81 research outputs found

    A fully automated three-stage procedure for spatio-temporal leaf segmentation with regard to the B-spline-based phenotyping of cucumber plants

    Get PDF
    Plant phenotyping deals with the metrological acquisition of plants in order to investigate the impact of environmental factors and a plant’s genotype on its appearance. Phenotyping methods that are used as standard in crop science are often invasive or even destructive. Due to the increase of automation within geodetic measurement systems and with the development of quasi-continuous measurement techniques, geodetic techniques are perfectly suitable for performing automated and non-invasive phenotyping and, hence, are an alternative to standard phenotyping methods. In this contribution, sequentially acquired point clouds of cucumber plants are used to determine the plants’ phenotypes in terms of their leaf areas. The focus of this contribution is on the spatio-temporal segmentation of the acquired point clouds, which automatically groups and tracks those sub point clouds that describe the same leaf. The application on example data sets reveals a successful segmentation of 93% of the leafs. Afterwards, the segmented leaves are approximated by means of B-spline surfaces, which provide the basis for the subsequent determination of the leaf areas. In order to validate the results, the determined leaf areas are compared to results obtained by means of standard methods used in crop science. The investigations reveal consistency of the results with maximal deviations in the determined leaf areas of up to 5

    Deep Semantic Graph Matching for Large-scale Outdoor Point Clouds Registration

    Full text link
    Current point cloud registration methods are mainly based on local geometric information and usually ignore the semantic information contained in the scenes. In this paper, we treat the point cloud registration problem as a semantic instance matching and registration task, and propose a deep semantic graph matching method (DeepSGM) for large-scale outdoor point cloud registration. Firstly, the semantic categorical labels of 3D points are obtained using a semantic segmentation network. The adjacent points with the same category labels are then clustered together using the Euclidean clustering algorithm to obtain the semantic instances, which are represented by three kinds of attributes including spatial location information, semantic categorical information, and global geometric shape information. Secondly, the semantic adjacency graph is constructed based on the spatial adjacency relations of semantic instances. To fully explore the topological structures between semantic instances in the same scene and across different scenes, the spatial distribution features and the semantic categorical features are learned with graph convolutional networks, and the global geometric shape features are learned with a PointNet-like network. These three kinds of features are further enhanced with the self-attention and cross-attention mechanisms. Thirdly, the semantic instance matching is formulated as an optimal transport problem, and solved through an optimal matching layer. Finally, the geometric transformation matrix between two point clouds is first estimated by the SVD algorithm and then refined by the ICP algorithm. Experimental results conducted on the KITTI Odometry dataset demonstrate that the proposed method improves the registration performance and outperforms various state-of-the-art methods.Comment: 12 pages, 6 figure

    Recovering Wind-induced Plant motion in Dense Field Environments via Deep Learning and Multiple Object Tracking

    Get PDF
    Understanding the relationships between local environmental conditions and plant structure and function is critical for both fundamental science and for improving the performance of crops in field settings. Wind-induced plant motion is important in most agricultural systems, yet the complexity of the field environment means that it remained understudied. Despite the ready availability of image sequences showing plant motion, the cultivation of crop plants in dense field stands makes it difficult to detect features and characterize their general movement traits. Here, we present a robust method for characterizing motion in field-grown wheat plants (Triticum aestivum) from time-ordered sequences of red, green and blue (RGB) images. A series of crops and augmentations was applied to a dataset of 290 collected and annotated images of ear tips to increase variation and resolution when training a convolutional neural network. This approach enables wheat ears to be detected in the field without the need for camera calibration or a fixed imaging position. Videos of wheat plants moving in the wind were also collected and split into their component frames. Ear tips were detected using the trained network, then tracked between frames using a probabilistic tracking algorithm to approximate movement. These data can be used to characterize key movement traits, such as periodicity, and obtain more detailed static plant properties to assess plant structure and function in the field. Automated data extraction may be possible for informing lodging models, breeding programmes and linking movement properties to canopy light distributions and dynamic light fluctuation

    Robot@VirtualHome, an ecosystem of virtual environments and tools for realistic indoor robotic simulation

    Get PDF
    Simulations and synthetic datasets have historically empower the research in different service robotics-related problems, being revamped nowadays with the utilization of rich virtual environments. However, with their use, special attention must be paid so the resulting algorithms are not biased by the synthetic data and can generalize to real world conditions. These aspects are usually compromised when the virtual environments are manually designed. This article presents Robot@VirtualHome, an ecosystem of virtual environments and tools that allows for the management of realistic virtual environments where robotic simulations can be performed. Here “realistic” means that those environments have been designed by mimicking the rooms’ layout and objects appearing in 30 real houses, hence not being influenced by the designer’s knowledge. The provided virtual environments are highly customizable (lighting conditions, textures, objects’ models, etc.), accommodate meta-information about the elements appearing therein (objects’ types, room categories and layouts, etc.), and support the inclusion of virtual service robots and sensors. To illustrate the possibilities of Robot@VirtualHome we show how it has been used to collect a synthetic dataset, and also exemplify how to exploit it to successfully face two service robotics-related problems: semantic mapping and appearance-based localization.This work has been supported by the research projects WISER (DPI2017-84827-R), funded by the Spanish Government and financed by the European Regional Development’s funds (FEDER), ARPEGGIO (PID2020-117057GB-I00), funded by the European H2020 program, by the grant number FPU17/04512 and the UG PHD scholarship pro-gram from the University of Groningen. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal used for this research. We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluste

    Similarity, Retrieval, and Classification of Motion Capture Data

    Get PDF
    Three-dimensional motion capture data is a digital representation of the complex spatio-temporal structure of human motion. Mocap data is widely used for the synthesis of realistic computer-generated characters in data-driven computer animation and also plays an important role in motion analysis tasks such as activity recognition. Both for efficiency and cost reasons, methods for the reuse of large collections of motion clips are gaining in importance in the field of computer animation. Here, an active field of research is the application of morphing and blending techniques for the creation of new, realistic motions from prerecorded motion clips. This requires the identification and extraction of logically related motions scattered within some data set. Such content-based retrieval of motion capture data, which is a central topic of this thesis, constitutes a difficult problem due to possible spatio-temporal deformations between logically related motions. Recent approaches to motion retrieval apply techniques such as dynamic time warping, which, however, are not applicable to large data sets due to their quadratic space and time complexity. In our approach, we introduce various kinds of relational features describing boolean geometric relations between specified body points and show how these features induce a temporal segmentation of motion capture data streams. By incorporating spatio-temporal invariance into the relational features and induced segments, we are able to adopt indexing methods allowing for flexible and efficient content-based retrieval in large motion capture databases. As a further application of relational motion features, a new method for fully automatic motion classification and retrieval is presented. We introduce the concept of motion templates (MTs), by which the spatio-temporal characteristics of an entire motion class can be learned from training data, yielding an explicit, compact matrix representation. The resulting class MT has a direct, semantic interpretation, and it can be manually edited, mixed, combined with other MTs, extended, and restricted. Furthermore, a class MT exhibits the characteristic as well as the variational aspects of the underlying motion class at a semantically high level. Classification is then performed by comparing a set of precomputed class MTs with unknown motion data and labeling matching portions with the respective motion class label. Here, the crucial point is that the variational (hence uncharacteristic) motion aspects encoded in the class MT are automatically masked out in the comparison, which can be thought of as locally adaptive feature selection

    Template based shape processing

    Get PDF
    As computers can only represent and process discrete data, information gathered from the real world always has to be sampled. While it is nowadays possible to sample many signals accurately and thus generate high-quality reconstructions (for example of images and audio data), accurately and densely sampling 3D geometry is still a challenge. The signal samples may be corrupted by noise and outliers, and contain large holes due to occlusions. These issues become even more pronounced when also considering the temporal domain. Because of this, developing methods for accurate reconstruction of shapes from a sparse set of discrete data is an important aspect of the computer graphics processing pipeline. In this thesis we propose novel approaches to including semantic knowledge into reconstruction processes using template based shape processing. We formulate shape reconstruction as a deformable template fitting process, where we try to fit a given template model to the sampled data. This approach allows us to present novel solutions to several fundamental problems in the area of shape reconstruction. We address static problems like constrained texture mapping and semantically meaningful hole-filling in surface reconstruction from 3D scans, temporal problems such as mesh based performance capture, and finally dynamic problems like the estimation of physically based material parameters of animated templates.Analoge Signale müssen digitalisiert werden um sie auf modernen Computern speichern und verarbeiten zu können. Für viele Signale, wie zum Beispiel Bilder oder Tondaten, existieren heutzutage effektive und effiziente Digitalisierungstechniken. Aus den so gewonnenen Daten können die ursprünglichen Signale hinreichend akkurat wiederhergestellt werden. Im Gegensatz dazu stellt das präzise und effiziente Digitalisieren und Rekonstruieren von 3D- oder gar 4D-Geometrie immer noch eine Herausforderung dar. So führen Verdeckungen und Fehler während der Digitalisierung zu Löchern und verrauschten Meßdaten. Die Erforschung von akkuraten Rekonstruktionsmethoden für diese groben digitalen Daten ist daher ein entscheidender Schritt in der Entwicklung moderner Verarbeitungsmethoden in der Computergrafik. In dieser Dissertation wird veranschaulicht, wie deformierbare geometrische Modelle als Vorlage genutzt werden können, um semantische Informationen in die robuste Rekonstruktion von 3D- und 4D Geometrie einfließen zu lassen. Dadurch wird es möglich, neue Lösungsansätze für mehrere grundlegenden Probleme der Computergrafik zu entwickeln. So können mit dieser Technik Löcher in digitalisierten 3D Modellen semantisch sinnvoll aufgefüllt, oder detailgetreue virtuelle Kopien von Darstellern und ihrer dynamischen Kleidung zu erzeugt werden
    • …
    corecore