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Abstract 

 

Spatio-temporal Map Maintenance for Extending Autonomy in Long-term 

Mobile Robotic Tasks 

 

Meredith Leeann Pitsch, M.S.E.  

The University of Texas at Austin, 2018 

 

Supervisor:  Sheldon Landsberger 

Co-Supervisor: Mitchell Pryor 

 

Working in hazardous environments requires routine inspections in order to meet safety standards. 

Dangerous quantities of nuclear contamination can exist in infinitesimally small volumes. In order 

to confidently inspect a nuclear environment for radioactive sources, especially those which emit 

alpha radiation, technicians must carefully maintain detectors at a consistent velocity and distance 

from a source. Technicians must also take careful records of which areas have been surveyed or 

not are important so that no area is left unmonitored. This is a difficult, exhausting task when the 

coverage area is larger than an office space. An autonomous mobile robotic platform with 

Complete Coverage Path Planning (CCPP) can reduce dangerous exposure to humans and provide 

better information for Radiological Control Technicians (RCT). The developed robotic system - 

or RCTbot - is designed for long-term deployment with little human correction, intervention, or 

maintenance required. To do this, the RCTbot creates a map of the environment, continually 

updates it based on multiple sensor inputs, and searches its map for contamination. In nuclear 

environments, the areas of interest often remain spatially constant throughout the duration of an 
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inspection and are considered temporally static. The RCTbot monitors temporally static 

environments but adapts to dynamic changes over time.  It then uses its sensor data to update and 

maintain its map so no manual human intervention is necessary. The spatio-temporal map 

maintenance (STMM) is agnostic to the survey type, so the RCTbot system is viable for application 

domain other than nuclear.  
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Chapter 1: Introduction 

Robotic systems are rapidly attaining higher levels of autonomy. The Greek roots of the 

word autonomous translates to “self law”. The term closely relates to automatic which Oxford 

defines as “working by itself with little or no direct human control.” In a robotics sense, autonomy 

is defined as:  

The extent to which a robot can sense its environment, plan based on that environment, and 

act upon that environment with the intent of reaching some task-specific goal (either given 

to or created by the robot) without external control [1]. 

While most deployed systems demonstrate some autonomy, many fail to reach the strictly 

limited degree of human intervention required for higher level self-agency [1]. In the last two 

decades, roboticists and the artificial intelligence community have rapidly advanced the field [2] 

[3] [4], but gaps in their capabilities remain including how to handle autonomy in real-world 

environments.   

Discussing levels of autonomy requires understanding that the task dictates the degree of 

self-agency the robot requires [1]. As an example, imagine two robots designed to autonomously 

complete distinct tasks. The first robot’s task is to seek an item and return with it in some finite 

length of time. The second robot must patrol an area for intruders indefinitely. Theoretically, the 

patrol robot must retain agency for an infinitely longer time than the seeking robot. Despite this, 

one cannot argue that the patrol robot is more autonomous than the seeking robot because it is 

based on each individual robot’s purpose. On the other hand, if the patrol robot breaks down during 

its task and must be repaired by a human actor, it clearly demonstrates less autonomy than the 
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seeking robot which never required human intervention. This holds true regardless of the duration 

the patrol robot remained active.  

Most robotics researchers implement the task-based autonomy paradigm to some degree, but 

they often neglect duration of the task as an important factor to model [1]. Deployment in real-

world applications requires maintaining autonomy over task-specific lengths of time [5].  

Enabling a system to account for changes in its environment is one way to improve its level 

of autonomy and prepare it for deployment. It is simple to see that the problem of task-specific 

autonomy is more difficult for indefinite length tasks. This work demonstrates how enhancing a 

robot’s ability to operate indefinitely without human intervention enhances its usefulness in a real-

world environment. This chapter specifically will define the environment and task on which the 

method will be applied and introduce the method and its objectives. A Glossary of terms is 

provided near the end of this work. 

 MOTIVATION 

Researchers develop autonomous solutions when removing humans from the system 

improves outcomes. Historically, tasks that are dirty, dangerous, difficult, or dull attract 

autonomous systems. As it becomes riskier for humans to intervene, the level of autonomy in a 

robot must increase; therefore, tasks which are very hazardous typically have greater impetus for 

autonomy.  

The nuclear industrial complex has a variety of tasks and environments that present a 

biological hazard to human health. The U. S. Nuclear Regulatory Commission (NRC) mandates 

that a radiation worker should have an annual occupational radiation exposure limit of 5 rem (0.05 
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Sv) [6]. To mitigate stochastic health hazards at lower level exposures, nuclear industries 

developed a practice to keep doses to workers As Low As Reasonably Achievable, or ALARA [7]. 

In seeking to practice ALARA, operations in radiologically hazardous environments are limited in 

exposure duration, carefully monitored to ensure distance from sources, and properly protected by 

the correct protective equipment [7] [8]. Radiation exposure is a function of time, distance, and 

shielding [9]. Deploying an autonomous robot for certain radiological tasks removes the worker 

from potential exposure; however, as systems require more physical human intervention, more of 

the benefits of deploying a robot are negated. This reality exemplifies the need for higher levels of 

autonomy in radiologically tasked robots. 

 HAZARDS ASSOCIATED WITH NUCLEAR APPLICATIONS 

A specific radiological task motivates this effort and will be used to evaluate the 

effectiveness of the developed approach in a real-world setting. Los Alamos National Laboratory 

(LANL) performs operations with a number of transuranic radionuclides for the Department of 

Energy (DOE). The Pit Technologies (PT) group (formerly MET-2) at LANL is specifically 

charged with a number of operations involving plutonium in various forms. During the course of 

normal operation, there is a risk of trace amounts of Special Nuclear Material (SNM) escaping 

containment and contaminating the work area.  

The intake of any amount of radioactive plutonium is a potential health hazard [7] [10] as a 

significant portion of the energy it emits is in the form of alpha particles (with the rest leaving as 

gamma and neutron radiation). Once in the body, plutonium migrates into various systems 

depending on the intake path, continuously emitting alpha radiation [11]. This body burden is the 
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amount of received material that is fixed in tissue and eliminated very slowly over a person’s 

lifetime [9]. The body burden continues to release radiation adding to the committed dose [10]. A 

worker with just a single, miniscule exposure to plutonium receives dose from it for the duration 

of his or her life. Because the effect of any level of exposure increases the long-term risk, facilities 

take every precaution to ensure workers never intake plutonium.  

The PT group completes all plutonium related tasks at the LANL Plutonium Facility (PF-4). 

To maximize worker safety, the facility has a system of controlling and containing radiation and 

contamination. PF-4 has different zones based on relative hazards [8]. LANL recognizes 

Radiological Controlled Areas (RCA), Radiological Buffer Areas (RBA), and Radiological Areas 

(RA) as those which are primarily associated with potential exposure risk according to DOE 

guidelines for plutonium facilities [7] [8] [12]. In PF-4, plutonium processes are completed in RAs 

with gloveboxes as shown in Figure 1-1.  
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Figure 1-1: A worker demonstrating safe processes in a glovebox [13]. 

Gloveboxes are designed both to keep workers safe and to optimize the processes. The 

environment is pressurized such that the negative atmosphere keeps radioactive particles inside 

away from the workers. The tightly controlled RA also limits elements damaging to processes such 

as oxygen which could react with the plutonium. Outside of the gloveboxes, a RBA controls for 

any small escape of contamination due to a breach in the containment. It is a second layer of 

defense to prevent the spread of any contamination outside of the RCA which encompasses all 

areas where workers should expect possible radiation levels.  

1.2.1. Radiological Survey Task 

As a means of verifying the integrity of the containment and control system, DOE standards 

[7] [12] recommend surveying all areas that could potentially become contaminated, or the entire 
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RCA. LANL has adopted these standards and implemented a program for radiation protection. The 

objectives of radiation monitoring found within the program’s documentation [8] are listed as 

follows: 

a) Demonstrate regulatory compliance; 

b) Document radiological conditions; 

c) Characterize workplace conditions and detect changes in those conditions;  

d) Detect the gradual buildup of radioactive material in the workplace; 

e) Verify the effectiveness of engineered and administrative controls in containing 

radioactive material and reducing radiation exposure; 

f) Identify and control potential sources of personnel exposure; and  

g) Determine exposure rates as necessary during each entry to a High or Very High 

Radiation Area (HRA or VHRA) 

Monitoring radiation and contamination levels both instantaneously and over time is a key 

component of the objectives.  

A worker responsible for radiation monitoring is known as a Radiological Control 

Technician (RCT) [7] [8]. Contamination surveys comprise a small portion of the responsibilities 

of a RCT, but the time spent on the task is dependent on the size of the area surveyed and the 

monitoring frequency. Long surveys remove RCTs from other duties including maintaining and 

improving protective containment and controls. In the case of a RA with non-negligible dose rates, 

RCTs are exposed to the hazard for longer periods of time. Despite the possible danger of long 

surveys, it is necessary to fully characterize the radiation and contamination within RCAs and 

minimize worker dose.  
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1.2.2. RCTbot 

To address the hazard to RCTs and improve the efficiency of their tasks, PT has proposed 

using a mobile platform to complete the task known as RCTbot. The first generation of RCTbot is 

shown in Figure 1-2. The RCTbot serves as a tool for RCTs to survey RCAs remotely. Ideally, the 

system monitors large areas autonomously for long periods of time, requiring RCT intervention 

only when unexpected contamination is found. The system must navigate RCAs, take radiation 

measurements, alert an RCT to detected radiation, and maintain a spatially and temporally accurate 

record of the entire space. The robot will need to perform better – safer, longer, more reliably – 

than a human in order to meet the criteria for dose limitation practices in a DOE plutonium facility. 

The guidelines state that “no practice shall be adopted unless its introduction produces a positive 

net benefit [7]” which is to say that a robot must quantifiably improve worker safety in order to be 

deployed. 
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Figure 1-2: First generation implementation of RCTbot. 

Thus, before the system is deployed, PT must prove that the robot will produce a net benefit. 

If the robot is able to consistently survey areas over time without RCT intervention, the RCTs can 

better focus their efforts on increasing overall worker safety as well as reducing their own exposure 

time in case of contamination. Furthermore, RCTbot offers a means to collect better data on the 

surveys than is possible using human operators. In order to navigate the RCA and keep the required 

record of contamination, the RCTbot continuously updates both its spatial and radiation maps. We 

propose that the benefit to RCTs increases with the level of autonomy of the RCTbot. The technical 

challenges that must be addressed are listed in the next section. 
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 TECHNICAL CHALLENGES FOR MOBILE SYSTEMS  

The radiation survey can be broken down into more primitive robot jobs. RCTbot must 

ideally 1) navigate the area, 2) avoid collisions with static and dynamic obstacles, 3) measure for 

radiation at specified locations in the RCA, 4) alert RCTs to detected contamination, 5) 

communicate its results to supervising operators in a clear and archivable format, and 6) complete 

the above tasks reliably and routinely. Each of these more primitive jobs must be considered for 

the systems to demonstrate the required level of autonomy for deployment in PF-4.  

1.3.1. RCTbot Navigation and Collision Avoidance 

Autonomous navigation has been a well-studied area in mobile robotics [14] [15]. Most 

navigation schemes involve using various sensors to create a map of the environment. When the 

robot later matches its sensor data to the map, it can estimate its position using probabilistic 

techniques [14]. Simultaneous Localization and Mapping (SLAM) is a common technique in 

navigation in which the robot explores an unknown environment and builds a map as it goes, 

constantly keeping track of its location relative to what it has previously mapped [14]. Autonomous 

navigation requires the robot to generate a map and localize within it without a human in the loop. 

The current RCTbot platform performs autonomous navigation by using SLAM to generate maps 

of the RCAs, and thereafter implementing Adaptive Monte Carlo Localization (AMCL) [14] to 

track its position or localize. This and many other techniques for completing navigation and 

collision detection exist. Thus, the focus of this effort is their implementation instead of their 

development. 
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A subset of navigation required for RCTbot is Complete Coverage Path Planning (CCPP). 

In this type of robot navigation an autonomous system generates a plan to visit every accessible 

point in the environment [15] [16]. Complete and verifiable coverage is required for RCTbot to 

guarantee that an area is contamination free. Numerous CCPP algorithms exist and will be 

discussed in detail in Chapter 2. Chapter 3 will compare algorithms and discuss implementation 

for the survey task. 

1.3.2. Radiation Measurements 

The survey of the entire RCA requires both coverage planning and sensor integration. RCTs 

currently use various methods to survey different parts of the RCA which will be discussed further 

in Chapter 3 [17]. In one configuration, the current RCTbot platform monitors the entire floor. In 

another configuration, the system may move to particular locations (designated by the operator or 

in a grid) to take readings. The survey requires the correct integration of radiation detection 

sensors. LANL uses alpha sensors for the detection of SNM like plutonium which have very 

specific requirements for valid surveying. The type of sensor is an important consideration for both 

robotic and radiological reasons. Examples of an alpha detection meter and probe used at LANL 

are shown in Figure 1-4 and Figure 1-3.  

 

Figure 1-3: Ludlum Model 43-32 Air Proportional Probe [18] 
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Figure 1-4: Ludlum Model 139 Radiation Survey Meter [18] 

Most coverage algorithms assume that if the cross-sectional area of the robot passes over a point, 

it is covered. In the case of the radiation survey, algorithms need to be adapted such that the area 

considered corresponds to the active surface of the detector probe.  

To complicate navigation matters, the detection of radiation is inherently probabilistic 

because “radioactive decay is a random process [19].” Uncertainties in both the measurements and 

detectors require longer counts in order to adequately quantify radiation. The detectors become 

more useful for sensing low levels of radiation, the longer they are in range of a radiation source. 

This means that the chance of a moving detector sensing radiation improves given greater probe 

surface area, smaller source-to-probe distance, and slower navigation speeds. By design, a robotic 

platform maintains constant detector position and velocity more reliably than a human operator. 
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Humans are prone to distraction since finding contamination is rare, ergonomic concerns, and the 

mundanity of the task. In addition, the use of robotics, allows RCTs to rethink what kind of sensors 

and surveys are possible. The impact of these new design opportunities will further drive the 

navigation requirements and are discussed in Chapter 3.    

1.3.3. Contamination Detection Management 

If PT’s control and containment systems never fail, the RCTbot will continually survey and 

find no radiation or contamination. In the real-world, statistics and experience show that the robot 

will eventually encounter contamination. As a minimum requirement for deployment, the robot 

must not spread contamination and make the problem worse. How the RCTbot handles positive 

readings may change over time, but initially, the robot should halt its survey path and signal an 

RCT for assistance. The way in which RCT is contacted is a subject more suited for a Human-

Robot Interaction study, so for the scope of this work, the robot will turn on warning lights, sound 

an alarm, and note the location of the contamination on its survey map. 

Once an RCT has handled the contamination, the RCTbot must decide how to proceed. A 

number of compromising events could have happened that require a decision from the robot. 

Depending on the length of time the robot was halted, it may be prudent to start a completely new 

survey. It is important that the robot handles the partial survey from before if it is unable to 

complete it in a timely manner. The robot might also have to deal with a depleted battery, causing 

it to find a charging station, recharge, and then remember where it left off in the survey. In the 

future, the RCTbot might be required to assist the RCT with the cleanup, necessitating much more 
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complex task planning capabilities. Chapter 3 gives details on how RCTbot is designed to handle 

positive readings for the purpose of this work.  

1.3.4. Robust and Routine Operation 

Survey tasks must be completed robustly and routinely. Real-world environments 

demonstrate spatio-temporal characteristics. The area’s physical layout changes over time in ways 

that can disrupt normal robot operation. Robust operation at future times and in mutable 

environments must be addressed. RCTs are responsible for surveying the RCA from initial 

operation to deactivation and until final Decontamination and Decommissioning (D&D) [7]. Thus, 

the survey task is effectively indefinite. For a robot, this sort of long-term task is challenging given 

the nature of the task will inevitably and significantly change over its tenure. It requires the robot 

retain autonomous behavior in terms of navigation, sensing, and record keeping.  

Long-term autonomous navigation in mobile robotics has not been adequately addressed in 

the literature. Robots navigate by collecting sensor information and building a static map of the 

environment. As it moves through the environment, a robot will match sensor information with 

the known map and ensure its position is defined. It is generally assumed the map remains true to 

the environment for during the assigned task, and that anomalies are temporary and can be 

addressed and a case-by-case basis and then forgotten. Currently, there is little need to remember 

the robot encountered an operator in the hallway at a particular location on a particular night as 

this information is not useful for future planning. What matters is the robot has the capacity to plan 

for the task in the static environment where the task (i.e. survey) is completed.  The most popular 

method for long-term navigation is to use continuous SLAM, discarding past memory of areas as 
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new information is received. Continuous SLAM is memory intensive, but modern processors are 

able to handle the requirements. As a result, many deployed, autonomous robots demonstrate some 

form of this technique. 

Coverage algorithms only guarantee completeness for fully-known maps. Some methods 

using continuous SLAM are used for exploration and coverage of all known spaces, but 

antagonistic examples can always be found to show incomplete coverage. If the coverage problem 

is vacuuming a floor in a house, this is adequate. Incomplete coverage is unacceptable when 

radioactive contamination could exist in a traversable area and be missed by the RCTbot. A 

complete map of the environment is required. In real-world applications such as the busy 

production areas of PF-4, the environment will change over time. This change will be reflected in 

the robot’s sensor measurements, but not the static map. The static map can no longer be discarded 

as in continuous SLAM because it contains information that the robot’s sensors might not be able 

to find without it. Still, the map cannot remain unchanged as the only reference point for the robot 

to localize. The discrepancies in the static map will eventually accumulate to the point where the 

robot cannot reliably complete the survey.  To avoid this, the static map must be updated to match 

the real, spatio-temporal environment. Thus, it is necessary for the navigation package to 

determine the difference between changes in the static environment and dynamic changes that may 

only exist for one or few runs. 

A robot must be able to maintain its static map over time. This Spatio-Temporal Map 

Maintenance (STMM) is necessary for long-term autonomy. Not only must the robot retain the 

ability to navigate in the space, but it must also produce accurate, interpretable contamination maps 

for RCTs. If an RCT cannot recognize places of importance on the robot’s map, the map is useless. 
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The RCT will have to manually survey the real environment, and the robot has failed to remove 

the necessary human intervention. Chapter 4 of this work discusses how a robot uses STMM to 

autonomously update its belief about the environment over time in order to increase its usefulness 

when deployed in a real-world environment.  

 OBJECTIVES AND ORGANIZATION 

The sections above describe problems in deploying autonomous systems into real-world 

environments. The length and routine nature of a task are often neglected when new autonomy 

algorithms are presented in literature. Robots incapable of maintaining autonomy over time negate 

their usefulness and human operators will remove them from the task. This thesis seeks to address 

some of the barriers that autonomous robots encounter with long-term deployment.  

The main objective of this work is to demonstrate the readiness of an autonomous robotic 

system for deployment. For the RCTbot task described previously, the system must continually, 

and autonomously perform a radiation survey for an indefinite length of time. The robot must also 

prove itself discernably better for the task than a human RCT. To accomplish these goals, the robot 

should be capable of high-fidelity navigation through large spaces, accurate radiation sensing, 

verifiably complete coverage, competent planning and task management, and self-updating its 

environmental beliefs.  

If the RCTbot system can demonstrate the capabilities listed above, it will be ready for 

deployment into the real-world environment of PF-4. The following chapters will show how this 

is accomplished: 
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 Chapter 2 provides background on how robots have performed in situations similar to the 

RCTbot task. It gives examples of popular navigation algorithms including continuous SLAM 

and complete coverage. Finally, it discusses progress in the literature toward spatio-temporal 

updating of robot maps. 

 Chapter 3 describes how humans handle the radiation survey task and proposes the methods 

to be used by the RCTbot. It compares various coverage algorithms and discusses which is 

implemented by the RCTbot. Finally, it shows the verification process for guaranteeing 

complete coverage. Special attention in this chapter is given to a single cycle of the survey 

task. 

 Chapter 4 extends the work described in Chapter 3 to completing the task routinely over an 

extended period of time. It introduces the RCTbot’s STMM method for updating beliefs about 

a slowly changing, spatio-temporal environment and explains how these updates influence 

decision-making in the system. 

 Chapter 5 sets up an experiment to prove the validity of the proposed method. It parameterizes 

the task and lists metrics for completion including data, results, and discussion of the 

experiment are also provided in this chapter. A comparative analysis summarizing the 

anticipated benefits relative to manual survey methods will be discussed.  

 Chapter 6 summarizes the findings of this thesis. It discusses the implications of the work and 

makes suggestions toward future research areas. 
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Chapter 2: Literature Review 

Researchers have previously approached various aspects of the radiation coverage problem. 

This chapter breaks down the principle technical challenges and discusses how others have 

addressed them in past works. The first section outlines how the radiation survey problem is 

handled currently with and without autonomous systems. Past attempts to incorporate robots into 

nuclear work inform how new methods can be applied to the problem at present. After the brief 

discussion of nuclear topics, the next section presents an overview of the robot coverage problem 

and how researchers have developed it over time. The final section presents all the current research 

into spatio-temporal updating as it relates to robotic localization and mapping. 

 RADIATION AND ROBOTICS 

As in any hazardous industrialized task, rigid guidelines for nuclear work attempt to 

maximize personnel safety. Any autonomous system that is to accomplish the same task must meet 

or exceed the current standards. These standards stem from decades of research and studies with 

constant improvement and feedback from nuclear facilities [20] [21]. In the nuclear industry, 

modern guidelines all relate to the ALARA principle [21] [22]. The guidelines in literature seek to 

provide solutions to some of the greater difficulties encountered in meeting federal requirements.  

Most of the difficulties associated with radiation contamination surveys involve handling 

the probabilistic nature of radiation. Several texts describe methods for handling different radiation 

measurements [19] [23]. In the case of alpha contamination, studies have determined the 

appropriate source-to-detector distance, scan speed, and minimum detectable activity (MDA) to 
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ensure that detectors find any radiation source that could be hazardous to humans during a survey 

[12] [21].  

One of the main challenges of robotic surveying is operating within the appropriate 

restrictions required to optimize radiation detection. Previous work shows that robots are capable 

of radiation surveying. Klimenko et al. demonstrate how weak radiation sources can be found 

efficiently in a wide search area via a sequential search [24]. In the sequential search, a technician 

moves a radiation detector from sector to sector of an area. The measurement duration is shorter 

for sectors that are likely to be clear of contamination. Compared to a uniform search where each 

sector is given the same attention, the sequential search decreases the time needed to find sources. 

Kumar et al. extends this work by automating the search with robots [25]. Finally, Cortez et al. 

designed and implemented a real system as shown in Figure 2-1 to perform a fast search for 

radiation sources after an emergency using the described sequential search method [26]. 

 

Figure 2-1: Khepera II mobile system with installed radiation sensor [26]. 
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The progression of the works listed above results in an autonomous system for a similar 

radiation detection problem with a very different scope. The Khepera system is designed to find a 

source as quickly as possible in a large space during an emergency response situation. Conversely, 

the RCTbot will handle routine, long-term radiation detection where the optimization problem is 

based on certainty and not speed. 

In addition to the system described above, robotics has been used in other nuclear 

applications. Anderson and Ebersole both present a review of the history of robotics and 

automation in the nuclear field [27] [28]. The applications included master-slave teleoperation for 

remote manipulation in hot cells, systems for work in nuclear power plants, disaster exploration 

robots such as the ones used at Three Mile Island, Chernobyl, and most recently Fukushima 

Daiishi, and efforts at Idaho and Savannah River National Laboratories to use mobile teleoperated 

systems for radiation inspection. Most systems deployed in nuclear environments in the past have 

been teleoperated such as the national lab robots or purely exploratory like the disaster evaluation 

robots. Little work has been done to create an autonomous system that learns the environment and 

executes a routine task for long periods of time. 

 COMPLETE COVERAGE PATH PLANNING 

Researchers have studied autonomous navigation planning since the first mobile platforms. 

In the early-1990s, researchers began extending traditional point A to B planning methods into 

coverage path planning (CPP) [29]. Early attempts started with proven navigation methods such 

as graph-based searches and the travelling salesman problem [30] [31] [32] or utilized a heuristic 

approach for long-term probabilistic coverage [33] [34]. 
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In 2001, Choset wrote an extensive review of CPP algorithms up to that point and solidified 

the terminology used by most researchers [16]. Choset had two major contributions: a 

categorization of approaches based on how they decompose the area and a demonstration of how 

optimization parameters drive the choice of algorithm. Robot environment division schemes fall 

into one of three categories: approximate, semi-approximate, and exact cellular decomposition. 

Researchers first coined these terms for traditional robotic path planning, but Choset’s use 

standardized them in CPP literature [35]. Choset shows how optimization criteria drive the choice 

of algorithm. Some tasks such as Cortez’s disaster response Khepera system [26] require 

optimization of speed, while others require optimization of total time [36], overlapping regions 

[37] [38], fuel economy [39], and other criteria [40] [39] [41]. The different approaches will be 

discussed further in sections 2.2.1-2.2.2, and Chapter 3 discusses how optimization drives the 

algorithm choice for this effort. 

Continuing Choset’s work, Galceran updated the CPP review in 2013 and attempted to 

systematically categorize past efforts based on more recent trends in the research [15]. The 

importance of optimization criteria led to implementations that were beyond classical 

decomposition methods [38]. Galceran instead uses a different aspect of classification that Choset 

introduced where planning is either done online—as the robot moves through the environment—

or offline—before the robot begins its task [16]. This dichotomy is used throughout this thesis to 

guide the discussion and compare planning methods. The following sections provide definitions 

and examples of each category. It must be noted that the following sections provide sufficient 

examples for the reader to understand the principles of different coverage algorithms and not a full 

listing of all algorithms developed. For an exhaustive list, the reader should consult [15]. 
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2.2.1. Online Coverage Systems 

Online planning algorithms are akin to “sensor-based coverage” because they rely on data 

from robot sensors instead of a known model of the world [16]. The robot generates coverage plans 

as it moves around its environment and discovers more territory. Because sensor-based methods 

are often reactive by necessity, researchers use them for dynamic environments where it is difficult 

to predict the state of the world at any given time. Galceran and Carreras present many examples 

of online coverage in a summary of CCPP techniques. The majority follow the same basic 

principles of discovering cells during exploration and covering them one by one. The following 

section gives examples of online coverage planning and explains the common principles applied. 

The first example of online planning is Morse Decomposition [42]. In Morse 

Decomposition, a vertical slice is projected across a map and inflection points define cell 

boundaries as shown in Figure 2-2. This is a form of exact cellular decomposition.   

 

Figure 2-2: Morse decomposition with Reeb Graphs [43] 

The critical points form a Reeb graph which yields a navigation plan from cell to cell. The 

robot travels the graph edges depth-first to examine all uncovered cells and covering the area 

within using the boustrophedon method shown in Figure 2-3 or similar coverage paths [16].  
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Figure 2-3: Boustrophedon path [16] 

Traditional Morse Decomposition requires a known map for offline computation [42]. Acar 

et al. extended the method to online problems by combining a loop closure algorithm based on 

Euler’s formula with the Reeb graph [44].  In this method, the robot can only identify critical points 

in its line of sight, therefore, a wall-following path with retracing is necessary for completion. The 

wall-following path is done for discovery of critical points to add to a dynamic Reeb graph 

followed by the boustrophedon path for coverage in the encircled cell. Given an environment with 

little change during a single coverage attempt, Acar proves that online Morse Decomposition can 

perform complete coverage by travelling through the dynamic Reeb graph.  

Similar to Morse Decomposition, Landmark based decomposition involves sweeping a line 

across an area to divide it into cells [45]. Instead of critical points, a number of landmarks are used 

for simpler classification. The robot treats these geometric obstacles as events and creates a new 

cell at each event. The event classifications are shown in Figure 2-4. 

 

 Figure 2-4: Topological landmark events [15]. 
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Each event forms a node in a planar graph representing a topological map of the environment. The 

edges in the graph represent the method of travel between nodes and give information about the 

distances between landmarks [45].  

Furthering this method, Wong developed an online implementation of Landmark coverage 

based on a Finite State Machine (FSM) with three states [46]. A model of the FSM is shown in 

Figure 2-5. 

 

Figure 2-5: FSM describing how to cover an area based on landmark boundaries [46]. 

In the FSM, a robot begins in a boundary state such as a corner. While in the boundary state, it 

explores with the goal to identify all the surrounding cells and add them to the dynamic topological 

map. When the robot has completely explored the border of the cell, the system transitions into a 

travel state where it drives to an uncovered cell in the topological map. On arriving, the robot again 

transitions to a normal state. In the normal state, the robot covers the current cell. Once it completes 

coverage, the system transitions into the travel state again. If in the process of travelling or 
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covering, a new event occurs, the FSM moves to the boundary state to explore more. In this 

manner, the entire space is eventually covered.  

Other types of coverage are often based on slight differences in decomposition techniques. 

The principles remain consistent with those examples given above. Genetic algorithms and neural 

nets use approximate decomposition for online planning. Robots implementing neural nets 

discretize the space into a grid of neurons as shown in Figure 2-6.  

 

Figure 2-6: Neural network coverage [15]. 

Each neuron contains various information about the area it represents including if it is an obstacle 

or whether or not the robot has covered it [47]. This information is used to optimize the coverage 

time by driving the robot towards areas of lower coverage concentration [48].  

All online methods attempt to optimize coverage of an unknown area with respect to 

completeness using reactive behavior. It is important to note that while the environment does not 

need to be known in advance, the majority of online methods require the environment to remain 

static through the duration of the coverage task. If some part of the environment changes in a way 
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that prevents the robot from detecting a region, that region will not be covered. Furthermore, the 

robot will not know that the area was not covered and will report completeness. Chapter 3 will 

discuss the repercussions of this problem in further detail.  

2.2.2. Offline Coverage Systems 

Offline planning algorithms depend on reliable a priori information about the world. They 

assume a static model of the world in order to generate a full coverage path before the robot begins 

motion. Robots implementing offline algorithms use sensors only to ensure that the pre-planned 

path is being followed. Pure offline systems do not react well to changes in the environment as 

they require matching sensor data to the static map to remain localized. The section below provides 

examples of offline coverage implementations and describes the general principles applied. 

The first example of offline coverage algorithm is wavefront propagation [30]. In wavefront 

propagation, the robot requires a known map of the environment. It discretizes the map into equal-

sized cells using Choset’s approximate cellular decomposition classification and then 

differentiates the obstacle cells from the open cells. Planning a path is done in several stages. First, 

the robot chooses a start cell and a goal cell. Beginning from the goal cell, each adjacent cell is 

labelled 1, each cell adjacent to a 1 is labelled 2, and so forth until the entire grid is covered by the 

propagating wave. An example is shown in Figure 2-7.  
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Figure 2-7:Wavefront propagation for coverage [15]. 

The blue cells in the figure are obstacles, so the robot does not consider them when propagating 

from cell to cell. Obstacles cause the wave to move around it, so certain cells that are closer in 

direct distance to the goal have higher labels according to the driving distance the robot must take.  

Traditionally, wavefront propagation is used to go from a start point to a goal point via 

gradient descent. The robot moves from the start point to the next adjacent cell with the lowest 

numerical label. This guarantees the shortest path between two points, and it is widely accepted as 

an optimal execution strategy for point to point navigation. Adapting wavefront propagation to 

coverage navigation requires a simple adjustment from gradient descent to ascent. From the start 

point, move to the next cell with the highest numerical label. In this way, the robot will cover every 

cell in the space until the only remaining cell is the goal point with a label of 0. Figure 2-8 shows 

this applied to the map shown in Figure 2-7. 
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Figure 2-8: Path generated by a wavefront planner [15]. 

When the plan path first reaches the 1 labels around the goal, it follows the gradient of 1’s until it 

sees a 2 label. From that point, it explores that path until it eventually returns back to the 1’s around 

the goal. This form of coverage guarantees coverage of the space with some retracing of paths.  

The next example of offline planning is the Spiral Spanning Tree Coverage (STC) algorithm 

designed to eliminate retracing [49]. Like in wavefront propagation, the algorithm requires a 

known, static map to decompose into cells. Dissimilarly, the resolution of the cells must be four 

times the scan cell size so each mega cell is made of four coverable quadrants as shown in Figure 

2-9. 

 

Figure 2-9: Grid for the Spiral-STC method [15]. 
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This form of discretization is rougher than other types, and so only simpler, rectilinear 

environments can be covered.  

To cover the space, the robot plans to reach each mega cell. When traversing the mega cells, 

it follows around the minor cells on the outside boundary of the entire space. When the robot 

covers part of each mega cell, it retraces through the minor cells until it reaches the start again in 

the spiral shape from which its name derives. Figure 2-10 shows the coverage path. 

 

Figure 2-10: Path generated by the Spiral-STC method [15]. 

The robot must traverse all of the minor cells in a mega cell when they first enter it if it is only 

connected to the graph by one edge. Otherwise the robot only partially covers the mega cell and 

finishes it when travelling back to start. 

Using the Spiral STC method, a robot is sure to find an optimal path through the space 

without retracing. It is limited by the resolution of the mega cells in the map however, and not very 

useful for more realistic environments.  
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 SPATIO-TEMPORAL SYSTEMS 

In contrast with coverage planning, spatio-temporal research is a relatively new topic for 

robotic systems. Foundational work began with Biswas in 2002 [50], leading to multiple 

documented studies being published in 2005 [51] [52] [53] [54]. Many papers focus on localization 

improvements [53] [55] [56]. Some later papers examine spatio-temporal insights into patterns 

[57] [58]. Others focus on improving general mapping techniques [59].  

The types of sensors used for determining elements of spatio-temporal characteristics also 

vary from paper to paper. Some focus on stereo images [55]. Others look at range data from 

LIDAR units [56] [60]. A group of researchers from MIT has developed an abstract framework 

for generic feature-based mapping [59], which is the basis for work in Chapter 4. 

While this effort shares many of the same ideas present in literature, the implementation 

details required for the real-world environment described in Chapter 1 differ. Chapter 4 provides 

more information about the application of spatio-temporal reasoning in real-world environments.  

 SUMMARY 

A review of recent efforts in radiation surveying, robotic coverage planning, and 

autonomous map maintenance showed that additional efforts are necessary to accomplish 

autonomous radiation coverage surveys over long periods of time, where it will not be feasible to 

manually re-map the areas for every change in the environment.  

Each section above describes different aspects of the overall problem and discusses how 

researchers have approached similar problems in the past. Section 2.1 describes previous work in 

radiation surveys. While previous research focused on quickly finding a radiation source known 

to exist, no one has addressed the problems of searching for low levels of contamination that may 
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not necessarily be present. This effort shows how a robot can reliably survey for incidental 

radiation on the ground in large spaces.  Next, Section 2.2 identifies multiple coverage algorithms 

in the established literature that could be implemented. The detailed descriptions support the 

selection methodology Chapter 3 presents for the application to radiation surveying. Finally, 

Section 2.3 introduces concepts from spatio-temporal reasoning research. The previous efforts to 

address the spatial-temporal issues each succeed in demonstrating increased autonomy in certain 

situations, but most do not meet several requirements identified for this task including: 

 Map maintenance 

 Map prediction 

 Map legibility 

To address these issues, this effort proposes a STMM method based on work presented in 

[59]. Chapter 4 provides explanations of the theory of the STMM algorithm and Chapter 5 provides 

an experiment and evidence for its effectiveness. 
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Chapter 3: Alpha Contamination Survey 

Before it is deployed in real environments, the RCTbot must accomplish the radiation survey 

task at least as well as current methods, while improving in areas such as worker safety, survey 

accuracy, and scan frequency. This chapter provides a detailed description of how the RCTbot 

completes an alpha contamination survey. It includes a description of the task requirements, 

current RCT methods, a comparison of CCPP algorithms, a description of chosen algorithm and 

implementation details, and explanation of the verification process. 

 RCT SURVEY 

The Code of Federal Regulations (CFR) includes requirements for “Monitoring of 

Individuals and Areas” as it relates to 10 CFR 835: Occupational Radiation Protection [61]. From 

these requirements, the DOE created recommendations of controls for radiological tasks [12] and 

specifically adapted these for plutonium facilities like the one at LANL [7] 

LANL must abide by the regulations put forward in 10 CFR 835 as part of its federal contract 

[8]. The lab meets the requirements by implementing procedures developed according to the DOE 

guidelines [7]. The specific procedures for the survey task designated in Chapter 1 are outlined 

and described in a set of internal work and process control documents [17] [62] [63] [64]. 

3.1.1. Requirements 

A ground radiation contamination survey is only admissible under certain criteria. Many of 

the criteria outlined in the process control documents do not relate to autonomous surveys. For 

example, insuring proper instrument calibration and RCA designation will still be the 
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responsibility of RCTs. Specifications require that a surface survey is admissible if and only if the 

detector is maintained at a distance no greater than 0.25in (0.5cm) from the surface and moved at 

a velocity no greater than 2 in/s (5 cm/s) [62]. These requirements are deemed necessary to ensure 

the detection of contamination above designated radioactivity control levels [7] [8]. Since a robot 

may allow more precise tracking, the documented requirements may be more conservative than 

necessary to accommodate imprecise humans. Section 3.1.2 briefly discusses the requirements and 

the velocity requirement is reassessed using radiation detection theory.  

3.1.2. Radiation Detection Theory 

The following sections describe the theory and methods used in radiation detection. The first 

section presents terminology and definitions for radiation counting. After that follows an 

explanation of error handling. Finally, the last section shows how the detector velocity requirement 

can be adjusted for better compliance and safety. The theory presented here is consistent for both 

human and robot surveyors alike. 

3.1.2.1. Radiation Counting 

Consider a radioactive point source that decays at a constant rate. The number of decays or 

disintegrations per second (dps) is defined as the activity, 𝐴. A detector measures activity by 

counting the number of energetic interactions per unit time in counts per minute (cpm) or counts 

per second (cps). In most cases, the true count rate from the source is intermingled with background 

noise. Typically, alpha radiation detectors are not affected by background due to the limited 

distance alpha particles can travel in air, but for completeness, background will be included in the 

following theory.  
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The background count is removed from the gross count by  

 𝑟 = 𝑔 + 𝑏  [𝑐𝑝𝑚] 

𝑔 =
𝐺

𝑡
 

𝑏 =
𝐵

𝑡
 

(1) 

where 𝑟 is the total count rate and 𝐺 and 𝐵 are the gross and background count respectively taken 

over a duration 𝑡  and 𝑡 . The best estimate of a mean for a single count 𝐺 or 𝐵 is the standard 

deviation of the count [23]. The standard deviation applies to the gross and background counts as 

 𝜎 = √𝐺   

𝜎 =  √𝐵 
(2) 

From [19], it is shown that the uncertainty in the difference of counts is the sum of their variances. 

Using (1), this is shown by 

 𝜎 = 𝜎 + 𝜎  

𝜎 =  𝜎 + 𝜎 . 
(3) 

Substituting (2) into (3) transforms it into   

 
𝜎 =  

𝐺

𝑡
+

𝐵

𝑡
 (4) 

with the assumption that the variance of time is negligible. Using (1) and (4), the resulting count 

rate is written  

 𝐶𝑅 = 𝑟 ± 𝜎  (5) 
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where is the raw number typically recorded in surveys. Standard error propagation can be used to 

determine the error for the remaining calculations, but it is omitted here for brevity. 

3.1.2.2. Expected vs. Experimental Counts 

 In order to obtain the activity from the count rate, the application of a correction equation 

adjusts the activity. The correction equation is  

 
𝐴 =

𝐶𝑅

𝜖𝐴𝑃𝐵
 (6) 

where 𝐶𝑅 is from (5), 𝜖 is the detector efficiency, 𝐴 is the self-absorption factor, 𝑃 relates to sample 

preparation in testing environments and can be ignored, and 𝐵 is the backscatter factor. Because 

the robot only seeks to detect those particles that exist at the detector, both self-absorption and 

backscatter can be ignored. These are both necessary to determine the true activity, but the 

dangerous activity, in this context, is only that which is detectable. Efficiency is divided into two 

types, intrinsic and absolute. Intrinsic efficiency is the detector efficiency measuring the number 

of pulses incident on the detector over the number counted. Absolute efficiency is the number of 

pulses emitted by the source over the number detected. Absolute efficiency is a function of the 

solid angle between the source and detector. For alpha radiation, the angle is less important than 

the distance between them. Given this, the activity in (6) becomes 

 𝐴 = . (7) 

The results of this section are necessary to derive the maximum velocity at which a person or robot 

can move the detector.  
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3.1.2.3. Velocity Derivation 

The US DOE mandates that SNM handlers perform radiation surveys periodically to prove 

all removable surface contamination (i. e. plutonium dust) remains at activity levels below 

500
 
 [7]. Surveys must ensure that any contamination at or above this activity are perceived 

by the RCT and recorded for later remediation. The requirements in 3.1.1 are conservative 

guidelines to ensure compliance. Requirements such as the distance or the radiation level are 

limited by the nature of radiation and its ability to interact; however, the velocity requirement is 

based on hardware and can thus be improved to allow more flexibility.  

The source requirement is given in 
 
 which indicates that the RCT uses a probe of 

𝑤 𝑐𝑚 × 𝑙 𝑐𝑚 to perform the count and then compares it proportionally to a 10cm by 10cm area. 

Considering that the RCT will move only along the direction of the width or length of the detector 

(non-componential), detectors with either  𝑤 > 10𝑐𝑚, 𝑙 > 10𝑐𝑚 will require fewer cpm to detect 

the specified contamination levels. This enables the RCT to move more quickly over an area while 

still detecting the same amount. If the detector is smaller, the RCT will have to move more slowly.  

As an example, consider the Ludlum 43-1 alpha scintillator. It has an active area of 83 𝑐𝑚 , 

and an efficiency of 33% for Pu-239. Rearranging (7), the count rate at the detector corresponding 

to 500dpm is  

 
𝐶𝑅 =

 
= 166.67

 
 . (8) 

 The count rate is adjusted for the linear, non-componential travel such that  

 𝐶𝑅 = 166.67
𝑐𝑝𝑚

10𝑐𝑚 
 (9) 
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assuming square areas. That is, an RCT moving a probe at the required 5cm/s can expect to detect 

2.78 counts along a 10cm path. For a detector with an area of 83𝑐𝑚 , the same velocity will yield 

 𝐶𝑅

√83𝑐𝑚
= 166.67

𝑐𝑝𝑚

10𝑐𝑚 
 

𝐶𝑅 = 151.84𝑐𝑝𝑚 

(10) 

which would be reported below the specified contamination level if the RCT moved at the same 

velocity. To account for the change, the RCT simply decreases velocity, moving now at  

 151.84𝑐𝑝𝑚

𝑣
=

166.67𝑐𝑝𝑚

5𝑐𝑚
 

𝑣 = 4.56 𝑐𝑚/𝑠  

(11) 

which is the maximum velocity the robot can go to ensure a valid survey. A custom sensor with 

larger dimensions could move faster according to these calculations. It is also important to note 

that unlike a human RCT, a robot can accurately perceive the measurement rate, and maintain 

3.1.3. Technician Survey Methods 

Currently, RCTs survey for alpha radiation with a push cart carrying an alpha scintillation 

detector shown in Figure 3-1. 
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Figure 3-1: Radiation survey cart in use at LANL [63]. 

The probe is attached to the bottom of the cart and extends past the wheels to guarantee coverage. 

The RCT takes readings with the attached counter and records them on a standard form. The survey 

forms are structured as spreadsheets with entries for time, location, reading, and others.  

To survey an entire room, RCTs have to plan a path through the area and step through it 

recording information as they go. Depending on the size and number of survey areas, this process 

can take all day1. When the area is large or complicated, the technicians can lose track of their 

progress in the space and must then retrace sections of the path or they may also fail to complete 

the coverage without realizing it. Another concern is bias towards negative readings. Because the 

RCAs of interest should never have any contamination, RCTs are conditioned to expect the 

absence of contamination. The conditioning can cause boredom or lack of attention when 

                                                 

1 At 5cm/s the RCTbot can traverse a 10m path in 200 seconds. With a 10cm x 10cm detector and accounting for 
navigation imperfections such as turning and obstacle avoidance, the robot will survey a 10m x 10m room in 
approximately 6 hours. Given a hallway 30m long by 5m wide with four 10m x 10m rooms, the RCTbot will save an 
operator approximately 33 hours of surveying time.  
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surveying, which in turn leads to the neglect of the distance and velocity requirements. A robotic 

system can address both of these human complications.  

3.1.4. Frequency 

At the present, RCTs complete surveys under specific circumstances. One reason for a 

survey is the detection of a problem via other means. (i.e. air monitors detect the presence of 

contamination in a RCA). A second reason occurs when RCTs change the classification levels of 

RCAs. An area previously classified as a RA must be fully clear before it can become a RBA. 

Finally, quarterly scans insure compliance with federal guidelines. The scan provides data to 

observe trends and serves as a review of the competence of the contamination control program. 

The requirements are a trade-off between ALARA principles and resource limitations. 

As alpha radiation can be undetectable by other means such as air monitors, there remains a 

possibility that a breach in a RCA could go undetected for some time. The contamination could be 

spread to many more places before the next routine survey and potentially harm workers. More 

frequent alpha surveys reduce the probability of contamination spreading. 

Scans are also sometimes necessary or desired in areas that have other types of radiation. If 

an area was large enough, the time taken to survey it could cause RCTs to receive unacceptable 

doses. In these situations, the survey may be completed over several days, increasing the likelihood 

of recording errors, or give more time for contamination to spread   

The RCTbot can survey around the clock, maintain accurate maps of which areas have been 

recently surveyed, keep RCTs informed of real-time contamination breaches, and monitor for 

trends in the data. It also saves time for RCTs to accomplish other necessary tasks related to worker 
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safety. RCTs must still maintain the instrumentation, respond to contamination alerts, and handle 

the administrative responsibilities, but the time saved from the survey itself and the increased 

amount of data for trends should better enable them to protect workers. The next section will 

provide details about how the RCTbot performs the radiation survey using CCPP algorithms.  

 COMPLETE COVERAGE PATH PLANNING 

Section 2.2 presented the most current literature on relevant CCPP algorithms. The next 

section will explain how CCPP is used in the radiation survey task and the decision process for 

determining which algorithm to apply. The goal of the system is to complete the survey task 

without adding to the RCTs normal workload while meeting the survey count/velocity and 

frequency requirements defined above. If the system complicates technicians overall work more 

than helping, they will stop using it.  

For the radiation survey task, it is more important that a robot assures completeness than 

necessarily performing all measurements in the survey space. RCTs cannot adequately guarantee 

completeness of knowledge about what has been measured in the space, but they can successfully 

take measurements in areas where the robot cannot. An ideal robot surveys all parts of a real 

environment with a fixed detector. An acceptable robot surveys all reachable parts of a real 

environment and accurately reports which areas it cannot. The goal of an autonomous system for 

this task is to reduce the time an RCT spends doing survey tasks while upholding current standards.  

3.2.1. Online vs. Offline Coverage Planning 

The first aspect to consider when determining an algorithm is the type of navigation 

planning. Section 2.2 introduced the concepts of online and offline path planning and their 
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meanings with regard to coverage. The main difference between them is how the robot uses its 

sensors. In online planning, the robot receives information from sensors and reactively makes 

navigation decisions based on what it believes about the environment. In offline planning, the robot 

receives a map of the environment to generate a plan and uses its sensors to adhere to this plan. 

The limitations of the survey task dictate which type of methods a survey robot must implement.  

  Robots using online planning navigate with equivalent precision in static and dynamic 

environments because the sensor history is deleted immediately after processing and all 

information is new. Unfortunately, this also means that the robot is never certain about the true 

state of the environment unless it is observing it. When trying to survey all of the rooms in a 

hallway, the robot can only observe open doorways. A great online algorithm can ensure that each 

of the rooms with an open doorway are completely covered. It cannot provide information to the 

user about the rooms that were closed off while still reporting that the space was fully covered. 

Worse, if one doorway closes during the survey, the robot forgets that the room existed at all and 

still reports full coverage. This is not acceptable for radiation surveys where complete knowledge 

of the contamination state of the whole environment is strictly mandated. The inability of online 

planning methods to guarantee complete coverage of the environment restricts the choice of 

algorithm to offline methods.  

Offline methods know the spatial state of the environment as a prerequisite. This means that 

despite paths being blocked, or changes to certain areas, a robot is always aware that a space that 

should be coverable was not available. This information can be easily relayed to a technician who 

can then manually survey the area. It is not ideal in that an RCT has to survey parts of the space, 

but it is better than losing the knowledge that these parts could still have contamination present.  
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3.2.2. Algorithm Comparison 

Because online methods cannot guarantee coverage, the RCTbot algorithm derives from 

offline techniques. Section 2.2.2 discusses a number of offline methods such as wavefront 

propagation, Spiral STC, Morse decomposition and others. Criteria for determining the best 

include optimality, computation cost, memory cost, and legibility.  

Optimality becomes important when considering both resources used by the robot and the 

frequency of scanning. In larger areas, battery life becomes important, and optimal paths can 

extend the area covered between recharging. Paths that limit retracing also decrease the time for a 

single survey and can help improve scan frequency.  

Computation costs for algorithms are important for a number of reasons. The batteries of 

mobile systems limit the power of the computers onboard. In many robots, the computation related 

to navigation requires most of the processing power. The RCTbot has other computational 

processes such as data collection, obstacle avoidance, radiation calculations, and spatio-temporal 

planning, so the cost of path planning must be as low as possible.  

Memory costs relate back to the requirement of a static map for offline methods. The amount 

of memory required for a robot depends on the resolution of the map and the amount of area being 

covered. A 10𝑚 𝑥 10𝑚 room decomposed into a grid of 𝑚𝑚  requires as much memory as a 

10𝑘𝑚 𝑥 10𝑘𝑚 room in a 𝑚  grid. The number of rooms in memory also factors into the costs. 

Finally, the legibility of the algorithm is important for the technicians who have to analyze 

the data collected by the robot. The correspondence between the robot’s map and the real 

environment can affect how RCTs perform measurements that the robot cannot handle. If an 

algorithm uses complicated decomposition techniques or navigates an unpredictable path, the 
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technician may not be able to accurately determine which areas remain to be surveyed. This is also 

important if a trend is found in the data indicating a recurrent hazard. The technician must be able 

to identify easily the source of the trend from the data.  

3.2.3. RCTbot Algorithm 

Based on the criteria for choosing an algorithm, the RCTbot implements a form of wavefront 

propagation. While wavefront does not optimize as well as Spiral STC, it performs better than 

Morse decomposition. It is not computationally expensive at runtime as the path can be generated 

before motion and stored as a list of cell coordinates for navigation. The memory cost of wavefront 

is higher than Morse decomposition but similar to Spiral STC because each cell is the same size 

regardless of the complexity of the environment. Finally, wavefront is the most legible for RCTs 

because the way the grid is formed and structured resembles how current technicians break down 

a room and survey it. The current design of the survey supports the style of record-keeping that 

wavefront propagation naturally produces. Technicians would not need to learn a new system or 

update any old records to match with the new system. This gives wavefront propagation a huge 

advantage over other offline methods for this specific task. 

The RCTbot must account for the limitations of wavefront propagation. The greatest 

difficulty is the cost of memory for large areas. In this implementation, each room must be loaded 

into the robot manually, but in the future, the robot will manage data on the different areas of a 

facility on a hierarchical basis. Section 3.3 provides the implementation details of the algorithm 

and describes the wavefront propagation in more detail. 
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3.2.4. Verification of Completeness  

The final challenge of autonomous radiation surveying is verifying that the reported 

coverage is as accurate as the robot believes. The robot reports coverage based on a number of 

sources, but each of these sources are internal to the system and subject to bias. Odometry errors 

are common in navigation, sensors such as SONAR and LIDAR have inherent uncertainties, and 

modern mobile navigation techniques are all based in probabilistic methods. Technicians must 

calibrate the robot’s navigation in a similar manner to calibrating radiation instruments. The 

measured data must be compared to known, external data. In order to obtain this data, methods of 

externally monitoring the robot during a coverage task must be implemented.  

Metrics for coverage performance have previously been developed by Wong et al [65]. 

Using external cameras and vision processing, the coverage achieved by a robot can be confirmed 

by external sources. These metrics help evaluate the RCTbot’s navigation and coverage system. 

 RCTBOT COVERAGE ALGORITHM 

Section 3.2 discussed the theory of CCPP, and 3.2.3 in particular discussed the wavefront 

algorithm. The robot performs a three-part process to execute a wavefront CCPP survey from a 

static map. The three parts are discretization, wavefront propagation, and path execution. The next 

sections explain the implementation of each part in detail.  

3.3.1. Discretization 

The robot receives a map in the form of a black and white picture where black indicates non-

traversable space. For a grid-based planning method such as the wavefront algorithm, the 
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resolution of discretization affects the overall coverage plan. Resolution dictates the size of 

individual grid cells and how they fill the space. Either a macro-cell or micro-cell option is 

possible. A macro-cell generally outlines the footprint of the robot; however, it can be any size as 

long as aligning the center of interest (i. e. the center of the sensor) with the center of the macro-

cell results in coverage of the cell. Conversely, micro-cells are smaller than the footprint of the 

robot. The robot can cover more of the micro-cells in complex environments. Figure 3-2 shows an 

example of an environment with a macro-cell and micro-cell discretization. 

         

Figure 3-2: Example of micro-cell vs. macro-cell decomposition. 

The robot cannot navigate its center in certain hard to reach areas, leaving macro-cells near walls 

and in corners difficult to cover. The sensor reaches more of the same area if it is discretized into 

micro-cells, leaving less for a human RCT to cover afterward.  

 The majority of grid-based plans assume macro-cells because it is simpler to calculate the 

optimal navigation path. Because any point that is on the robot’s sensor (not just the center point) 

could cover a micro-cell in the map, it is a difficult challenge to plan micro-cell coverage. It is also 

more memory intensive to plan for all micro-cells than macro-cells. For a radiation survey, a 

compromise is to use the detector’s footprint for navigation instead. Placing the center of the 

detector over a point of possible contamination is necessary to obtain the most accurate reading. 

For this work, coverage planning will use macro-cells based on the footprint of the detector. In 
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future work, the plan will use a hybrid cell approach such as in [66] where areas closer to complex 

obstacles will have a denser population of fine resolution cells, and areas in free space will use the 

detector footprint.  

3.3.2. Wavefront Propagation 

Once the robot has a fully discretized map, it applies the wavefront algorithm to generate a 

coverage navigation plan. Section 2.2.2 outlines the concept of wavefront propagation. The robot 

designates a start point and a goal point (usually a cell near the start or in some other strategic 

position like a charging station). It labels the goal as the zeroth layer. Then it increments the layer 

number in each adjacent, unlabeled cell until the space is completely filled. The wavefront 

algorithm assumes macro-cell discretization when ordering the cells in the path plan.  

3.3.3. Plan Execution 

It executes the path by navigating from one cell in the path plan to the next until it has 

surveyed all of the reachable cells. Figure 3-3 shows a decision tree for the process. After the robot 

begins surveying, it can only terminate by returning to the dock after completion or awaiting 

operator instructions. Naturally, error states could occur where the robot is unable to complete the 

plan, but these events are not included in the plan for execution. Two of the decisions in the tree 

concern whether to continue scanning or terminate and return to the dock and the others involve 

informing the operator.  

The first layer of decisions check to see if the robot can possibly cover more cells after its 

initial attempt. This accounts for dynamic obstacles that might have occupied a cell during the first 

scan such as a person or a cart. The likelihood of coverage mentioned in the block on the left side 
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relates to the occupancy prediction for cells the robot could not cover. Cells with a prediction near, 

but below the threshold for the static map are much more likely obstructed than cells sufficiently 

far below probability. The robot would return to investigate cells that had a low prediction 

probability and ignore those with a higher value. The tendency of the robot to return to difficult 

areas additionally provides more data where it might have lacked previously.  
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Figure 3-3: Decision tree for the CCPP algorithm. 
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The second set of decision questions relate to the robot-operator interactions. The first occurs 

during the survey stage where the robot discovers contaminations and must alert its operator to the 

problem. The other decision only takes place after the robot attempts to cover all possible cells, 

accounting for the likelihood of coverage. The robot either reports the unvisited cells to the 

operator or returns to its dock until the next scheduled survey. It is important that the robot informs 

the operator of the uncovered space in case it persists into future surveys and an area is continually 

uncovered.  

 SUMMARY 

This chapter demonstrated the necessity and utility of a robot for radiation surveys. The 

RCTbot implements wavefront propagation to execute complete radiation area coverage. It is able 

to perform radiation surveys with more frequency, precision, and speed than a human. It works 

alongside RCTs, handling the majority of surveys so that RCTs can focus on other important tasks 

without sacrificing worker safety.  
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Chapter 4: Spatio-temporal System Explanation 

The previous chapter describes the task specific challenges of radiation surveying with the 

RCTbot. This chapter describes the theory of STMM and how a robot uses it to update its 

environment map and improve its long-term autonomy. The overall goal of STMM is to keep the 

robot’s map comparison close enough to the true state that it can still be used in navigation. 

 REALISTIC ENVIRONMENTS FOR ROBOT OPERATION 

As previously mentioned in Chapter 1, real environments have spatio-temporal 

characteristics. That is, the physical layout of the environment changes over time and nothing 

remains indefinitely static. The rate at which the environment changes is important for decision 

processes in autonomous systems.  

4.1.1. High and Low Dynamics 

Researchers describe the spatio-temporal state of a system in terms of dynamics. A low 

dynamic environment is one that changes with low frequency compared to a specified frame of 

reference, and a high dynamic environment is one that changes more frequently. For autonomous 

radiation surveys, the frame of reference is the time to complete scans. If a scan area has many 

changes during a scan, then it is a high dynamic area. If the area changes very little during a scan, 

then it is low dynamic. A semi-static environment changes minimally between scans. 

RCTs perform radiation contamination surveys in generally low dynamic areas. RCAs are 

tightly regulated, and most large obstacles that could affect localization scores are permanent 

fixtures that will seldom change position. Due to the low dynamics, RCTbot can approximate the 
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environment as static. So long as the changes between surveys still allow for localization, the robot 

can relay any failures to survey an area back to the RCT and the survey can still be useful. 

Otherwise, the system could fail to localize and any survey data obtained would be illegible to 

technicians.  

4.1.2. Adaptive Permanence 

The environment as a whole has a certain type of dynamics, but objects within it can differ 

in how permanent they are. Some objects such as walls, cabinets, columns, and doorframes are 

generally static. Other objects, such as forklifts, gloveboxes, and doors are not necessarily static 

in the environment, but exhibit varied degrees of permanence. Furthermore, the permanence of 

any obstacle in the environment can adapt over time. When a new cabinet is installed, the robot 

will believe it to be temporary for a while. Over time, its belief in the cabinet’s permanence 

changes to reflect the true state. Likewise, if a wall that has been around for many years is torn 

down in a construction project, the robot might believe its sensors have simply failed to detect it. 

Over time, the permanent state of the wall diminishes though because the robot receives more 

evidence that the object no longer exists. 

Static elements assist the robot in maintaining an accurate spatio-temporal map of the area. 

These objects are often prominent features used for localization, and their tendency to remain static 

bolsters the likelihood the robot will successfully localize despite small changes in other obstacles.  

Semi-static objects are also useful. Forklifts might follow a schedule that intersects with a 

survey at certain points. Doorways could be open or closed depending on the time of the day. 

While the spatio-temporal state of these obstacles is not static, it is still informative. Patterns and 
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trends in these semi-static objects can inform navigation decisions. For example, if a door to a 

room is opened and closed many times on a certain day of the week, but left open all the time on 

another day, the robot can plan to visit that room when it is most accessible. If a forklift works in 

a certain part of a factory floor on the first week of every month, avoid that area during the time.  

Adaptive permanence in objects in the map can be leveraged to make more intelligent 

navigation decisions. This helps improve the optimality and legibility of the algorithm and 

increases the robot’s usefulness for technicians.  

 PROBABILISTIC UPDATING 

The previous section detailed the importance of spatio-temporal updating for maintaining 

the RCTbot’s ability to complete its task. This section gives a brief overview about how the robot 

performs the update process through data collection and map updating. 

4.2.1. Data Collection 

The data collection method for spatio-temporal updating is completely dependent on the 

robot’s navigation sensors. The robot’s sensors collect vast quantities of data when performing 

localization. This data is compared to the static map and then removed from memory. Spatio-

temporal updating requires saving the collected data, filtering it with probabilistic methods, and 

generating a snapshot of the map after each scan. As a motivating example, consider the area 

shown in Figure 4-1.  
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Figure 4-1: Storage environment as expected (left) and with an unexpected obstacle (right). 

The storage area is usually free of any semi-static obstacles. Between scans, someone has 

placed a trash can. As the robot surveys the area, it develops the data shown in Figure 4-2.  

 

Figure 4-2: Storage area with robot’s static map (black), perceived map (yellow), and 
probabilistic map (orange). 

As it moves through the environment, it localizes by comparing the yellow of the data points 

to the black data that is the static map. After visiting an area, the points that have been filtered and 

saved in memory remain as the orange. Figure 4-3 shows the robot’s static map, or belief about 

the environment side by side with the latest completed scan. 



53 

 

         

Figure 4-3: Perceived map data from storage area with and without obstacle. 

The majority of the objects remained the same. The robot still managed to localize despite 

the presence of the new object in the middle shelves, and so it completed the scan while reporting 

the area beneath the trash can as uncoverable. In many cases, the trash can will be removed before 

the next scan, and the static map will remain accurate enough, but other objects like a newly 

installed cabinet might not. Any small changes in the perceived obstacles reflected in data must be 

stored and analyzed by the system in order for the robot to continue reliable operation. 

4.2.2. Probability Map 

This effort has established that generated maps do not usually match the reality, but the 

disparity can be addressed using probability maps. A probability map is used to contain the robot’s 

beliefs about the state of the environment. It contains information about which obstacles most 

likely exist at the beginning of a scan and also how likely they are to exist in the data collected 

after the scan. Based on typical robotic sensor data, the probability map is list of points in the 

environment and their corresponding probabilities of occupancy. Consider the example in Figure 

4-4.  
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Figure 4-4: Perceived map data from storage area with and without obstacle. 

The static map on the left shows a room with three shelves and a larger cabinet. When the 

robot next scans the room, the cabinet has been moved to the opposite wall. The shelves still allow 

the robot to localize, but the cabinet has changed its spatial state. From this observation, the robot 

generates the map on the right. It creates a set of points representing the shelf on the right side of 

the room and assigns a low confidence value to it. The robot also decreases its belief about the set 

of points representing the obstacle on the left side of the room. Both sets exist in the robot’s 

probability map, but one is more likely than others. Semi-static objects exist in many possible 

locations, so they reoccur in the probability map. More permanent objects are reconfirmed with 

every scan, reinforcing the robot’s belief in their existence. It takes much longer for a wall to be 

removed from the robot’s memory than a cart.  

The probability map is consulted before each scan to determine what the most likely static 

representation of the environment will be. This maximizes the chance that the robot will 
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successfully localize and complete the survey. The next section explains how the robot’s data is 

used to develop the probability map between scans.  

 BAYESIAN SURVIVAL ANALYSIS 

To make intelligent decisions about how to populate the static map, the robot must estimate 

how long each collection of points in an object will survive, or remain spatio-temporally static. 

The robot decides based on the probability that each point comprising the object remains occupied 

space in subsequent surveys. This work generates estimations based on previous literature where 

Bayesian Survival Analysis (BSA) characterizes feature persistence [59]. BSA, described in [67], 

involves developing probabilistic prior distributions based on the relative survival time of features 

in the environment. Survival time describes the duration of existence of a feature in a real 

environment. It helps the robot predict the true state of occupancy for each point between surveys 

by predicting how long each point remains an obstacle in the probability map. The following 

section details the theory of BSA based on Rosen and used for STMM. 

4.3.1. Environment Modeling  

Consider the laser range data surveyed by the robot as individual points. Each data point 

encodes information about its occupancy state as a Boolean random variable – the point is occupied 

or not. Throughout this analysis, a single point in the map is considered but the algorithm can be 

extended to evaluate a vector of points that comprise the probability map.  
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The state for a single point can be modeled as  

 𝑋 ∈ {0,1}  

(12)  {𝑡 } ⊂ [0, ∞) 

where 𝑋  is a variable encoding the true occupancy state of the point as a Boolean value at each 

time 𝑡. The robot takes measurements over 𝑁 intervals to obtain  

 {𝑌 }  ⊆ {0,1} (13) 

where 𝑌  represents the noisy sensor observations.   

The relationship between the true occupancy state, 𝑋 , and the observations of that state, 𝑌 , 

is given by  

 𝑌 |𝑋 ∼ 𝑝 (∙ |𝑋 ) (14) 

where 𝑝 (𝑌 |𝑋 ) is a conditional probability distribution modelling the uncertainty in the detection 

system. Two types of uncertainty govern the distribution for sensors: the probability of missing a 

point object given that it is really present, 𝑃 , and the probability of reporting an absent point 

object as a false positive, 𝑃 , formalized as  

 𝑃 = 𝑝 (𝑌 = 0 |𝑋 = 1) 

(15) 

 𝑃 = 𝑝 (𝑌 = 1|𝑋 = 0) 

 𝑃 , 𝑃 ∈ [0,1] 

Both assume that the uncertainty represented is systematic to the detector, and therefore 

constant throughout the analysis. The next section introduces the framework for estimating 

survival time in the system described above. 
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4.3.2. Survival Time in a Bayesian Framework 

Let 𝑇 ∈ [0, ∞) be the survival time of a point object. The conditional relation to the 

occupancy state is  

 𝑋 |𝑇 =
1, 𝑡 ≤ 𝑇
0, 𝑡 > 𝑇 

  (16) 

where 𝑡 is described in (12). For all times up to and including 𝑇, the point object survives, and for 

all times after 𝑇, the object ceases to appear in the environment. 

The robot’s goal then, is to predict 𝑋  for all points in the next scan given the past information 

on whether a point has survived until that moment and evidence from the robot’s sensors. 

Predicting 𝑋  based on prior knowledge and sensor evidence suggests the use of Bayesian 

inference. Bayes’ Rule is given by  

 
𝑝(𝐴|𝐵) =  

𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
 

(17) 

where 𝑝(𝐴|𝐵) is called the posterior probability, 𝑝(𝐵|𝐴) is called the likelihood, 𝑝(𝐴) is the prior 

probability, and 𝑝(𝐵) derives from data or evidence, which is often taken as a normalization factor 

because it does not depend on the state variable 𝐴 [14] [68]. In terms of the model from Section 

4.3.1, the random variable for observations,  𝑌 , is realized as 

 𝑦 : ≜ 𝑦  (18) 

and the random variable for the true state, 𝑋 , is realized as  

 𝑋 = 1 (19) 
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for all times of interest through time 𝑡 = 𝑇. To interpret Bayes’ Rule in terms of the model, it 

becomes 

 
𝑝(𝑋 = 1|𝑦 : ) =  

𝑝(𝑦 : |𝑇 ≥ 𝑡)𝑝(𝑇 ≥ 𝑡)

𝑝(𝑦 : )
 

(20) 

where it is implied from (16) that 𝑋  shares a relationship with 𝑇 such that the likelihood and the 

prior are written in terms of survival time.  

The prior distribution in (20), 𝑝(𝑇 ≥ 𝑡), is best represented by a Probability Density 

Function (PDF). Consider the following PDF, 𝑝 , that defines the prior distribution of T.   

 𝑇 ∼ 𝑝 (∙) (21) 

Section 4.3.4 specifies the exact form of the distribution, but the function  

 
𝐹 (𝑡) ≜ 𝑝(𝑇 ≤ 𝑡) =  𝑝 (𝑥)𝑑𝑥 

(22) 

generally describes the distribution and allows the prior in (20) to become  

 𝑝(𝑇 ≥ 𝑡) = 1 − 𝐹 (𝑡) (23) 

by letting the integral in (22) go to 1 as 𝑡 → ∞.  Additionally, the likelihood function generalizes 

to  

 𝑝(𝑦 : |𝑇) = 𝑃 (1 − 𝑃 ) 𝑃 (1 − 𝑃 )  
(24) 

in terms of the error parameters 𝑃  and 𝑃 . This indicates that the probability of the sensor 

measurements being correct given the known survival time, 𝑇, of the point object depends on the 

product of the probabilities of missing the object in each scan before 𝑇 and the probabilities of 

falsely sensing the presence of the object in each scan after 𝑇.  
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Consider 𝑡 ∈ [𝑡 , ∞), or any time after the last measurement. Using (24) with the likelihood 

for the case that 𝑇 ≥ 𝑡, yields  

 
𝑝(𝑦 : |𝑇 ≥ 𝑡) = 𝑝(𝑦 : |𝑡 ) = 𝑃 (1 − 𝑃 )  

(25) 

which summarizes all possible errors before 𝑡 = 𝑡 . Finally, notice that the right-continuous 

function from (24) is constant on the intervals [𝑡 , 𝑡 ) ∀ 𝑖 = 0, … , 𝑁 if 𝑡 ≜ 0 and  𝑡 ≜ ∞. By 

integrating across all values of 𝑇, the evidence term in closed form develops as  

 
              𝑝(𝑦 : ) = 𝑝(𝑦 : |𝑇) ∙ 𝑝(𝑇)𝑑𝑇 

          =  𝑝(𝑦 : |𝑡 ) ∙ 𝑝(𝑇)𝑑𝑇 

                =  ∑ 𝑝(𝑦 : |𝑡 ) ∙ [𝐹 (𝑡 ) − 𝐹 (𝑡 )] 

(26) 

where (22) defines 𝐹 . Substituting (23), (25), and (26) into (20) yields  

 
𝑝(𝑋 = 1|𝑦 : ) =  

𝑝(𝑦 : |𝑡 )

𝑝(𝑦 : )
1 − 𝐹 (𝑡) , 𝑡 ∈ [𝑡 , ∞) 

(27) 

which is the Bayesian form of the survival probability for a single point object.  

4.3.3. Recursive Bayesian Estimation 

Now that a term for the posterior probability exists through BSA, further analysis partitions 

the Bayesian expression into an algorithm for recursive estimation. The recursive algorithm must 

calculate the posterior 𝑝(𝑋 = 1|𝑦 : ) over 𝑡 ∈ [𝑡 , ∞) to demonstrate that the step past the 

current time 𝑡  is taken effectively as all time after 𝑡 . In this manner, the robot recovers a 
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posterior estimation after each scan to be factored into the probability map in time for the next 

plan’s development.  

The first step is looking at the transition from 𝑡 = 𝑡 → 𝑡  and the corresponding effect 

on 𝑦 : → 𝑦 :  in the likelihood and evidence terms. The difference between the parameters 

𝑦 :  and 𝑦 :  in terms of (24) is  

𝑝(𝑦 : |𝑇) = 𝑝(𝑦 : |𝑇) ×
𝑃 (1 − 𝑃 ) , 𝑇 < 𝑡

𝑃 (1 − 𝑃 ) , 𝑇 ≥ 𝑡
  

(28) 

such that, reinforced by (25), the step iteration of the likelihood term becomes 

 𝑝(𝑦 : |𝑡 ) =  𝑃 (1 − 𝑃 ) 𝑝(𝑦 : |𝑡 ). (29) 

This suggests the use of a loop-based algorithm where the step iterator is the time as it transitions 

from 𝑡 = 𝑡 → 𝑡 . 

Likewise, the evidence term determined in (26) iterates using the lower partial sum 

 
𝐿(𝑦 : ) ≜ 𝑝(𝑦 : |𝑡 )[𝐹 (𝑡 ) − 𝐹 (𝑡 )] 

(30) 

and extracting (30) from (26) to evaluate only at N as  

 𝑝(𝑦 : ) = 𝑝(𝑦 : |𝑡 )[𝐹 (𝑡 ) − 𝐹 (𝑡 )] 

                 = 𝑝(𝑦 : |𝑡 )[1 − 𝐹 (𝑡 )] (31) 

because any time after 𝑡  is taken to be  

 𝑡 ≜ ∞ (32) 

and from (22) 

 
𝐹 (𝑡 ) = 𝐹 (∞) =  𝑝 (𝑥)𝑑𝑥 = 1 

(33) 



61 

 

on a continuous, cumulative distribution. Substituting (30)-(33) into (26) yields 

 𝑝(𝑦 : ) = 𝐿(𝑦 : ) + 𝑝(𝑦 : |𝑡 ) [1 − 𝐹 (𝑡 )].  (34) 

When transitioning from 𝐿(𝑦 : ) → 𝐿(𝑦 : ) the final summation term from (30) combines with 

(28) given 𝑇 < 𝑡  and the value of 𝑝(𝑦 : ) to yield 

       𝐿(𝑦 : ) = 𝑃 (1 − 𝑃 ) × 

      (𝐿(𝑦 : ) + 𝑝(𝑦 : |𝑡 ) [𝐹 (𝑡 ) − 𝐹 (𝑡 )])  (35) 

where the false alarm probability term, PF presented in (15), accounts for the chance of survival 

through the time iteration. The iterated lower partial sum from (35) substitutes into (34) to give 

the iterated evidence term. Using the iterated evidence term, the iterated likelihood from (29), and 

the cumulative distribution of the prior, the Bayesian form in (27) calculates the posterior 

probability for the step iteration.  

 The next section presents the theoretical method of determining the prior distribution of the 

state that was left in general form in (22). Chapter 5 details the precise implementation of the 

algorithm on the robot for temporal map updating.  

4.3.4. Generation of Prior Distribution Functions 

The BSA algorithm affects the posterior estimation to the greatest degree in the generation 

of prior distribution function. In (22), the cumulative distribution for 𝑝  is defined by the 

integration from 0 to t of 𝑝 (𝑥), wherein the calculation determines the total probability that the 

object does not survive until the present time, or 𝑇 ≤ 𝑡.  
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The survival function represents a new distribution where 𝑇 > 𝑡 represented by  

 
𝑆 (𝑡) ≜ 𝑝(𝑇 > 𝑡) =  𝑝 (𝑥)𝑑𝑥 = 1 − 𝐹 (𝑡) 

(36) 

where it examines the probability of continued survival after the present time t. Because survival 

time requires predicting the probability of survival past known data, the robot must have a way to 

estimate how hazardous a step of time is to various objects in the environment. The hazard, ℎ (𝑡) 

is a measure of the probability of an object failing to survive each additional time step. It is given 

by 

 ℎ (𝑡) ≜ lim
→

( | )
. (37) 

The conditional probability in (22) can be rewritten as the union of the two parameters over the 

condition such that it becomes  

 ℎ (𝑡) ≜ lim
→

( )

( )
. (38) 

By converting the hazard into an implicit hazard rate or hazard function, and by implementing the 

definitions in (22) and (36), the term becomes 

 𝜆 (𝑡) =
( )

( )
. (39) 

which is equivalent to  
 𝜆 (𝑡) = −

( )

( )
. (40) 

From this, we can state that 
 𝑆 (𝑡) = 𝑒 ( ) (41) 

where  
 

Λ (𝑡) ≜  𝜆 (𝑥)𝑑𝑥 
(42) 
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is the cumulative hazard function. Upon differentiating both sides of (41), the prior distribution 

term becomes 

 𝑝 (𝑡) = 𝜆 (𝑡)𝑒 ( ). (43) 

By writing the prior in terms of only the hazard function, the challenge of BSA is now to estimate 

how time affects the survival different objects in the environment.  

 The prior is the only tunable parameter in the BSA algorithm. The evidence comes directly 

from the robot’s sensors, and the likelihood is a function of the sensor readings. Constructing the 

prior with the hazard function strongly influences inferences made by the BSA algorithm. 

Adjusting the hazard function designs the prior such that it more accurately describes the true state 

of the environment and improves predictions. 

 Rosen proposes three methods for designing the prior via the hazard function [59]. The first 

method proposes a semi-non-informative prior where the survival function undergoes exponential 

decay. The second method, which designs an informative prior, examines how object recognition 

and classification could be used to apply class-specific hazard rates and predict the characteristic 

survival times of different objects. The third method uses a pure non-informative prior constructed 

via further Bayesian analysis on the hazard function to estimate the distribution over 𝜆 (𝑡) for 

various objects. This work employs the third method because it has the property of minimal 

informativeness, and thus is most likely to reduce introduced bias. In future efforts, the other 

methods may prove more useful provided that true estimates of the hazard rate can be obtained. 

 In the third method, the algorithm’s goal is to find a general-purpose prior that is minimally 

informative, such that it can be used with as little information about the environment as possible.  
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The prior assumes uncertainty in the hazard function, and thus explicitly models this uncertainty 

with another Bayesian prior 

 𝜆 ~ 𝑝 (∙). (44) 

This second prior is introduced into the analysis by marginalizing the prior distribution of 𝑇 by 𝜆  

 𝑝 (𝑡) = ∫ 𝑝 (𝑡; 𝜆) ∙ 𝑝 (𝜆) 𝑑𝜆. (45) 

From (43), the hazard function relates to the prior distribution of 𝑇 as a rate parameter. Given that 

survival estimates can be assumed to have bounds on the order of seconds for a lower bound and 

decades as an upper bound, [Rosen] shows how the algorithm can safely generate the marginalized 

prior  

 
𝑝 (𝑡; 𝜆 ; 𝜆 ) =

𝑒 − 𝑒

𝑡 𝑙𝑛
𝜆
𝜆

 

(46) 

and the survival function  

 
𝑆 (𝑡; 𝜆 ; 𝜆 ) =

𝐸 (𝜆 𝑡) − 𝐸 (𝜆 𝑡)

ln
𝜆
𝜆

 

(47) 

and 𝐸 (𝑥) represents the first generalized exponential integral  

 𝐸 (𝑥) = ∫ 𝑡 𝑒 𝑑𝑡. (48) 

This is a general-purpose prior for a rate marginalized prior with minimal informativeness and 

maximum uncertainty.  
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Substituting 𝑆  into (27) allows the BSA algorithm to close the recursive loop and calculate 

the posterior distribution as  

 
𝑝(𝑋 = 1|𝑦 : ) =  

𝑝(𝑦 : |𝑡 )

𝑝(𝑦 : )
1 − 𝐹 (𝑡) , 𝑡 ∈ [𝑡 , ∞) 

𝑝(𝑋 = 1|𝑦 : ) =  
𝑝(𝑦 : |𝑡 )

𝑝(𝑦 : )
𝑆 , 𝑡 ∈ [𝑡 , ∞) 

𝑝(𝑋 = 1|𝑦 : ) =  
𝑝(𝑦 : |𝑡 )

𝑝(𝑦 : )
∙

𝐸 (𝜆 𝑡) − 𝐸 (𝜆 𝑡)

ln
𝜆
𝜆

, 𝑡 ∈ [𝑡 , ∞) 

(49) 

which is the final prediction of what the state of the point will be in the next time step. Because 

the prior is general and non-informative, the only varying factor is the time such that the hazard 

increases the closer the object is to the upper bound. This means that the prior is uniform in any 

given time step for all points in the map. 

 In order to extend this to all data points from the survey, the BSA algorithm is simply run 

on each point in the map. The probability map contains the output of each point after it is processed 

with BSA and acts as a distribution for the static map. Before each survey, the robot samples from 

the probability map for the next cycle and uses the sampled points as the static map.  

 SUMMARY 

Using only the sensors required to localize, the RCTbot can leverage the temporal 

characteristics of the environment to predict how it will appear the next time it navigates the space. 

The ability to track changes in the map and maintain its usefulness over time increases the long-

term autonomy of the robot. Predicting the next state of the environment also enables the robot to 

make intelligent navigation decisions, optimize the radiation coverage, and minimize human RCT 
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exposure. The next chapter provides details of the implementation including details of the 

algorithms provided in this chapter. 
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Chapter 5: Implementation 

While previous chapters discussed the theoretical aspects of robotic radiation surveys with 

temporal map updating, this chapter details the implementation. It includes the hardware, software, 

and logic of the system and describes the demonstration goals, metrics, and results. Note that this 

chapter is about a specific implementation of the RCTbot on a given hardware system. Where 

aspects are platform independent, the section will indicate it for the reader. 

 HARDWARE CONFIGURATION 

The hardware configuration for the radiation survey comprises all of the sensors, actuators, 

and mechanical design features such as the robot, its navigation sensors, and radiation sensors. The 

sensor configuration is applicable to any mobile robot so long as the power and space requirements 

do not exceed the load.  

5.1.1. Adept PioneerLX 

The specific platform used for the RCTbot in this work is the Pioneer-LX mobile research 

platform [69] by Omron Adept Mobile Robots. It is an industrial platform designed for long-term 

deployment in environments such as factories or warehouses. The system contains built in 

navigation sensors such as SONAR and LIDAR as well as wheel encoders for odometry and a 

manual bumper switch for safety. It possesses a 24VDC LiFePO4 battery with 60Ah capacity for 

a 13h battery life (unloaded) which make it ideal for long-term autonomous tasks. The Pioneer-

LX has a payload capacity of 60kg on a flat surface, so it can carry a wide array of secondary 

sensors. Figure 5-1 shows the NRG’s Pioneer-LX system with all sensors equipped.  
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Figure 5-1: Pioneer equipped with radiation coverage sensors. 

The robot navigates with two drive wheels located along the horizontal axis through the 

center of mass and balances on four caster wheels. This differential drive configuration allows the 

platform to turn with a zero radius, which helps the maneuverability in tight corners. This quality 

is important for following wavefront generated paths which assume the robot moves from one grid 

cell directly to an adjacent grid cell. It also provides for a method of ensuring the robot never 

travels over space that has yet to be surveyed except for its current cell. This helps prevent the 

spread of contamination if it exists.  

5.1.2. Alpha Detection Hardware 

As mentioned in Chapter 3, requirements on the radiation survey detector determine the 

instrumentation hardware. For this work, the hardware configuration included a Ludlum 43-1 

probe connected to a Ludlum Single Channel Analyzer (SCA) with 4 channels. Figure 5-1 also 
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displays the probe and SCA box attached to the Pioneer-LX. In this experiment the robot carried 

only the one probe to its side. This would be insufficient in a real survey task because of the high 

likelihood of driving through any contaminated surface before detecting radiation. Instead, the 

robot should have a detector configuration such as the one shown in Figure 3-1. This configuration 

sees the detector covering the entire width of the robot and going before the wheels in order to 

prevent the spread of contamination.  

 SOFTWARE CONFIGURATION 

Robotic systems inherently combine software with hardware for full functionality. The 

software required for radiation survey includes robot specific drivers, supervisory logic and 

planning algorithms, sensor drivers, and user interfaces. This section goes into the details about 

the software architecture including the underpinning framework, the robot drivers, the planning 

algorithms, and the radiation detection scheme.  

5.2.1. ROS: The Robot Operating System 

At the center of every software component in this project is a pseudo-operating system called 

the Robot Operating System (ROS). ROS builds upon a Unix platform (commonly Ubuntu) and 

presents a framework for communication, process handling, hardware abstraction, and package 

management [70]. Beyond its technical aspects, ROS is also a key component of a thriving 

community of open source robotics software developers. The ROS community maintains tools and 

libraries for robotic systems across programming languages, hardware configurations, and Unix 

distributions. This work benefits from the use of the ROS navigation stack, visualization tools, 
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robot and tool specific drivers written by the community at large, and other generic tools provided 

by ROS. 

5.2.2. Driver Implementations 

Despite most of the ROS software being hardware agnostic, one must eventually implement 

it on a specific system. ROS handles this by using hardware drivers for communication with the 

individual robots and tools.  Often, the drivers act like a wrapper on the control software packaged 

with the robot in order to translate commands into the ROS communication framework and vice 

versa. This section discusses how this is handled for the specific case of the Pioneer-LX doing 

radiation surveys.  

The first consideration is the robot drivers. The Pioneer-LX is equipped with two software 

control packages: ARIA and ARNL. ARIA is a library with packages that communicate with low 

level functions such as motor commands, encoder readings, sensor data, and the like for easy user 

interaction and high-level control of the robot. ARNL is an autonomous navigation software suite 

that receives data from the SONAR and LIDAR sensors, performs SLAM to build maps of areas, 

and then uses a form of AMCL to navigate in the map. Both of these packages provide user 

interfaces so that the operator can use the robots directly. In order to link ARIA and ARNL to other 

useful ROS packages, the community designed drivers, rosaria and rosarnl, to correspond 

with each respectively. 

5.2.3. BSA Algorithm Implementation 

The BSA algorithm stands apart from the coverage process because it is performed entirely 

offline. After coverage is complete, the sensor data collected during the survey is saved and filtered 
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to get unique observations of each cell.  The BSA algorithm initializes with this sensor data and 

information about its parameters from the previous calculation. The algorithm is outlined below 

and draws from the theory presented in Chapter 4.3. 

Algorithm 1 BSA Recursion Execution 
Input: Prior distribution 𝑝(𝑇 > 𝑡), sensor data 𝑦 . 
Output: Posterior probability 𝑝(𝑋 = 1|𝑦 : ) for 𝑡 ∈ [𝑡 , ∞). 

1: Initialization:  Set parameters 𝑡 ← 0, 𝑁 ← 0, 𝑝(𝑦 : |𝑡 ) ← 1, 𝐿(𝑦 : ) ← 0, 𝑝(𝑦 : ) ←
0, 𝑃 ← 0.1, 𝑃 ← 0.01 

2: while ∃ new data 𝑦  do 
Update: 

3:     Compute lower partial evidence 𝐿(𝑦 : ) using  
4:     Compute likelihood 𝑝(𝑦 : |𝑡 ) using 
5:     Compute evidence 𝑝(𝑦 : ) using  
6:     𝑁 ← (𝑁 + 1). 

Predict: 
7:     Compute posterior survival probability 𝑝(𝑋 = 1|𝑦 : ) 
8:     Update parameters  
9: end while 

 

The output of the BSA algorithm is the posterior probability of survival, 𝑝(𝑋 = 1|𝑦 : ) for 

each point in the map. The RCTbot iterates through all points and then generates a sample for the 

static map. Temporally static objects such as wall will contain points with probabilities 

approaching 1 while temporally dynamic objects such as crates should have probabilities much 

lower than 1 but not 0. Similarly, perpetually free space will contain those points with probabilities 

closest to 0. In this manner elements of the environment are more likely to survive the longer they 

already have.  
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 EXPERIMENT 

The thesis thus far claims the ability of STMM to improve long-term autonomy in radiation 

coverage survey applications. To demonstrate this ability, this section will outline experiments 

performed with the robot to accomplish CCPP and STMM and then discuss the implications of 

those experiments. 

5.3.1. CCPP Implementation 

Section 3.2 and Section 3.3 discuss details of the CCPP algorithm design and 

implementation and this section will describe experiments done to establish its efficacy. A CCPP 

algorithm must demonstrate the ability to perform the basic role of an RCT and provide additional 

data in order fulfill the requirements enumerated in Chapter 3. In [71], a prototype of the RCTbot 

shows this by surveying a small area for alpha radiation, record coverage progress, and provide 

feedback to a human operator. The experimental environment in [71] is shown in Figure 5-2. 

 

Figure 5-2: Test environment space for CCPP experiment [71]. 
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The prototype of the RCTbot used one alpha sensor to survey a very simple environment 

with two possible obstacles, a box and a cylinder. The space was 12 × 9′, and the right side was 

open during the experiment. The experiment consisted of a series of trials where the robot 

generates coverage path plans, surveys for contamination, and reports the results of the survey to 

a remote operator. Obstacles in the test environment appear in the four configurations shown in a-

d of Figure 5-3. Figure 5-3 also shows the four coverage paths and resulting execution for each 

configuration. 

 

Figure 5-3: Sensor data and coverage path for four contamination survey trials [71]. 
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The green represents covered cells, the red indicates cells which the robot could not reach, 

and the blue is the final goal position in the path. Red cells need to be covered manually by the 

operator at a later time. Typically, they appear near a wall or obstacle and cannot be reached using 

macro-cell discretization.  

Each trial consisted of only one attempt at each cell, so some uncovered cells could be 

covered from a different direction on a subsequent attempt. The robot searched for contamination 

in Trials 1-4 and 6. All trials but Trial 3 showed that the robot detected the contamination and 

alerted the remote station. Trial 3 failed due to the proximity of the contamination source to the 

wall. The results are summarized in Table 5.1 below.  

Table 5.1. CCPP results for contamination survey [71]. 

Trial Contamination 
present 

Contamination 
detected 

Obstacles 
present 

Completeness (%) 

1 0 0 0 67.5 
2 1 1 0 66.5 
3 2 1 0 66.5 
4 1 1 1 67.5 
5 0 0 1 67.5 
6 1 1 2 51.9 
7 0 0 2 51.9 
8 0 0 1 64.1 

 

Several implications come from this data. First, the completeness percentage is based on a 

single attempt and the robot is able to cover approximately 63% on average. Poorer completeness 

in Trials 6 and 7 is directly related to the extra obstacle. Second, the operator has a map of what 

the robot did not cover. This information is necessary to prevent a completely manual re-attempt 
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at coverage. Finally, contamination has no effect on the robot’s ability to continue coverage. As 

long as the operator clears it, it will keep the map in memory and continue its task.  

Naturally, comparisons to commercial coverage robots such as vacuum cleaners arise. The 

RCTbot fails to cover areas around obstacles and near walls while a commercial vacuum cleaner 

robot seemingly covers the entire space. Several differences exist between typical cleaning systems 

and the RCTbot demonstrating the sophistication of the latter. First, commercial vacuum cleaners 

typically do not plan paths, instead selecting random turn and drive forward actions. The belief 

here is that eventually, all area will be covered. This method is not sufficient for radiation coverage 

due to the infinitesimally small volume of radioactive sources. For sufficiently large areas, random 

paths will only complete coverage in the limit of time. Next, commercial systems do not record 

their paths. Given that they cannot assure complete coverage, there is no way an RCT could rely 

on such a system. These alone condemn the use of commercial coverage robots for radiation 

monitoring, but one final consideration regards the difference in instrumentation. A commercial 

coverage robot does not possess sensitive detectors that might be damaged by collisions. As such, 

colliding with walls due to imprecise localization is not a necessary problem to solve. In fact, many 

systems rely on collisions to reset directions at least part of the time. 

Overall, the CCPP algorithm described in Section 3.2 and Section 3.3 is sufficient to perform 

according to the requirements. It is clear that there remains room for improvement, but that is not 

a priority in this work.  
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5.3.2. Spatio-Temporal Map Maintenance  

Demonstrating the capabilities of STMM is the primary objective of this research effort, and 

thus prioritized over improving CCPP. A major objective of this thesis is to show how spatio-

temporal reasoning can improve the long-term autonomy of a robot in terms of navigation 

planning. To do so does not require the space to be large or necessarily involve long inspection 

durations. This section validates the improvement through experimental means by examining the 

performance of the RCTbot in a coverage survey under different spatio-temporal scenarios.  

5.3.3. Experiment Design 

Chapter 4 detailed the requirements and claims for STMM. This section describes an 

experiment to validate those claims. The experimental environment is an extension of the one 

shown in Figure 5-2. Now the robot must traverse the hallway-like environment shown in Figure 

5-4. 

 

Figure 5-4: Hallway environment for STMM validation experiment. 
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The RCTbot will make observations of the environment with its planar LIDAR as it navigates 

through the hallway. Each spatial scan will represent a moment in time for the BSA algorithm. 

Walls represent the only static objects while boxes, barrels, tunnels, and other miscellaneous 

objects are dynamic. The robot will observe some of the dynamic objects as static for the time 

scale.  Figure 5-5 shows the initial environment configuration.  

 

Figure 5-5: Initial static map of STMM hallway. 

The initial configuration will start as a static map with probabilities for all points being near 

1. Two types of dynamic objects will be added and moved for this experiment, boxes and barrels. 

Examples of both are shown in Figure 5-5. Table A-1 in Appendix A provides a schedule of when 

objects are added and removed to the environment. 



78 

 

The RCTbot will use the same LIDAR data from each spatial scan to compare with the static 

map and measure the effectiveness three different map maintenance schemes. In Scheme A, the 

robot performs no map maintenance and continues to use the original static map throughout time, 

in Scheme B, the robot performs a naïve map update which will be described below, and in Scheme 

C, the robot performs the BSA-based STMM described in Chapter 4 and in Section 5.2.3. The 

other methods serve as a comparison to demonstrate the effectiveness of BSA based STMM. For 

each scheme, the experiment will compare the average localization score after progressively many 

surveys. The localization score is a number generated with rosarnl based upon how many points 

in the static map match the observed LIDAR data within a small margin of error.  

Scheme B requires more explanation. The CCPP in [71] also uses the naïve STMM method 

in Scheme B to help maintain its map. This method maintains a counter for each point in the map. 

When the robot senses occupancy at that point, it increments the counter; else, it decrements. 

Figure 5-6 shows the results of the naïve STMM implementation for the situation of a box moving 

from one corner to another. 

 

Figure 5-6: Heat map showing naïve STMM approach for a dynamic box. 

The robot represents the temporal data with a series of heat maps where green means more static 

and red means less static. The walls have a counter much higher than the static map threshold 
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because they never change. The robot observes the transplanted box enough that the initial position 

goes from green to red and then disappears while the final position does the opposite.  

5.3.4. Results 

The RCTbot collected data for 100 time periods (simulating hours, days, weeks, etc.). For 

simplicity sake, the time periods will be taken as days for the rest of this section. Throughout the 

testing period, the RCTbot recorded its average localization score after each scan. The average 

localization is a measure of how well the robot’s LIDAR measurements align with the world map 

at any given moment with a perfect match receiving a score of 1. As it performs coverage, the 

RCTbot maintains a rolling average of the score and publishes it at task completion. The average 

localization results are summarized in 10-day intervals in Table 5.2.  

Table 5.2. Localization scores over time (percentage match). 

Scheme 

Day 

1 10 20 30 40 50 60 70 80 90 100 

A: Static 0.982 0.951 0.955 0.952 0.919 0.910 0.890 0.878 0.874 0.883 0.829 

B: Naïve  0.967 0.967 0.968 0.925 0.921 0.970 0.956 0.938 0.960 0.927 0.914 

C: STMM 0.978 0.973 0.967 0.969 0.965 0.971 0.966 0.968 0.968 0.973 0.974 

 

It is clear that Scheme C consistently performs well while Scheme A consistently regresses and 

Scheme B is more erratic. To understand this performance, consider Day 30 where Scheme B and 

Scheme C start to diverge. Figure 5-7 shows the LIDAR data the RCTbot collected for that period. 
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Figure 5-7: LIDAR data for Day 30. 

Given the history of the obstacle locations (refer to Table A-1), the barrel in the top half is relatively 

the most permanent obstacle other than the walls. The box recently moved out away from the wall. 

Some portions will remain in the probability map, but others will not. Figure 5-8 shows the 

probability maps generated from the LIDAR data using Scheme B and Scheme C respectively. 

 

Figure 5-8: Probability map for Scheme B (left) and Scheme C (right) at Day 30. 
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Both schemes contain the correct obstacles, but the naïve incremental method means that not all 

objects have reached the threshold for the static map. For a new object to become static, Scheme 

B requires approximately 20 days while Scheme C requires as few as 3 days. Until an object 

reaches the threshold, it will not appear in the static map, so the RCTbot cannot use it to localize. 

Figure 5-9 provides the static map generated by Scheme B and Scheme C.  

 

Figure 5-9: Static map for Scheme B (left) and Scheme C (right) at Day 30. 

The inflexibility of Scheme B leads to a loss of localization features. After the box on the left wall 

was moved out slightly, Scheme B cannot fill in the wall. This causes the localization score to be 

worse for Scheme B in this instance than Scheme A. Scheme C, however, correctly predicts what 

the map looks like.  

 Obstacle locations, probability maps, and static maps for the other days are included in the 

Appendices. Figure 5-10 visualizes the data from Table. 
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Figure 5-10: Average localization scores of the 3 map maintenance schemes. 

The comparative reliability of Scheme C is clear in the data. Scheme A degrades according to 

expectations for a static map, becoming less reliable as time passes and more obstacles are 

introduced. Scheme B is unreliable due to its inadaptability as perceived changes have a smaller 

impact on the probability map than in Scheme C.  

 SUMMARY 

Overall, this Chapter has shown how STMM with BSA can extend the autonomy of a mobile 

robot in long-term applications. Section 5.3.2 not only demonstrated the adaptability provided by 

the STMM algorithm, but also shows the need for some form of map maintenance. The primary 

result of this work is a proof of concept that static maps methods are still viable in autonomous 

robotics by employing map maintenance.  
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Chapter 6: Conclusions and Future Work 

 SUMMARY OF RESEARCH 

Robots are increasingly needed to protect humans from dangerous working environments. 

Society will not rely on robots until they demonstrate the ability to maintain long-term autonomy 

in realistic, complex environments. This effort provides both methodology and evidence for 

improving long-term autonomy in semi-static environments. The RCTbot performs spatio-

temporal map maintenance during radiation coverage surveys and localizes in the map to perform 

its task better than other approaches. 

 FUTURE WORK 

Despite the RCTbot already demonstrating improved autonomy in long-term situations, 

future efforts can further enhance its abilities. Three main features immediately appear as next 

steps: navigation and planning with three-dimensional sensing, informative priors and more 

intelligent logic in the BSA algorithm, and increased mobility in the robotic platform. This section 

discusses these features in more detail. 

6.2.1. 3-D Sensing 

The current RCTbot uses a 2-D LIDAR for localization and mapping. The LIDAR senses a 

horizontal plane approximately 6” from the ground with a field of view of 270°. This is sufficient 

for navigating in a pre-made map, but it requires the operator to manually drive the robot around 

so that it can make this map without running into low hanging objects like tables or items close to 

the ground such as pallets. For safe, autonomous navigation, a robot requires a 3-D LIDAR to 

identify obstacles for its entire volume and not just a plane. Figure 6-1 shows a Velodyne VLP-16 

3-D LIDAR [72].  
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Figure 6-1: Velodyne VLP-16 3-D LIDAR and control box. 

This LIDAR mounted above the robot can give a 360° view of the objects surrounding it as well 

as 15° of vertical resolution. Figure 6-2 visualizes the data produced by the VLP-16. 

 

Figure 6-2: 3-D data from the VLP-16. 
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Current work performed in the NRG group at UT Austin shows that 3-D points can be 

collapsed to form 2-D obstacles in the map [73]. The 2-D obstacles yield better performance during 

the scan matching component of localization. With 3-D localization and mapping, the RCTbot can 

autonomously explore unknown environments and create new maps for surveys, thus increasing 

its overall self-agency. 

6.2.2. Improved STMM 

Some caveats about STMM exist that must eventually be addressed. Earlier chapters put 

emphasis on robotics in real environments. The bulk of this work was completed in the real world, 

yet it was a very tightly controlled environment. More needs to be done to increase the ability of 

the robot to work in real tasks in real environments. Researchers must continue to collect long-

term viability data in a continuous evaluation in order to validate STMM. They must also explore 

scalability of the algorithm when faced with increased complexity and rate of change in the 

environment. Grid based methods have complexity based on dimension and resolution. As these 

values increase, STMM must process the larger amounts of data more intelligently.  

Other ways the STMM algorithm presented in this work can be improved include: a) using 

a probability density function to describe the location of the occupied points and b) including an 

informative prior in the BSA algorithm based on temporal characteristics of 3-D points collected 

into objects.  

The first method involves using a PDF such as a normal distribution to describe the location 

of points in the static map. This will account for minor uncertainty in the sensor distance 

measurements and prevent the STMM from adding too many new points to the map each time its 

sensor has fluctuations in the readings.  
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The second method again requires 3-D LIDAR data. Object recognition is a prominent topic 

in computer vision both in the general robotics community and in NRG. The robot can be 

augmented with object recognition to process 3-D point cloud and assign individual points to an 

object. It can then classify the objects based on temporal characteristics. A collection of points 

could form a barrel, which has certain temporal characteristics. These characteristics could inform 

the decay constant, 𝜆 , from Section 4.3.4 to generate an informative prior. In this manner, the 

robot can use knowledge about the environment to make its predictions for planning and generate 

better results. 

6.2.3. Enhanced Robotic Platform 

An enhanced robotic platform would make future efforts in CCPP more effective. In order 

to cover more space in a real environment, a robot requires maximum mobility to maneuver into 

tighter spaces. Holonomic vehicles have been popular in mobile robotics for decades, but the 

community has not readily adopted them due to the difficulty of controlling them and determining 

the uncertainty in odometry measurements. As mentioned in Section 5.2.1, ROS provides drivers 

for a variety of systems, including holonomic robots, making it more convenient for research to 

utilize their unique characteristics.  

A holonomic mobile robot can move in any direction despite its initial state. Returning to 

the discretization discussion of Section 3.3.1, micro-cells enable a robot to more precisely cover 

the space, but traditional mobile platforms with differential steering struggle to plan paths to cover 

micro-cells sequentially in unexpected situations. A holonomic system has no such difficulties. 

Figure 6-3 shows a developmental holonomic robot from the NRG. 
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Figure 6-3: The NRG’s holonomic platform with four actuated-caster swerve steer wheels. 

This platform has four wheels with two motors each. The first motor turns the wheel as normal, 

and the second one rotates the wheel like an actuated caster. Upon mounting a radiation sensor to 

this platform, a robot could cover the entire space without ever putting its wheels before its sensor. 

This means that there is no chance that the robot would contaminate its wheels and spread that 

contamination. This enables the robot to sense radiation, mark it, and continue its survey with no 

fear of tracking contamination. Given this, an operator only has to check the locations after the 

robot has finished, and there is no need for cleaning and resetting the robot. This step of increased 

autonomy is needed before a robotic system will be truly viable in a real radiation environment. 

 ALTERNATIVE APPLICATIONS 

The work in this thesis was focused on the single application of radiation contamination 

coverage surveys. Aspects of the work have broader applications for STMM. CCPP algorithms 

often show utility in areas such as cleaning, humanitarian demining, agriculture, and surveillance. 

An algorithm such as STMM or one like it is necessary for CCPP to be possible in realistic 

environments. STMM is not useful only for CCPP algorithms though. Any navigation problem 
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based on localization in a map by sensor scan matching can only be improved by the addition of 

spatio-temporal reasoning. If a map is used, map maintenance is necessary for long-term 

applications. STMM stands as a simple, hardware agnostic algorithm for robots with correlative 

data sensors. 

 CONCLUDING REMARKS 

As stated in Section 1.4, the objective of this work is to show that the RCTbot is deployment 

ready for radiation coverage tasks. This objective serves the overarching goal of addressing the 

societal and technical barriers that autonomous robots must overcome for utilization in realistic 

scenarios. This thesis has shown that by implementing CCPP and STMM methods, the RCTbot is 

discernably better for radiation contamination surveys than a human RCT. There is still work to 

be done to improve its overall effectiveness and increase its autonomy.   
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Appendix A: STMM Obstacle Schedule 

Table A.1. Dynamic obstacle spatio-temporal schedule. 

Day Boxes Barrels  
1 (254, 2970), (2663, 487) --  
2 (254, 2970), (2663, 487) (2971, 6218)  
3 (254, 2970), (2663, 487) (2971, 6218)  
4 (254, 2970), (2663, 487) (2971, 6218)  
5 (254, 2970), (2663, 487) (2971, 6218)  
6 (254, 2970), (2663, 487) (2971, 6218)  
7 (254, 2970), (2663, 487) (2971, 6218)  
8 (254, 2970), (2663, 487) (2971, 6218)  
9 (254, 2970), (2663, 487) (2971, 6218)  
10 (254, 2970), (2663, 487) (2971, 6218)  
11 (254, 2970), (2663, 487) (2971, 6218)  
12 (254, 2970), (2663, 487) (2971, 6218)  
13 (254, 2970), (2663, 487) (2971, 6218)  
14 (254, 2970), (2663, 487) (2971, 6218)  
15 (254, 2970), (2663, 487) (2971, 6218)  
16 (254, 2970), (2663, 487) (2971, 6218)  
17 (254, 2970), (2663, 487) (2971, 6218)  
18 (254, 2970), (2663, 487) (2971, 6218)  
19 (254, 2970), (2663, 487) (2971, 6218)  
20 (254, 2970), (2663, 487) (2971, 6218)  
21 (254, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
22 (254, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
23 (254, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
24 (254, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
25 (520, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
26 (520, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
27 (520, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
28 (520, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
29 (520, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
30 (520, 2970), (2663, 487) (2971, 6218), (4536, 3449)  
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31 (520, 2789), (2663, 487) (1911, 8240), (4536, 3449)  
32 (520, 2789), (2663, 487) (1911, 8240), (4536, 3449)  
33 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
34 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
35 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
36 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
37 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
38 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
39 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
40 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
41 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449)  
42 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
43 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
44 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
45 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
46 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
47 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
48 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
49 (4687, 662), (2663, 487) (1911, 8240), (4536, 3449), (9510, 6539)  
50 (4687, 662), (2663, 487) (1911, 8240), (2929, 3534), (9510, 6539)  
51 (4687, 662), (2663, 487) (1911, 8240), (2929, 3534), (9510, 6539)  
52 (4687, 662), (2663, 487) (1911, 8240), (2929, 3534), (9510, 6539)  
53 (4687, 662), (2663, 487) (1911, 8240), (2929, 3534), (9510, 6539)  
54 (4687, 662), (2663, 487) (1911, 8240), (2929, 3534), (9510, 6539)  
55 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (9510, 6539)  
56 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (9510, 6539)  
57 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (9510, 6539)  
58 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (9510, 6539)  
59 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (2244, 8064)  
60 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (2244, 8064)  
61 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (2244, 8064)  
62 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (2244, 8064)  
63 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (2244, 8064)  
64 (4687, 662), (2663, 487) (1911, 8240), (4347, 5320), (2244, 8064)  
65 (4687, 662), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
66 (4687, 662), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
67 (4687, 662), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
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68 (4687, 662), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
69 (4687, 662), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
70 (4337, 529), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
71 (4337, 529), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
72 (4337, 529), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
73 (4337, 529), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
74 (4337, 529), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
75 (4337, 529), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
76 (4672, 659), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
77 (4672, 659), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
78 (4672, 659), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
79 (4672, 659), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
80 (4672, 659), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
81 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
82 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
83 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
84 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
85 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
86 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
87 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
88 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
89 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
90 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
91 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
92 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
93 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
94 (4331, 532), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
95 (4252, 5585), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
96 (4252, 5585), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  
97 (4252, 5585), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064)  

98 
(4252, 5585), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064),  

(3818, 624), (4461, 634)  

99 
(4252, 5585), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064),  

(3818, 624), (4461, 634)  

100 
(4252, 5585), (2663, 487) (1911, 8240), (3093, 8091), (2244, 8064),  

(3818, 624), (4461, 634)  
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Appendix B: LIDAR Data 

 
 

Figure B-1: Day 1 
 

 
 

Figure B-2: Day 10 
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Figure B-3: Day 20 
 

 
 

Figure B-4: Day 30 
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Figure B-5: Day 40 
 

 
 

Figure B-6: Day 50 
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Figure B-7: Day 60 
 

 
 

Figure B-8: Day 70 



96 

 

 
 

Figure B-9: Day 80 
 

 
 

Figure B-10: Day 90 
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Figure B-11: Day 100 
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Appendix C: Probability Maps 

 
Figure C-1: Day 1 

 

 
Figure C-2: Day 1 
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Figure C-3: Day 1 

 

 
Figure C-4: Day 1 
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Figure C-5: Day 40 

 

 
Figure C-6: Day 50 
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Figure C-7: Day 60 

 

 
Figure C-8: Day 70 
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Figure C-9: Day 80 

 

 
Figure C-10: Day 90 
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Figure C-11: Day 100 
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