ∗ 27

27 ∗ 27 + 27=16512
16513
16514
...
(27)3 + (27)2 + 27 − 1

00000000:00000000:10000000
00000000:00000000:10000001
00000000:00000000:10000010
...
01111111:01111111:11111111

3 (27)3

...

Table 2.1: ETDC distributes words in blocks according to their frequency.
Shorter codes are assigned to symbols on higher blocks.

As stated above, ETDC become the most suitable compressor
for text databases [BYRN08] due to its rather good compression
effectiveness (compression ratio2 around 32%), and mainly due to
its fast decompression and the ability to efficiently perform direct
searches within the compressed text. In addition, the simple encoding
and decoding algorithms opened the door to creating new dynamic
compressors (tailored for real-time transmission) as we will show in the
next section.

2.2.2 Dynamic End-Tagged Dense Codes

When pursuing the target of creating efficient text compressors that
could match real-time constraints, i.e. a word can be compressed and

2We show compression ratio as 100× compressed text size
size of original text ; i.e. the percentage of the compressed

size with respect to the plain text size.

18 Chapter 2. Basic concepts and technologies

sent to a receiver as soon as it is read, dynamic one-pass compression
is required. Despite semi-static compression, a one-pass statistical
compressor must dynamically compute the model of the text (gathering
words and their number of occurrences) as words are being read, instead
of waiting for the whole text, or a large block of it, to become available.
Therefore, using such varying model, each input word can be assigned a
rather-optimal codeword. The decoder/receiver performs symmetrically
to the encoder/sender by decoding the received codewords and recreating
the same model held on the compressor from the decoded codewords.

Dynamic end-tagged dense code (DETDC) [Far05, BFNP08,
BFNP10] takes advantage of the simple on-the-fly encode and decode
algorithms from ETDC and permits both sender|compressor and
receiver|decompressor to remain synchronized by simply keeping the
same vocabulary of words sorted by frequency. DETDC algorithm
is not complex, basically, assuming that, at a given moment, the
vocabulary of the sender contains n words, when the sender inputs the
next word w it could find it in its vocabulary at position i, so it simply
sends ci ← encode(i) to the receiver. Otherwise, if w is a new word, it
sends cn ← encode(n) (used as an escape codeword) followed by w in
plain form. In any case, the encoder increases the frequency counter f
of w to f + 1 and runs a simple update algorithm that swaps w with the
first word that has frequency equal to f . This update algorithm keeps
the vocabulary of words sorted by frequency and runs in O(1) time.

The receiver is also very simple. It receives a codeword ci and decodes
it as i← decode(ci). Then, if i < n it has decoded the word wi at the
i-th entry of the vocabulary. Otherwise, if i = n (escape codeword)
it receives a new word in plain form and adds it at the end of the
vocabulary. Finally, a similar update procedure to that of the sender is
run to increase the frequency of that word and to keep the vocabulary
sorted. Such update algorithm runs also in O(1) time.

DETDC became the first word-based dynamic compressor matching
real-time constraints. As the dynamic counterpart of ETDC, it obtained
rather identically compression ratios and faster (one-pass) compression.
Yet, due to the need of running the update algorithm each time a word
is decoded, decompression speed and searching capabilities worsened.

2.2. Text compression 19

2.2.3 Semi-static variable-to-variable compression

In 2010 the best option for building searchable compressed texts were
Tagged Huffman [dMNZB00] and ETDC. Although, those compressors
could not achieve compression ratios below 30% in natural language
English text; i.e. searchable compressed text could not compete against
strong compressors such as dictionary-based compressors (e.g. Lempel-
Ziv family [ZL77, ZL78, Wel84]) or k-order statistical compressors (e.g.
PPM [CW84, Shk02]). Thereby, it was necessary a compressor able
to mix the best of both worlds, having strong compression ratios and
fast searching capabilities within the compressed text. This is how
Variable-to-variable compressor (V2Vc) [BFL+10] was born.

This novel solution uses the same encoding schema as ETDC but
it considers not only words as the input symbols to encode but also
sequences of words (phrases). Therefore, it combines both, the idea of
processing variable-length input symbols (as usual in dictionary-based
compressors) and the assignment of variable-length codewords to the
symbols (as typical from statistical compressors). These made V2Vc
the first variable-to-variable compressor of the state of the art. The key
concept in this approach is to select “good” phrases. To achieve that,
V2Vc follows these steps:

• Parsing and selection of candidate phrases. V2Vc uses
auxiliary structures to handle all the possible word sequences in a
text, their frequency and the number of words that compose each
of them (phrase length). In particular, it uses a word-based suffix
array [MM93] built over the source text, that basically consists
of an array of pointers to each word beginning that keeps all the
possible suffixes from any word position to the end of the source
text sorted lexicogrpahically. It also uses a longest common preffix
(LCP) [MM93] structure that permits V2Vc to gather the actual
number of occurrences of any phrase pointed from the suffix array.
In order to select the best phrases, two heuristic techniques have
been used:

– H1: Select all the longest phrases that has at least a given
frequency threshold.

– H2: Compare the profit obtained between two similar phrases.

20 Chapter 2. Basic concepts and technologies

Therefore, in this first phase the compressor becomes acquainted
of which words appear in the original text (as in ETDC) and,
immediately afterwards, it adds the chosen candidate phrases to
the word vocabulary (phrase-book). Thus, V2Vc treats equally
words and sequences of words as the source symbols that will later
be encoded.

• Gathering the final phrase-book and producing a phrase-
tokenized representation of the text. Since each word can be
either encoded individually or inside a phrase, it is important to
discern which alternative will be used for each word. Using the
auxiliary structures mentioned before it is possible to build an
intermediate representation of the original text where each word
(or phrase) is replaced by an identifier associated to its position in
the phrase-book.

• Coding and codeword replacement. In this phase, each
identifier of the intermediate representation is replaced by a variable-
length ETDC codeword using Cid ← ETDC.encode(id) and
considering the phrase-book ordered by frequency. This makes
up the final compressed sequence.

Once the compressed text is obtained, it is mandatory to follow a
common communication protocol between compressor and decompressor
so that the decompressor can know the contents of the phrase-book used
by the compressor. Therefore, we have to include a header (as in ETDC)
with all the words in the phrase-book in plain form, and also the phrases.
To represent phrases in a compact way the first time a phrase is encoded
in the compressed file, it is represented (compressed) as the sequence
of all the codewords associated to its individual words. Namely, if
the first occurrence of a particular phrase starts at position i in the
compressed text, we only have to store in the corresponding entry x
of the phrase-book. A pair (i, k) indicating that the definition of the
words of that phrase appear compressed from position i on within the
compressed file and the number of words k it contains. Subsequent
occurrences of the phrase x will be encoded as Cx ← ETDC.encode(x)

On the other hand, the decompression process rather is identical
to decompression in ETDC. Although, each time the first position of

2.3. Index structures 21

an encoded phrase x is reached, the decompressor recovers the plain
representation (string) of the phrase. Afterwards, that phrase is inserted
in the phrase-book at the x-th entry so next time the codeword Cx is
decoded for the compressed text, it is handled as the codeword of any
single word, i.e. output string at position phrase-book[x].

Following this strategy, V2Vc reaches competitive compression ratios
(around 22%) even when compared with strong compressors such as p7zip.
V2Vc has a slow compression process due to the complex candidate
phrase detection procedure but it owns a fast decompression (analogous
to ETDC thanks to having decompress a smaller compressed file). In
addition, it is able to search over compressed text even faster than
ETDC.

2.3 Index structures

The possibility of retrieving the desired information faster is one of the
main concerns in computer science. Luckily, at this point the state of
the art have provided some clever solutions that may apply to a very
wide range of contexts. This section describes two of them as basic
indexing engines in the contributions of this research and in many other
compact structures.

2.3.1 FM-index

The Burrows-Wheeler Transform (BTW) [BW94] is a data transforma-
tion algorithm that creates a matrix whose rows are cyclical shifts of
the same text/sequence that are kept sorted in alphabetical order. The
key idea is to build blocks enhancing the locality of repetitions ergo
improving the compression. Since all rows are cyclical, it is possible to
traverse/recover each element of the original sequence in reverse order
just using the first (F) and the last (L) columns of the matrix. Figure 2.3
displays an example of the matrix containing all the cyclical shifts of
the sequence S = 〈abracadabra$〉. Note that BWT (S) is defined as
the last column L of that matrix. Yet, since F is a permutation of L
that contains the same symbols but sorted lexicographically considering
the cyclical string starting on them, we can map any symbol c = L[i]

22 Chapter 2. Basic concepts and technologies

into its corresponding position j in F by just counting the number of
times (k) character c occurs in L[1, i] (i.e. we know that L[i] contains
the k-th occurrence of c). Therefore, j can be easily obtained as the
initial position of the range of symbol c within F added to k − 1. This
is called the LF mapping of the BWT .

Therefore, we know that the cyclical shift of S starting at L[i] is
identical to the one starting at F [j]. Since the row j is also cyclical, if
we access L[j] we will obtain the entry preceding L[i] = F [j] in S. By
repeating this operation, we can recover all the entries of S, in reverse
order. For example, if we start at row i = 4 (which contains the original
string S) we see that L[4] contains the first occurrence of ‘$’, which is
found at position j = 1 in F . Consequently, L[1] contains ‘a’ and we
have recovered S[11, 12] =“a$”. Since L[1] holds the first occurrence
of ‘a’ in L, which is found at F [2], we access L[2] and recover S[10] =
‘r’. Now, it is the first occurrence of ‘r’ in L, which is found at F [11].
Consequently, L[11] recovers ‘b’ and we have already recovered the
substring S[9 12] =“bra$”. We can continue the process until recovering
the whole source sequence S. The LF mapping and the fact that all
the cyclical shifts of S appear sorted in F has led to the raise of a large
family of self-indexing structures based on the BWT , whose best-known
component is the FM-index [FM00].

Given a sequence S[1, n] built on an alphabet Σ = [1, σ], the FM-index
[FM00] provides a self-indexed representation of S based on the BWT
of S and the use of backward search for identifying pattern occurrences.
Figure 2.3 shows how this index is able to find the occurrences of the
pattern P [1, p] =“bra” within S through backward search. It starts
looking for the range in L containing the last symbol of the pattern
(‘a’) and traverses the matrix by navigating from F to L until either it
retrieves a range with the occurrences of the whole pattern or it runs
out of results. In practice, this operation is performed using L and two
auxiliary matrices (C and Occ) in order to achieve O(p) time. Array C
(see Table 2.2) stores, for each symbol c ∈ Σ, the amount of occurrences
in S of all the symbols that are lexicographically smaller than c (i.e.
the starting offset of the range associated to symbol c in F). Matrix
Occ(c, q) (see Table 2.3) keeps the amount of occurrences of character c
in the prefix L[1..k].

2.3. Index structures 23

Figure 2.3: BWT and FM-Index example: Given the text “abracadabra$”
we show the cyclical shifts of the BTW matrix and highlight F and L. Also,
we show how to find all the occurrences of the pattern “bra” using backward
search.

Continuing with the example of Figure 2.3, the first step to find the
pattern “bra” is to retrieve the range in F of the last character of the
pattern ‘a’ as [C[‘a’] + 1, C[‘a’+1]] = [2, 6]. To calculate the range of
all the suffixes containing “ra” we need to compute [C[‘r’] +Occ[‘r’, 2−
1] + 1, C[‘r’] + Occ[‘r’, 6]] = [10 + 0 + 1, 10 + 2] = [11, 12]. Finally,
the last step to find all the occurrences of pattern “bra” is to calculate
[C[‘b’]+Occ[‘b’, 11−1]+1, C[‘b’]+Occ[‘b’, 12]] = [6+0+1, 6+2] = [7, 8].
Thus, there are 2 occurrences of the sought pattern in this text.

This structure requires 5nHk(S) + o(n) bits of space and permits to
search for the occurrences of a pattern P [i,m] in time O(m+occ log1+εn)
(occ being the number of occurrences of P within S). Several variants
of this scheme exist [FM01, FM05, FMMN07, MN05] which induce
different time/space tradeoffs for the counting, locating, and extracting
operations that respectively counts the number of occurrences of P in

c $ a b c d r
C[c] 0 1 6 8 9 10

Table 2.2: Auxiliary array C for column L in the matrix of Figure 2.3.

24 Chapter 2. Basic concepts and technologies

a r d $ r c a a a a b b
1 2 3 4 5 6 7 8 9 10 11 12

$ 0 0 0 1 1 1 1 1 1 1 1 1
a 1 1 1 1 1 1 2 3 4 5 5 5
b 0 0 0 0 0 0 0 0 0 0 1 1
c 0 0 0 0 0 1 1 1 1 1 1 1
d 0 0 1 1 1 1 1 1 1 1 1 1
r 0 1 1 1 2 2 2 2 2 2 2 2

Table 2.3: Auxiliary structure to compute the number of occurrences of
character c in the prefix L[1..k] (Occ(c,k)) in constant time.

S, locates the positions where P occur in S and extracts/recovers any
substring S[i, j] from S.

Section 5.3 will use a FM-Index to search patterns over an auxiliary
structure in order to improve the performance and range of action in
one of our proposals.

2.3.2 Wavelet Tree

The wavelet tree (wt) is a data structure that, as the FM-index discussed
above, permits to represent any general sequence in a self-indexed way.
Given a sequence S[1, n] over an alphabet Σ[1, σ], a wavelet tree is built
as a balanced binary tree that subdivides the symbols in the sequence
represented within each node according to their position in the alphabet.
In particular, depending on whether those symbols either fall within
the first half of the alphabet (ΣL) or within the second half (ΣR).

Considering the whole source sequence S, the root node of the tree
contains a bitvector B[1, n], such that B[i] = 0 ⇐⇒ S[i] ∈ ΣL, and
B[i] = 1 otherwise. Then, the sequence handled by the root node
S is divided into two subsequences SL and SR that are represented
within its two children nodes. Basically, SL contains all the symbols
s ∈ ΣL from S (in the same order they occurred in S) and SR all those
symbols s ∈ ΣR. The process is repeated recursively, considering the
subsequence SL in the left sub-tree, and the subsequence SR in the right
sub-tree. The resulting tree has dlog σe levels, and a total of n bits per

2.3. Index structures 25

level, for a total size of ndlog σe bits. Pointers between nodes can be
greatly reduced using an implementation in which all the bitvectors of
the same level are concatenated [CN09], hence keeping total space as
ndlog σe+O(n log σ).

Figure 2.4: Wavelet tree for sequence S = 〈6 3 5 4 0 1 5 2 7 6 7 0 6 3〉.

Instead of considering the partitioning of Σ at each node, we could
also consider that each symbol si ∈ Σ is assigned a codeword ci, so that
at the root node, we set B[i] = 0 ⇐⇒ the first bit of the codeword
of S[i] is a 0, and B[i] = 1 otherwise. Then, we repeat the process
recursively as above, yet considering the k-th bit of the codeword of the
symbols represented within the nodes of the k-th level.

Assuming a binary encoding for the symbols, Figure 2.4 depicts the
wavelet tree associated to the sequence S = 〈6 3 5 4 0 1 5 2 7 6 7 0 6 3〉
where only grey shaded areas (the bitvectors B1, B2.x and B3.x) are
stored. Note that each node at the k-th level represents all those symbols
from the original sequence that share the same k− 1 initial bits in their
encodings. For example, the node containing B3.3 contains only symbols

26 Chapter 2. Basic concepts and technologies

4 and 5, whose binary encodings start by bits 1 0.
With this simple structure, wavelet trees are able to represent the

original sequence S, while providing also support for access, rank, and
select operations over the symbols of S. The two former roam the tree
from the top to the leaves whereas the latter does it in the opposite
direction as we will discuss below. Those operations are defined as:

• rankc(i) returns the number occurrences of c in S[1..i].

• selectc(i) returns the position of the i-th occurrence of symbol c
within S.

• access(i) returns the original value S[i].

To solve access(i) operation, we start at position i in the root level and
we only need to descend the tree considering the value of the bitvector
B[i] at each node. We check whether we have to move to either the left
or right child, and respectively, we track the corresponding position at
the next level as i← rank0(B, i) or i← rank1(B, i). Thus, the solution
for access(3) (the first 5 in the S) begins with a descent through the
right branch as B1[3] = 1. Since rank1(B1, 3) = 2, we can locate our
target in the second level, in the 2-nd position of B2.2. Since B2.2[2] = 0,
we need to descend through the left branch this time. At the third level,
the sought solution is at position B3.3[rank0(B2.2, 2)] = B3.3[1] = 1.
Since we have traversed the branches 0 · 1 · 0, that correspond to the
(binary) encoding of symbol S[3], we conclude that access(3) = 101 = 5.

Operation rankc(i) would be solved in a similar way, performing
either a rank0 or a rank1 operation depending on the bit of the encoding
of c in the previous level. Yet, in this case, we only need to report the
final position within the corresponding leaf.

To solve selectc(i), a bottom-up traversal of the wavelet tree is
required. First, we locate the leaf corresponding to symbol c according
to its encoding. From there on, we track the i-th position from that leaf
(such leaf would be devoted only to c symbols) up to the corresponding
position at the root node. This is done using select operations within the
bitvectors of the nodes traversed up to reaching the root. For example,
if we want to retrieve the position of the first occurrence of symbol c = 5
of S, we should begin in the first position of the leaf containing symbols

2.4. Data aggregation 27

c = 5. Since the last bit of the encoding of 5 is a one, we would start
the bottom-up traversal at i← select1(B3.3, 1). Now, as the bitvector
B3.3 is within the left child of B2.2, we should look for the first 0 of
B2.2, i.e. i ← select0(B2.2, 1) = 2. As B2.2 is within the right child of
B1, the position at the top bitvector we are looking for is obtained as
i← select1(B1, 2) = 3.

In addition to plain wt representations, that essentially require the
same space as the original uncompressed sequence S, several compressed
representations exists, yielding space proportional to the zero-order
entropy of S. Particularly, one approach to achieve this is to use
compressed bitvectors within the wt. By using the variant due to Raman,
Raman, and Rao (RRR) [RRS07] discussed in Section 2.1.1, we can store
a wt in total space nH0(S)+o(n log σ)+O(σ log n) bits, while operations
can still be solved in O(log σ) time. An alternative compression strategy
for wavelet trees, where the binary encoding of the symbols seen above
is replaced by a prefix-free variable-length encoding (using Huffman
encoding), as in [FGNV08], leads to a Huffman-shaped wavelet tree
where the overall size is reduced to n(H0(S) + 1) + o(n(H0(S) + 1)) +
O(σ log n) and the operations are performed on average in O(H0(S))
time, whereas the worst-case complexity is still O(log σ).

Wavelet trees will be used in Chapter 6 as building blocks of a
more complex structure created to index information attending different
criteria.

2.4 Data aggregation

Despite that commercial data warehouses have gained the control of
the market, it is still possible to improve them from a spatial point of
view (among others). The following subsections fathom into how classic
ideas evolved until achieving this maturity level and how compression
techniques may open new paths in this field.

2.4.1 Data Warehouses

It was the best of times. It was the worst of times. Supported by
these words of Dickens, William H. Inmon began the defense of his

28 Chapter 2. Basic concepts and technologies

data warehouse model to settle the discussion once and for all [Inm11].
For decades, the data warehouses world has been divided between two
different main approaches and this controversy is still in vogue nowadays.

The seminal idea for this great debate was established in 1958 by an
IBM employee called Hans Peter Luhn. Luhn was concerned about the
inefficient communication and the human effort on the dissemination
of information. Therefore, he proposed a system to accommodate
all information problems of an organization [Luh58]. With a little
human help, his system was able to find the action-points (individuals,
departments, divisions. . .) and the activities that characterized each
of them. Once the hierarchy was established, the system was in charge
of the acquisition, storage and distribution of new information through
each action point. Taking advantage of the new improvements on the
automation of electronic devices, he managed to accomplish his goals in
a fast and efficient way for that time. In addition, he coined a term that
would later name one of the most prolific areas in information systems
research: Business Intelligence.

Having in mind that the arrival of Database Management Systems
(DBMS) did not occur until the ’60s [Bac66] (Figure 2.5), it is
understandable the oblivion suffered by the generation of business
knowledge during this period. The effort was focused on managing
the unstoppable flow of information [WL64] or tackling the new data
retrieval problems [SL65, Cle67]. Nonetheless, this does not mean that
Luhn’s pioneer approach was mistaken. Data generation was growing
exponentially year after year, to such an extent that the amount of
information generated only in 2007 was larger than all the information
created since the invention of writing [BvDD09]. The need for exploiting
all this data became clear again considerably later, when the foundation
of operational databases was settled.

It is at this point of history when Ralph Kimball and William H.
Inmon faded in. They both immersed in the information systems area
during the ’80s [SIKH82, Inm86, IB86] but it was during the ’90s when
the race for building a database-oriented to decision-making begun. Both
of them aimed to develop a system capable of managing information
in such a way that (following Luhn’s goals) it could acquire, store,
disseminate, calculate and maintain huge amounts of different data

2.4. Data aggregation 29

Figure 2.5: Picture from a 1962 internal General Electric document
explaining the idea of random access storage using pigeon holes as a metaphor.
(Source: https://wp.sigmod.org/?p=688)

while generating understandable and accurate information using efficient
methods. Thus, data warehouses were born. Both approaches shared
the same central idea: separate analysis workload from transaction
workload extracting analytic and historical data derived from multiple
sources, cleaning it and loading it into a warehouse. In [KR02], Kimball
defines the basic requirements of a data warehouse as:

• The DW/BI system must make information easily accessible.

• The DW/BI system must present information consistently.

• The DW/BI system must adapt to change.

• The DW/BI system must present information in a timely way.

• The DW/BI system must be a secure bastion that protects the
information assets.

• The DW/BI system must serve as the authoritative and trustworthy
foundation for improved decision making.

• The business community must accept the DW/BI system to deem
it successful.

30 Chapter 2. Basic concepts and technologies

However, as the proverb says, the devil is in the details. Inmon
thinks about his data warehouse as a centralized repository for an
entire enterprise while Kimball defines his data warehouse as a copy of
transaction data specifically structured for query and analysis. Basically,
this implies that Inmon defends a top-down approach where the data
warehouse has an atomic nature and Kimball supports a bottom-up
approach where the union of modules shapes the data warehouse.

Therefore, the former needs a high-skilled team and a considerable
amount of time for deploying but reduces redundancy, has a simpler
maintenance and an enterprise-wide coverage. On the contrary, the
latter uses a modular approach that needs redundancy and complicates
maintenance but can be deployed fast by average workers, it is ready to
use as soon as the first module is prepared and each area of the enterprise
is able to work on its own. There is still no consensus on which solution
is better, there are several aspects to consider before choosing one, being
even possible a hybrid warehouse using both proposals. Luckily, it is
not the aim of this manuscript to choose between them but to introduce
new contestants to the fight. Chapter 5 and Chapter 6 will present two
new approaches for storing and indexing data destined to aggregation
queries opening a new path to compact data warehouses. Our structures
follow the principles of Luhn and satisfy Kimball’s rules while reducing
redundancy as Inmon’s method does.

2.4.2 OLAP

Edgar Frank Codd is one of the main characters in database history.
Not only he proposed the Relational model in 1970 [Cod70] but he also
coined the term On-Line Analytical Processing (OLAP) in 1993 [CS93].
Codd’s main idea was always to create an analytic abstract model
rather than a particular technology, his beliefs were already hidden
in [Cod79] where he states: There is a strong emphasis on structural
aspects, sometimes to the detriment of manipulative aspects. Structure
without corresponding operators or inferencing techniques is rather like
anatomy without physiology. Thus, the aim was to introduce a wider
vision that complemented the straightforward report functionalities and
overcame the limitations of the spreadsheets of the time.

To accomplish that, [CS93] defined an OLAP system as a synthesis

2.4. Data aggregation 31

of the historical and transactional data that enables dynamic multidi-
mensional analysis fulfilling the following characteristics:

1. Multidimensional Conceptual View

2. Transparency

3. Accessibility

4. Consistent Reporting Performance

5. Client-Server Architecture

6. Generic Dimensionality

7. Dynamic Sparse Matrix Handling

8. Multi-User Support

9. Unrestricted Cross-dimensional Operations

10. Intuitive Data Manipulation

11. Flexible Reporting

12. Unlimited Dimensions and Aggregation Levels

Despite the increasing popularity that columnar databases are
experiencing nowadays, data cubes [GBLP96] have been the ruling
technology to implement OLAP systems during the last decades. As
Figure 2.6 shows, data cubes can be seen as an aggregated representation
of the well-known relational tables. These precalculated accumulations
enable any system to answer aggregation queries efficiently saving a lot
of time. Besides, using its resemblance to a Rubik’s cube, it is easy
to understand by the final user how it is possible to flip the faces to
retrieve the information sought. In fact, OLAP cubes define three basic
sets of operations: roll up and drill down let the user navigate upwards
and downwards through the hierarchies, slice and dice allow to extract
subcubes and pivot is in charge of rotating the cube.

It is important to notice that data warehouses and OLAP systems
crack data according to diverse dimensions pursuing the same goal:

32 Chapter 2. Basic concepts and technologies

Figure 2.6: Sales information of a clothing enterprise characterized by three
dimensions (product, region and time) represented using a data cube (left)
and a classic table (right).

Figure 2.7: Common Data Warehouse structure [VZ13].

deliver data that is understandable to the business users and deliver
fast query performance. Nevertheless, they belong to different business

2.4. Data aggregation 33

intelligence strati and they can be used separately. Data warehouses
are a place to store in a formalized analyzable format while OLAP is a
method to analyze the data. Even so, it is usual to mix the capabilities
of both creating a system like the one displayed in Figure 2.7. Again,
Chapter 5 and Chapter 6 will demonstrate that our proposals lay the
groundwork for a new mix using OLAP operations over a compact
approach.

2.4.3 Summed Area Tables

In 1984, Franklin C. Crow introduced the Summed Area Tables in
computer graphics [Cro84] to speed up mipmapping, which requires to
be able to compute the average value of a given rectangle within an
image.

By using Summer Area Tables, given a matrix A[1, r][1, c], for
which we want to solve the operation countRange(A, [x1, y1], [x2, y2])
← ∑x2

i=x1

∑y2
j=y1 A[i][j], the key idea of this approach is to create a new

matrixM [0, r][0, c] where all the cells in both row 0 and column 0 are set
to zero, and any other cellM [x][y] stores the total sum of all the previous
cells within A (to the left and up); i.e. M [x][y]← ∑x

i=1
∑y
j=1 A[i][j]. An

example showing matrices A and M is depicted in Figures 2.8(a) and
2.8(b) respectively. Using M allows us to solve countRange operation
in O(1) time as:

countRange(A, [x1, y1], [x2, y2])←M [x2, y2]−M [x2, y1 − 1]−
M [x1 − 1, y2]+M [x1 − 1, y1 − 1] (2.1)

Basically, from a geometric point of view, Figure 2.8(b) shows that
to compute countRange(A, [3, 2], [7, 4]) we subtract from M [7, 4] = 64
(sum of all the values in A[1, 7][1, 4]) both the values in the area depicted
with horizontal bars (M [7, 1] = 19 = sum of values in A[1, 7][1, 1]) and
those values in the area depicted with vertical bars (M [2, 4] = 18 =
sum of values in A[1, 2][1, 4]). Since we are subtracting the sum of
values in the area depicted with both vertical and horizontal lines
twice (M [2, 1] = 6 = sum of values in A[1, 1][2, 1]) we still have
to add that value (M [2, 1] = 6) once. Consequently, we obtain
countRange(A, [3, 2], [7, 4])← 64− 19− 18 + 6 = 33.

34 Chapter 2. Basic concepts and technologies

(a) Non-aggregated matrix example.

(b) Aggregated matrix containing the same information as the image below, it can compute
in constant time the sum of the blue area.

Figure 2.8: Summed Area Tables detailed geometrical explanation:
Figure2.8(b) represents the aggregated matrix built over the simple matrix
depicted in Figure 2.8(a). The non-aggregated matrix needs to compute
each cell within the submatrix individually in order to calculate the total
sum of the area shaded in blue. The aggregated representation can solve the
operation in constant time using the greater value of the submatrix minus
the non selected areas (left and top) plus the small area that was subtracted
twice.

Summed Area Tables and countRange operation played a key role
during the development of this research. Section 5.1 generalize these
concepts and introduce some space improvements as long as some
general-purpose uses of this seminal work.

2.4.4 CMHD

The CMHD [BCPL+16], short for Compact representation of Multi-
dimensional data on Hierarchical Domains, is a brand new structure

2.4. Data aggregation 35

that uses compact data structures to solve aggregated range queries on
multidimensional grids.

CMHD could be seen as a compressed approximation of a multidi-
mensional data cube (see subsection 2.4.2). Returning to the idea of a
multidimensional matrix where each cell saves a value, CMHD recursively
divides the matrix into several irregular submatrices built from the
hierarchy levels of the dimensions. A two-dimensional (products and
regions) sales example can be found in Figure 2.9. For each dimension, a
hierarchy of three strati is presented where products are aggregated into
several categories and cities are grouped into countries and continents.

Figure 2.9: CMHD example storing the amount of products sold attending
the region and type of product. Left figure represents the conceptual model
of the structure, the gold tree serves as the conceptual information saved and
the vectors are the actual data stored.

The same information stored in the conceptual matrix is represented
in the tree at the right side of the figure. As the number of characteristics
may be irregular (as in 2.9) submatrices cover irregular partitions of the
grid too. Each of these uneven submatrices is represented in the tree on
the right as the total sum of its elements beginning at the root with the

36 Chapter 2. Basic concepts and technologies

whole amount of products sold (the sum of all cells in the bigger matrix)
and descending for each one of its divisions. This decomposition does
not end until all branches have reached empty submatrices.

As this structure only stores an aggregated value in each intersection
of same level elements of different dimensions, it can be easily added
another level to any hierarchy by dividing all the elements of a level
in just one element (itself); thus, creating a new level identical to the
previous one. This aspect could be useful to match elements of different
strati (e.g. “Cold desserts” in “Fukuoka”) in case any query requires
more flexibility.

The described tree is stored through several compact data structures
to minimize space usage. LOUDS (see Section 2.1.2) is used to encode
the dimensional hierarchies in a compact fashion (Dregions and Dproducts)
while sequence S contains the full list of the values of the matrix, from
the total accumulation of all submatrices to each cell value. Besides, fast
searches through the structure are provided by rank and select operators
over aligned bitvectors Bn, in charge of inner nodes, and Bb, delimiting
the branches of the tree. The former traverses the tree level-wise saving
a 1 if the node has offspring, whereas the latter preserves the original
tree distribution for navigational purposes.

CMHD will be used as a baseline in Chapter 5 in order to test the
results of our proposed aggregated structures.

Chapter 3

Application contexts

The aim of this research is to present new general-purpose solutions
to common problems in several different contexts. As a matter of
landing this conceptual ideas, this chapter offers details of different real
application contexts where our proposals improve the current solutions.
These environments will be used in following chapters to explain in
detail the behaviour of each proposed structure and its experimental
evaluation.

• Text compression. A well-known context that needs almost no
explanation. Being texts one of the main containers of information,
it is capital to process, manipulate, store and handle them using
as little space and time as possible.

• Public transportation. Managing the passenger flow informa-
tion in a city is not as trivial as it could be thought. Passenger
trip tracking, balanced load of subway lines, passenger preference
between several means of public transport or the effective design
of bus lines are complex problems that do not have a unique
bulletproof solution. New contributions are necessary to solve
these problems building a brand new framework of action.

• Mobile workforce management. Logistics is also a complex
field that has been widely nurtured by technological advances in
the last decades. Within this large area, our work focuses on the
mobile workers that are needed in any logistics project; tracking the

37

38 Chapter 3. Application contexts

sequence of their activities and analyzing the obtained information
could lead to vital hidden information for companies and to optimize
decision-making procedures.

3.1 Text compression

Recalling the first example described in the introduction of this
manuscript, text compression has always been a target for mankind, we
have spent our entire history trying to fit texts in the smaller possible
space in order to simplify the exchange of ideas while reducing costs,
weights and efforts. Even so, improvements in this field were slightly
frozen until the arrival and increasing popularity of text databases which
reopened the search for the most compact text representation. However,
the goals did not change over time, text representation compression
techniques should not only reduce the storage needs drastically, but also
handle texts efficiently in compressed form.

For the ideas proposed in this text, lossless compression is the only
option as we cannot afford to compromise data quality not being able to
restore the original information. Traditionally, there are two well-known
types of lossless text compression methods:

• Dictionary methods: These compressors select sequences of
symbols and encode each sequence as a token using a dictionary;
thus, they are also known as variable-length-symbols-to-fixed-
length-codes compressors. The dictionary holding the symbol
sequences may be either static or dynamic. The former is stable,
occasionally allowing additions but never deletions, whereas the
latter stores sequences previously found along the input stream,
enabling additions and deletions as new input is being read.

• Statistical methods: These compressors use a statistical data
model, so that the compression quality they achieve depends on
the suitability of the model. Therefore, they are fixed-length-
symbols-to-variable-length-codes compressors. They can be either
semi-statical or dynamic. In the former case, a first text processing
permits to build the model of the text and it is followed by a
encoding step where each symbol is given a codeword whose length

3.1. Text compression 39

depends on its frequency. After that, a second pass replaces each
original symbol by the corresponding codeword. In the case of
dynamic compression, a unique pass is performed. Therefore,
the model is built as text is being read. Each time a symbol is
processed, it is given a codeword according to the current model
of the already processed text and, then, such model is updated
so that the encoding schema can provide optimal codewords for
subsequent symbols.

The most representative dictionary-based compressors are the Lempel-
Ziv family [ZL77, ZL78, Wel84] being the base of many popular
compression programs as gzip, p7zip, the UNIX program compress or
GIF. As a statistical model is not needed, they can perform compression
as the text comes since there is no requirement of preprocessing the
input. Therefore, each time a substring is read from the source stream,
it is searched in the dictionary, and that substring is substituted by its
assigned codeword. Strong compression are reached as each codeword
is smaller and lighter than the original substring.

On the other hand, the first statistical compressors based on Huffman
coding [Huf52] using character-oriented modeling obtained rather poor
compression ratios on text collections (compression around 60%).
However, when Huffman coding was coupled with a word-based modeler
during the late ’80s [Mof89] the compression ratio obtained by those
semi-static compressors became close to 25% when applied to English
texts, and they set the basis to build modern text retrieval systems
over them [WMB99]. This boosted the interest of new compressors not
only yielding fast decoding/retrieval but also allowing queries to be
performed in compressed form.

At the end of the ’90s, Plain Huffman (PH) and Tagged Huffman (TH)
[dMNZBY98, NdMN+00] replaced the bit-oriented Huffman by byte-
oriented Huffman to speed up decoding at the cost of loosing compression
effectiveness (now around 30%). In addition, TH reserved the first bit
of each byte to gain synchronization capabilities. Compression ratios
worsened to around 34% but random decompression and fast Boyer-
Moore-type searches [BM77] became possible.

In the same line, the use of dense codes [BFNP07] allowed (s,c) Dense
Code (SCDC) and End-Tagged Dense Code (ETDC) (see Section 2.2.1)

40 Chapter 3. Application contexts

to not only retain the same capabilities of TH but also improve its
compression ratios, which became very close to those of PH. They also
owned a simpler coding scheme that did not depend on the Huffman
tree. Indeed, assuming we have n source symbols si (0 ≤ i < n)
with decreasing probabilities, the codeword ci corresponding to the i-th
symbol can be obtained as ci ← encode(i), and the rank i corresponding
to ci can be obtained as i ← decode(ci). Both encode and decode
algorithms perform in O(|ci|) time [BFNP08].

Unfortunately, since PH is the optimal word-based byte-oriented
zero-order compressor, all those efficient and searchable word-based
compression techniques could never reach the compression of the
strongest dictionary compressors (e.g. p7zip). However, those strong
dictionary compressors need more time to achieve those compression
ratios and do not allow searching for patterns on a compressed text.

This motivated the creation of V2Vc, the first word-based compressor
[BFL+10] merging both, variable-length-symbols-to-fixed-length-codes
compressors (dictionaries) and fixed-length-symbols-to-variable-length-
codes compressors (statistical). Thus, variable-to-variable compressor
keeps the best characteristics of both worlds obtaining fast searchable
compressed texts with good compression ratios.

V2Vc basically uses additional structures to detect “good” phrases,
builds a phrase-book that included both words and phrases of words
and, then, encodes it using ETDC. This opened a new door towards
generic hybrid compressors. A detailed explanation of this structure
can be found in Section 2.2.3.

Nevertheless, some modern scenarios add a new fundamental
requirement to classical text compressors: real-time constraints along
transmission through a network. Not only compression ratios have to be
satisfactory but also speed at compression is critical; besides, there is no
text to preprocess in order to create a model (or dictionary) as phrases
are created on the fly. Those critical scenarios are not as unusual as it
could seem at first sight, on a day-to-day basis we are surrounded by
HTTP pages sent by a server during a HTTP session, digital journals
streaming book pages or news to electronic readers or even satellites
sending real time pictures of space regions. Therefore, one major
interest during the development of this thesis was to tackle this question

3.2. Public transportation 41

providing a new variable-to-variable general-purpose compressor that
fulfills these requirements as it will be explained in Chapter 4.

3.2 Public transportation

Most transport companies have focused on providing helpful information
to their passengers regarding the existing offer, hence providing not only
information related to their transport network (e.g. maps with the lines,
their schedule, etc.) but also, in many cases, real-time information with
the actual position of a vehicle, remaining time to destination, remaining
time until next vehicle arrives, and so on. Yet, in order to balance
their resources, matching the available offer with the actual passengers’
demand is a goal that requires gathering information regarding how users
move along the transportation network. Obtaining such data necessarily
required using some technology to track user’s movements along the
transport network. Currently, it is not uncommon to find cities having
a smart card system [Bly00] where each user has a personal public
transport card with which he or she can pay for trips over several means
of transport (bus, subway, etc) and also to switch between them. The
use of these smart cards lets the transportation system know where and
when an individual started a trip, which provides valuable information
for the administrators of the system. Indeed, the ending stop of a trip
can be also estimated from boarding records alone [Wan11, AAMF16].
Several works have also been presented regarding how travelers switch
lines or where they finish their trips in order to completely track
down any traveler [MP12, BFG+18]. With the increasing use of these
passengers tracking technologies on public transportation networks, it is
now becoming possible to gather (or accurately estimate) the actual trips
a given user made along the network. This new available information has
been exploited in several scopes. For example, to gather the preferences
of users on the chosen mean of public transportation to travel through
a city [LVBD17], to monitor urban traffic [LJZL17], or to study the
traffic effects of the congestion charges introduced in some urban areas
around the world [BK15]. Obviously, the constantly growing amount
of information regarding the usage of the network brings new space
challenges to overcome.

42 Chapter 3. Application contexts

In [BFG+18] a system to track passengers over various bus lines in
a compressed way was presented. The system had a model on its own
in order to handle individual journeys and to be capable of doing a
thorough scrutiny of the routes taken by each person. The most relevant
concepts of the model were:

• Stops: Places were commuters may get on or alight a vehicle.
Stops must have an associated geographical point.

• Lines: They are regarded as the ordered sequence of stops where
a vehicle (e.g. bus or train) may stop. A line is considered to have
a direction, that is, the full round route is stored as two different
lines (forward and backwards).

• Journeys: They are referred to as vehicle trip, that is, a particular
traversal of a transport vehicle over a line. It departs at a given
day and time from the first stop of a specific line and follows
the complete sequence of stops of that line until the ending stop,
allowing passengers to get on and to get off in each stop.

• Stages: They are defined as each chunk of a user trip defined by
the boarding on a vehicle at a particular boarding stop of a given
journey from a given line and the alighting at a different stop of
the same line and journey.

• User trips: The concatenation of one or more stages defines a
user trip. It represents a user traveling from an initial stop within
a line until the next line-switching stop (initial stage), intermediate
stages for each new vehicle the passenger boards (and then alights),
and a last stage until reaching the ending stop of the trip.

As illustrated in Figure 3.1, it is possible to represent a public
transportation network on a two layer model: the bottom layer serves as
the static network including stops (si ∈ S) and lines (li ∈ L) and the top
layer represents the particular journeys (ji ∈ J l) made by vehicles that
make stops at specific times. The system handles all this information
with four arrays:

• Array lineStopi. It keeps the stops that belong to line li. Therefore,
sa ← lineStopi[j] indicates that stop sa is the j-th stop of line li.

3.2. Public transportation 43

stageuser_trip

stop_place

contains

boards alights

traversesline

journey

coords

seq

time

code

belongs_to

stop_time

stops_at

stops_at

start_time

id

name
name

id

id
num_stage

day

num_board

num_alight

Figure 3.1: Entity-Relationship diagram modeling the elements of a public
transportation network and user trips made along it.

Note that given sa, we could be interested in retrieving its position
j among the stops of line li; we will refer to such operation as
j ← lineStop−1

i (sa).

• Array avgT imei. Given a line li, avgT imei[j] indicates the average
time (in seconds) that the vehicles corresponding to its journeys
need to move from initial stop to the j-th stop.

• Array initialT imei. Considering all the journeys jk ∈ {1..J li} of
a line li, initialT imei(k) stores the departure time for the k-th
journey of line li.

• Array stopLinei. It keeps the non-decreasingly sorted sequence
of lines that make a stop at stop si. Therefore, lx ← stopLinei[j]
indicates that lx is the j-th line that stops at si.

As it is depicted in Figure 3.2, arrays lineStopi, avgT imei, and
initialT imei are stored for each line li ∈ L. In addition, an array
stopLinei was kept for each stop si ∈ S. It is important to notice the
need of two aligned arrays for each line, one with the sequence of stops,
and another with the average accumulated time to reach each stop from

44 Chapter 3. Application contexts

the first stop of the line. It could be possible to store the actual time in
which each vehicle traversed the stops in a given journey. Yet, as such
an accurate time is not relevant, instead it is just kept for each line the
time (in average) that a vehicle would require to reach any of the stops
from the starting stop of the line, storing only the initial departure time
of each journey. This saves much space and still permits to estimate
the time when each journey would reach any stop.

Figure 3.2: Network example where two different lines share stops along
their routes.

Figure 3.2 includes an example of a bus network with two lines (1
and 2). For each line we show the stops that compose it (e.g. Line 2
contains the sequence of stops <S5, S11, S3, S8, S10, S9>) and the
accumulated times from the initial stop (e.g. the average time to reach
the second stop S11 from the starting stop of the line is 183 seconds).
We also include the starting times for each journey of each line. In this
case, the first journey of Line 1 starts at 6:00 am, the second one at

3.3. Mobile Workforce Management 45

6:30 am, etc. Note that given a line X we have direct access to the
information related to the i-th stop. Yet, given a stop, we do not know
the line (or lines) it belongs to. To overcome this issue, we include, for
each stop Y , the list of lines that include such stop Y . It is referred to
as an inverted index for stops in the bottom of Figure 2. To sum up,
we saw that to represent the network offer we need: a sequence of stops
for each line; a schedule with the starting times of the journeys of each
line; and an inverted index to mark the lines each stop belongs to.

In this manuscript, Chapter 5 takes up the baton of this environment
adding aggregated capabilities to the original contribution. The scheme
displayed in Figure 3.2 represents all the offer information but it is not
completely useful until it is compared with the demand (the actual real
usage passengers do). Our proposal will tackle the accumulative flow of
commuters in order to extract knowledge about the loads of the vehicles
during rush hours or the total amount of passengers that boarded a bus
in a particular stop during a time window.

3.3 Mobile Workforce Management

There is no doubt about the technological rising in every level of our
society, from social networks aware of our complete planning to smart
vehicles capable of controlling our driving; there are even fridges that
control our diet. In this modern society, we all rely on devices in
order to take part in this entangled dough the globalized world has
become. It has been reported that more than 65% of adults in advanced
economies are owners of a smartphone but it also stands out that most
devoted social network users are found in regions with lower internet
rates [Pou19].

As a consequence of the vast amount of positioning devices distributed
world-wide (e.g. the GPS included in a smartphone), the last years
have seen an increasing interest in geographical information and the
evolving position of moving objects (vehicles, people, etc.). This has
been especially profitable for enterprises whose employees need to visit
different locations around the territory to get the work done (e.g.
plumbers, art dealers, delivery staff, etc). As technology took over

46 Chapter 3. Application contexts

this area, an endless assortment of tools were served to monitor mobile
workers, handle schedules, client support, analysis of performance,
etc. The bundle of processes, services, software and networks that
make possible to achieve and optimize those activities are called
Mobile Workforce Management (MWM). Hence, MWM strategies take
advantage not only of the historical movement of mobile employees but
also the tasks they had performed and how much time they required.
Comparing what was scheduled with what really occurred generates
useful information for business process management or detecting critical
points. For instance, it would be really useful for a delivery company
to detect if their workers spend too much time in traffic jams so they
could change the planned routes.

Nonetheless, concerns about how to take advantage of trajectories
of moving objects through computers are not new. There is already in
the ’90s a seminal concern about how to mix spatial data and temporal
information, works like [Lan89, MK90, FCF92, Lan93] predicted the
inception of the spatio-temporal databases. However, it is not until
the early ’00s when this tendency got consolidated with the arrival
of contributions with the aim of laying the groundwork for future
references, that is the case of [KGT99, GBE+00, RDW+02] and the
European project Chorochronos [FGG+99, KSF+03].

At that point in history, the definition of a trajectory was already
clear:

Definition 3.3.1. A trajectory of a moving point is represented by a
sequence of tuples. Each tuple contains a position in space pi and a time
ti. [EGSV99]

As trajectories of mobile objects started to capture the attention of
several fields such as market opportunities [DBS04], robot autonomy
[MM98, Edm01], personalized services [ZM01, BFL+03], military
defense [BHL+00] or even the outbreak of location privacy issues
[MFD03]; scientists realized about the significance of the analysis of this
kind of information. However, one variable was missing in the equation.
They knew the time (when) and the location (where) but they were
not able to know the activity that the mobile object was performing

3.3. Mobile Workforce Management 47

(what). This idea began to take shape when researchers focused in the
behavioural study of moving objects.

Mountain and Raper [MR01] focused on the segmentation of
trajectories into small manageable pieces defined by sequential points
matching a particular predicate. This is how they coined the term
episode.

Definition 3.3.2. An episode represents a discrete time period for which
the user’s spatio-temporal behaviour was relatively homogeneous. [MR01]

As a landing example, they used their brand new approach to
distinguish between the transport mean used by a user during his/her
trajectory: on foot (low speeds, high sinuosity. . .), low-speed motor
(higher speeds, less sinuosity, more network constraints. . .), etc.
Vazirgiannis and Wolfson [VW01] endorsed the relevance of this direction
by introducing a new spatio-temporal model including causal aspects of
mobile objects.

In [KRS04] an example of a conceptual model enriched with
geospatiotemporal annotations was presented, introducing common
basic requirements for upcoming geospatial semantic models:

• Allow the data analyst to model non-geospatial, non-temporal,
geospatial, and temporal aspects of the application in a straight-
forward manner.

• Provide a framework for expressing the structure of spatio-temporal
data that is easily understood and communicated to the users.

• Support a mechanism for a methodical translation into
implementation-dependent logical models.

• Include a mechanism to represent various spatial and temporal
granularities (e.g. minute, second, degree).

Shortly after, a concern about adapting trajectories to the decision
making context begun. Contributions as [OOR+07] or [PRD+08] tried
to build the foundation taking advantage of the already known general
purpose data warehouses and the Online Analytical Processing queries
(see Section 2.4.1). Establishing the latter two goals: to facilitate
knowledge discovery from Trajectory Data Warehouses and to support

48 Chapter 3. Application contexts

high-level OLAP analysis. A wider overview of the situation at the
beginning of the ’10s can be found in [PSR+13]. Although, the
complexity of this field and its relatively recent debut brought several
approaches along the last decade [VZ13, WFR+13, TTFR15, OA16];
even one new proposal has been published as this lines are being written
[Kwa20].

Figure 3.3: Trajectory annotated with semantic activities. [BLPP17]

Following these lines, [BLPP17] proposed to collect the full range
of data captured by the sensors of the smartphones carried by the
workers aiming to reach largely improved information. This contribution
introduced a module for MWM systems able to annotate trajectories
of employees with high level activities (e.g. taking a break, driving on
planned route, etc.) using the episode approach. This achievement is
possible by analyzing the trajectories and synchronizing, for each of
them, the data received through three dimensions: the sensors of the
mobile device (location, direction, acceleration, etc.), the MWM context
(scheduled tasks, task type, etc.) and the geographical information of the
domain (headquarters, offices, clients, etc.). At the end of the process,
this module provides the semantic trajectory information obtained for
each worker trip on a daily basis.

This system was first tested in a local transportation company, its
business is organic waste management, and they have a fleet of several
trucks roaming around the region looking for new waste to collect.
Undoubtedly, they have to deal with some of the most common trajectory
problems; but, in this work the topic at hand will be the activities carried

3.3. Mobile Workforce Management 49

out by each one of the truck drivers during their workday. Reducing the
usual behaviour of a regular truck driver to a collection of nine relevant
activities:

• A1 Being at headquarters.
• A2 Working at a customer

place (loading).
• A3 Normal transit on planned

route.
• A4 Slow transit on planned

route.
• A5 Normal transit out of

planned route.
• A6 Slow transit out of planned

route.
• A7 Taking a break.
• A8 Undefined/unknown activ-

ity.
• A9 Inactive.

Figure 3.3 shows an example of a semantic trajectory annotated with
these high level activities. Once the segments of each mobility worker
trajectory are delimited and enriched with activity information the data
is ready to be exploited in order to extract some advanced knowledge
pursuing decision making improvements. Specifically, Chapter 5 and
Chapter 6 will focus on extract aggregated knowledge efficiently (e.g. if
drivers spent too much time at a costumer facility maybe it is time to
check the loading procedure) and on indexing the activity events suitably
to the query criteria (e.g. if several drivers traversed non-planned routes
after been driving in slow transit perhaps it is time to check the planner
algorithm).

50 Chapter 3. Application contexts

Chapter 4

Dynamic variable-to-variable
compression (D-V2V)

This chapter introduces our proposal, D-V2V, a new dynamic (one-
pass) variable-to-variable compressor. Variable-to-variable compression
aims at using a modeler that gathers variable-length sequences of
input symbols (words) and a variable-length statistical encoder that
assigns shorter codewords to the more frequent symbols. In D-V2V, we
process the input text word-wise to gather variable-length sequences of
symbols that can be either terminals (single words) or non-terminals,
subsequences of words seen before in the input text. Those input symbols
are set in a vocabulary that is kept sorted by frequency. Therefore, those
variable-length sequences of symbols can be easily encoded with dense
codes. D-V2V permits real-time transmission of data, i.e. compression
can begin as soon as the text is available to be transmitted. Our
experiments show that D-V2V is able to overcome the compression
ratios of the V2Vc, the state-of-the-art semi-static variable-to-variable
compressor, and to almost reach p7zip values. It also draws a competitive
performance at both compression and decompression.

In this chapter we detail our new proposal, Section 4.1 details the
compression and decompression procedures, Section 4.2 shows perfor-
mance comparisons between our proposal and well-known compressors
and conclusions can be found in Section 4.3.

51

52 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

4.1 Dynamic variable-to-variable compressor

A text can be seen as a particular sequence of events where each event is
the occurrence of a word. These odd events have also several dimensions
such as syntactic category, order inside a phrase, number of letters, etc.
An interesting approach to word category order analysis can be found
in [BCN10] where a new method to classify the different parts of XML
texts (tags vs content) is presented.

Although, when a text written in natural language is being created
or transmitted (e.g. writing a text message), the incoming order is the
correct one; that is, there is no need to apply reorganization techniques,
the main concern should be just to compress the original input as much
as possible without losing any information. Our proposal tackles this
problem being capable of compressing a text on the fly as it is input by
the sender/compressor.

Our compressor parses the input text to either detect sequences of
words that occurred before or new words and either sends to the receiver
a codeword referring to an existing sequence or notifies the occurrence
of a new word so that te receiver can keep synchronization with the
receiver. Since more frequent symbols are given shorter codewords,
and large sequence of words can be encoded with a unique codeword,
compression is achieved.

Therefore, D-V2V is a dynamic (one-pass) compressor that processes
the input text and gathers symbols that represent sequences with a
variable number of words. Accordingly, we define a symbol as:

Definition 4.1.1. A symbol is a variable-length sequence of consecutive
events sorted by its occurrence order. In a text, symbols are phrases
composed by one or several words.

We use a sort of trie to help the parser to detect sequences of words
that occurred before. We keep those symbols sorted by frequency. In
this way, we can use the ETDC coding algorithm (see Section 2.2.1)
to encode them directly from their positions in the vocabulary. The
decompressor/receiver is simpler because it only has to decode the
received codewords and to keep the table of symbols sorted by frequency
(synchronized with the sender).

4.1. Dynamic variable-to-variable compressor 53

In the next subsections we conceptually describe the parser and
the encoder procedures of the sender/compressor component, and also
the decoder procedure that is the core of the receiver/decompressor
component.

4.1.1 Parsing algorithm

Our parser scans the input text and splits it into simple and compound
tokens. Therefore, those tokens can be:

• terminal symbols. Those representing just one word. They are
created when a new word is parsed.

• non-terminal symbols. Those composed by two different symbols,
which can be terminals or non-terminals. Therefore, each non-
terminal, represents at least a sequence of two words.

T= …S2 wnew S3 S5 w1 w2 w3 w4 w5 w7…
S8

S10
w1 w2 w3 w4 w5 w6 w8

Figure 4.1: Non-terminal creation example.
During the parsing step, the sender reads the text one word at a time.

Depending on the previous occurrences of the read word the algorithm
will follow one of these paths:

• If the next read word was not in our vocabulary, two symbols are
created:

1. A terminal symbol Snew which represents the new word (the
sender will notify the receiver about this new word as we will
show in the next section).

2. A non-terminal Snew+1 which appends Snew to the previous
sent symbol.

For example, in Figure 4.1, after sending S2 we read the new word
wnew. Therefore, a terminal symbol Snew is created for that word
and then a non-terminal symbol Snew+1 is created for S2||Snew.

54 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

• If the next read word is a prefix of any symbol from the vocabulary,
we store such word in RS (read sequence). We keep reading the text
word by word and append those words to RS until RS becomes
an unknown sequence. At this moment, we send the symbol which
corresponds to the longest known prefix of RS. Then, a new
non-terminal symbol containing the current sent symbol and the
previous one is created.

In the example of Figure 4.1, let us assume that S8 is a non-terminal
that contains the words w1w2w3, and S10 contains w1w2w3w4w5w6,
where S10 is the unique non-terminal symbol starting by w1w2w3w4w5.
After sending the symbol S5, we are at w1 and we read the next words
w1 . . . w5 one word at a time. We keep reading words until we reach w7.
At that moment, RS ← w1w2w3w4w5w7 is not a prefix of the sequence
in S10; therefore, we stop processing the text. Note that, since the
symbol containing the longest known prefix of RS corresponds to S8,
we send S8 (the way to encode S8 will be explained in detail in the next
section) and we create a new non-terminal symbol Snew for S5||S8. We
will continue parsing from w4 on.

Figure 4.2: Sequence of events during the parsing of a text with D-V2V.
KS stores the words and phrases that appeared previously in the text while
RS is a buffer trying to obtain the largest known sequence for the incoming
text.

4.1. Dynamic variable-to-variable compressor 55

In practice, we are using a set of known sequences KS which stores
every previously processed terminal and non-terminal symbols.

If we are sending the message “the more I know about you the more
I know about me”, at the beginning we have KS = ∅ and we read
the first word “the”. Since KS is empty, there is no sequence which
starts with “the”, thus we add it to KS, at position i = |KS| = 0, the
symbol Si = S0 = “the”, and we send S0 to the receiver. Then we read
“more”, which is also a new word. Now we have to add both the new
terminal symbol S1 =“more” (S1 is also sent to the receiver) and the
new non-terminal symbol S2 = “the more” to KS.

As displayed on Figure 4.2, after processing the word “you”, KS
is composed by {S0:“the”, S1:“more”, S2:“the more”, S3:“I”, S4:“more
I”, S5:“know”, S6:“I know”, S7:“about”, S8:“know about”, S9:“you”,
S10:“about you”} and we continue reading “the”. Since the current read
sequence RS =“the” exists in KS, we read the next word and append
it to RS. Now, RS =“the more” matches the symbol S2 stored in KS.
In the next step, we update RS to “the more I”. Since that sequence
is not included in KS, we send S2 to the receiver and we create a new
non-terminal that includes the previous and the current sent symbol:
S11 = S9||S2 =“you the more”.

Figure 4.3: Tree used during compression when processing the sentence:
“the more I know about you the more I know about me”. The black
branches in the tree represent its stage after processing the word “you”.

56 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

We need a mechanism to check if RS is within the set of known
sequences KS and to obtain its symbol identifier, i.e. its rank in KS.
In order to perform those tasks efficiently we use a structure based
on the Patricia-tree [Mor68], where each branch represents a sequence,
and all the sequences that start with the same prefix descend from the
same node.1 The last property is important, as it allows us to search
incrementally for the longest sequence contained in RS. For example,
after reading the second “the” (RS =“the”) we access to the tree in
Figure 4.3 and go through the branch labeled with “the” reaching the
node- 0 , which contains the identifier of S0. Then, we read “more”
(RS =“the more”), hence we descend from node- 0 to node- 2 , which
contains the symbol S2. Finally, we read “I” (RS =“the more I”). Since
we cannot descend from node- 2 , the longest known sequence is “the
more” and its associated symbol is S2.

4.1.2 Encoding procedure

Every parsed symbol must be encoded and sent to the receiver. We
encode them using the encoding scheme of End-Tagged Dense Code
(ETDC). We need to keep track of the number of times each symbol
was sent (frequency) because, following ETDC encoding procedure, the
codeword of a symbol depends only on its position within the vocabulary
sorted by frequency. Recall ETDC assigns the shortest codewords to
the most frequent symbols. Note that, each time a symbol is sent,
its frequency is increased, and consequently, the codewords assigned
to the symbols may change. For each parsed symbol Si we send one
codeword. In addition, when we send a terminal symbol for the first
time (Si = S|KS|), we send that codeword, which acts as an escape
codeword, followed by the word in plain format.

In order to encode the symbols, we use a codebook where we store
all the information required to compute the codeword of each symbol.
Each entry in the codebook corresponds to a symbol Si and stores a
tuple 〈left, right, freq, voc〉 as displayed in Figure 4.4:

• left and right represent the right and left nodes of each symbol.
If the symbol is a non-terminal, left and right are pointers to the

1We implemented a bit-oriented tree where unary paths are stored in their parent node.

4.1. Dynamic variable-to-variable compressor 57

entries of the codebook where the left and right symbols of the
non-terminal are stored. Otherwise, if the symbol is a terminal,
left stores the word itself and right is set to -1.

• freq stores the frequency of the symbol. It is important to notice
that every non-terminal symbol is created with frequency 0.

• voc holds the position of the symbol within the vocabulary sorted
by frequency.

The codeword c corresponding to the symbol Si stored in the i-th
entry of the codebook is obtained as c←ETDC.encode(voc[i])).

Figure 4.4: Structures used during compression when processing
the sentence: “the more I know about you the more I know about me”.
left and right are either pointers to previous occurrences or containers of
a new word and a void pointer, freq is the frequency of each symbol, voc
represents the codes to be sent while pos and top are auxiliary structures to
simplify updates and insertions.

To keep the vocabulary sorted by frequency we use two arrays: pos
and top. Array pos keeps the symbols sorted by frequency in decreasing

58 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

order. Actually, pos[i] = j indicates that the i-th most frequent symbol
is stored in the j-th entry of the codebook. Consequently, note that all the
symbols with the same frequency are pointed to from consecutive entries
in pos. Array top contains a slot for each frequency value. For every
possible value of a frequency f , top[f] = x means that the first symbol
with frequency f is at position x in pos. For example, in Figure 4.4 the
array top indicates that the codewords of frequency 1 start at position
0 within pos. We can observe that the gap between top[0] and top[1] is
6, thus pos[0..5] point to the 6 entries within codebook that hold all the
symbols with frequency 1.

With the help of the arrays pos and top, we can easily add the new
symbols at the end of codebook. Those arrays are also necessary to
update the frequencies and positions in the vocabulary in O(1) time
without reordering the whole codebook. In our example, after inserting
“you”, the table remains in the state of Figure 4.4. As we explained
before, in the next step we send S2 =“the more” which is the symbol
at position 2. Therefore, we increase the frequency at freq[2] to 1.
We look for the position of the first symbol with frequency 0 by using
top[0] = 6. After that, we swap voc[2] and voc[6], so now voc[2] = 6 and
voc[6] = 9. As we changed voc, we also have to update pos accordingly.
Therefore, we modify pos[6] = 2 and pos[9] = 6. Finally, as now the list
of symbols with f = 1 has been increased by one, the list of words with
f = 0 starts one position further, so we update top[0] = 7.

To clarify this process, Table 4.1 shows the conceptual algorithm for
processing the sentence “the more I know about you, the more I know
about me” step by step. First, KS is empty, so we process the first
word and keep reading as we do not have anything else in our known
set. Step 2 and step 3 add a new read world to KS and build a new
symbol appending this new word to the word processed immediately
before. As “I” is read, a new symbol is created; although, the known
sequences must be ordered by frequency so a swap between the new
word and the synthetic symbol created in the previous step is needed.
It is important to notice that each word in the symbol “the more” has
been processed as different symbols but the entire phrase has only been
created afterwards (i.e. freq = 0). Step 5 creates another synthetic
symbol with the last two symbols processed (“more I”). Step 6 handles

4.1. Dynamic variable-to-variable compressor 59

Step Read sequence Known sequences Sent
1 the S0=the the
2 more S1=more more
3 ∅ S2 = the more ∅
4 I S2 = I; S3 = the more I
5 ∅ S4 = more I ∅
6 know S3 = know; S5 = the more know
7 ∅ S6 = I know ∅
8 about S4 = about; S7 = more I about
9 ∅ S8 = know about ∅
10 you S5 = you; S9 = the more you
11 ∅ S10 = about you ∅
12 the S0 ∅
13 the more S9 ∅
14 the more I ∅ S9

15 ∅ S6 = the more; S9 = I know ∅
16 ∅ S11 = you the more ∅
17 I S2 ∅
18 I know S9 ∅
19 I know about ∅ S9

20 ∅ S7 = I know; S9 = more I ∅
21 ∅ S12 = the more I know ∅
22 about S4 ∅
23 about me ∅ S4

24 ∅ S0 = about; S4 = the ∅
25 ∅ S13 = I know about ∅
26 me S14 = me me
27 ∅ S8 = me; S14 = know about ∅
28 ∅ S15 = about me ∅

Table 4.1: D-V2V parsing process step by step for the text “the more I
know about you the more I know about me”. RS is a buffer trying to obtain
the largest known sequence, KS is the symbol dictionary and last column
reflects what the receiver gets.

60 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

a new read word, introducing it in the KS list and updating the list
by swaping the new arrival with the least frequent symbol with smaller
code (S3).

This procedure is repeated until step 12 where an already known
symbol is found in the text (see Figure 4.2). As “the” is already in KS
(S0) we keep reading. Again, “the more” is a known sequence (S9) so
we read the next word. Since “the more I” does not exist inside KS,
first we handle the known symbol “the more” (step 15 and step 16) and
then “I” as the next symbol. Remaining steps of the example can be
easy followed applying this same procedure.

4.1.3 Receiver procedure

The receiver works symmetrically to the sender. It decodes either a
codeword corresponding to a known symbol or an escape codeword
followed by a new word (terminal) in plain form. After decoding a
symbol, we also add a new non-terminal composed of the last two
decoded symbols to keep the codebook synchronized with the sender.
This allows the receiver to rebuild the same model handled by the sender
and to recover the original text. To carry this out the receiver also has
a codebook and an auxiliary top array. The codebook is composed of
columns offset, length, and freq.

Each time we create a new symbol (i.e. we either received a new
word or we created a new non-terminal), we set in offset a pointer to the
position of the first occurrence of that symbol within the decompressed
text. The length (in chars) of the text represented by such symbol is
kept in length and freq stores the frequency of the symbol.

In Figure 4.5 we can observe the state of the receiver after
decompressing “the more I know about you the more”. Now the sender
transmits the symbol S8 =“I know” encoded with ETDC. The receiver
decodes the codeword into 8. It accesses to the codebook at position 8
and retrieves offset[8] = 9 and length[8] = 6, thus the decoder recovers
the sequence “I know” from the decompressed text from position 9 to
14. Afterwards, we update the decompressed text to “the more I know
about you the more”||“ I know”. Then, we increase freq[8] and we swap
the rows in the codebook at positions 8 and top[0] = 7 (recall top[0] is
the first row with frequency equals to 0). Finally, since the first row

4.1. Dynamic variable-to-variable compressor 61

with frequency equals to 0 is moved to the next position, we update
top[0] = 8.

Figure 4.5: Structures used during decompression when processing the
sentence: “the more I know about you the more I know about me”. It
is simpler than the sender as it only has to be synchronized with it keeping
the table ordered by frequency.

Again, a full decompression example can be found in Table 4.2. Step
1 and step 2 just receive a plain word and store it in KS. Afterwards,
a new symbol linking both is created with no frequency. In step 5, the
plain word “I” arrives so it is saved in KS swapping positions with the
least frequent symbol with smaller code (S2). Next step generates a
new synthetic symbol. The procedure keeps this pattern until step 12
where a non-terminal symbol is received instead of a plain word. As
S9 is already a known sequence, we can just translate the code to the
plain phrase “the more”. As it is shown in the table, it is important to
emphasize that the frequency of S9 (a generated symbol not received
until now) is updated at this point to keep our table synchronized
with the codebook of the sender. Step 13 trivially generates a new
non-terminal symbol in our KS but in step 14 S9 arrives again. As the
code had been updated since the last arrival, it now translates into “I

62 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

Step Received Known sequences Decompressed
1 the S0=the the
2 more S1=more more
3 ∅ S2 = the more ∅
4 I S2 = I; S3 = the more I
5 ∅ S4 = more I ∅
6 know S3 = know; S5 = the more know
7 ∅ S6 = I know ∅
8 about S4 = about; S7 = more I about
9 ∅ S8 = know about ∅
10 you S5 = you; S9= the more you
11 ∅ S10 = about you ∅
12 S9 S6 = the more; S9 = I know the more
13 ∅ S11 = you the more ∅
14 S9 S7 = I know; S9 = more I I know
15 ∅ S12 = the more I know ∅
16 S4 S0 = about; S4 = the about
17 ∅ S13 = I know about ∅
18 me S8 = me; S14 = know about me
19 ∅ S15 = about me ∅

Table 4.2: D-V2V decompressing step by step the sentence “the more I
know about you the more I know about me”. It is important to note how the
column “Received” is synchronized with the column “Sent” in Table 4.1.

know” its associated table update and non-terminal symbol generation.
Decompression continues until the last symbol is received (step 18) and
processed (step 19).

4.2. Experiments 63

4.2 Experiments

As information retrieval became one of the predominant areas in
the technological world, there was a need to establish some shared
benchmarks that could act as a common reference in order to classify new
algorithms and contributions. Therefore, the Text REtrieval Conference
(TREC) datasets were created and used from then on as canonical
testing texts.

We used three text datasets from trec-2 and trec-4 named
Ziff Data 1989-1990 (ZIFF), Congressional Record 1993 (CR) and
Financial Times 1991 (FT91). In addition, we created a large dataset
(ALL) including ZIFF and AP-newswire from trec-2, as well as
Financial Times 1991 to 1994 (FT91, FT92, FT93, and FT94) and ZIFF
from trec-4. We also included three highly repetitive text datasets:
world_leaders.txt (WL), english.001.2.txt (ENG) and einstein.en.txt
(EINS) from pizzachili.2

We performed experiments to compare the compression effectiveness
as well as the performance at compression and decompression of D-V2V
with those of DETDC3 and V2Vc, which are respectively the previous
dynamic word-based technique that makes up the basis of D-V2V, and
the state-of-the-art when considering semi-static variable-to-variable
compression based on dense codes. In the case of V2Vc, we considered
the two variants proposed in [BFL+10] (see Section 2.2.3), i.e. V2Vc
and V2VcH . The former one uses a simpler heuristic to gather phrases,
whereas the latter uses a more complex heuristic that yields better
compression at the cost of increased compression time. Given that in
D-V2V new words are sent in plain form, we included two variants
of V2Vc and V2VcH that, as in [BFL+10], respectively represent the
words in the vocabulary in plain form or compressed with lzma. In
addition, we have included some of the most well-known representatives
from different families of compressors: p7zip and lzma,4 bzip2,5 and an
implementation of re-pair,6 coupled with a bit-oriented Huffman.7

2http://pizzachili.dcc.uchile.cl
3http://vios.dc.fi.udc.es/codes
4http://www.7-zip.org
5http://www.bzip.org
6http://raymondwan.people.ust.hk/en/restore.html
7https://people.eng.unimelb.edu.au/ammoffat/mr_coder/

http://pizzachili.dcc.uchile.cl
http://vios.dc.fi.udc.es/codes
http://www.7-zip.org
http://raymondwan.people.ust.hk/en/restore.html
https://people.eng.unimelb.edu.au/ammoffat/mr_coder/

64 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

Our test machine is an Intel(R) Core(TM) i7-3820@3.60GHz CPU
(4 cores - 8 siblings) with 64GB of DDR3-1600Mhz. It runs Ubuntu
12.04.5 LTS (kernel 3.2.0-126-generic). We compiled with gcc 4.6.4 and
optimizations -O9. Our time results measure cpu user time.

4.2.1 Space requirements and memory usage

The compression ratios obtained are displayed in Table 4.3. We can see
that D-V2V is able to improve the results of V2Vc (and V2VcH) in all
datasets (results with ‘–’ indicate failed runs) with the exception of the
lzma version in dataset FT91. This is remarkable since we are sending
new words in plain form, while the best values or V2Vc are drawn when
it encodes the vocabulary of words with lzma.

Detdc
v2vc v2vcH v2vc v2vcH

D-v2v
Repair lzma

p7zip
bzip2 Size Plain

lzma words plain words +sHuff def -9 -e def (KB)
FT91 35,64 27,15 26,65 30,11 29,61 28,60 24,00 25,50 25,25 25,52 27,06 14.404

CR 31,99 23,55 23,13 24,73 24,31 22,86 20,16 22,05 20,83 21,63 24,14 49.888
ZIFF 33,79 24,01 23,60 24,66 24,25 23,14 20,33 23,40 21,64 22,98 25,10 180.879
ALL 33,66 22,81 – 23,39 – 22,67 – 23,23 21,34 22,80 25,98 1.055.391
WL 15,06 4,13 – 4,44 – 2,90 1,43 1,30 1,11 1,39 6,94 45.867

ENG 35,21 – – – – 5,52 2,17 0,55 0,55 0,55 3,73 102.400
EINS 30,14 0,97 – 0,98 – 0,27 0,07 0,07 0,07 0,07 5,17 456.667

Table 4.3: Compression ratio (%) with respect to the size of the plain text
dataset.

As expected, by using not only words in the vocabulary of symbols
allows D-V2V to overcome the original DETDC by more than 10
percentage points in regular English datasets and completely blows
DETDC out in repetitive collections. On regular texts, D-V2V and p7zip
obtain similar values on the largest dataset, yet in the other datasets
the fact of exploiting char-based rather than word-based regularities
benefit p7zip, lzma, and re-pair. In repetitive text collections, char-level
repetitiveness is higher than at word-level and, in addition, the fact of
sending words in plain form harms D-V2V compression. In practice,
even though compression is good in D-V2V, it is typically far from
re-pair, p7zip, and lzma.

In Table 4.4, we can see memory usage at compression time. In
this case, our current implementation of the trie in D-V2V requires
lots of memory. At decompression time, we only have to deal with the

4.2. Experiments 65

Text Detdc
v2vc v2vcH v2vc v2vcH

D-v2v
Repair lzma

p7zip
bzip2

lzma words plain words +sHuff def -9 -e def

C
om

pr
es
so
r

FT91 24 52 52 52 52 1,194 380 94 192 165 7
CR 53 157 157 157 157 2,635 1,286 94 504 193 7

ZIFF 126 625 625 625 625 10,509 4,585 94 674 193 7
ALL 207 3,509 – 3,509 – 46,160 – 94 673 193 8
WL 49 255 – 255 – 478 1,268 94 469 193 7

ENG 85 – – – – 1,953 2,512 94 674 193 7
EINS 152 44,821 – 9,851 – 6,521 10,859 94 674 193 8

D
ec
om

pr
es
so
r

FT91 4 10 20 20 10 20 13 9 15 17 4
CR 6 65 65 65 65 51 30 9 50 19 4

ZIFF 14 121 119 121 119 177 79 9 65 19 4
ALL 57 378 – 378 – 931 – 9 65 19 4
WL 5 52 – 51 – 6 11 9 46 18 4

ENG 9 – – – – 23 31 9 65 18 4
EINS 14 73.81 – 73.81 – 5 5 9 65 18 4

Table 4.4: Memory usage (in MiB) at compression and decompression.

codebook (the size of top is negligible), and the memory usage becomes
much more reasonable. Yet, the number of entries in the codebook is still
very high in most datasets: {1,6M@FT91}; {4,3M@CR}; {15,4@ZIFF};
{81,2M@ALL}; {0,44M@WL}; {1,8M@ENG}; {0,3M@EINS}.

4.2.2 Compression and decompression times

Compression and decompression times are described in Table 4.5. D-
V2V is faster at compression than p7zip, lzmaand re-pair. It is on a par
with V2VcHand it is slower than bzip2. Of course DETDC, which has
not to deal with the detection of seen subsequences, is much simpler
and faster than D-V2V.

At decompression, we can see that again D-V2V is the fastest
technique in all cases, with the exception of DETDC and V2Vc when
dealing with non-repetitive English texts. Note that, in this case, V2Vc
compression effectiveness is similar to that of D-V2V and consequently
both decode approximately the same number of codewords. However,
V2Vc has not to perform an update procedure after decoding each
symbol nor to generate a new non-terminal. DETDC has to decode
more symbols than D-V2V due to its worse compression. Yet, again
it is simpler because it does not have to deal with non-terminals, only
with words. In the repetitive collections D-V2V compresses much more

66 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

than V2Vc and DETDC, which leads to a compressed file with much
less codewords than those of DETDC and V2Vc, and this amortizes the
cost of the update procedure required after decoding each codeword.

Text Detdc
v2vc v2vcH v2vc v2vcH

D-v2v
Repair lzma

p7zip
bzip2

lzma words plain words +sHuff def -9 -e def

C
om

pr
.
ti
m
e

FT91 0.15 1.31 2.26 1.28 2.27 5.81 8.37 9.17 10.66 9.06 1.19
CR 0.53 5.77 19.01 5.72 19.10 19.03 39.84 32.61 44.09 33.67 4.07

ZIFF 2.12 32.08 257.42 31.94 258.03 86.13 271.02 120.92 177.86 128.99 14.52
ALL 13.25 292.39 – 289.05 – 573.09 – 711.23 1167.86 768.22 86.71
WL 0.48 17.93 – 18.05 – 2.96 14.99 8.88 23.60 6.23 2.45

ENG 1.71 – – – – 13.39 58.97 28.37 57.34 28.31 8.45
EINS 6.62 33205.00 – 33197.00 – 30.48 205.33 60.98 115.12 57.13 54.95

D
ec
om

pr
.
ti
m
e

FT91 0.09 0.08 0.09 0.06 0.06 0.09 0.15 0.18 0.17 0.19 0.47
CR 0.28 0.22 0.23 0.20 0.21 0.31 0.65 0.54 0.54 0.54 1.54

ZIFF 1.24 1.01 0.90 0.94 0.86 1.50 2.69 2.13 2.14 2.14 5.83
ALL 7.68 9.13 – 8.99 – 11.63 – 12.13 12.25 12.15 33.54
WL 0.16 0.06 – 0.06 – 0.02 0.28 0.05 0.05 0.09 1.00

ENG 0.85 – – – – 0.14 2.50 0.06 0.04 0.18 4.08
EINS 3.22 0.33 – 0.24 – 0.05 1.71 0.15 0.15 0.71 9.40

Table 4.5: Compression and decompression times (in seconds).

4.3 Conclusions

This chapter described D-V2V, the first dynamic variable-to-variable
general-purpose compressor. We showed that D-V2V obtains competi-
tive compression ratios (similar to p7zip) in English texts and that it is
fast at both compression and (mainly) decompression.

We have described the symmetric processes of both compressor
(sender) and decompressor (receiver), and how they keep synchronization
dynamically. The compressor gathers both words and sequences of words
that occurred previously in the text, and encodes them statistically
using dense codes. New words are notified explicitly after an escape
codeword. When the receiver decodes a codeword (it could belong to
either a word or a sequence) it simply outputs that symbol. Finally, both
the sender and receiver update their model to: increase the frequency
or the sent/received symbol and to run a simple update() procedure to
kept the vocabulary sorted by frequency at both ends (hence allowing
encoding with dense codes). Finally, they add a new non-terminal,

4.3. Conclusions 67

composed of the last two sent symbols, to the vocabulary. This will
permit to encode further occurrences of those two symbols with just the
codeword associated to the new non-terminal.

68 Chapter 4. Dynamic variable-to-variable compression (D-V2V)

Chapter 5

Total matrices (T-Matrices)

Based on the ideas of classic data warehouses and OLAP systems,
explained in Section 2.4.1, where precomputed data is stored separatedly
in order to boost aggregated queries and improve decision-making
procedures, this chapter introduces a compressed structure to achieve
the same functionality, opening a new path towards a trajectory data
warehouse. We have evaluated experimentally our proposal in two real
contexts: bus passengers and truck drivers. To evaluate our proposal
under higher stress conditions we generated a large dataset of synthetic
realistic trajectories and we tested our system with those data to have
a precise idea about its space needs and its efficiency when answering
different types of queries.

This chapter is organized as follows: Section 5.1 introduces the
details of our proposal, Section 5.2 analyzes the application of our
research to the public transport context and displays the results obtained,
Section 5.3 performs the same analysis in mobile workforce environments
and Section 5.4 recapitulates the key concepts explained during this
chapter.

5.1 General-purpose accumulative matrices

Summed Area Tables (SAT) [Cro84] (described in Section 2.4.3) were
designed to solve a rather specific problem, yet, the idea of using
accumulative matrices also seemed useful for problems within different

69

70 Chapter 5. Total matrices (T-Matrices)

contexts. It is not unusual to find systems that need to solve queries
over aggregated data quickly and one common solution is to have those
aggregations precalculated in a similar way as in SAT.

Thus, a generalization of those accumulative matrices is proposed
under the name of Total Matrices (T-Matrices). This approach will be
used to solve all kind of event-related aggregation problems regardless
of the scope. Besides, following the path opened by OLAP systems,
T-matrices exploit the multidimensional nature of event sequences
supporting aggregated queries by each dimension or a combination
of them.

The aim of our research is to introduce a solution able to count the
number of events appearing in a sequence discriminating by any range
or dimension. In order to achieve that, we generate a multidimensional
matrix with as many dimensions as characteristics own the events on
the sequence. Each cell contains the number of occurrences of an
event with that particular combination of dimensions. In the sake of
performance optimization, we apply SAT to our proposal representing
the accumulative matrix.

Figure 5.1: T-Matrix applied to a generic sequence S of bi-dimensional
events.

Thus, reducing the problem to a sequence of bi-dimensional events S
to ease the explanation, it is possible to use this structure to reorganize
the original sequence in order to re-build it as a bi-dimensional matrix
storing the count of each event based on both dimensions. As it can
be seen in Figure 5.1, this simple matrix with the count of events
involving such dimensions (left) is easily transformed into an aggregated

5.1. General-purpose accumulative matrices 71

matrix following the SAT approach (right). Once the structure is set,
it is straightforward to calculate the sum of any relevant submatrix.
Continuing with the example in the figure, the way to calculate the sum
of each cell shaded in blue is different for each matrix. The basic matrix
on the left needs to add cell by cell every slot within the shaded area
(T = 1 + 1 + 0 + 3 = 5); on the other hand, the accumulative matrix on
the right just needs to apply SAT ’s formula (T = 9− 2− 3 + 1 = 5).

Figure 5.2: An example of how a T-Matrix and a Diff T-Matrix are binded.
In this representation, central column (B) values remain the same and the
other columns are calculated as additions (right side columns) or subtractions
(left side columns). For instance, Aλ = 11 - 5 = 6 and Cλ = 11 + 4 = 15.

As the number of event dimensions in a sequence grow, the size of
the matrices also grow accordingly. This will increase the magnitude of
the quantities stored in it and, as a consequence, it will increment space
requirements to handle those greater numbers. Figure 5.2 (left) shows
how easily the aggregation values can grow. With the aim of tackling
this problem, we have designed a simple improvement over T-Matrices.
We focus on compression and exchange some query time for a space
usage reduction 5.2 (right). Just maintaining the values in the central
column (shaded in the figure) and storing the rest of values differentially
with respect to it, yields an important reduction in space usage. We

72 Chapter 5. Total matrices (T-Matrices)

named this approach Diff T-Matrix.
Going one step further, it is possible to generalize the Diff T-Matrix

for the sake of compression. The key idea is to store more than one
column as constant absolute values and to save other cells as differentials.
Each of these constant columns are called sampled columns. We can
also take advantage of current computer architectures using sampled
rows instead of sampled columns to benefit from the cache locality
optimization.

Figure 5.3: An example of how to sample a T-Matrix. Rows α and λ remain
unchanged in both matrices and all the other rows in Blocks T-Matrix are
calculated differentially with respect to them. For instance, Cβ = 3 + 2 = 5.

Namely, current computers store matrices row by row and, as it is
very expensive to retrieve information, they fetch not only the required
data but also the contiguous information just in case it could be used
in the imminent future instead of searching for new information again.
Thus, by using sampled rows in our proposal (Blocks T-Matrix) we can
improve compression while we limit the performance drawbacks of more
complex retrieval queries.

Also, the number of samples could be varied to achieve a better
performance. The trade-off between performance and space requires
different parameters for different contexts so it would need an

5.2. T-Matrices in public transportation 73

experimental evaluation to find them out. Figure 5.3 displays an example
on how the original T-matrix could be compressed using two sampled
rows.

This generic structure was employed in two specific fields of
application: public transportation and mobile workforce management.
For the first scenario, it was necessary to develop an approach where
the load of each bus line could be calculated straightforwardly. The
latter was a procedure to fathom into the semantic trajectory analysis.
Both approaches will be treated deeply in the following subsections.

5.2 T-Matrices in public transportation

Based on the representation explained in Section 3.2, it is necessary
to find a way to solve queries about the network load, asking for the
total number of users that boarded or alighted within a stop at a given
time/journey. Furthermore, it is also interesting to obtain the average
load of a bus or a train between any two stops from a given line.

5.2.1 Data structures

Using two T-Matrices for each bus line (board and alight), data can
be easily aggregated either by stop (e.g. number of users that got on
a vehicle at stop X); by time-interval, hence referred to a sequence of
consecutive journeys within that time-interval (e.g. number of users
that got on at any stop of the line on 24/08/2020); or by stop and
time-interval (a recap example is offered in Figure 5.4). From which the
following queries emerge:

• boardXLT . Given a stop X, it counts how many passengers boarded
a vehicle atX. It is optional to additionally restrict those boardings
to any time interval T and line L.

• alightXLT . Given a stop X, it counts how many passengers alighted
from a vehicle at X. It is optional to restrict those alightings to
any time interval T and line L.

74 Chapter 5. Total matrices (T-Matrices)

• useLT . Given a line L, it counts how many passengers boarded a
vehicle of line L. We could additionally restrict those boardings to
any given time interval T .

• boardT. Given a time interval T , it counts how many passengers
boarded a vehicle (from any line).

• alightT. Given a time interval T , it counts how many passengers
alighted from a vehicle (from any line).

• loadXLT . Given a stop X from a line L, and being Y the stop after
X within line L, we count the number of users that traveled from
X to the next stop Y during a time interval T . We can see this
query as measuring, for a given vehicle, its average load between
two stops.

Figure 5.4: Public transport information stored into the three T-Matrices
flavors: the original accumulative matrix (Sum), the relative matrix (Diff)
and the sampled matrix (Blocks).

Thus, storing a board T-Matrix (M b
L) and an alight T-Matrix (Ma

l)
for each line enables one interesting property: most of the network load
queries proposed can be solved as sums of ranges within the matrices
M b

l andMa
l . For example, we can solve query boardXL (not constrained

5.2. T-Matrices in public transportation 75

to a temporal interval T) by simply summing the values of the column
corresponding to stop X in matrix M b

L. To solve boardX (neither time
nor line constraints are set), we would have to obtain all the lines
that contain the given stop X (using the array stopLinei defined in
Section 3.2) and then sum the column associated to stop X along the
differentM b

l board matrices corresponding to those lines where X occurs.
The previous procedure, yet using the alighting matrices Ma

L rather
than M b

L, permits us to solve alightXL and alightX type queries.
To deal with queries restricting counts to only those trips within a

given time interval T = [ta..tz], we have to obtain the journey codes
associated to the journeys of a given line l that fell within T . For
such sake, we call operation [ja..jz] ← GetJCodes(l, s, ta, tz), which
internally uses two of our common structures that keep both the average
time required to reach any stop from a given line and the starting time
corresponding to the journeys of each line. In the next step, since the
obtained range [ja..jz] makes up a range of contiguous jcodes for line l,
those journey codes must be associated to a range of contiguous rows
within the matrix corresponding to the queried line l. This enables
us to both solve boardXLT and alightXLT as the sum of the values in
the submatrix M b

L[ja..jz, s] and the submatrix Ma
L[ja..jz, s] respectively

(being s the column associated to stop X). Analogously, useLT can
be solved by summing the elements on the last column of the matrix
corresponding to L (M b

L), restricted to the range of jcodes for the time
interval T .

Finally, we show how to combine the alighting and the boarding
matrices to solve loadXLT . Observe that the number of users within a
bus at a given stop X can be obtained subtracting the number of users
that get off the bus from the number of users that boarded the bus
either before or at X. Therefore, given a line L, assuming we obtained
the range of jcodes [ja..jz] for T and considering that the range [sa..sz]
indicates the indices (i.e. columns) corresponding to the stops of line L
until X, we solve loadXLT in O(1) time as:

loadXLT =
sz∑
s=sa

jz∑
j=ja

M b
L[j, s]−Ma

L[j, s] =M b
L.countRange((sa, ja), (sz, jz))−

Ma
L.countRange((sa, ja), (sz, jz))

76 Chapter 5. Total matrices (T-Matrices)

5.2.2 Experimental evaluation

We have analyzed the space required to keep all the individual
components of our representations in main memory for our experimental
dataset as well as the time required by each flavour of our proposal
to solve each query. All the experiments in this subsection have been
evaluated on a Intel Xeon E5-2620v4@2.1 GHz machine. The code was
compiled with GCC 6.3.0 (with -O3 optimization) and ran on a Debian
6.3.0.

We first explain in Section 5.2.2.1 how a realistic synthetic dataset
was built, Section 5.2.2.2 deals with space consumption of our proposal
and, finally, Section 5.2.2.3 compares the different speed trade-offs of
the divergent T-Matrices solutions.

5.2.2.1 Experimental dataset

In order to test the behaviour of T-matrices in the scope of public
transport, we have created a synthetic dataset of user trips. We used
real GTFS1 data describing schedules and routes for bus networks, we
produced a synthetic collection of trips over a month, which imitates
actual user trip patterns. We have constructed a combination of two
transportation networks: the urban2 and interurban3 bus networks from
Madrid. After extracting the network model, the following steps were
used in order to generate user trips:

1. We extracted the identifiers for routes, including their journeys
and their stops. With this we obtained two lines per route in most
cases, because we consider the reverse direction of a route as a
separate line. This step produced the common structures lineStop
and stopLine.

2. For each stop, we built a list of connected stops, that are either
directly reachable from the same line or located at a short walking
distance (100 meters).

3. We imported the real schedules for our journeys (bus trips).
1Specification available at https://developers.google.com/transit/gtfs/reference
2Available at EMT https://www.emtmadrid.es
3Available at CRTM https://www.crtm.es

 https://developers.google.com/transit/gtfs/reference
https://www.emtmadrid.es
https://www.crtm.es

5.2. T-Matrices in public transportation 77

4. Using these schedules, we generated journeys over a virtual
month (a 31 days span), cycling the days of the week that the
schedules consider. This step produced the structures avgT ime
and initialT ime.

5. We generated user trips along those generated journeys. We chose
a random stop, day and journey as the start of a trip and simulated
boarding and traversing along that journey. After visiting each of
its stops, we decide if the user will end the trip at that stop, with a
probability starting at 0 and increasing by 0.01 after every visited
stop. In addition, we also maintain fixed probability values for
attempting to leave the current line in order to switch to another, if
there is another line reachable from the current stop with a journey
that will allow for a waiting time of at most 30 minutes in order
to switch. Naturally, we forbid the possibility of switching to the
same line or its reverse.

6. We stored those trips generated in the previous step in the
format of consecutive stages. Within each stage4 the boarding
and alighting stop will always be associated with the same
journey (and therefore line), i.e. our stages are of the form:
〈(lineA, journeyA, boarding_stop), (lineA, journeyA, alighting_stop)〉.
With our set of parameters, around 56% of the generated trips
contain only one stage, 33% contain two stages, 9% contain three
and 2% contain four. In average, the number of stages per user
trip is 1.56.

Following these steps, we prepared a dataset containing 10 million
user trips, over a network composed of 11021 stops, and 1048 different
lines. The average number of stops for each line is 27.07, and there are
on average 1623 journeys per line, with a maximum of 9979 journeys
per line.

Note that, given those numbers, the identifiers for our stops, lines,
and journeys may be represented, respectively, as integer values of 14,
11, and 14 bits. Therefore, if we represented our dataset as a sequence
of tuples of the form (s, l, j), the overall size of our dataset would

4We define a user trip or trajectory as a sequence of stages, where each stage indicates in which
stops the user boards to and alights from a vehicle corresponding with a journey of a given line.

78 Chapter 5. Total matrices (T-Matrices)

be of 165.39MiB. The dataset is available at https://lbd.udc.es/
research/XCTR/xctrdata.7z.

5.2.2.2 Space requirements

In order to ensure the accuracy of the experiments, we have not only
included T-Matrices in the measurement but also the minor common
structures needed to interact with the public transport model (stopLine,
lineStop, etc). The behaviour of these auxiliary structures is described
in Section 3.2.

Structures stopLine lineStop avgT ime initialT ime Overall
Sizes (KiB) 142 120 64 439 765

Table 5.1: Space requirements for the common structures.

The space required by our common structures is shown in Table 5.1.
We have chosen to use fixed length integers for their representation,
except for initialT ime where we also compressed it using blocks with
samples at the beginning of each block, and encoding the remaining
values differentialy.

With this compression strategy, the overall space needed to represent
the elements representing the transportation network for the purpose of
our structures is lower than 1 MiB.

Variant Sum Diff Blocks
Size (MiB) 55.49 43.81 28.68

Table 5.2: Space requirements for each T-Matrices variant.

In order to accurately evaluate the sizes of our proposed versions of T-
Matrices discussed in Section 5.1, we added up the sizes of both matrices
M b

l and Ma
l for all the lines l in our dataset. We show these total sizes

in Table 5.2, where we can conclude that Blocks is the most effective
approach to save space for the accumulated values in our matrices,
decreasing the memory fingerprint to around 50% of the uncompressed
Sum counterpart. We can also see that Diff is also able to reduce the
total space by around 20%. Yet, it is constrained by the shape of our
matrices, making it less desirable in practice.

https://lbd.udc.es/research/XCTR/xctrdata.7z
https://lbd.udc.es/research/XCTR/xctrdata.7z

5.2. T-Matrices in public transportation 79

5.2.2.3 Performance at query time

In Figure 5.5, we compare the different variants of T-Matrices, we can
observe that queries with a line restriction (boardXL and boardXLT)
are significantly faster than those with unrestricted line (boardX and
boardXT), since for the two latter queries a different matrix must be
accessed for every line where the stop occurs in, as indicated above.

Figure 5.5: T-Matrices comparison. Logarithmic scale measured in
nanoseconds.

We can see that the compression strategy used to decrease the size
of the original Sum that query times typically worsen by around 50%.
Finally, when comparing the two compression alternatives proposed, we
can see that Blocks is slightly slower than Diff. Yet, its much better
compression effectiveness clearly make Blocks the better compressed
approach.

80 Chapter 5. Total matrices (T-Matrices)

5.3 T-Matrices in mobile workforce management

Having in mind all the ideas discussed in Section 3.3, this work aims
to merge all this knowledge in order to open a new path towards a
trajectory data warehouse, that is, to build a structure capable of storing
geospatial data in the same way as a classic data warehouse deals with
aggregated information. This is specially hard in the field of geographic
knowledge due to the complexity of obtaining accumulative data. We
propose a new structure to deal with the aggregated information of the
different activities carried out by moving workers along their trajectories.

5.3.1 Data structures

Back to the trajectory concept, we know now that any mobile object
travels around particular points at a particular time and we can rebuild
its trajectory just linking the points chronologically. At this time, we
can also add some meaning to this trajectory storing what task was the
object doing at each point, obtaining a semantic trajectory.

The main goal of this proposal is to develop a compressed repre-
sentation of a collection of semantic trajectories in such way that it
is still possible to answer different relevant queries efficiently. This
subject has a special interest for companies having mobile workers (e.g.
truck drivers, delivery workers, etc.) since time management of their
employees is crucial and it is significant in this manuscript because it is
the starting point towards building a trajectory data warehouse.

Under the usual tasks compilation of a truck driver introduced in
Section 3.3, it is possible to assemble a semantic trajectory for each truck
driver concatenating chronologically chore after chore. A straightforward
approach for storing this information would be a matrix where moving
objects take the part of rows and columns represent the time dimension.
This time dimension is a discretization of the time in such a way that each
column corresponds to a time interval related to the actual continuous
time between two discretized time instants (e.g. 08:20–08:30). Thus, a
cell within this matrix contains the identifier of the (most-representative)
activity performed by a given mobile object at a particular time interval.
For instance, according to the matrix in Figure 5.6, the tractor was
performing the activity with id 7 from 08:10h to 08:20h.

5.3. T-Matrices in mobile workforce management 81

Figure 5.6: Naive matrix representation with appearing activities described.

With the aim of improving this naive solution, we have developed
a brand new structure called semantrix. As it can be inferred from
the previous example, the aim in semantrix is not only to work with
trajectories but also with their aggregated data. Our proposal is able
to store all the information included in the previous naive matrix, and
remarkably decreases aggregated queries times and pattern matching.
Three vectors are involved in this new structure: a bitvector B, an
integer vector H and a vector of T-matrices S. The former two vectors
permit us to compactly represent the original sequence of activities
within the naive matrix to tackle non-aggregated knowledge (e.g. what
was driver K doing at 13:20?). The later vector keeps one activity
T-matrix for each possible activity so that, for each activity, it handles
accumulative information for each vehicle and time-interval. Those
structures, that are discussed below, are depicted in Figure 5.7.

• Representing the naive matrix: Bitvector B and vector H.
Recall the information that regards the activity performed by each
mobile object during each discretized time interval was stored in
the naive matrix previously. In addition, a given row i (1 ≤ i ≤ r)
keeps particularly the activities for the i-th mobile object during
each of the I time intervals. Those r rows can be concatenated to
make up a unique sequence of rows (OS[1, rI]) as depicted in the
top of Figure 5.7. Note that since all those r rows have the same
length I (number of time intervals) we retain the same direct-access

82 Chapter 5. Total matrices (T-Matrices)

capabilities as in the naive matrix. Yet, we also have the same
space needs. To compactly represent OS we use:
i) A bitvector B[1, rI] aligned with OS where we set a 1 each
time an activity switch occurs in OS; i.e. we set B[1] = 0 and then,
∀i ∈ {2..rI} we set B[i] = 1 if OS[i] 6= OS[i− 1]; we set B[i] = 0
otherwise. Finally, we also set a 1 at positions B[1+kI] ∀k = {1..r}
to mark a row/mobile-object switch.
ii) An integer vector H[1, o], such that o = rank1(B, rI) is
aligned with the o ones in B, and stores the ids of the activities
from OS associated to those ones in B. Therefore, ∀i ∈ {1, o}
we set H[i] = OS[select1(B, i)]. Note that H contains, for each
mobile object, a sequence with the identifiers of the activities it
performed.

Figure 5.7: Structures involved in semantrix.

5.3. T-Matrices in mobile workforce management 83

• Storing aggregated information related to each activity: Vector of
Activity matrices S. We have included a vector of T-matrices
(one per activity/event) that captures two-dimensional information:
time and driver. In Figure 5.7, it is shown how the accumulative
activity matrices S1, S3, and S7 for the activities 1, 3 and 7 in our
working example would look like (note that we are not showing
the content of the other Si matrices). For example we can see
that S1[4, 0] = 5 (T-matrix for the first activity) indicates that the
first four workers/vehicles performed task S1 a total of five times,
during the interval [13 :00, 13:10).

In our scope, we can distinguish among three main types of queries.
We found individual queries that aim at gathering the content of one
particular cell from the original naive matrix (e.g. “Which was the
activity performed by a given mobile object Oj at a given time instant
Ii?”, or “Which is the list of activities performed by a given mobile
object Oj during a given time interval [Is..Ie]?”). There are also queries
focusing on detecting if a given pattern of activities occurred (e.g. “How
many times the activity Ai was followed by the activity Aj?”). Finally,
we also have to deal with aggregated queries aimed to unravel the total
values hidden within the matrix (e.g. “How much time was actually
spent by all the mobile objects while performing the activity Ai during
a given time window [Is, Ie]?”). To support this types of operations we
used the different structures within semantrix.

• Individual queries: These kind of queries are easily solved just
using the bitvector B and vector H. First, with a rank operation
over the bitmap we obtain the position(s) of interest; and then this
position is used to access H to retrieve the activity/ies within the
particular time window.

• Pattern queries: For these queries, a FM-index built on top of H
vector is used (see Section 2.3.1). Therefore, we use its self-indexing
capabilities to efficiently locate patterns of activities. Particularly,
to solve a query of the form “How many times was activity Ai
followed by Aj?” we simply rely on count(AiAj) over the FM-index
of H.

84 Chapter 5. Total matrices (T-Matrices)

• Aggregated queries: Once again, most aggregated queries can
be solved in constant time with the help of T-matrices and the
countRange operation. Data can be aggregated either by vehicle,
querying a row will obtain the number of times a vehicle have
executed a task (e.g. “How much time was spend by vehicle F at
headquarters?”); by time-interval, summing the values of a column
calculates the number of times an activity was performed during
a particular time interval (e.g. “How many vehicles were trapped
on a traffic jam today at 8:30?”); or a combination of both (e.g.
“How much time was spend by vehicles F and G taking a break
yesterday?”).

5.3.2 Experimental evaluation

It is worth recalling that the seminal idea for this work arose as a recent
project shared with a local company devoted to the transportation of
organic waste. Accordingly, the actual experimental evaluation is now
taking place on a real environment. Our system is being used on a daily
basis to manage the activities of the trucks from the enterprise.

We present experiments comparing our proposal semantrix with other
representations and show both the space needs and their performance at
query time for different types of queries. Below, we discuss the baseline
representations used and we show the corresponding experimental
results.

We have included in our experiments the naive original matrix
discussed at the beginning of this section. Additionally, we have
implemented a more elaborated baseline named baseline+ (see Figure
5.8). It is based on the sequence of all the activities performed ordered
both chronologically, and by moving object. It consists basically in
the OS vector (i.e. sequence composed of the rows from the original
matrix). Yet, we have also included a set of aggregated sequences to
boost solving aggregated operations. There is one sequence per activity
that gathers all the accumulative data in chronological order. Thereby,
individual and pattern queries are solved with the activity sequence,
while the accumulative sequences deal with the data warehouse-like
queries.

Finally, we have also included in the comparison the T-Matrix variant

5.3. T-Matrices in mobile workforce management 85

referred to as Blocks T-Matrix at the beginning of this section. On the
contrary, we have not included the Diff T-Matrix approach as it was
demonstrated to be less effective in Section 5.2.2.

Figure 5.8: Baseline+ example.

We have measured average execution times from 10, 000 randomly
generated queries on an Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz
machine running Debian GNU/Linux 9.9. Our implementations use
components from the SDSL Library5. The compiler used was g++ 6.3.0
and optimization flags were set to -O3.

This chapter continues as follows: Section 5.3.2.1 deals with the
creation of our experimental datasets, Section 5.2.2.2 compares our
proposal against the baseline just described and the basic naive matrix
and Section 5.2.2.3 does the same for time measurements.

5.3.2.1 Experimental datasets

Since our system has not been used over a relevant amount of time (6
months or more) yet, there are not enough real data to test our proposal
in a real environment. Nonetheless, we have generated a synthetic
dataset according to the actual constraints and the current existing
statistics, where we have recreated realistic information about daily
truck activities in a collaborating company. We have discretized the
time using 5-min intervals, which is a sensible time lapse considering
the speed of the trucks. We assume a small company that has 20 trucks
whose drivers work 8 hours every day of the week. Assuming those
preconditions and the nine activities discussed above, three datasets with

5https://github.com/simongog/sdsl-lite

86 Chapter 5. Total matrices (T-Matrices)

different temporal sizes were created: one month (12× 8× 7× 4 = 2688
time instants), six months (12× 8× 7× 4× 6 = 16128 instants) and
one year (12× 8× 7× 4× 12 = 32256 instants).

5.3.2.2 Space requirements

We have compared the space requirements of the tested techniques. As
shown in Figure 5.9, the original matrix (naive) needs, by far, less space
as it only stores the activity values within the original matrix.

The others use roughly the same space. Yet, it is worth noting that
Block T-Matrices (sampling every 4 rows) require around 15% less space
than semantrix (i.e. Classic T-Matrices). Baseline+ uses around 8%
less space than semantrix.

Figure 5.9: Space measurements.

5.3.2.3 Performance at query time

To test query performance, we have chosen one query of each type (we
have skipped the results from single-query type as the results showed
only negligible differences among all the techniques). For pattern-queries
we used the query “How many times was activity X followed by activity
Y ?”, and for aggregated-queries, we used the query “How many times
were trucks 1, 2 and 3 performing activity X from 11am to 12pm (12
time Intervals)?”.

We can see in Figure 5.10 that the techniques using pre-calculated
aggregation (Semantrix, Blocks and Baseline+) are much faster solving
both pattern and aggregation queries than naive. Actually, the naive

5.4. Conclusions 87

Figure 5.10: Times for pattern queries (left), and times for aggregation
queries (right).

approach, which must traverse the original matrix, becomes several
orders of magnitude slower than both semantrix and baseline+ when
solving pattern queries (Figure 5.10 (left)). However, these latter
structures obtain similar results as they both rely on an FM-index
to solve pattern queries (with the difference that semantrix needs an
additional access to B). Note that such additional access to B is
compensated by the fact that semantrix recovers/processes less data
(H is smaller than OS vector) from its FM-index than baseline+.

For aggregated queries, Figure 5.10 (right) shows, as expected, that
semantrix is clearly the fastest technique. As in the previous experiment,
naive needs to explore the whole queried submatrix, whereas semantrix
counterparts and baseline+ benefit from their aggregated data. In this
case, blocks is around 40% slower than semantrix.

5.4 Conclusions

We have introduced a general-purpose method to handle aggregated
queries efficiently. Our proposal is able to store accumulative
multidimensional data and it is capable of obtaining the sum of
any subrange in constant time. It follows the same idea of classical
datawarehouses where aggregated information and individual data are
stored in different structures so, as part of our contribution, we have
presented different T-Matrices flavours to reduce the space usage and
stimulate compression.

88 Chapter 5. Total matrices (T-Matrices)

In order to demonstrate the versatility of our proposal, we have tested
it in two real-world scenarios: public transport and mobile workforce
management.

In the former, we studied the real demand on passengers of a
public bus system (whose requirements would be very similar to other
transportation systems such as trains or subways). Our representation
enables to handle adequately the aggregation of individual passenger
trips allowing to compute load queries, stop statistics or time-window
queries efficiently.

In the latter, we have analyzed the problem of representing and
managing semantic trajectories in a compact and efficient way. We
present a data structure named semantrix to handle a semantic data
warehouse for the trajectories from mobile objects and we show how
it supports different types of queries. The proposal works on top
of the compressed activity sequence (ordered chronologically and by
mobile-object identifier) which leans on a bitmap for individual and
pattern-matching queries. The structure is crowned by a T-matrix for
each activity enabling it to solve most accumulated queries in constant
time. We have experimentally evaluated the proposed solution using
realistic synthetic data that represent the truck movements of a real
company. As a quality proof, it is worth recalling that our system is
being used as part of a real company project, solving a real life problem.

Chapter 6

Event sequence indexing

This chapter explains a new technique for the efficient management
of large sequences of multi-dimensional data, which takes advantage
of regularities that arise in real-world datasets and supports different
types of aggregation queries. More importantly, our representation is
flexible in the sense that the relevant dimensions and queries may be
used to guide the construction process, easily providing a space-time
trade-off depending on the relevant queries in the domain. We provide
two alternative representations for sequences of multidimensional data
and describe the techniques to efficiently store the datasets and to
perform aggregation queries over the compressed representation. We
perform experimental evaluation on realistic datasets, showing the space
efficiency and query capabilities of our proposal.

Section 6.1 opens this chapter exploring the motivation of this
contribution, Section 6.2 details how our proposal works, Section 6.3
introduces some space footprint improvements on our structure,
Section 6.4 analyzes the behaviour of our proposals and Section 6.5
contains a summary with the key ideas of this chapter.

6.1 Introduction

One of the main weaknesses of the classic accumulative solutions is
that, while we are able to compute aggregations in a short time, the
order of the events gets lost. For example, in a geospatial dataset, we

89

90 Chapter 6. Event sequence indexing

may represent the elevations of roads as a sequence of events. A classic
accumulative solution could answer queries about how many kilometres
a road X traverses at elevation 1000m, 1050m or 1010m, but we could
also be interested in knowing if those kilometres at elevation 1000m are
contiguous (the road has no slopes) or if they are short sectors because
the road has many changes of elevation. In these cases where the order
of the values of some variable is relevant, typical data warehouses are
not capable of answering all the relevant queries because they cannot
exploit the sequence of events (or values of the variable of interest:
elevation in our example).

Considering the application context of Section 5.3, a system storing
the activity log for a set of employees contains periodic entries, each of
them including time, employee, and activity performed, among other
data. From this dataset, we may be interested in obtaining the amount
of time devoted to a specific activity on a given day or the amount
of time that an employee has worked during a period of time. While
this information can be computed from the original data, in most cases
the information is processed and stored in separate representations
specifically designed to answer aggregation queries. Once information is
aggregated, the original data sequences are usually discarded or stored
separately. Without going any further, observe that this is the reason
why T-matrices need auxiliary structures to preserve the non-aggregated
data to solve non-cumulative queries (see Section 5.3).

Data stored in databases or obtained from different tools usually
have some kind of ordering (usually by time, but other sorting criteria
may become relevant). This order may also lead to relevant queries.
Following our previous example with employees and activities, we may
be interested in retrieving the sequence of activities performed by an
employee on a day, in addition to computing aggregated values. In
a dataset with geographic information, such as taxi driver historical
records, we may be interested not only in retrieving the position of a
vehicle at a certain time but also in rebuilding an entire trajectory. In
this case we need to store the original chronological order of the data
as it would not be possible to retrieve any spatial trajectory without it.
In addition, we can aim even further and try to calculate the number of
times a vehicle drove through a certain area or even how many times a

6.2. Indexing with Wavelet Trees 91

taxi traversed a particular street segment. Therefore, we need a data
structure that is not only capable of answering aggregation queries
efficiently but also preserves the order of the original sequence to tackle
all relevant queries in one single structure.

6.2 Indexing with Wavelet Trees

Consider the sequence S of events where each element is a mul-
tidimensional entry, from a given set of dimensions, of the form
(d1, d2, . . . , dk) ∈ D1 × D2 × · · · × Dk. The queries of interest in this
domain involve aggregations of values for specific values, or ranges of
values, in one or more of the dimensions of the dataset. That is, we are
interested in counting the number of entries in the sequence for a given
value of Di or for a given set of constraints across multiple dimensions,
such as d1 = x, d2 ∈ [d2`, d2r], etc.

A plain representation of the original sequence is quite inefficient
to retrieve any kind of aggregate information. In order to answer
these queries, additional data structures are used to keep track of
the specific values, thus, storing only accumulated data. Hence, both
the representation of the sequence and the additional data structures
are required to keep the ability to access and decode the sequence of
operations.

Our proposal is based on using wavelet trees (explained in detail in
Section 2.3.2) to represent the sequence and provide efficient aggregation
on a subset of the dimensions. The wavelet tree representation of a
sequence provides a reordering of the elements in the original sequence
according to the “alphabet order”. In other words, when a wavelet tree
of the sequence is built on an alphabet Σ, the elements of the sequence
are stably-sorted by their position in this alphabet, so that the sequence
can be accessed in the original order, using the root of the wavelet tree,
or in alphabet order, on the leaves.

Consider a sequence of tuples (d1, . . . , dk) sorted by D1, then D2, and
so on. If we build a wavelet tree, SDi

, on this sequence according to Di,
we are in practice stably-sorting all the elements of the sequence by Di.
Hence, this wavelet tree provides the support to efficiently restrict our
queries to specific values of Di, thus effectively providing aggregation

92 Chapter 6. Event sequence indexing

capabilities in dimension Di. For example, in order to count the number
of entries for a given c ∈ di, we just need to compute rankc(SDi

, n).
In order to provide aggregation capabilities in another dimension, we

can easily repeat the process, creating a wavelet tree over the re-ordered
sequence using a different dimension. If we build a new wavelet tree, SDj

,
using the values of Dj, we are in practice grouping elements according
to that dimension, while keeping the previous ordering by Di. Using
rank operations, we can now easily compute rankc′(SDj

, n) to count
the occurrences of any c′ ∈ Dj. In addition, we can easily restrict the
previous query to the range covered by any c in Di, thus we can also
answer queries involving any pair of values in both dimensions. An
example of our stacked wavelet trees is depicted in Figure 6.1.

Figure 6.1: Reordering multidimensional events through stacked wavelet
trees. Highlighted sequences are the resulting sequence after a dimensional
reorganization. Vertical dotted lines mark the corresponding area to each
value of the dimension (remaining within it the previous order as secondary).

Notice that, after reordering by a second dimension, the sequence

6.2. Indexing with Wavelet Trees 93

is still sorted by the previous one in each leaf (that is, they are sorted
by Dj, and by Di inside each group of Dj), we can also efficiently look
for the elements in the sequence that have a specific value for Dj and a
range of values of Di: we just need to restrict the search in the second
wavelet tree to the range of values for the other dimension, which can be
easily computed. Following this idea, table 6.1 shows a simple example
in which the data are originally sorted by day, then reordered by activity
and finally by employee.

Our representation can efficiently compute queries involving consecu-
tive elements in any of the reorderings. For example, count the number
of entries involving activity E, which are 4, can be answered quickly
in the first reordering. In the same reordering, the query can be also
restricted to a range of days (e.g. entries involving activity E during
days [1..2], which is 3). As for the second reordering, we may count the
number of entries in which employee 2 was performing activity E during
days [1..2], which is 2.

Original order Reordering by Act Reordering by Emp
Day Emp Act Day Emp Act Day Emp Act
1 1 C 1 1 A 1 1 A
1 1 E 2 1 A 2 1 A
1 1 A 1 2 B 1 1 C
1 2 E 1 1 C 2 1 C
1 2 B 2 1 C 1 1 E
2 1 A 1 1 E 1 2 B
2 1 C 1 2 E 1 2 E
2 2 E 2 2 E 2 2 E
3 2 E 3 2 E 3 2 E

Table 6.1: Example of reorderings with dimensions Day, Employee and
Activity

Interesting enough, the different wavelet trees need not be just stacked,
but can be combined in different ways according to the relevant queries
in the domain. For instance, if we have a 4-dimensional sequence of
events that are characterized by dimensions A× B × C ×D, we may
first process the sequence of events attending their value in D, sorting
them by that dimension. The result can then be used in two different
wavelet trees, one that uses the values in dimension C as the vocabulary
and another that uses the values in dimension B.

94 Chapter 6. Event sequence indexing

In this way, we shall be able to easily count occurrences for a given
value d, a given pair (c, d?) or a given pair (b, d?), where x? denotes
the ability to search for a specific value or a range of values. An
alternative representation that builds the 3 wavelet trees in sequence,
would be able to answer aggregation queries for given d, (c, d?) or
(b, c, d?). In this way, the final representation can include as many
combinations as needed to provide the necessary query capabilities, at
a cost of extra space. Given a set of queries, the problem of computing
the minimum number of necessary wavelet trees is an extension of the
shortest common superstring problem [RU81], i.e. obtaining the shortest
string that contains a set of given strings.

6.3 Reducing the space

In many real-world scenarios, sequences of events are highly repetitive.
This effect, called locality, is increased with the granularity of the
sequence. In the context described in Section 5.3, if activities are
recorded every minute, the sequence will have more locality than if they
are recorded every hour (i.e. it is more likely that an employee keeps
performing the same task in the next minutes than in the next hours).

We introduce now an improvement over the wavelet tree composition
proposed that takes advantage of this property, providing a solution
that is insensitive to the granularity of the sequences. This is interesting
because it makes them suitable to represent sequences with a high level
of detail, i.e. resolution, in little space and supporting aggregation
queries.

We assume that the original sequence is sorted in such a way that
aforementioned locality exists (e.g. time or space depending on the
domain). Then, locality produces runs of symbols in the sequence. An
out-of-the-box solution to exploit the existence of these runs is to use
run-length compressed wavelet trees [MN05]. We refer to this solution
as wtrle. Runs on the sequence produce runs on the bitmaps of the
wavelet tree, which can be represented in few space and still support
rank/select operations [DRR06]. Overall, these wavelet trees require
space proportional to the number of runs in the sequence, instead of
to the length of the sequence itself. Counting and access queries can

6.3. Reducing the space 95

be implemented as rank and access operations on the wavelet tree,
respectively.

When queries involve more dimensions, an additional component is
necessary. In the wavelet tree composition explained above, a query
on a wavelet tree is refined on a second wavelet tree, and so on. To do
that, we need to store for each leaf of the wavelet tree the number of
elements that are lower, in the order defined by such wavelet tree, than
its corresponding symbol. This component is used to restrict the query
in the subsequent wavelet tree and it can be implemented as a plain
array or as a sparse bitmap, depending on the size of the dimension.

Figure 6.2: Schema of the wtmap solution for a sequence of 2 days, 2
employees, 4 activities and 10 time instants per day. The current WT orders
the input attending activity lexicographical order. Highlighted elements are
those visited to count the time-instants devoted by e2 to activity A during
d2, which are 4.

This simple approach represents the runs at each level of the wavelet
tree, which is somehow a waste of space. Thus, our second approach,
wtmap, uses a technique to remove the runs from the original sequence.

96 Chapter 6. Event sequence indexing

We store a bitmap BM , of length n, that marks the start of each run.
Then, a wavelet tree is built over a sequence S ′ of length n′ < n, in
which each run of value v is represented as a single value v. As this
sequence does not contain runs, the wavelet tree is built using plain
bitmaps, which have the additional benefit of being faster for querying.
A query on the original sequence can be easily mapped to a query
on this new wavelet tree using rank operations on BM . However, this
wavelet tree does not contain information about repetitions of symbols,
which is necessary to support counting operations. Hence, a second
bitmap BC is built, storing in unary the length of each run. This bitmap
considers the runs in the reordering performed by the wavelet tree, i.e.
it is aligned with the leaves of the wavelet tree. Rank/select support
is also necessary on this bitmap to solve counting queries. The two
bitmaps, BM and BC , are sparse, which is directly related with the
existence of runs on the original sequence, and are implemented using
Elias-Fano representation [OS07]. The same final component described
for the wtrle is necessary here to do the composition between wavelet
trees. This component is shown as bitmap BL in Figure 6.2, which
illustrates this approach.

6.4 Experimental evaluation

We designed a set of experiments focused on a realistic use case, involving
the storage and access to employee tracking information. We assume
that we have a set of entries storing the following information: day,
employee, time instant and activity. We want to keep track of all the
information of our employees, hence being able to recover the specific
activity that was being performed at a given time instant by a specific
employee. In addition, typical queries in this domain involve checking
the amount of time devoted to a specific activity by an employee or by
all employees. Hence we need to store the original sequence but also
to efficiently answer aggregate queries. We shall consider for instance
aggregations of time per activity/employee/day, and per activity/day.

6.4. Experimental evaluation 97

6.4.1 Problem setup

In this kind of data, time is a natural ordering of entries, and also
provides compressibility due to locality: consecutive entries for the same
employee and day should usually return the same activity, especially if
the measurement frequency (resolution) is high. In this sense, storing
the sequence of activities sorted by employee and time should lead to
long runs of similar activities. We will consider the sequence of activities
as sorted first by day, and then by employee and time, since days are a
natural way of grouping data, the locality of activities is not affected
and it becomes easier to answer queries for a specific day. Even though
not all employees work every day, we can ignore this problem by storing
every possible combination of day, employee and time instant and using
a special activity 0 to denote the fact that the employee was not working
at that point. This increases the length of the sequence, but it makes
computations simpler and our representations will compress these long
runs of values in little space.

Again, the queries that we will consider in our experiments involve
aggregation operations and retrieval of specific entries in the sequence.
We name our counting queries C-xD-yE-zA, where D, E and A are days,
employees and activities, and x, y, z can denote a single value (1), a
range (“r”) or all possible values (“a”). Hence, C-1D-1E-1A counts the
time devoted on 1 day, by 1 employee, to a specific activity. A more
complex aggregation is C-1D-aE-1A (1 day, all employees, 1 activity),
that can be trivially extended to a range of days. We also test ranges of
days with query C-rD-1E-1A. In addition to these aggregation queries,
we also test the ability of our proposal to access specific positions of
the original sequence: query Acc retrieves the activity being performed,
given an employee, day and time instant.

Taking into account the characteristics of the dataset, we build
our representation sorting entries by activity first, in a first wavelet
tree decomposition; then we group again by employee. The first
decomposition allows efficient counting operations by activity and day
(or range of days); the second one works for queries on activity-employee-
day. Notice also that since we actually store every possible combination
of values, an Acc query can be easily translated into a position to extract
in the sequence.

98 Chapter 6. Event sequence indexing

6.4.2 Baseline representation

As a baseline for comparison we build a simpler representation that
uses the same ordering of the information and takes advantage of it
to answer the same relevant queries with additional data structures.
The baseline consists of two separate components: a representation of
the original sequence, which can be used to access the original data,
and an additional data structure for aggregation queries. This baseline
thus follows the usual approach of separating the original data and
precomputing aggregated values in a separate structure.

The sequence of tuples is stored using two arrays and two additional
bitmaps. Initially, the sequence is “compressed” removing repeated
entries: each group of consecutive entries with the same values is
replaced with a single entry storing the activity and the amount of
time devoted to it. The compact representation works with this shorter
sequence. A bitmap BD marks the positions in the sequence where a
change of day occurs; a second bitmap BE is used to locate positions
where each employee sequence begins. Using these two bitmaps, we only
need to store activities and times for each position: two arrays store
the activities and time values for each entry. With this representation
the original contents can be recovered using the bitmaps to locate the
appropriate run and processing the sequence of times to locate the
desired position. Operations that require counting (time spent in an
activity by an employee or by all employees in a day) can also be
computed using this sequence, but may require the traversal of several
different regions of the array to compute the overall result.

To provide efficient counting operations, the baseline also stores a data
structure specifically designed to compute aggregated values, a promising
bet towards compact data at development time. This structure is called
CMHD (see Section 2.4.4) and it is a compact representation designed
for aggregation queries in hierarchical domains such as OLAP systems.
This representation essentially decomposes the n-dimensional datasets,
according to predefined hierarchies and is able to store accumulated
values at each level of decomposition (for instance, given products and
places, it can store in the same representation accumulated values by
category and country, and also by individual products and places). In
our domain no natural hierarchies appear apart from days and time.

6.4. Experimental evaluation 99

Nevertheless, we can build fictitious hierarchy levels to efficiently answer
queries: decomposing first some dimensions we can obtain a first level
in the CMHD that stores cumulative values for all employees, 1 activity
and 1 day; then, decomposition can continue in a second level to store
cumulative values for 1 employee, 1 activity, 1 day. In this way, queries
that involve a single value or all values can be answered efficiently, as
long as a hierarchy is appropriately built in the CMHD.

6.4.3 Experiments and results

We built several synthetic datasets to test non-biased data with different
granularities following the expected distribution for the domain. All
our datasets have similar realistic characteristics but different size in
different dimensions, to measure the evolution of the proposals. The
changing parameters in the datasets are the number of activities A, the
number of employees E and the number of time instants per day, or
resolution, R. The number of days is set to a fixed value (500), since
it has little effect on query times and only changes the length of the
sequence. Datasets T-rrr (where rrr is the resolution) are built with
E = 50, A = 16 and R ∈ {720, 1120, 5760, 11520}. Datasets Dat-ee-aa
are built with R = 5760, E ∈ {20, 50, 100} and A ∈ {16, 32, 64, 256}. In
all the datasets, we consider that employees work on shifts (50% of the
time each working day), and have free days (only 80% of the employees
work each day). For each dataset and query type we generated sets of 1
million queries, selecting random values and intervals.

In this section we compare our two proposals, wtrle and wtmap,
with the alternative baseline representation, for all the test datasets.
All the representations are implemented in C++ and compiled with
g++ with full optimization enabled. All the experiments in this section
were performed in an Intel Core i7-3770@3.60GHz and 16GB of RAM,
running Ubuntu 16.04.4.

Table 6.2 shows a comparison between the different spatial efficiencies
of each approach. For each dataset, the input size is computed
considering a completely plain representation of all the tuples in the
sequence, with each value stored using 32 bits, so this size increases
linearly with the number of entries. All the compressed representations
are much smaller than the original sequence, thanks to the efficient

100 Chapter 6. Event sequence indexing

compression of the runs of repeated values. Both of our representations
are in all cases considerably smaller (5 to 10 times smaller) than the
baseline. The most efficient representation is wtmap, since it removes
runs of repeated values in a single step, while wtrle has a small overhead
to compress the runs in every level of the wavelet tree.

Dataset Input size baseline wtrle wtmap
T-720 274.66 30.92 3.09 2.98
T-2880 1,098.63 30.73 3.58 3.33
T-5760 2.197.27 30.89 3.84 3.53
T-11520 4,394.53 30.85 4.09 3.70
Dat-20-16 878.91 12.41 1.50 1.35
Dat-20-32 878.91 12.79 1.78 1.43
Dat-20-64 878.91 13.20 2.04 1.51
Dat-20-256 878.91 13.74 2.35 1.65
Dat-50-16 2,197.27 30.65 3.82 3.51
Dat-50-32 2.197.27 32.11 4.63 3.76
Dat-50-64 2,197.27 33.14 5.35 3.99
Dat-50-256 2,197.27 34.43 6.20 4.35
Dat-100-16 4,394.53 61.76 7.72 7.27
Dat-100-32 4.394.53 64.02 9.35 7.76
Dat-100-64 4,394.53 65.78 10.78 8.15
Dat-100-256 4,394.53 67.96 12.45 8.84

Table 6.2: Space required by all the datasets (sizes in MB)

Next we compare our proposals with the baseline for the different
queries described for this domain. Table 6.3 reflects the diverse query
times between approaches. The first query we study is the access query
Acc, that recovers random positions in the sequence. In this query both
of our proposals are faster than the baseline in all cases and again wtmap
is the fastest of our alternatives.

Next, also in Table 6.3, we study aggregation queries. For C-1D-1E-
1A we show two different times for the baseline: the first time is obtained
querying the CMHD representation, and the time in parentheses is
obtained traversing the sequence representation. In this query, the naive
approach that traverses the sequence obtains in practice the best results.
This is due to the relatively small number of activities per day in this
domain. Note however that the cost of the naive sequence traversal is
linear on the number of entries to search, so it may be slower than any
of the indexed proposals even for simple queries if the number of entries
to search is relatively large. In any case, our representations are still

6.4. Experimental evaluation 101

Dataset Access C-1D-1E-1A C-1D-aE-1A C-rD-1E-1A
baseline wtrle wtmap baseline wtrle wtmap baseline wtrle wtmap baseline wtrle wtmap

T-720 0.54 0.38 0.31 1.57 (0.49∗) 0.91 0.68 1.46 2.33 1.69 — 5.66 3.06
T-2880 0.54 0.29 0.29 1.57 (0.48∗) 1.15 0.94 1.40 2.48 1.78 — 6.71 3.45
T-5760 0.54 0.29 0.40 1.55 (0.48∗) 1.18 0.92 1.44 2.35 1.80 — 7.86 4.24
T-11520 0.55 0.34 0.43 1.54 (0.48∗) 1.50 1.08 1.42 3.15 1.96 — 8.58 4.29
Dat-20-16 0.51 0.36 0.23 1.46 (0.45∗) 1.12 0.74 1.35 2.21 1.67 — 7.25 3.49
Dat-20-32 0.51 0.39 0.39 1.50 (0.50∗) 1.16 1.07 1.38 2.30 1.86 — 7.39 3.93
Dat-20-64 0.51 0.38 0.35 1.52 (0.54∗) 1.42 1.35 1.41 2.50 1.52 — 7.89 3.83
Dat-20-256 0.51 0.41 0.44 1.43 (0.59∗) 1.64 1.42 1.30 3.18 2.29 — 8.98 4.25
Dat-50-16 0.55 0.34 0.29 1.50 (0.48∗) 1.51 1.13 1.36 2.66 2.08 — 8.53 4.46
Dat-50-32 0.55 0.37 0.37 1.53 (0.54∗) 1.41 0.97 1.40 2.66 1.89 — 8.63 4.39
Dat-50-64 0.56 0.53 0.32 1.57 (0.58∗) 1.58 1.15 1.38 3.30 2.28 — 8.60 4.65
Dat-50-256 0.56 0.40 0.47 1.46 (0.64∗) 2.03 1.56 1.32 3.57 2.47 — 10.18 4.74
Dat-100-16 0.59 0.34 0.33 1.61 (0.53∗) 1.49 1.16 1.41 3.07 2.05 — 8.19 4.35
Dat-100-32 0.59 0.36 0.37 1.6 (0.58∗) 1.38 1.42 1.4 3.28 2.59 — 9.68 4.25
Dat-100-64 0.60 0.43 0.30 1.6 (0.62∗) 1.67 1.22 1.4 4.16 3.13 — 9.43 5.19
Dat-100-256 0.61 0.56 0.46 1.50 (0.66∗) 1.97 1.57 1.31 4.50 2.97 — 11.78 7.19
∗ Values in parentheses are performed counting sequentially in the baseline sequence representation

Table 6.3: Query times for access (Acc) and counting queries. Times in
µs/query

competitive in query times and use up to 10 times less space. Moreover,
our proposals are faster than the indexed CMHD representation in many
cases.

In the last two queries a naive traversal of the sequence in the baseline
becomes too slow (5 to 20 times slower than our proposals) so we only
compare with the CMHD. In query C-1D-aE-1A the CMHD can be
faster by storing cumulative values for the corresponding query, but our
proposals are still competitive. In addition, our proposals can answer a
generalization of the query to a range of days (C-rD-aE-1A) in roughly
the same time, whereas the CMHD would have to resort to summing
up multiple entries, becoming much slower. This is also shown in query
C-rD-1E-1A: our proposals are a bit slower in this query, but query
times are not too high in comparison with previous queries; however,
the CMHD would have to obtain and sum cumulative values for each
day, becoming too slow in practice, with times again comparable to a
naive traversal of the sequence. A partial improvement on the CMHD
could be obtained by generating fixed divisions as time hierarchies (by
week, by month), reducing the number of sums to perform, but this
requires previous knowledge of the desired ranges, and unless queries

102 Chapter 6. Event sequence indexing

involve ranges exactly matched with hierarchical values, the CMHD is
expected to be much slower in these queries. While the CMHD is much
more dependent on a previous definition of hierarchies of interest, our
proposals are more flexible and can efficiently answer range queries on
the different dimensions.

6.5 Conclusions

This chapter has introduced two different compact representations for
multidimensional sequences with support for aggregation queries. Both
are based on stacked wavelet trees, ordering each tree the information
attending a different criteria. The first proposal uses plain wavelet trees
as ordering tools while the improved version takes advantage of data
locality avoiding repetitions in the branches storing very large datasets
in reduced space. The experiments show that our proposals are smaller,
and faster to access, than simpler representations of multidimensional
sequences. Also, and even if storing much more information, our
proposals are competitive on aggregation queries with state-of-the-art
data structures designed specifically for those queries.

Chapter 7

Conclusions and future work

This thesis has tackled the challenges associated with the management
of event sequences, from space usage reduction during storage to solving
aggregated queries efficiently. One of the main issues treated in this
work has been the multiple reorganizations that an event sequence can
acquire depending on the exploitation results we want to achieve. Again,
if we need to retrieve theatre plays written by an author from a library
it would be really helpful if the books are sorted by literary genre but
searching by another dimension such as author could be easier. Probably
the best option would always be an order hierarchy: first by genre, then
by author and last by publication date. The methods and structures we
have proposed to tackle this and other related problems are summarized
in the next subsection.

7.1 Conclusions

Along the previous chapters we have focused on three main issues
of general sequences and, particularly, event sequences. Before going
deeper into our work it may be necessary to refresh the definition of a
sequence as an ordered list of events of the form:

E1
a,i,...x;E2

b,j,...y;E3
a,k,...z;E4

c,i,...y; . . .
Where the event identifier is depicted as a superscript and the

subscripts identify different characteristics of the event (dimension1

103

104 Chapter 7. Conclusions and future work

could be a, b, c; dimension2 could be i, j, k; etc.).
With this basic arrangement in mind, it is not difficult to think about

the three main problems encompassed in this manuscript: dynamic
compression, aggregated queries and multiple indexing. The former
concerns about the space usage on dynamic sequences, if a sequence
is generated on the fly (e.g. text messages) it is necessary to have
an efficient method able to compress it as it is created. Also, it
could be interesting to extract aggregated data of a sequence (e.g.
most purchased product of the month) without jeopardize the space
consumption. Last, as discussed above, each element on a sequence
may have some dimensions that characterize it somehow; exploiting
this associated information could lead to the acquisition of some hidden
knowledge in the original sequence (e.g. pattern searching) in addition
to search time improvements as in the library example. We have been
capable of overcoming this challenges with our new brand general-
purpose proposals, namely:

• D-V2V. This structure is born as a combination of the two
main families of compression algorithms: dictionary-based com-
pressors (variable-length-symbols-to-fixed-length-codes) and statis-
tical compressors (fixed-length-symbols-to-variable-length-codes).
Our variable-to-variable compression technique merges the best
characteristics of both worlds achieving searcheable compressed
sequences with better compression times than the former and better
compressed ratios than the latter. Besides, D-V2V is conceived to
perform in critical transmission scenarios where it is not possible
to preprocess the sequence as semi-static solutions do. Therefore,
our algorithm works dynamically building coding rules from the
already processed input data and reordering them by frequency as
the sequence keeps coming to maintain an optimal encoding.
To verify the good performance of our structure we have tested it
in some well-known natural language datasets and compared the
effectiveness against other state of the art compressors from both
families as well as the semistatic version of our proposal. D-V2V
yields considerably better compression ratios than its semi-static
and dynamic predecessors, V2Vc and DETC respectively, while
achieving competitive results against popular compressors such as

7.1. Conclusions 105

p7zip or lzma. However, repetitive datasets show different outcomes
as our proposal increases the improvement over DETDC and the
semi-static V2Vc but the distance from the standard solutions also
increases. On the other hand, time measurements show a total
opposite result. D-V2V is faster than RePair and lzma but is
outperformed by its semi-static version and, particularly, by (the
much simpler) DETDC. Finally, the main drawback of our proposal
is the high memory usage required to hold the already-known
sequences while reading a text, which exceeds space requirements
of most of our competitors.

• T-Matrices. As a generalization of a computer graphics technique,
we have extended and improved this solution with the aim of
creating a general-purpose structure capable of solving aggregation
queries efficiently. The main idea of this contribution is to store
precaculated accumulative matrices of data in order to solve
aggregated queries (e.g. compute how many passengers were on
a bus) as quickly as possible. Two improvements regarding space
footprint were introduced and tested in different real contexts as
well. Concerning the experiments, we have detailed the perks of
using our structure in diverse contexts along with the positive
results obtained, highlighting the compression ratios.
We also presented semantrix, a structure that combines T-Matrices
with other simpler structures in order to solve a wider range of
queries skillfully. It is important to highlight that our proposal
outperformed the naive approach, successfully solving aggregations
straightway but, in exchange, requiring more space. This is the
reason why improved flavours of our proposal were proposed in
order to reduce the space footprint.

• Stacked Wavelet Trees. We have employed the well-known
structure known as wavelet tree to build order hierarchies above
sequences favoring dynamic configurations that suit the possible
shifting targets. Thus, each tree orders the sequence following a
particular criterion and this new ordered sequence is the input of
the next tree (with a different order criterion). This composed
structure is not only useful for sorting the information easing the

106 Chapter 7. Conclusions and future work

searching process but also for extracting relevant hidden pattern
information. The main advantage of our proposal is that it is able
to solve aggregated queries efficiently without explicitly storing
accumulative data as other classical aggregated solutions.
An improved compact version of our original proposal was also
explained, avoiding unnecessary redundancy and boosting the
compression ratio. We have detailed the compressed solutions used
as benchmark and how we tested our structures over a wide range of
datasets in order to analyze how much does data granularity affect
the behaviour of our proposal. Both of our solutions, wtrle and the
compressed wtmap, occupy considerable less space in memory than
the baseline while outperforming it at non-consecutive aggregation
and access queries.

7.2 Future work

It is not trivial to set the final milestone on a research, it does not
matter how efficient our structures are, they can always be improved.
This section gathers the ideas, twists and advances that we were not
able to fit in this manuscript due to time constraints:

• D-V2V. One of the most interesting future lines would be to
implement direct searching within the compressed stream. Note
that looking for the occurrences of a given word P would be
possible by counting the number of escape codewords until the
first occurrence of P (that counter indicates the initial entry of
the codebook where we add P). From there on, by simulating the
decompressing process we need to track the occurrences of the
codeword corresponding to the terminal P and those codewords
corresponding to all the non-terminals which include P .
Also, based on the ideas of [NR04], it could be possible to build
a phrase/word searcher. The main idea would be to implement
a complex system of prefixes and suffixes able to count not only
the occurences of each word as in the previous idea, but also the
occurrence of a sought phrase even if it is divided in different
compressed text chunks.

7.2. Future work 107

On the other hand, the main drawback of D-V2V is that it
needs lots of memory at compression to handle the subsequences
(non-terminals) in the tree. As future work, we will try to
improve the current implementation of the tree to reduce memory
requirements. We also want to apply the ideas in [BFNP10] to
create an asymmetric lightweight version of D-V2V. This should
reduce the work done by the receiver and its memory usage. In
addition, the codeword associated to a given symbol Si would not
vary so often, which could allow us to implement efficient direct
searches for a pattern within the compressed text.

• T-Matrices. Regarding future work, the first step will be to
increase the scope of this work in order to represent somehow
geometries in a compact way inside our structures. This idea
opens a wide new field of possibilities to perform queries combining
spatial, temporal and semantic constraints.
Also, as semantrix has demonstrated it still needs auxiliary
structures to solve efficiently non-aggregated queries. It would
be really handful to create an extension of this project overcoming
this drawback.

• Stacked Wavelet Trees. An interesting line of work is to explore
the effect of the encoding of the symbols in real contexts. In
our running example, some activities may be more likely to be
performed after a specific one than others. For example, “take-a-
nap” activity it is more likely to be performed after “lunch” rather
than after “breakfast”. By encoding similar activities with closer
symbols, these regularities are automatically exploded by the wtrle,
but not for any other of the solutions.

108 Chapter 7. Conclusions and future work

Appendix A

Publications and other
research results

Publications

Journals

• Nieves R. Brisaboa, Antonio Fariña, Miguel R. Luaces, Daniil
Galaktionov, and Tirso V. Rodeiro. Trippy: a GIS to
visualize aggregated users’ trips data built on a compact
representation. Draft to submit.

• Nieves R. Brisaboa, Antonio Fariña, Daniil Galaktionov, Tirso V.
Rodeiro, and M. Andrea Rodríguez. Improved structures to
solve aggregated queries for trips over public transporta-
tion networks. Submitted to Information Sciences.

International conferences

• Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro, and Tirso
V. Rodeiro. Semantrix: A Compressed Semantic Matrix.
In Proceedings of the 2020 Data Compression Conference (DCC
2020) IEEE Computer Society, Snowbird, Utah (United States),
pp. 113-122, 2020.

109

110 Appendix A. Publications and other research results

• Nieves R. Brisaboa, Antonio Fariña, Adrián Gómez-Brandón,
Gonzalo Navarro, and Tirso V. Rodeiro. Dv2v: A Dynamic
Variable-to-Variable Compressor. In Proceedings of the 2019
Data Compression Conference (DCC 2019), IEEE Computer
Society, Snowbird, Utah (United States), pp. 83-92, 2019.

• Nieves R. Brisaboa, Guillermo de Bernardo, Gonzalo Navarro, Tirso
V. Rodeiro, and Diego Seco. Compact Representations of
Event Sequences. In Proceedings of the 2018 Data Compression
Conference (DCC 2018), IEEE Computer Society, Snowbird, Utah
(United States), pp. 237-246, 2018.

• Nieves R. Brisaboa, Antonio Fariña, Daniil Galaktionov, Tirso V.
Rodeiro, and M. Andrea Rodríguez. New Structures to Solve
Aggregated Queries for Trips over Public Transportation
Networks. In Proceddings of the 25th International Symposium
on String Processing and Information Retrieval (SPIRE 2018) -
LNCS 11147, Springer, Lima (Perú), pp. 88-101, 2018.

• Alejandro Cortiñas, Miguel R. Luaces, and Tirso V. Rodeiro. A
Case Study on Visualizing Large Spatial Datasets in a
Web-Based Map Viewer. In Proceddings of Web Engineering
- 18th International Conference (ICWE 2018), LNCS 10845,
Springer, Cáceres (Spain), pp. 296-303, 2018.

• Alejandro Cortiñas, Miguel R. Luaces, and Tirso V. Rodeiro.
Storing and Clustering Large Spatial Datasets Using
Big Data Technologies. In Proceddings of Web and Wireless
Geographical Information Systems - 16th International Symposium
(W2GIS 2018) - LNCS 10819, Springer , A Coruña (Spain), pp.
15-24, 2018.

111

International research stays

• 10th April, 2018 - 11th July, 2018. Research stay at Universidad
de Concepción, Departamento de Informática y Ciencias de la
Computación (Concepción, Chile).

• 3rd January, 2019 - 1st March, 2019. Research stay at University
of Melbourne, School of Computing and Information Systems
(Melbourne, Australia).

• 11th October, 2019 - 12th December, 2019. Research stay at
University of Kyushu, Department of Informatics (Kyushu, Japan).

112 Appendix A. Publications and other research results

Appendix B

Resumen del trabajo
realizado

B.1 Introducción

Hace muchos, muchos años, mucho antes de la llegada de los Kindles y
los iPads, la humanidad consiguió doblegar el espacio y el tiempo con
la invención de las tablillas de barro. Este pequeño artilugio permitía
encerrar un pensamiento abstracto en un medio físico y fácilmente
transportable. Todos conocemos, o podemos imaginar, el impacto
que esto causó en las sociedades de nuestros antepasados: educación,
tratados, registros de contabilidad, cartas, dibujos, leyendas... Como
es lógico, con el paso del tiempo las tablillas fueron incorporando
mejoras, desde el uso de diversos materiales (madera, metal, marfil...)
hasta la inclusión en el estilo1 de una espátula para borrar de manera
sencilla. Sin embargo, este gran invento presentaba una limitación
fundamental: el restringido espacio de escritura. Ni siquiera aunque se
escribiera por los dos lados cabían textos extensos. Por tanto, cuanto
más largo fuese el texto a escribir, más tablillas eran necesarias, con las
correspondientes complicaciones que eso conlleva (peso, precio, mayor
posibilidad de perder o de que se humedeciera alguna de las tablillas y
dejar un texto inconexo...). Habría que esperar siglos para la invención
de un nuevo mecanismo que hiciese frente a estas trabas: el papiro.

1Aguja con la que se escribía sobre la tablilla.

113

114 Appendix B. Resumen del trabajo realizado

Estas construcciones de fibras vegetales eran finas, flexibles, ligeras y, a
pesar de solo tener una cara aprovechable, un solo rollo de dimensiones
habituales podía contener una tragedia griega completa o un evangelio
entero. Además, el papiro se puede enrrollar, almacenando una gran
cantidad de texto en muy poco espacio. Igual que la escritura evolucionó
para almacenar más información en menos espacio, las propuestas de
esta tesis continúan combatiendo las limitaciones espaciales a través
de “papiros virtuales” que almacenan los datos de una forma flexible y
compacta.

La incorporación de los papiros a la sociedad trajo también nuevos
dilemas que resolver; por ejemplo, en la biblioteca de Alejandría era tal
la cantidad de papiros almacenados que era imposible encontrar una
obra concreta. Para terminar con este problema era necesario establecer
un orden que permitiese organizar la bilblioteca. Zenódoto, primer
director de la biblioteca de Alejandría, contribuyó a la resolución de este
problema usando por primera vez el orden alfabético para separar en
cantos los largos poemas de Homero. Poco más tarde, Calímaco, sucesor
de Zenódoto, inventaría los primeros catálogos de libros bautizándolos
como “Pinakes”. El sistema de Calímaco dividía las obras en seis géneros
literarios y en cinco tipos de prosa y, dentro de cada categoría, las obras
estaban ordenadas alfabéticamente por autor. El impacto de esta
pequeña reorganización fue de tal envergadura que se siguieron usando
variaciones de los “Pinakes” originales hasta el siglo XIX. Siguiendo estas
ideas del poder de la reorganización, esta tesis usa una aproximación
similar para mejorar la accesibilidad y los tiempos de búsqueda. Igual
que las obras de Alejandría, si la información está organizada por las
dimensiones adecuadas será más sencillo encontrar lo que buscamos.

Siglos más tarde, durante el otoño de 1848, se produjo una epidemia
de cólera en Inglaterra, causando gran mortalidad. Para aquel
entonces, no se conocía con certeza el modo de transmisión de esta
enfermedad, enfrentándose dos corrientes teóricas. Por un lado estaban
los “contagionistas”, quienes sostenían que el cólera se adquiría por el
contacto con el enfermo o con sus vestidos y pertenencias. Por otro
lado, estaban los que apoyaban la teoría “miasmática”. Esta teoría
postulaba que ciertas condiciones atmosféricas, en especial los vientos,
transmitían de un lugar a otro los “miasmas”: vapores tóxicos emitidos

B.1. Introducción 115

Figure B.1: Mapa de las muertes por cólera del doctor Snow. La bomba de
agua está localizada en la intersección de Broad Street con Cambridge Street.
Las barras negras reflejan el número de muertos en cada zona. 1854. (Fuente:
https://johnsnow.matrix.msu.edu/book_images12.php)

por materia en descomposición, los cuales “transportaban” de un lugar
a otro el cólera. El doctor John Snow, que no confiaba en ninguna
de estas teorías, se propuso encontrar la causa real de los contagios.
Fue así como surgió la idea del popularmente conocido como “mapa
del cólera” (Figura B.1). Siguiendo la pista de un severo brote en el
sur de la ciudad, el doctor Snow confeccionó un mapa del sector, en el
cual marcó los puntos correspondientes a defunciones por cólera y las
distintas bombas de agua potable existentes, demostrando gráficamente
la relación espacial entre las muertes por cólera y la bomba de Broad
Street. Finalmente, el estudio de la bomba demostró que una tubería
de alcantarillado pasaba a escasa distancia de la fuente de agua de la
bomba, existiendo filtraciones entre ambos cursos de agua. Siguiendo la
estela del doctor Snow, hoy en día son comunes los sistemas encargados
de recolectar y agregar datos para acceder a información oculta en los
eventos individuales y esta tesis aporta una nueva contribución en este
frente.

116 Appendix B. Resumen del trabajo realizado

B.2 Motivación

Como ha sugerido el apartado anterior, esta tesis estudia tres de los
problemas más habituales en la explotación de secuencias en general y
secuencias de ventos en particular: compresión dinámica, indexación
múltiple y explotación de datos acumulados. Una secuencia de eventos es
conceptualmente una serie de elementos ordenados unidimensionalmente
representando cada uno de los elementos un evento que ocurre en un
tiempo concreto. Además del tiempo, habitualmente se pueden encontrar
otras dimensiones, características o atributos donde cada evento tiene
un valor determinado.

Consideremos por ejemplo la publicación de trabajos literarios del
Siglo de Oro español. La publicación de cada obra es un evento
donde existen, además de la dimensión temporal, otras características
relevantes como el autor o el género literario al que pertenece. Esta
secuencia de eventos no tiene elementos repetidos, pero podría ocurrir.
En el caso de una secuenca de palabras en un texto a transmitir, cada
palabra puede ser vista como un evento con un tiempo de transmisión
además de otras dimensiones como el tamaño o la caterogría sintáctica.
Generalizando, una secuencia de eventos es una lista ordenada de
elementos de la forma:

E1
a,i,...x;E2

b,j,...y;E3
a,k,...z;E4

c,i,...y; . . .

Siendo los superíndices el identificador de evento y los subíndices a,
b, c los valores de la característica 1, los valores i, j, k los valores de la
característica 2 y x, y, z los de la característica n. No obstante, la mayor
diferencia al comparar la lista de obras literarias con la secuencia de
palabras es el grado de repetición, que puede ser explotado por técnicas
de compresión.

Aunque el orden cronológico siempre es posible en las secuencias
de eventos, a veces una organización alternativa puede resultar más
beneficiosa. Volviendo al ejemplo de las publicaciones del Siglo de Oro,
el orden temporal es el más obvio pero también sería posible ordenarlas
por autor, por género literario o incluso por una combinación de ambas.
Esta combinación de dimensiones permitiría crear jerarquías de orden.
Por ejemplo, sería posible clasificar las obras por género (primero novelas,

B.3. Contribuciones 117

después obras teatrales y por último poemarios), dentro de cada género
ordenarlas por orden alfabético según el nombre del autor y, finalmente,
un orden de tercer nivel por fecha de publicación. Pero tal vez otras
combinaciones jerárquicas serían más útiles para explotar distintintos
tipos de consultas: por autor en el primer nivel y por género en el
segundo; primero por fecha, luego por autor y después por género,
etc. Un sistema capaz de gestionar las diferentes configuraciones sería
realmente útil.

Además, hay que tener en cuenta que algunos eventos tienen entre
sus características una de tipo espacial. Por ejemplo, consideremos la
secuencia de tramos de calle2 recorridas cada dia por una flota de taxis.
En este caso un evento sería que un taxi recorriera un tramo de calle y las
características que definirían el evento serían el tiempo, el identificador
del taxista y, por supuesto, el identificador del propio tramo de calle.
Obsérvese que de nuevo aquí son aplicables las consideraciones sobre
las necesidades de compresión de la secuencia, su reordenación y su
acumulación para resolver consultas. Así por ejemplo, obsérvese que la
ordenación de los eventos de forma puramente temporal podría ser poco
últil, por el contrario sería más interesante reordenar los eventos por
taxista y dentro de cada taxista por tiempo. Esto nos permitiría ver las
trayectorias habituales de cada persona cada día e incluso su evolución
en el tiempo. Pero también podría ser útil hacer una ordenación por
días y, dentro de cada día, por taxista y, a su vez, dentro de cada taxista
ordenar los tramos por hora de modo que nos facilitaría reconstruír las
trayectorias diarias de cada conductor.

B.3 Contribuciones

Esta tesis estudia los retos asociados a las secuencias de eventos, desde las
restricciones espaciales durante su almacenamiento hasta la velocidad de
búsqueda en consultas agregadas. Para conseguir esto, se han presentado
y analizado tres estructuras básicas que se ocupan de los aspectos
fundamentales de las secuencias en general y de las secuencias de eventos
en particular:

2Entendiendo un tramo de calle como el que no tiene entradas ni salidas, es decir, la sección
entre dos cruces.

118 Appendix B. Resumen del trabajo realizado

• DV2V. Esta propuesta nació de la combinación de las dos familias
de compresión de textos más importantes: compresores estadísticos
(identifican símbolos de longitud fija con códigos de longitud
variable) y compresores basados en diccionarios (identifican
símbolos de longitud variable con códigos de longitud fija). Nuestra
propuesta fusiona características de ambos mundos identificando
símbolos de longitud variable con códigos de longitud variable
siendo capaz así de obtener secuencias comprimidas buscables,
mejores ratios de compresión que los compresores estadísticos y
mejores tiempos de compresión que los compresores basados en
diccionario. Además, D-V2V ha sido pensado para actuar en
escenarios críticos donde no es posible preprocesar la secuencia
como hacen las soluciones estáticas. Así, nuestro algoritmo
trabaja dinámicamente construyendo códigos y reordenándolos
por frecuencia al mismo tiempo que va llegando la secuencia.
Para verificar el buen rendimiento de nuestra estructura, la hemos
comparado con compresores conocidos de ambas familias así como
a su propio ancestro estático. D-V2V se ha comportado según
lo esperado en cuanto a tiempos de compresión y descompresión
además de obtener unos resultados competitivos en cuanto a ratios
de compresión.

• T-Matrices. Partiendo de una técnica para renderizar gráficos de
forma eficiente, se ha presentado una generalización que extiende
y mejora la ténica original con el fin de crear una estructura de
carácter general capaz de resolver consultas agregadas eficazmente.
La idea principal de esta contribución es almacenar matrices de
datos acumulados para resolver consultas agregadas (p. ej. calcular
cuántos pasajeros había en un autobús) lo más rápidamente posible.
Se han propuesto dos mejoras en cuanto al uso de espacio y se ha
testeado esta estructura en diferentes contextos de aplicación. En
cuanto a los experimentos, se han detallado las ventajas de usar
nuestra propuesta en diversos contextos así como los resultados
positivos obtenidos, destacando los ratios de compresión.
Hemos presentado también semantrix, una estructura que combina
las T-Matrices con otras estructuras más simples para poder
resolver un mayor abanico de consultas hábilmente.

B.4. Trabajo futuro 119

• Wavelet trees apilados. Hemos utilizado la estructra conocida
como wavelet tree para construir jerarquías de orden sobre
secuencias con el fin de permitir configuraciones dinámicas que
se adapten a los distintos objetivos. Así, cada árbol ordena la
secuencia siguiendo un criterio particular y esta nueva secuencia
ordenada es la entrada para el siguiente árbol (que ordenará
la secuencia siguiendo otro criterio distinto). Esta estructura
compuesta no solo es útil para ordenar la información facilitando
las búsquedas sino que también permite extraer patrones ocultos en
la información. La principal ventaja de nuestra propuesta es que es
capaz de resolver consultas agregadas rápidamente sin almacenar
explícitamente la información acumulada como hacen las soluciones
agregadas clásicas.

Nuestra investigación también incluye una versión mejorada y
compacta de nuestra propuesta original, evitando redundancia
inncesaria para mejorar considerablemente el ratio de compresión.
En esta tesis se han detallado las soluciones comprimidas contra
las que se ha comparado nuestra propuesta y cómo se han hecho
pruebas sobre una amplia gama de conjuntos de datos con el
objetivo de analizar cuánta influencia tiene el nivel de granularidad
de la información en el comportamiento de nuestra estructura.

Además de proponer soluciones para la compresión, la agregación y
el indexado de las secuencias de eventos, en esta tesis se han afrontado
problemas reales que se pueden solucionar con estas técnicas. Por
ello, una contribución adicional de esta investigación es el modelado
de problemas de logística como secuencias de eventos y su solución
utilizando las técnicas propuestas en este texto.

B.4 Trabajo futuro

No es trivial establecer el punto final en una investigación, por muy
compactas y eficientes que sean las contribuciones siempre se podrán
mejorar. Esta sección resume las ideas y mejoras que no se han incluído
en este manuscrito debido a las restricciones temporales:

120 Appendix B. Resumen del trabajo realizado

• D-V2V. Una de las líneas futuras más interesantes sería la
capacidad de realizar búsquedas directas. Hay que tener en cuenta
que buscar cuántas veces aparece en un texto la palabra P sería
posible contando el número de códigos de escape hasta la primera
ocurrencia de esa palabra. De ahí en adelante habría que simular
el proceso de descompresión para seguir la pista de todas las
ocurrencias de P , incluyendo los nodos no terminales donde P llega
como parte de una frase más larga.
Por otro lado, uno de los mayores inconvenientes del D-V2V es
la cantidad de memoria que necesita para hacerse cargo de los
nodos no terminales del árbol. Un trabajo futuro sería mejorar esta
impementación del árbol intentando reducir los requisitos de espacio.
También se ha pensado en aplicar las ideas de [BFNP10] para
construir una versión asimétrica y más ligera de nuestra propuesta.
Esto debería aliviar la carga de trabajo realizada por el receptor y el
espacio usado. Además, el código asociado a un símbolo concreto Si
no variaría tan a menudo, lo que permitiría implementar búsquedas
directas de patrones en el texto comprimido.

• T-Matrices. En cuanto a trabajo futuro, el primer paso sería
aumentar el alcance de esta contribución para incluír de alguna
manera las geometrías asociadas a las dimensiones de interés de una
forma compacta. Esta idea abre un nuevo campo de posiblidades
para realizar consultas mezclando información espacial, temporal y
semántica.
Además, como ha quedado patente en semantrix, todavía son
necesarias estructuras auxiliares para resolver eficientemente
consultas no agregadas. Sería de mucha ayuda crear una extensión
de esta contribución unificando todo el proceso en una sola
estructura de una forma flexible y eficaz.

• Wavelet trees apilados. Una línea interesante de trabajo sería
explorar los efectos de la codificación de símbolos en dominios reales.
En nuestro contexto conreto, seguramente algunas actividades
son más propensas a ser realizadas después de otras. Por
ejemplo, la actividad “dormir la siesta” es más propensa a ocurrir
después de la actividad “comer” que después de la actividad

B.4. Trabajo futuro 121

“desayunar”. Asignando códigos cercanos a actividades similares
estas regularidades se explotarían automáticamente con nuestra
propuesta wtrle, al contrario que con el resto de soluciones.

122 Appendix B. Resumen del trabajo realizado

Bibliography

[AAMF16] Azalden Alsger, Behrang Assemi, Mahmoud Mesbah, and
Luis Ferreira. Validating and improving public transport
origin–destination estimation algorithm using smart card
fare data. Transportation Research Part C: Emerging
Technologies, 68:490–506, 2016.

[Bac66] Charles W. Bachman. On a generalized language for file
organization and manipulation. Communications of the
ACM, 9(3):225–226, 1966.

[BCN10] Nieves R. Brisaboa, Ana Cerdeira-Pena, and Gonzalo
Navarro. A compressed self-indexed representation of
XML documents. In Ernest Teniente and Silvia Abrahão,
editors, XV Jornadas de Ingeniería del Software y Bases
de Datos (JISBD), pages 199–199, 2010.

[BCPL+16] Nieves R. Brisaboa, Ana Cerdeira-Pena, Narciso Lopez
Lopez, Gonzalo Navarro, Miguel R. Penabad, and
Fernando Silva-Coira. Efficient representation of
multidimensional data over hierarchical domains. In
Proceedings of the 23rd International Symposium on
String Processing and Information Retrieval, pages 191–
203, 2016.

[BFG+18] Nieves R. Brisaboa, Antonio Fariña, Daniil Galaktionov,
Tirso V. Rodeiro, and M. Andrea Rodríguez. New
structures to solve aggregated queries for trips over public
transportation networks. In Proceedings of the 25th String

123

124 Bibliography

Processing and Information Retrieval (SPIRE), pages 88–
101, 2018.

[BFL+03] Nieves R. Brisaboa, Antonio Fariña, Miguel R. Luaces,
José R. Paramá, Miguel R. Penabad, Ángeles S. Places,
and José R. R. Viqueira. Using geographical information
systems to browse touristic information. Journal of
Information Technology & Tourism, 6(1):31–46, 2003.

[BFL+10] Nieves R. Brisaboa, Antonio Fariña, Juan-Ramón López,
Gonzalo Navarro, and Eduardo R. López. A new
searchable variable-to-variable compressor. In Proceedings
of the Data Compression Conference (DCC), pages 199–
208, 2010.

[BFNP07] Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro,
and José Paramá. Lightweight natural language text
compression. Information Retrieval, 10(1):1–33, 2007.

[BFNP08] Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro,
and José Paramá. New adaptive compressors for natural
language text. Software: Practice and Experience,
38(13):1429–1450, 2008.

[BFNP10] Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro,
and José R. Paramá. Dynamic lightweight text
compression. ACM Transactions on Information Systems
(TOIS), pages 1–32, 2010.

[BHL+00] Dimitri P. Bertsekas, Mark L. Homer, David A. Logan,
Stephen D. Patek, and Nils R. Sandell. Missile defense and
interceptor allocation by neuro-dynamic programming.
IEEE Transactions on Systems, Man, and Cybernetics,
30(1):42–51, 2000.

[BK15] Maria Börjesson and Ida Kristoffersson. The Gothen-
burg congestion charge. Effects, design and politics.
Transportation Research Part A: Policy and Practice,
75(C):134–146, 2015.

Bibliography 125

[BLPP17] Nieves R. Brisaboa, Miguel R. Luaces, Cristina M. Pérez,
and Ángeles S. Places. Semantic trajectories in mobile
workforce management applications. In Proceedings of
the 15th International Symposium on Web and Wireless
Geographical Information Systems, W2GIS, volume 10181
of Lecture Notes in Computer Science, pages 100–115,
2017.

[Bly00] Phil T. Blythe. Transforming access to and payment for
transport services through the use of smart cards. Journal
Intelligent Transport Systems, 6(1):45–68, 2000.

[BM77] Robert S. Boyer and J. Strother Moore. A fast string
searching algorithm. Communications of the ACM,
20(10):762–772, 1977.

[BvDD09] Jaap Bloema, Menno van Doorn, and Sander Duivestein.
Me the Media - Rise of the Conversation Society. Sogeti
- Vint Editions, 2009.

[BW94] Michael Burrows and David J. Wheeler. A block-sorting
lossless data compression algorithm. Technical report,
Digital Equipment Corporation, 1994.

[BYRN08] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval: The Concepts and Technology
Behind Search. Pearson Education Ltd., 2nd edition,
2008.

[Cle67] Cyril Cleverdon. The cranfield tests on index language
devices. In Aslib Proceedings, Vol. 19 No. 6, ISSN 0001-
253X, pages 173–194, 1967.

[CN09] Francisco Claude and Gonzalo Navarro. Practical
rank/select queries over arbitrary sequences. In
Proceedings of the 15th International Symposium on
String Processing and Information Retrieval, SPIRE ’08,
pages 176–187, 2009.

126 Bibliography

[Cod70] Edgar F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377–387,
1970.

[Cod79] Edgar F. Codd. Extending the database relational model
to capture more meaning. ACM Transactions on Database
Systems, 4(4):397–434, 1979.

[Cro84] Franklin C. Crow. Summed-area tables for texture
mapping. ACM SIGGRAPH Computer Graphics,
18(3):207–212, 1984.

[CS93] Edgar F. Codd and C. Salley. Providing olap to user-
analysts: An it mandate. 1993.

[CW84] John Cleary and Ian Witten. Data compression using
adaptive coding and partial string matching. IEEE
Transactions on Communications, 32(4):396–402, 1984.

[DBS04] Eduardo Dias, Euro Beinat, and Henk J. Scholten. Effects
of mobile information sharing in natural parks. In
Sh@ring: 18th International Conference "Informatics for
Environmental Protection", Part 2, pages 11–25, 2004.

[dMNZB00] Edleno Silva de Moura, Gonzalo Navarro, Nivio Ziviani,
and Ricardo A. Baeza-Yates. Fast and flexible word
searching on compressed text. ACM Transactions onn
Information Systems, 18(2):113–139, 2000.

[dMNZBY98] Edleno de Moura, Gonzalo Navarro, Nivio Ziviani, and
Ricardo Baeza-Yates. Fast searching on compressed text
allowing errors. In Proceedings of the 21st Annual Int.
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’98), pages 298–306, 1998.

[DRR06] O’Neil Delpratt, Naila Rahman, and Rajeev Raman.
Engineering the LOUDS succinct tree representation. In
Proceedings of the 5th Int. Workshop on Experimental
Algorithms, pages 134–145, 2006.

Bibliography 127

[Edm01] Ian R. Edmonds. The use of latent semantic indexing to
identify evolutionary trajectories in behaviour space. In
Advances in Artificial Life, 6th European Conference,
ECAL Proceedings, volume 2159 of Lecture Notes in
Computer Science, pages 613–622, 2001.

[EGSV99] Martin Erwig, Ralf H. Güting, Markus Schneider, and
Michalis Vazirgiannis. Spatio-temporal data types: An
approach to modeling and querying moving objects in
databases. GeoInformatica, 3(3):269–296, 1999.

[Fal73] Newton Faller. An adaptive system for data compression.
In Record of the 7th Asilomar Conference on Circuits,
Systems, and Computers, pages 593–597, 1973.

[Far05] Antonio Fariña. New compression codes for text databases.
PhD thesis, Universidade da Coruña, 2005.

[FCF92] Andrew U. Frank, Irene Campari, and Ubaldo Formentini.
Theories and methods of spatio-temporal reasoning
in geographic space. In Proceedings of International
Conference GIS - From Space to Territory: Theories
and Methods of Spatio-Temporal Reasoning, volume 639
of Lecture Notes in Computer Science, 1992.

[FGG+99] Andrew U. Frank, Stéphane Grumbach, Ralf H.
Güting, Christian S. Jensen, Manolis Koubarakis,
Nikos A. Lorentzos, Yannis Manolopoulos, Enrico
Nardelli, Barbara Pernici, Hans-Jörg Schek, Michel Scholl,
Timos K. Sellis, Babis Theodoulidis, and Peter Widmayer.
Chorochronos: A research network for spatiotemporal
database systems. Special Interest Group on Management
of Data Record, 28(3):12–21, 1999.

[FGNV08] Paolo Ferragina, Rodrigo González, Gonzalo Navarro,
and Rossano Venturini. Compressed text indexes: From
theory to practice. ACM Journal of Experimental
Algorithmics, 13, 2008.

128 Bibliography

[FM00] Paolo Ferragina and Giovanni Manzini. Opportunistic
data structures with applications. In Proceedings of the
41st Annual Symposium on Foundations of Computer
Science (FOCS), pages 390–398, 2000.

[FM01] Paolo Ferragina and Giovanni Manzini. An experimental
study of a compressed index. Information Sciences, 135(1-
2):13–28, 2001.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing
compressed text. Journal of the ACM, 52(4):552–581,
2005.

[FMMN07] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen,
and Gonzalo Navarro. Compressed representations of
sequences and full-text indexes. ACM Transactions on
Algorithms, 3(2):20, 2007.

[Gal78] Robert Gallager. Variations on a theme by huffman.
IEEE Transactions on Information Theory, 24(6):668–
674, 1978.

[GBE+00] Ralf H. Güting, Michael H. Böhlen, Martin Erwig,
Christian S. Jensen, Nikos A. Lorentzos, Markus
Schneider, and Michalis Vazirgiannis. A foundation
for representing and querying moving objects. ACM
Transactions on Database Systems, 25(1):1–42, 2000.

[GBLP96] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid
Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In
Proceedings of the Twelfth International Conference on
Data Engineering, pages 152–159, 1996.

[GGG+07] Alexander Golynski, Roberto Grossi, Ankur Gupta,
Rajeev Raman, and Satti Srinivasa Rao. On the size
of succinct indices. In Proceedings of the 15th Annual
European Symposium on Algorithms (ESA), LNCS 4698,
pages 371–382, 2007.

Bibliography 129

[Góm20] Adrián Gómez-Brandón. Bitvectors with runs and the
successor/predecessor problem. In Proceedings of the Data
Compression Conference (DCC), pages 133–142, 2020.

[Hor80] Nigel Horspool. Practical fast searching in strings.
Software: Practice and Experience, 10(6):501–506, 1980.

[Huf52] David A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the I.R.E.,
40(9):1098–1101, 1952.

[IB86] William H. Inmon and Thomas J. Bird. The dynamics
of data base. Prentice Hall, 1986. Includes index.

[Inm86] William H. Inmon. Information Systems Architecture:
A System Developer’s Primer. Prentice-Hall, Inc., USA,
1986.

[Inm11] William H. Inmon. A tale of two architectures (1).
Database Magazine, 1:28–31, 2011.

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. In
Proceedings of the 30th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 549–554, 1989.

[KGT99] George Kollios, Dimitrios Gunopulos, and Vassilis J.
Tsotras. On indexing mobile objects. In Proceedings
of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 1999.

[KR02] Ralph Kimball and Margy Ross. The data warehouse
toolkit: the complete guide to dimensional modeling, 2nd
Edition. Wiley, 2002.

[KRS04] Vijay Khatri, Sudha Ram, and Richard T. Snodgrass.
Augmenting a conceptual model with geospatiotemporal
annotations. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1324–1338, 2004.

[KSF+03] Manolis Koubarakis, Timos K. Sellis, Andrew U. Frank,
Stéphane Grumbach, Ralf H. Güting, Christian S.

130 Bibliography

Jensen, Nikos A. Lorentzos, Yannis Manolopoulos, Enrico
Nardelli, Barbara Pernici, Hans-Jörg Schek, Michel Scholl,
Babis Theodoulidis, and Nectaria Tryfona, editors. Spatio-
Temporal Databases: The CHOROCHRONOS Approach,
volume 2520 of Lecture Notes in Computer Science, 2003.

[Kwa20] Michael M. Kwakye. Conceptual model and design
of semantic trajectory data warehouse. International
Journal of Data Warehousing and Mining (IJDWM),
16(3):108–131, 2020.

[Lan89] Gail Langran. A review of temporal database research
and its use in GIS applications. International Journal of
Geographic Information Science, 3(3):215–232, 1989.

[Lan93] Gail Langran. Issues of implementing a spatiotemporal
system. International Journal in Geographic Information
Science, 7(4):305–314, 1993.

[LJZL17] Zhidan Liu, Shiqi Jiang, Pengfei Zhou, and Mo Li.
A participatory urban traffic monitoring system: The
power of bus riders. IEEE Transactions on Intelligent
Transportation Systems, 18(10):2851–2864, 2017.

[LM99] N. Jesper Larsson and Alistair Moffat. Offline dictionary-
based compression. In Proceedings of the Data
Compression Conference (DCC), pages 296–305, 1999.

[Luh58] Hans P. Luhn. A business intelligence system. IBM
Journal of Research & Development, 2(4):314–319, 1958.

[LVBD17] Juan M. L. Varela, Maria Börjesson, and Andrew Daly.
Public transport: one mode or several? Working papers in
Transport Economics 2017:6, CTS - Centre for Transport
Studies Stockholm (KTH and VTI), 2017.

[MFD03] Ginger Myles, Adrian Friday, and Nigel Davies.
Preserving privacy in environments with location-based
applications. IEEE Pervasive Comput., 2(1):56–64, 2003.

Bibliography 131

[MK90] Yannis Manolopoulos and G. Kapetanakis. Overlapping
b+trees for temporal data. In Proceedings of the 5th
Jerusalem Conference on Information Technology, pages
491–498, 1990.

[MM93] Udi Manber and Eugene W. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal on
Computing, 22(5):935–948, 1993.

[MM98] François Michaud and Maja J. Mataric. Learning from
history for behavior-based mobile robots in non-stationary
conditions. Autonomous Robots, 5(3-4):335–354, 1998.

[MN05] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays
based on run-length encoding. In Proceedings of the 16th
Annual Symposium on Combinatorial Pattern Matching,
pages 45–56, 2005.

[Mof89] Alistair Moffat. Word-based text compression. Software:
Practice and Experience, 19(2):185–198, 1989.

[Mor68] Donald R. Morrison. PATRICIA - practical algorithm to
retrieve information coded in alphanumeric. Journal of
the ACM, 15(4):514–534, 1968.

[MP12] Marcela A. Munizaga and Carolina Palma. Estimation
of a disaggregate multimodal public transport origin -
destination matrix from passive smartcard data from
santiago, chile. Transportation Research Part C:
Emerging Technologies, 24:9 – 18, 2012.

[MR01] David Mountain and Jonathan Raper. Modelling human
spatio-temporal behaviour: a challenge for location
based services. In Proceedings of the 6th International
Conference on GeoComputation, pages 65–74, 2001.

[Mun96] Ian Munro. Tables. In Proceedings of the 16th Conference
on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), LNCS 1180, pages 37–42,
1996.

132 Bibliography

[Nav16] Gonzalo Navarro. Compact Data Structures: A Practical
Approach. Cambridge University Press., 2016.

[NdMN+00] Gonzalo Navarro, Edleno de Moura, M. Neubert, Nivio
Ziviani, and Ricardo Baeza-Yates. Adding compression
to block addr. inverted indexes. Information Retrieval,
3(1):49–77, 2000.

[NR04] Gonzalo Navarro and Mathieu Raffinot. Practical and
flexible pattern matching over ziv-lempel compressed text.
Journal of Discrete Algorithms, 2(3):347–371, 2004.

[OA16] Wided Oueslati and Jalel Akaichi. Querying a multi-
version trajectory data warehouse. International Journal
of Business Information Systems, 21(4):403–417, 2016.

[OOR+07] Salvatore Orlando, Renzo Orsini, Alessandra Raffaetà,
Alessandro Roncato, and Claudio Silvestri. Trajectory
data warehouses: Design and implementation issues.
JCSE, 1(2):211–232, 2007.

[OS07] Daisuke Okanohara and Kunihiko Sadakane. Practical
entropy-compressed rank/select dictionary. In Proceedings
of the 9th Workshop on Algorithm Engineering and
Experiments, 2007.

[Pou19] Jacob Poushter. Pew research center: Smartphone
ownership and internet usage continues to climb in
emerging economies. https://www.pewresearch.org/,
2019.

[PRD+08] Nikos Pelekis, Alessandra Raffaetà, Maria Luisa Damiani,
Christelle Vangenot, Gerasimos Marketos, Elias Frentzos,
Irene Ntoutsi, and Yannis Theodoridis. Towards
trajectory data warehouses. In Mobility, Data Mining
and Privacy - Geographic Knowledge Discovery, pages
189–211. Springer, 2008.

[PSR+13] Christine Parent, Stefano Spaccapietra, Chiara Renso,
Gennady L. Andrienko, Natalia V. Andrienko, Vania

https://www.pewresearch.org/

Bibliography 133

Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis,
José A. Fernandes, Nikos Pelekis, Yannis Theodoridis,
and Zhixian Yan. Semantic trajectories modeling and
analysis. ACM Computing Surveys, 45(4):42:1–42:32,
2013.

[RDW+02] Jonathan Raper, Jason Dykes, Jo Wood, David M.
Mountain, Anton Krause, and David Rhind. A framework
for evaluating geographical information. Journal in
Information Sciences, 28(1):39–50, 2002.

[RRR02] Rajeev Raman, Venkatesh Raman, and S. Srinivasa
Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 233–242, 2002.

[RRS07] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao
Satti. Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM
Transactions on Algorithms, 3(4), 2007.

[RU81] Kari-Jouko Räihä and Esko Ukkonen. The shortest
common supersequence problem over binary alphabet
is np-complete. Theoretical Computer Science, 16:187–
198, 1981.

[Sal07] David Salomon. Variable-length Codes for Data
Compression. Springer-Verlag, 2007.

[Shk02] Dmitry Shkarin. Ppm: One step to practicality. In
Proceedings of the Data Compression Conference (DCC),
page 202, 2002.

[SIKH82] David C. Smith, Charles H. Irby, Ralph Kimball,
and Eric Harslem. The star user interface: an
overview. In Proceedings of the American Federation
of Information Processing Societies: 1982 National
Computer Conference, volume 51, pages 515–528, 1982.

134 Bibliography

[SL65] Gerard Salton and Michael E. Lesk. The SMART
automatic document retrieval systems - an illustration.
Communications of the ACM, 8(6):391–398, 1965.

[TTFR15] M. Carolina Torres, Valéria C. Times, José A. Fernandes,
and Chiara Renso. SWOT: A conceptual data warehouse
model for semantic trajectories. In Proceedings of
the ACM Eighteenth International Workshop on Data
Warehousing and OLAP, DOLAP, pages 11–14, 2015.

[VW01] Michalis Vazirgiannis and Ouri Wolfson. A spatiotem-
poral model and language for moving objects on road
networks. In Proceedings of the 7th International
Symposium in Advances in Spatial and Temporal
Databases, volume 2121, pages 20–35, 2001.

[VZ13] Alejandro A. Vaisman and Esteban Zimányi. Trajectory
data warehouses. In Mobility Data: Modeling, Man-
agement, and Understanding, pages 62–82. Cambridge
University Press, 2013.

[Wan11] Wenpeng Wang. Review on hybrid flow shop
scheduling. In 2011 International Conference of
Information Technology, Computer Engineering and
Management Sciences, volume 4, pages 7–10. IEEE, 2011.

[Wel84] Terry A. Welch. A technique for high-performance data
compression. Computer, 17(6):8–19, 1984.

[WFR+13] Ricardo Wagner, José A. Fernandes, Alessandra Raffaetà,
Chiara Renso, Alessandro Roncato, and Roberto Trasarti.
Mob-warehouse: A semantic approach for mobility
analysis with a trajectory data warehouse. In Advances
in Conceptual Modeling - ER 2013 Workshops, LSAWM,
MoBiD, RIGiM, SeCoGIS, WISM, DaSeM, SCME, and
PhD Symposium, volume 8697, pages 127–136, 2013.

[WL64] Frederick W. Lancaster. Mechanized document control:
A review of some recent research. In Aslib Proceedings,
Vol. 16 No. 4, pages 132–152, 1964.

Bibliography 135

[WMB94] Ian H. Witten, Alistair Moffat, and Timothy C.
Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Van Nostrand Reinhold, 1994.

[WMB99] Ian Witten, Alistair Moffat, and Timothy Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, 1999.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm
for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of
individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978.

[ZM01] Alexander Zipf and Rainer Malaka. Developing location
based services for tourism. the service providers’ view.
In Information and Communication Technologies in
Tourism, ENTER, pages 83–92, 2001.

	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	Basic concepts and technologies
	Basic structures
	Bitvectors
	LOUDS

	Text compression
	End-Tagged Dense Code
	Dynamic End-Tagged Dense Codes
	Semi-static variable-to-variable compression

	Index structures
	FM-index
	Wavelet Tree

	Data aggregation
	Data Warehouses
	OLAP
	Summed Area Tables
	CMHD

	Application contexts
	Text compression
	Public transportation
	Mobile Workforce Management

	Dynamic variable-to-variable compression (D-V2V)
	Dynamic variable-to-variable compressor
	Parsing algorithm
	Encoding procedure
	Receiver procedure

	Experiments
	Space requirements and memory usage
	Compression and decompression times

	Conclusions

	Total matrices (T-Matrices)
	General-purpose accumulative matrices
	T-Matrices in public transportation
	Data structures
	Experimental evaluation
	Experimental dataset
	Space requirements
	Performance at query time

	T-Matrices in mobile workforce management
	Data structures
	Experimental evaluation
	Experimental datasets
	Space requirements
	Performance at query time

	Conclusions

	Event sequence indexing
	Introduction
	Indexing with Wavelet Trees
	Reducing the space
	Experimental evaluation
	Problem setup
	Baseline representation
	Experiments and results

	Conclusions

	Conclusions and future work
	Conclusions
	Future work

	Publications and other research results
	Resumen del trabajo realizado
	Introducción
	Motivación
	Contribuciones
	Trabajo futuro

	Bibliography

