
Expert Systems With Applications 208 (2022) 117970

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Robot@VirtualHome, an ecosystem of virtual environments and tools for
realistic indoor robotic simulation
David Fernandez-Chaves a,b,∗, Jose-Raul Ruiz-Sarmiento a, Alberto Jaenal a, Nicolai Petkov b,
Javier Gonzalez-Jimenez a

a Machine Perception and Intelligent Robotics group (MAPIR), Department of System Engineering and Automation, Biomedical Research Institute of Malaga
(IBIMA), University of Malaga, Spain
b Johann Bernoulli Institute of Mathematics and Computing Science, University of Groningen, The Netherlands

A R T I C L E I N F O

Keywords:
Virtual environments
Robotic simulation
Service robots
Semantic maps
Robotic dataset
Unity

A B S T R A C T

Simulations and synthetic datasets have historically empower the research in different service robotics-related
problems, being revamped nowadays with the utilization of rich virtual environments. However, with their
use, special attention must be paid so the resulting algorithms are not biased by the synthetic data and can
generalize to real world conditions. These aspects are usually compromised when the virtual environments
are manually designed. This article presents Robot@VirtualHome, an ecosystem of virtual environments and
tools that allows for the management of realistic virtual environments where robotic simulations can be
performed. Here ‘‘realistic’’ means that those environments have been designed by mimicking the rooms’
layout and objects appearing in 30 real houses, hence not being influenced by the designer’s knowledge. The
provided virtual environments are highly customizable (lighting conditions, textures, objects’ models, etc.),
accommodate meta-information about the elements appearing therein (objects’ types, room categories and
layouts, etc.), and support the inclusion of virtual service robots and sensors. To illustrate the possibilities of
Robot@VirtualHomewe show how it has been used to collect a synthetic dataset, and also exemplify how to
exploit it to successfully face two service robotics-related problems: semantic mapping and appearance-based
localization.
1. Introduction

Service robotics research has traditionally resorted to datasets for
the design and validation of techniques supporting the diverse robotic
abilities, such as perception (vision, olfaction), navigation (map build-
ing, robot motion), or HRI (face recognition, speech recognition),
among others. Datasets like KITTI (Geiger, Lenz, Stiller, & Urtasun,
2013), Microsoft COCO (Lin et al., 2014), Robot@Home
(Ruiz-Sarmiento, Galindo, & González-Jiménez, 2017), or LFW (Huang,
Ramesh, Berg, & Learned-Miller, 2007), to name a few, have con-
tributed and will continue to contribute significantly to that end.
However, these datasets are timestamped versions of the world, that
is, they consist of snapshots captured at a certain time instant and from
a certain position. Notice that this seriously hampers their exploitation
in problems requiring a robot freely moving in the environment while
capturing data, like those related with active perception (Bajcsy, Aloi-
monos, & Tsotsos, 2018), navigation (Cheng, Cheng, Meng, & Zhang,

∗ Corresponding author at: Machine Perception and Intelligent Robotics group (MAPIR), Department of System Engineering and Automation, Biomedical
Research Institute of Malaga (IBIMA), University of Malaga, Spain.

E-mail addresses: davfercha@uma.es (D. Fernandez-Chaves), jotaraul@uma.es (J.-R. Ruiz-Sarmiento), ajaenal@uma.es (A. Jaenal), n.petkov@rug.nl
(N. Petkov), javiergonzalez@uma.es (J. Gonzalez-Jimenez).

2018), reinforcement learning (Burgueño, Ruiz-Sarmiento, & Gonzalez-
Jimenez, 2021; Zhao, Queralta, & Westerlund, 2020), etc. Moreover,
the gathering and processing of real world data is a complex and
resource-intensive task, which does not line up with the hunger for data
of modern robotics techniques (mainly those based on Deep Learning).

In this context, virtual environments have emerged as a promising
alternative for alleviating those issues with simulations that are close to
reality (Beattie et al., 2016; Wu, Wu, Gkioxari, & Tian, 2018). As for ser-
vice robotics, they permit the introduction of virtual agents replicating
real robots, their sensory systems (cameras, 2D laser scanners, sonars,
etc.), and actuators (motors, arms, etc.). This way, robots can freely
and safely operate in said environments, whose content and conditions
are fully known and controlled. Gazebo (Koenig & Howard, 2004a),
Stage (Gerkey, Vaughan, & Howard, 2003), or VirtualHome (Puig et al.,
2018) are popular examples of tools enabling these simulations. One of
the major challenges that faces the development of robotic models with
vailable online 5 July 2022
957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.eswa.2022.117970
Received 27 July 2021; Received in revised form 28 January 2022; Accepted 22 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ne 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:davfercha@uma.es
mailto:jotaraul@uma.es
mailto:ajaenal@uma.es
mailto:n.petkov@rug.nl
mailto:javiergonzalez@uma.es
https://doi.org/10.1016/j.eswa.2022.117970
https://doi.org/10.1016/j.eswa.2022.117970
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117970&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.

w
l
r
3
o
e
A
i
e
i

t
c
m
(
p
v
r
i
a
s
t
e
S
i
a
t

,

synthetic data is the possible gap between simulated and real worlds.
That is, the design of the virtual environments must be such that
allows for the tuning of models transferable to real situations (Cabon,
Murray, & Humenberger, 2020; Zhao et al., 2020). For example, while
operating in a virtual environment, a robot aiming to recognize its
surrounding objects requires that the appearing synthetic objects look
realistic so the tuned models can successfully operate in real world
conditions after their deployment (Josifovski, Kerzel, Pregizer, Posniak,
& Wermter, 2018). Multiple resources exist providing virtual environ-
ments to the researchers community (e.g. Structured3D (Zheng, Zhang,
Li, Tang, Gao, & Zhou, 2020)) however, they are usually designed
by an operator according to his/her mindset, hence bias can appear
and the simulation-real gap can be significant. Continuing the last
example, a robot recognizing objects using contextual information,
that is relations among objects typically appearing together, rooms
where they appear, etc. (Ruiz-Sarmiento, Galindo, & González-Jiménez,
2015; Ruiz-Sarmiento, Galindo, Monroy, Moreno, & Gonzalez-Jimenez,
2019), requires that said relations mimics real ones. Otherwise, the
robot will learn unrealistic contextual information, which will lead to
a wrong operation.

This paper contributes Robot@VirtualHome, an ecosystem of virtual
environments and tools supporting realistic robotic simulations with
the novelty of including a collection of 30 virtual houses being replicas
of real setups and a dedicated set of built-in solutions to recurrent
issues. In contrast to other simulation tools or synthetic datasets which
provide environments designed from the knowledge of designers, each
virtual house has been designed out of real houses’ resources (plans,
images, point clouds, etc.) hosted on idealista,1 a popular real estate

ebsite in Spain. In this way, each virtual house has the same room
ayout as the real one it mimics. In addition, objects appearing in
eal houses have also been replicated using virtual objects. These are
D models of the same type (e.g. chair, table, microwave, etc.) as the
bjects found in the real environment and which are placed in the
quivalent location to the position where the objects they recreate are.
ll these objects, as well as all the rooms, have been manually labeled

n order to also provide ground truth information about the types of the
lements they imitate, hence augmenting the geometric and appearance
nformation with semantic knowledge.

This collection of houses is accompanied by a set of built-in tools
hat boost the simulations by: enabling a straightforward environment
ustomization (lighting conditions, objects’ models, etc.), managing the
eta-information about the elements appearing in said environments

categories of objects and rooms, rooms connectivity, etc.), and sup-
orting the simulation of arbitrary robots by means of customizable
irtual agents which can be equipped with virtual sensors simulating
eal ones. Conveniently, we provide two virtual sensors commonly used
n service robotics: a laser scanner and an RGB-D camera. The latter, in
ddition to the intensity and depth images, also provides an instance
egmentation mask indicating the object to which each pixel belongs
o and its category. These virtual agents can be also interfaced with
xternal robotic algorithms, e.g. running on the Robotics Operating
ystem, via a web protocol, hence enhancing their development. As an
llustrative example, Fig. 1 shows one of these virtual environments,
long with different pieces of information that can be extracted from
hem, and the tools developed for their management.

All these built-in functions make Robot@VirtualHome a multidisci-
plinary ecosystem of tools useful for realistic robotic simulations where
a wide variety of problems can be addressed, including: relocalization
based on similarity of appearance (Li et al., 2020; Taira et al., 2019),
scene understanding exploiting semantic knowledge (Naseer, Khan,
& Porikli, 2018; Ruiz-Sarmiento et al., 2015), active-vision (Haskins,
Mentch, Botch, & Robertson, 2020; Straub & Rothkopf, 2021), gener-
alization of knowledge in reinforcement learning (Buatois, Flumian,

1 www.idealista.com.
2

Schultheiss, Avarguès-Weber, & Giurfa, 2018; Kang, Belkhale, Kahn,
Abbeel, & Levine, 2019; Pan, You, Wang, & Lu, 2017), or semantic map-
ping (Martins, Ferreira, Portugal, & Couceiro, 2019; Ruiz-Sarmiento
et al., 2019), etc., to name a few. Interested parties can find the
complete Robot@VirtualHomeproject shared publicly at: https://github.
com/DavidFernandezChaves/RobotAtVirtualHome.

To exemplify the versatility and the advantages of this ecosystem, it
has been used to built a dataset of sensory information from the totality
of virtual houses provided, which results in an additional contribution
of this work. This dataset is composed of more than ∼113K captures of
images (including RGB and depth images, as well as instance segmenta-
tion mask) and 2D laser scans during five raids of a robot on each house.
Each raid has been conducted under different appearance conditions,
e.g. some raids took place during the day with lights off while others
were carried out during the night with lights on and using different
object models. The interested reader can reach the dataset together
with an API to handle it at https://zenodo.org/record/4610098#.YP_
1t477RaY.

In this paper we also provide two additional use cases where we
resort to Robot@VirtualHome as workbench. In the first one, we build a
semantic map for each house and automatically evaluate their quality
resorting to the provided ground truth information. In the second one,
we expose a case of appearance-based localization in which, after
carrying out a learning step, the robot must locate itself in a house
with different appearance conditions.

In the following section we summarize works related to the one pre-
sented here. Then Section 3 provides an overview of Robot@VirtualHome
while Section 4 describes in depth the tools that comprise it and their
utilities. Next, in Section 5 we report on the computational resource
demands of Robot@VirtualHome, present the dataset built and expose
two use cases in which we exploit and analyze the potential of this
ecosystem. We conclude with the conclusions of the paper and future
directions in Section 6.

2. Related work

In this section we discuss related works from the two research topics
that most closely touch our proposal, virtual environments (Section 2.1)
and datasets (Section 2.2).

2.1. Virtual environments

Widely known robotic tools for simulation such as Gazebo (Koenig &
Howard, 2004b) or Mujoco (Todorov, Erez, & Tassa, 2012) have greatly
pushed the frontiers of robotic research in proposals of all kinds, serving
as workbenches for testing and comparing their success. Recently, new
simulation tools are appearing taking advantage of 3D virtual envi-
ronments. For example, Wu et al. (2018) proposed a 3D environment
to be used as a workbench in machine learning research. It contains
3D virtual houses equipped with a diverse set of fully labeled 3D
objects, textures and scene layouts, based on the SUNCG dataset (Song,
Yu, Zeng, Chang, Savva, & Funkhouser, 2017). Generalizable agents
can be built in this virtual environment, presenting as an use case a
robotic navigation system tasked to reach targets specified by semantic
concepts.

Some of these tools are emerging as part of video game develop-
ment engines (e.g.Unreal Engine or Unity2), which have been widely
developed in recent years due to the rise of the video game industry,
allowing the easy creation and managing of 3D virtual environments.
For instance, Qiu and Yuille (2016) created UnrealCV, an open-source
plugin for Unreal Engine 4 to construct virtual worlds where agents can
perceive, navigate and take actions guided by AI algorithms. Similar to
our proposal, UnrealCV allows the user to change the properties of the

2 https://unity.com/.

http://www.idealista.com
https://github.com/DavidFernandezChaves/RobotAtVirtualHome
https://github.com/DavidFernandezChaves/RobotAtVirtualHome
https://github.com/DavidFernandezChaves/RobotAtVirtualHome
https://zenodo.org/record/4610098#.YP_1t477RaY
https://zenodo.org/record/4610098#.YP_1t477RaY
https://zenodo.org/record/4610098#.YP_1t477RaY
https://unity.com/


Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 1. A schematic of all the tools involved in the simulation of each virtual house is shown above. In yellow, the modeling tools mainly in charge of the initialization of the
virtual environment. In orange the tools that configure the appearance of the environment. In blue, those tools in charge of the virtual agents. At the bottom left they are shown
some of the different types of information that can be obtained from virtual environments: a semantic instance mask, a depth image, an occupancy grid map, and an extract of a
table showing the knowledge that is available for each object in the environment. On the bottom right, an example of three images taken from the same pose in the same house
with different appearance conditions.
world by modifying materials or reflectances among others. Another
example, this time developed in Unity, is VirtualHome, proposed by Puig
et al. (2018). This is a simulator that contains pre-designed virtual
houses in which artificial agents can be incorporated. These agents are
programmed using Scrath, which is a descriptive language that uses
atomic (inter)actions that they have implemented such as pick up or
switch on/off. This work attempts to automatically generate programs
from natural language descriptions, potentially allowing non-expert
users to teach robots a wide variety of novel tasks.

Other relevant simulation environments are focused on specific
domains such as communication language (Brockman et al., 2016;
Miller et al., 2017), or video game strategy (Synnaeve et al., 2016; Tian,
Gong, Shang, Wu, & Zitnick, 2017; Vinyals et al., 2017). We provide
a versatile virtual environment that is interesting for several research
areas such as scene understanding or 3D navigation.

2.2. Datasets

Virtual environments can play the role of a synthetic place-centric
dataset (Ruiz-Sarmiento et al., 2017; Xiao, Owens, & Torralba, 2013)
since both provide comprehensive information about the entire work-
ing environment, not being limited to certain views or portions of it.
Examples of these synthetic environments could be Replica, by Straub
et al. (2019), containing 18 highly photo-realistic 3D indoor scene
reconstructions, or Structure 3D, proposed by Zheng et al. (2020), which
is a large photo-realistic dataset which contains 3500 scenes thought
out by a professional interior designer. In both cases they aim to
achieve a high level of realism to bridge the gap with datasets from real
environments. This is important, as datasets from real environments are
often preferred, as the knowledge acquired with machine learning tech-
niques can be applied to real world conditions with little modifications.
In terms of place-centric datasets collected from real environments,
there are many remarkable examples such as Robot@Home proposed
by Ruiz-Sarmiento et al. (2017), or Matterport3D by Chang et al. (2017).
These datasets contain knowledge about multiple real houses in the
form of RGB images, point clouds or instance segmentation masks
among others. In the first case, the data were gathered by a robot which
multiple RGB-D cameras and a laser scanner, while in the second case,
panoramic images were taken at specific locations in the robot working
environment, which was reconstructed by a image matching process.

These datasets are a rich source of different types of contextual/
semantic information, for example, how objects are placed in the
environment according with their functionality, or how rooms are
3

connected based on their type. These contextual relations are usually
blurred when synthetics environments are considered, since they are
established by the designer according to his/her (possibly biased)
knowledge. Nevertheless, the information provided by real datasets
could be defined as static, it is like it is, being limited to the environ-
mental conditions at the time it was collected, and to the points in the
environment from where it was gathered. This, for example, prevents
the free navigation of an agent in the inspected environment.

Robot@VirtualHome aims to boost the research in different robotics-
related tasks by bringing together the benefits of virtual environments
and datasets collected from real setups. To this end, the proposed
ecosystem includes virtual houses that are based on real scenes and
holds relevant parts of the semantic knowledge they contain. Moreover,
to endow said houses with a high level of versatility, different aspects
like lighting conditions, object models, etc., are fully customizable.
This ecosystem also supports the design of virtual agents that represent
real robots. These agents can extract knowledge from the environment
through the simulation of sensors, or through tools provided that are
integrated in the virtual environment, for example the type of an object
detected, or identify in which room the agent is located.

3. Robot@VirtualHome ecosystem overview

Realism is a recurrent limitation in synthetic environments. This is
not only a purely aesthetic aspect, but it also concerns environmental
meta-information, such as the layout and the occurrence of the types
of objects in a room, which convey semantic knowledge of the scene.
To mitigate the dissimilarities between reality and its virtual replica,
our ecosystem includes 30 manually designed virtual houses mimicking
real ones, hence avoiding the loss of information or possible biases
caused by the criteria of a designer. This amounts to a total of 236
rooms with 2500+ virtual objects. The set of virtual houses incorpo-
rated attempts to contemplate different styles of contemporary houses.
For example, some houses are spacious with more than 5 rooms, while
others follow a minimalist style with the living room and the kitchen
in a single area. Robot@VirtualHome attempts to provide realistic meta-
information about the types of objects, rooms and the relations between
them. For that, each virtual house has been designed using resources
(plans, images, point clouds, etc.) from idealista.com, a popular real
estate website in Spain. Virtual houses keep the same layout and
proportions as their real counterparts. Moreover, in every room, virtual
objects have been manually inserted replicating the existing ones in



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 2. Examples of the virtualization process. On the left, images of a living room and a bedroom in a real house. On the right, the virtual counterpart implemented in
Robot@VirtualHome.
the real rooms that they mirror. Fig. 2 shows an example of this
virtualization process in a living room and a bedroom.

The virtual objects populating houses are individual instances of
a set of more than 60 types of generic virtual objects representing
typical household items such as sinks, beds, microwaves, fridges, lamps,
couches, etc. Each virtual object consists of a 3D representative model
and a set of labels. These labels provide semantic information about
the type of object that is virtually represented, which can be served
as ground truth information in benchmark tests. An example of these
labels could be the kitchen counter which is labeled both ‘‘counter’’
and ‘‘kitchen furniture’’. Similarly, each of the rooms that make up
the houses has also been manually labeled with the type of room it
represents, e.g. kitchen, bathroom, corridor, etc. All this information can
be easily retrieved by the tools integrated in Robot@VirtualHome, which
support high-level queries like listing all the objects within a given
room, get the position of an object, or to look up the objects of a specific
type.

Also, we have developed a set of integrated tools to manage virtual
environments and simulations in a simple way (see Section 4). These
tools can access and modify both the environment, such as ambient
light, or the robot’s free navigation area, as well as aspects of the
house’s appearance, for example by changing the models of the objects
or the paint on the walls among others. Another tools support the
simulation of physical robots by the virtual agents. Specifically, these
tools simulate sensors such as cameras, or laser scanners, and provide
the virtual agents with decision making processes.

Both the houses and the tools have been designed as part of the
Unity game engine, a video game development framework that is be-
coming increasingly relevant in the robotics field as it provides power-
ful tools for the design and control of virtual environments (Hu & Meng,
2016; Juliani et al., 2018; Navarro, Fdez, Garzón, Roldán, & Barrientos,
2018; Roldán et al., 2019). The tools we offer at Robot@VirtualHome
exploit Unity’s features to customize simulations in a variety of ways
and make the ecosystem more accessible to both people familiar with
Unity and users new to the framework. From the point of view of
the proposed system, Unity provides solutions for dealing with the
calculation of lights, shadows and reflections projections in real time,
4

the instantiation and management of 3D virtual models, or a tracing
ray system, among others. Although there are other popular game
engines such as Unreal Engine, we have opted for Unity because it
has a very smooth learning curve (Linowes, 2015) and the commu-
nity that supports it is overwhelmingly large. Furthermore, as we
have shown in previous works (Fernandez-Chaves, Ruiz-Sarmiento,
Petkov, & Gonzalez-Jimenez, 2019, 2020), Unity can be connected to
robotic systems such as the widely known Robot Operating System
(ROS) (Quigley et al., 2009) via the web-sockets protocol. In this way,
a link between robotics and video game development is provided,
allowing the user to exploit the most powerful features from both
fields. This fact is so relevant that the development team of Unity has
announced that it will officially support the ROS2 interconnection.

4. The ecosystem’s core: the tools

As well as the virtual houses, we offer in Robot@VirtualHome a set of
built-in tools that facilitate the customization of the simulations. These
tools have been developed in a modular way, so that, if needed, they
can be replaced by other implementations or disabled. Based on the
function they perform, they can be categorized into (recall the upper
part of Fig. 1):

i. Environment modelling tools: deal with the building of 3D vir-
tual environments and support the collection of data from the
environment by the rest of the tools (see Section 4.1),

ii. Appearance Control tools: customize the environment according
to the preferences of each simulation (Section 4.2), and

iii. Virtual Robot tools: are concerned with the management of
virtual agents that mimic robots (see Section 4.3).

Next sections describe these tools in greater detail grouped by their
category.

4.1. Environment modeling

Among the tools that model the virtual environment, the Environ-
ment Manager is the main one. It is in charge of instantiating and



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 3. Images taken from the same perspective using different appearance settings. (i) Up-Left: at sunrise, with ceiling room light off and no wall or floor painting. (ii) Up-Right:
in the afternoon, with ceiling room light on and no wall or floor painting. (iii) Down-Left: At sunset, with the ceiling light of the room off and with wall and floor paintings. (iv)
Below-Right: At night, with the ceiling light of the room on, and paintings in random mode.
initializing one of the virtual houses included in Robot@VirtualHome,
propagating the appearance configuration to the rest of the systems
based on a series of parameters in a configuration file. Those parame-
ters have the form of the tuple  = {,,,,}, where:

•  defines the light configuration,
•  the state of the doors,
•  the floor and wall paint configuration,
•  the models of the objects in the house, and
•  contains the information related to virtual agents.

Once the environment has been initialized, the Environment Man-
ager saves a file which can be used as a footprint of the virtual envi-
ronment in order to reproduce it again in future simulations. This file
contains the set of objects  = {𝑜1,… , 𝑜𝑛} present in the house where
each object 𝑜𝑖 is codified by the following information: (i) the object
unique id (representing its name), (ii) an associated single color (for
mask images), (iii) the room in which it is located, (iv) the type of such
a room, (v) the object type, (vi) its global position 𝐓𝑊 , vii) its global
orientation 𝐑𝑊 , and (viii) the model chosen to represent it.

After that, the Environment Manager instance a virtual agent at the
position where the virtual object called ‘‘Station’’ is located. This virtual
object has no appearance and is only used to indicate where the robot
starts in each house, however, it can be modified to, for example, have
the appearance of a charging station.

Another tool that model the virtual environment is the Ambient
Light Manager. It modifies the ambient light of the virtual environ-
ment. Formally, it is configured by the parameter 𝑙𝑎 ∈ , which defines
the rotation of the sun w.r.t the origin of coordinates of the house.
This also can change the intensity and color of the virtual sun, which
affects the ambient light and the virtual sky. This is based on the Unity’s
powerful light system which can calculate shadows, reflections, or even
the refraction of textures. As a result, the simulations are affected by a
virtual day and night cycle, changing aspects such as brightness, light
tone or even the effect of flares on the lens, as shown in Fig. 3.
5

To be able to control the motion of virtual agents in a similar way
as we control the motion of real robots, we have incorporated the
Navigation Manager. This tool can be configured with the particu-
lar characteristics of a given robotic platform (e.g. its dimensions or
maximum climbing slope) in order to calculate (at the beginning of a
simulation) its free navigation area when operating in a virtual envi-
ronment. Thus, paths can be calculated over said free navigation area
in a similar way to traditional robotic navigation systems (e.g. those
in the ROS navigation stack3). The free navigation area is affected by
walls and virtual objects as well as by doors, hence for a given house
it is different depending on the door settings used in each simulation.
Recall that these door settings are provided by  = {𝑑1,… , 𝑑𝑚}, where
𝑑𝑖 ∈ {on, off, random, customized}

4.2. Appearance Control

Another interesting set of tools in Robot@VirtualHome are those
oriented to provide different appearances of the same virtual envi-
ronments. These tools are under the umbrella of the Appearance Con-
trol category, and are in charge of modifying the visual appearance
of the virtual environment based on the configuration of a given
simulation. Concretely, these tools are the Lighting Manager , the Object
Model Manager and the Painting Manager.

While the Ambient Light Manager controls the simulation of the
light in the rooms according to the day and night cycle, the Lighting
Manager controls the simulation of artificial lights in houses. Both are
configured by the set  = {𝑙𝑎, 𝑙1,… , 𝑙𝑝} in . While 𝑙𝑎 sets the ambient
light (recall Section 4.1), each 𝑙𝑖 ∈ {on,off,random} configures how
the light point 𝑖 is initialized. This tool also relies on the Unity’s light
control system to manage the different light sources in the house, both
the ceiling lights and the lamps in each room. These points of light

3 http://wiki.ros.org/navigation.

http://wiki.ros.org/navigation


Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 4. 3D models associated with the object types ‘‘washroom’’, ‘‘small table’’ and ‘‘chair’’. Each virtual object can adopt different 3D models and/or different textures while
maintaining the same proportions and location.
generate darker shadows than the ambient light, which have a great
impact on the visual appearance of the environment. The images on
the right side of Fig. 3 show an example of the effect of turning on the
ceiling light in a room. Notice how in such scenarios the refrigerator
shows a flash of light and the furniture casts shadows. Unlike the room
lamps that have several possible 3D models, the ceiling lights do not
have models to avoid the appearance of large shadows in the rooms,
though they could be easily incorporated if needed.

It is worth mentioning that the Lighting Manager is one of the tools
that requires more hardware resources, so it can be affected by the
computational capabilities of the devices where the simulations are
carried out. Nevertheless, Unity let us to adapt the rendering options
to achieve varying levels of realism according to such capabilities.

In order to have a greater variability of virtual environments with-
out modifying existing object types or locations, each virtual object can
adopt different 3D models (see Fig. 4), which are handled by the Object
Model Manager. Given a certain home from Robot@VirtualHome, at the
start of a simulation, the Object Model Manager takes care of loading
a 3D appearance model for each object 𝑜𝑖 within it according to its
predefined configuration in . This means that, for example, a chair
can be shaped with a sloping or straight back and be made of metal
or wood, being a chair in any case. This tool can be further configured
to randomly choose one model, a specific one, or to inherit the chosen
model from another virtual object. This feature allows the user to create
sets of objects with a matching style, such as is usually the case of
kitchen furniture (as shown in Fig. 3). Robot@VirtualHomehas been
structured to facilitate the addition of new virtual objects, or new
models of existing ones, such providing highly customizable virtual
environments.

In terms of visual appearance, we also provide the Painting Man-
ager, which is based on the previous ones to modify the wall and floor
paintings in each room. This tool can be configured by means of the
parameters in , concretely those in  = {𝑚1,… , 𝑚𝑞}, so 𝑚𝑖 ∈ {plain
color, texture_1, . . . , texture_r, random}. An example of the visual
effect of these paintings can be seen in Fig. 3, where the images show
walls and/or floors with different colors and textures. This feature is
especially useful for keypoint based vision systems, which often require
surfaces to have texture in order to be able to extract information.

4.3. Virtual Robot

Robots can be represented within the virtual environment by simple
models such as geometric primitives, or by complex ones that faith-
fully represent the appearance of real robots. Regardless of this, the
6

robots’ simulation is performed through agents controlled by the Virtual
Robot tools. Both the geometric design of the virtual agent (such as the
robot model, sensors’ extrinsic calibration, etc.) and the configuration
of the theses tools are assembled in , concretely in  = {𝑎1,… , 𝑎𝑟}
where 𝑟 stands for the number or virtual agents, using high-level
models commonly used in Unity called ‘‘prefabs’’. Virtual Robot tools
can be divided according to their functionality into: i) those that allow
to control the movement of virtual agents, when and which data to
capture, etc. –that is, those defining a behavior–, and (ii) tools that
simulate sensor readings.

It is worth mentioning that the actions performed by virtual agents
can arise externally to the virtual environment through applications
connected through the web-socket protocol or by the previously men-
tioned tools that simulate the agent’s behavior. Robot@VirtualHome
incorporates the necessary resources to establish a connection and
exchange information with the well-known ROS ecosystem. If this
alternative is chosen, the simulation of the robot from the virtual
environment side would involve visual aspects and sensors’ simulation,
leaving decision making (e.g.how it navigates) to said external systems.

However, Unity is versatile enough to allow the creation of complex
decision making tools such as those incorporated in modern service
robots. This option presents some useful features that speed up the
development with respect to using external robotic platforms, since
being integrated in the virtual environment, hardware aspects can be
simplified without having to resort to other simulation software, for
example, the level of the robot battery or motor control. Furthermore,
since these tools are integrated in the same ecosystem as the other
tools, they have an easy access to information about the virtual envi-
ronment, such as the exact position or type of surrounding objects. To
facilitate and exemplify the simulation of robotic behaviors on Unity,
Robot@VirtualHome includes three basic tools that modify the behavior
of the robot configured by the parameter 𝑎𝑏 ∈ 𝑎𝑖, where 𝑎𝑏 ∈ {None,
Wanderer, Grid, Manual}.

• Wanderer: At the beginning of the simulation, the projections of
the ceiling lights onto the floor are calculated, obtaining a set
of points of interest per room: 𝑃 𝑟 = {𝑙𝑟1,… , 𝑙𝑟𝑛} where 𝑟 is the
room number and 𝑛 is the number of ceiling lights in the room.
These points are then shifted to coincide within the robot’s free
navigation area. After this, all the sets are joined into one which
is used as a reference to guide the robot: 𝑊 𝑝𝑠 = 𝐿0 ∪𝐿1 ∪⋯∪𝐿𝑅

where 𝑅 is the number of rooms in the house. This set (𝑊 𝑝𝑠)
can be tracked cyclically, in order or randomly. The result is a
sequence of images from small position increments that show at
least once all the rooms in the house.



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 5. Floor plan image of the virtual house 15. The blue area corresponds to the free navigation area of the virtual robot. Green spheres represent the nodes that the robot tries
to reach using the grid behavior to capture data.
Fig. 6. Images returned by the Smart Camera. On the left, image of instance segmentation masks, where each color represents a different object. In the middle, the RGB intensity
image. On the right, the depth image.
• Grid: At the beginning of the simulation, a grid of equidistant
nodes of configurable distance is generated covering the whole
robot’s navigation area (see Fig. 5). Similar to the previously
explained tool, these nodes form a set which the robot follows
in an orderly fashion. While during the path the robot does not
capture data, at each node it performs a 360◦ turn capturing
data. This tool facilitates the acquisition of images from multiple
perspectives of the environment, which is very useful in some
robotic applications such as appearance-based localization.

• Manual: This is a standard remote control tool, with which we
can control the virtual robot’s motion by means of a keyboard.

Besides, all of these behaviors can be configured to save a log file
containing the pose (position 𝐓𝑊 plus orientation 𝐑𝑊 ) and room name
in which the robot captured sensory information.

Regarding the gathering of information from the virtual environ-
ment, the robot can use both the Environment Manager to obtain ground
truth information, as well as tools to simulate sensors. Sensors can be
modeled to capture data from the virtual environment in the same way
as robots’ sensors would in a real environment. For example, cameras
can be simulated using the virtual cameras already built into Unity, or
a robotic laser scanner can be simulated using ray tracing. However,
knowledge about the virtual environment is absolute, unlike in real
setups where uncertainties appear.

Robot@VirtualHome incorporates two tools that simulate common
robotic sensors to bridge the gap between virtual and real environ-
ments: i) what we have called the Smart Camera and ii) a Laser Scanner.
The first one simulates the behavior of a standard RGB-D camera
7

enhanced to access the semantic information of the virtual environ-
ment. This tool can capture intensity (RGB) and depth images, as well
as instance segmentation masks (see Fig. 6). These images can be
compressed in JPG format and sent to ROS through the connection
maintained by the virtual agent, thus simulating the performance of
a real camera. For further similarity, this tool can be specifically
configured with intrinsic parameters like those of real cameras so
that deformations can be considered, sensor size can be modified, etc.
(see Zuñiga-Noël, Ruiz-Sarmiento, and Gonzalez-Jimenez (2019) for
more details). For convenience, the Smart Camera returns the intrinsic
calibration matrix 𝐾 from a given sensor size (𝑠𝑥, 𝑠𝑦), a focal length (𝑓 )
and an image resolution (𝑟𝑥, 𝑟𝑦) based on:

𝐾 =
⎛

⎜

⎜

⎝

𝑓 ∗ 𝑟𝑥∕𝑠𝑥 0 𝑟𝑥∕2
0 𝑓 ∗ 𝑟𝑦∕𝑠𝑦 𝑟𝑦∕2
0 0 1

⎞

⎟

⎟

⎠

(1)

In addition, to improve the realism of the images obtained by
this sensor, Robot@VirtualHome incorporates ‘‘Post Processing Stack’’, a
popular post-processing package for images in Unity. This allows the
virtual camera to incorporate effects such as lens distortions, motion
blurring, light flare effects, etc. Concerning the capture of instance
segmentation masks, the Smart Camera exploits the shader system
available in Unity to efficiently obtain images with color masks where
each color is identified with an instance of a virtual object.

The laser scanner is one of the most used sensors in robotics, so
for the sake of usability, we have designed a tool that simulates the
behavior of a real laser scanner in virtual environments. This tool uses
Unity’s built-in ray tracing system to measure the distance between the



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 7. Simulation of a robot equipped with a 360◦ laser in one of the virtual houses. On the left are shown the points in the virtual environment where the laser beams have
collided. This information can be transferred to ROS as if the laser were a real instrument equipped on a robot. On the right, a snippet from RVIZ (a typical ROS application for
visualizing data) showing the data received from the virtual laser.
sensor and the surrounding environment. This tool also incorporates
specifically parameters that configure the realism obtained, modifying
aspects such as field of view, resolution, accuracy, or maximum opera-
tion range to simulate the limitations of real sensors. In this sense, the
output of the simulated laser is an ordered set of distances. As with the
camera, this virtual sensor can exploit the virtual agent’s connection
to ROS to send measured distances as if it were a real sensor. As an
example, Fig. 7 shows a scene where the virtual laser measurements
are displayed both in the virtual environment and in RVIZ, a ROS data
viewer.

5. Running simulations

To show a glimpse of the possibilities offered by Robot@VirtualHome,
we present some use cases in which we analyze and prove the per-
formance of the simulations. In this section we first perform a quan-
titative analysis of the resources required to launch simulations with
Robot@VirtualHome, as well as the performance during the execution
of a simulation (see Section 5.1). Next in section Section 5.2 we
give details on the design of a virtual agent to simulate a com-
mercial robot used in the use cases. In Section 5.3, we present the
Robot@VirtualHomedataset, which contains information from five raids
on each house with different appearance configurations. Finally, we
exhibit two approaches to robotics-related problems using the pre-
sented ecosystem as workbench: semantic mapping (see Section 5.4)
and appearance-based localization (see Section 5.5).

5.1. Demand on computational resources: quantitative analysis

To measure the ecosystem’s demand on computational resources,
we have measured the memory allocation and CPU usage in thirty sim-
ulations, one for each virtual house, using the Unity built-in profile. The
simulations were performed using randomized configurations and also
connecting the agent and virtual sensors to ROS. These performance
tests, as well as the building of the dataset and the use cases later
discussed, have been performed using a computer equipped with an
Intel Core i7-5700HQ processor at 2.70 GH, a RAM memory with 2 × 8
GB DDR3 at 800 MHz, and a graphic card NVIDIA GeForce GTX 960M
with a memory of 2 GB.

Fig. 8 shows on the left, as an example, a time lapse representing
the time the CPU takes to process each frame in a simulation. Notice
that although it provides information on one simulation, it is quite
representative since all simulations reported similar figures. This graph
8

shows how CPU usage is fairly constant with an average use of 6 ms to
dispatch a frame (> 60𝐹𝑃𝑆), allowing the simulations to run smoothly,
with some occasional peaks. These spikes are due to the process of
packaging and sending the virtual sensor data to ROS, which is com-
putationally expensive. On average, sending images (intensity, depth
and semantic instance masks) from the smart camera takes 55.54 ms,
while sending measurements from the laser scanner takes 19.90 ms. To
ensure that the fluidity of the simulations are not compromised by the
high consumption of these processes, we run them in parallel threads
to the main one in order not to block the rendering of the scene. In this
way we spread the computational cost among several frames, hence the
highest peak of the graph is 37.87 ms.

In terms of memory, the simulations have used on average 1.01 G.
Fig. 8 shows the average measured allocations where 192.35 Mb
(19.0%) has been used in storing the textures, 267.18 Mb (26.4%)
for the meshes and 1.3 Mb (0.01%) for the materials. The remaining
54.59% is used by Unity for its internal processes. Note that memory
allocation is handled automatically by Unity so there may be slight
differences on other computers.

5.2. Modeling and simulating robots by means of virtual agents

To achieve realistic results in the applications shown, we have
designed a virtual agent that simulates a commercial robot. Specifi-
cally, we have imitated the Giraff robotic platform (González-Jiménez,
Galindo, & Ruiz-Sarmiento, 2012), which has proven to be valid in a va-
riety of indoor applications (Fernandez-Chaves et al., 2020; González-
Jiménez et al., 2012; Ruiz-Sarmiento et al., 2017). This robot is de-
signed for telepresence purposes and has a laser scanner at the base to
locate itself and a tilted camera at the top to interact with people.

To replicate this robot, we used a virtual agent with a 2D laser
scanner attached at the base at a height of 0.25 m. This laser was
configured to cover a 360◦ range with 1◦ increments between each
measurement working at a frequency of 0.5 Hz. It should be noted
that in virtual environments there is no uncertainty so measurements
are accurate, however, Gaussian noise can be used to simulate realistic
measurements. Regarding the camera, we have used a smart camera
placed at a height of 1.59 m and with a 10◦ rotation in the pitch
axis, resulting in a lower front view similar to the camera used in
Giraff robots. In addition, the following intrinsic parameters were used
to replicate the real camera mounted on the robot: sensor size of
21.0x15.2 mm, focal length of 18 mm, field of view of 45◦ and lens shift
of (0.0)mm and VGA resolution (640x480px). In terms of enhancement,



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 8. On the left, a time lapse graph extracted from a simulation where the CPU time required to process each frame is plotted. The purple color represents the time used to
process the scripts, and green is the time used for rendering. In yellow, the overall average performance. On the right, the average memory allocation of all simulations.
Table 1
Settings used in the appearance tools for the acquisition of the dataset.

Ambient Light
𝑙𝑎 ∈ 

Lamps in rooms
{𝑙1 ,… , 𝑙𝑝} ∈ 

Ceiling lighting
of the rooms
{𝑙1 ,… , 𝑙𝑝} ∈ 

Painting
Walls and Floors
{𝑚1 ,… , 𝑚𝑞} ∈ 

Object Models
{𝑜1 ,… , 𝑜𝑗} ∈ 

Raid 0 (𝑎𝑏 = Grid) 100◦ - Day Off On Plain Color Basic preset model
Raid 1 (𝑎𝑏 = Wanderer) 100◦ - Day Off On Plain color Basic preset model
Raid 2 (𝑎𝑏 = Wanderer) 100◦ - Day Off Off Random Random
Raid 3 (𝑎𝑏 = Wanderer) 180◦ - Sunset Random Off Random Random
Raid 4 (𝑎𝑏 = Wanderer) 200◦ - Night Random On Random Random
we take advantage of the potential of this virtual tool to capture images
not only of intensity, but also of depth and semantic masks. Concerning
the navigation parameters, in all the experiments presented in this
work, the configuration was as follows: maximum linear velocity of
0.25 units/s, maximum angular velocity of 25◦/s and an acceleration of
3 units/s2. It should be noted that one unit is equivalent to one meter,
considering the scale of the houses in virtual environments as reference.
All the parameters mentioned in this subsection are collected in a Unity
prefab as 𝑎1 ∈  to be used during the simulations.

5.3. The Robot@VirtualHome dataset

The dataset presented here is constituted by information gathered
by means of the virtual agent previously designed during five raids in
each of the thirty houses. Specifically, we have collected: (i) images of
intensity, depth and instance segmentation masks, (ii) 2D laser scans,
(ii) occupancy maps, (iii) logs with the ground truth of the objects and
models used and (iv) logs with information regarding the trajectory
followed that links the data with the pose from where they have been
collected. It should be noted that the occupancy maps for each house
have been obtained from the ROS gmapping package4 by means of the
sensory information collected by the virtual laser scanner included in
Robot@VirtualHome.

For the first raid in each house, we used the grid behavior tool,
which was configured with a separation between nodes of 0.5 m and
10 data captures per node, i.e., in each node a capture was performed
every 36 degrees. In the remaining four raids we used the wanderer
behavioral tool configured to capture data every 0.5s. Table 1 shows
the appearance tool settings used in each raid. These settings cover
a wide range of appearance variety, having samples with different
daytime shades, different object models, etc.

The resulting dataset is composed of a total of 113278 captures,
giving a total of 339.834 images. Table 2 details how many captures
have been made in each raid. In raids where the robot used a grid
behavior, the robot captured more images per house. This was expected
since the aim of this behavior is to obtain observations from all its
reachable locations. For example, in the case of house 23, with has 14
rooms (indeed it is the largest house), 2,990 captures were taken. On
the other hand, the wandering behavior made the robot go through all

4 http://wiki.ros.org/gmapping
9

Table 2
Overview of the dataset content with the number of captures, objects and rooms
observed for each house. W1, W2, W3 and W4 refer to the four raids carried out
with the wanderer behavior.

House Number of captures Objects Rooms

Grid W1 W2 W3 W4

1 1750 423 624 716 378 107 10
2 1610 232 273 221 398 68 5
3 1710 986 1002 687 693 114 12
4 2240 904 1319 988 952 118 10
5 1680 1127 1321 1143 1099 102 10
6 1120 361 476 574 591 81 8
7 1080 635 682 714 479 89 9
8 1180 558 916 564 491 97 8
9 1440 725 795 698 525 85 9
10 870 441 397 415 362 82 7
11 680 161 131 158 207 42 5
12 1040 330 440 432 364 62 7
13 1560 596 522 664 404 84 9
14 2390 677 747 827 719 109 9
15 1870 613 486 441 456 74 6
16 1420 765 701 720 497 90 9
17 1340 628 512 408 497 86 6
18 940 402 302 228 490 75 7
19 1190 445 438 425 433 78 8
20 640 163 114 167 113 48 3
21 2410 855 1329 1170 1104 127 9
22 780 161 167 232 230 51 5
23 2990 1470 1366 1764 1509 121 14
24 1480 675 704 665 892 77 8
25 1590 922 1186 1049 828 104 9
26 1320 361 665 536 578 97 9
27 1940 965 977 822 817 134 12
28 950 155 206 276 212 63 5
29 320 91 92 87 87 52 4
30 1120 185 222 183 125 67 4

the rooms of the house randomly, so that the raid, depending on the
order followed, can be longer or shorter. This means that raids in the
same house can have significant differences in the number of captures.

In order to handled this data, we have added a simple API developed
in Phyton. The API accesses the logs included in the dataset to build a
rich data structure that can be incorporated into other applications. In
this way, we provide an easy and agile solution to extract information
from the generated logs, being able to access information such as the

http://wiki.ros.org/gmapping


Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Fig. 9. Image of the semantic map obtained in the first use case in the 20th house. The detected objects are shown with a detection box and a label which shows the type of
object and the confidence score of the detection. Each detection has a unique color that is used in both the boxes and the labels.
number of objects in a given image, or to know how many objects or
rooms of a certain category exist in a house.

5.4. Use case: Building semantic maps

Semantic maps are representations of the robot workspace enriched
with meta-information that provide additional knowledge about the
elements that it contains (e.g. categories of objects and rooms, func-
tionalities, etc.). Robots can take advantage of these maps to achieve
a certain level of understanding of their surroundings. For example,
these allow them to tackle tasks at a high level like ‘‘go to the bath-
room’’, rather than ‘‘go to the x, 𝑦 coordinates’’. In a previous work,
we proposed ViMantic (Fernandez-Chaves, Ruiz-Sarmiento, Petkov, &
Gonzalez-Jimenez, 2021b), an architecture that allows the building of
semantic maps from the objects detected by robots connected to it. For
doing so, the semantic map is represented as a virtual environment
where ViMantic instantiates labeled bounding boxes that refer to one or
a set of object detections. In this way, the virtual environment shows
at a glance the position, size and type of the objects detected by the
connected robots during their operation. This approach was tested on
Robot@Home (Ruiz-Sarmiento et al., 2017), a dataset containing data
from real houses, using different state-of-the-art neural networks for
object detection, producing positive results (see Fig. 9).

In this use case we have relied on ViMantic to build a semantic map
for each of the thirty virtual houses included in Robot@VirtualHome. For
this purpose, we have performed a simulation in each house using ran-
dom appearance settings and the virtual agent described in Section 5.2
using the wanderer behavior tool. A fundamental task to properly
populate semantic maps is such of object detection, which has been
carried out by means of the state-of-art neural network Detectron2 (Wu,
Kirillov, Massa, Lo, & Girshick, 2019), as it reached the highest success
rate in our previous works.

The Environment Manager allows us to obtain information about the
virtual environment such as the type of a virtual object, or a list of
objects inside the house. Resorting to this ground truth information, we
have automated the computation of relevant statistics such as precision
(the number of detection boxes successfully instantiated) and recall (the
number of detectable objects that have been successfully detected).

Table 3 shows the results obtained in each simulation. It is worth
mentioning that the semantic map building has been a passive task
while the robot wandered around the house. This is reflected in the low
rate of objects found (Recall), with an average of 40%. This way there
is room for improvement, for example by using a dedicated semantic
mapping behavior that explores the environment in detail. As for the
precision, the average from all houses is 72.7%. However, houses such
as 10 or 29 have obtained a lower precision rate (66.7% and 50%
respectively) due to the low number of objects detected in them.
10
It is important to clarify that detection boxes tend to grow and
encompass objects of the same type that are close together. A recurring
case of this occurs when there are multiple chairs around a table, a
single detection box encompasses all the chairs when they are close
enough together. In this way, the number of detected objects is greater
than the number of detection boxes, for example in house 3 where there
were 11 correct detection boxes and a total of 16 objects found. In
contrast, it also happens that the CNN used detects the same object
multiple times, e.g. in case of partial occlusion. In these cases, two
detection boxes can be found for a single object. In this way, the
number of detection boxes is greater than the number of detected
objects, for example in house 30 where there were 11 detection boxes
for 8 detected objects.

5.5. Use case: Appearance-based localization

Appearance-based localization is the task of localizing an image
within an environment without relying on local features, solely em-
ploying global features and a previously constructed map of image
descriptor-pose pairs. One of the main advantages of such approaches,
as a result of using whole image descriptors (Arandjelovic, Gronat,
Torii, Pajdla, & Sivic, 2016), is their robustness against extreme lighting
conditions.

Existing real world, indoor datasets for localization are mainly
gathered during robot or camera navigation through an environment,
although only a fraction of them include records of the same scene
under different lighting conditions, which impedes to evaluate local-
ization under challenging conditions. Images captured from pose grids
are an alternative source of information to generate appearance maps,
however, their construction in real environments turns to be a time-
consuming and expensive process, being only feasible for small areas.
On the other hand, existing virtual datasets can efficiently gather grid
maps, with the drawback that few of them simulate realistic environ-
ments and, to the best of our knowledge, none of them includes the
feature of varying the environment appearance and illumination along
with navigation capabilities.

The Robot@VirtualHome ecosystem allows to acquire images from
navigation sequences or grid maps under diverse illumination set-
tings, which we took advantage of to test the impact of illumination
on the performance of an state-of-the-art appearance-based localiza-
tion method. Concretely, this problem was approached with (Jaenal,
Moreno, & Gonzalez-Jimenez, 2021), a solution that divides the en-
vironment into regions called Patches of Smooth Appearance Change
(PSACs) that model the local association between pose and the holis-
tic descriptor, specifically NetVLAD (Arandjelovic et al., 2016). We
designed an experiment involving several illumination settings for: i)
a single grid map obtained with the grid behavior configured with a



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.
Table 3
Results of the semantic map building for each house contained in Robot@VirtualHome. The Detections column shows the
number of elements detected by the CNN in all frames while Detection boxes are ViMantic’s representation of the objects
detected in the environment. Detection boxes can correspond to one or more detections.
House CNN detections Detection boxes Detected objects Precision (%) Recall (%)

1 288 22 16 68,2 38,1
2 132 11 6 63,6 40,0
3 427 15 16 73,3 45,7
4 395 20 13 50,0 38,2
5 221 13 11 76,9 35,5
6 134 12 13 75,0 46,4
7 159 9 10 77,8 40,0
8 151 10 10 70,0 32,3
9 129 11 8 72,7 34,8
10 51 3 2 66,7 11,1
11 106 7 6 71,4 40,0
12 193 12 10 75,0 50,0
13 304 18 12 66,7 46,2
14 424 19 14 78,9 45,2
15 199 13 8 76,9 40,0
16 141 12 10 83,3 37,0
17 252 19 16 78,9 55,2
18 183 10 8 70,0 36,4
19 198 17 9 70,6 36,0
20 54 6 7 83,3 43,8
21 371 20 16 70,0 45,7
22 59 6 3 83,3 27,3
23 633 28 18 71,4 56,3
24 461 18 14 77,8 66,7
25 878 30 17 66,7 45,9
26 188 14 14 92,9 51,9
27 413 20 22 75,0 48,9
28 81 7 4 71,4 17,4
29 28 2 3 50,0 10,0
30 145 15 8 73,3 40,0

Average 247 14 11 72,7 40,0
Table 4
Comparative median position (𝜖) and rotation (𝜃) errors reported by the appearance-based localization approach, tested within maps
and sequences with diverse radiometric conditions. The parameter 𝑙𝑎 shown in the name of each experiment indicates the angle of the
virtual sun with respect to the house to simulate the time of day.

Grid Day (𝑙𝑎 = 170𝑜) Grid Sunset (𝑙𝑎 = 179𝑜) Grid Night (𝑙𝑎 = 200𝑜)

𝜖 𝜃 𝜖 𝜃 𝜖 𝜃

Route Day (𝑙𝑎 = 90𝑜) 0.23 12.36 0.27 12.58 0.38 19.28
Route Sunset (𝑙𝑎 = 175𝑜) 0.26 16.17 0.26 11.42 0.29 12.08
Route Night (𝑙𝑎 = 185𝑜) 0.30 15.99 0.31 16.23 0.46 22.42
Route Night (𝑙𝑎 = 195𝑜) 0.34 17.61 0.21 10.28 0.34 11.20
Route Day (𝑙𝑎 = 25𝑜) 0.21 7.22 0.26 12.35 0.44 12.64
Route Day (𝑙𝑎 = 165𝑜) 0.27 12.56 023 10.80 0.43 20.48
m
t
c
d

distance between nodes of 0.5 m and 10 images per node, and (ii) a
∼ 25 m long test route obtained following a wanderer behavior (refer
to SEC4.3). In addition, we created a synthetic odometry for the route,
corrupted by zero-mean Gaussian noise with 𝜎𝑢 = (0.06 m, 1◦).

Table 4 shows the compared localization performance for the dif-
ferent radiometric conditions of the sequence and grid map, expressed
in terms of median errors in position and orientation after five runs for
each scenario. The results demonstrate that, when localizing on maps
gathered under brighter luminosity, as Day or Sunset, less position
and orientation error is incurred than at night, thus providing a more
accurate description of the environment and higher performances in
appearance-based localization. Finally, the worst performance reported
occurred when localizing under radiometric settings that differ signif-
icantly from those of the map, e.g: Day and Night, Sunset and Night,
etc.

6. Conclusions

In this paper we introduced Robot@VirtualHome, an ecosystem of
tools for managing virtual environments and agents developed to boost
the research in different service robotics-related tasks with realistic
simulations. The adjective ‘‘realistic’’ is due to the unique way in
11

t

which the 30 virtual houses provided were designed: mimicking the
layout of rooms in real houses as well as the position and type of
the objects that can be found therein. This enables generalization to
the real world, which is essential in robotic simulations where scene
semantics play a fundamental role. The proposed ecosystem of tools
also comprises a number of valuable features: modification of the
lighting of the environment and lamps, change of the paint of floors
and walls, setting of the free navigation space by opening and closing
doors, or customization of objects’ models, among others. Service robot
simulation can be performed using customizable agents called virtual
robots. These can be controlled by algorithms developed directly in
the virtual environment or can be connected to real robots through
standardized WebSocket communication channels. In addition, virtual
robots can include virtual sensory systems that model real sensors such
as cameras or laser scanners.

We have also exposed the demand for computational resources
during the simulations. On average, the simulations occupy 1𝐺 of RAM

emory and each frame takes 6 ms (> 60𝐹𝑃𝑆) to process. To illustrate
he possibilities of our proposal, we have built a dataset of images
aptured in the provided virtual houses under diverse appearance con-
itions. This dataset contains RGB and depth images, instance segmen-

ation masks, 2D laser scans and occupancy grid maps. Additionally, we



Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.

t
d
a
b
h
P
c
n
w

C

I
M
b
F
v
a

D

c
i

A

(
b
(
b
g
t
X
f
s
c

R

A

B

B

B

B

C

K

K

L

L

L
M

M

N

N

have also shown two use cases where Robot@VirtualHome is exploited
to successfully address robotics-related problems. In the first one, we
have employed the provided functionalities and ViMantic (Fernandez-
Chaves et al., 2021b) to build semantic maps for each of the vir-
tual houses. In the second, we have introduced an appearance-based
location application and tested it in one of the virtual houses.

In the future we plan to further leverage and develop the fea-
tures of Robot@VirtualHome. For example, to include houses with more
han one floor as well as new room types such as basements, gar-
ens or attics. In terms of applications, there are many interesting
lternatives, for example, using the virtual environment as a work-
ench to train reinforcement learning systems that actively explore
ouses (Fernandez-Chaves, Matez-Bandera, Ruiz-Sarmiento, Monroy,
etkov, & Gonzalez-Jimenez, 2021). Another interesting use case is to
ompare and measure the performance of different object detection
etworks in different lighting conditions, so that the robot could choose
hich CNN to use depending on the ambient light at any given time.

RediT authorship contribution statement

David Fernandez-Chaves: Methodology, Software, Data curation,
nvestigation, Writing – original draft. Jose-Raul Ruiz-Sarmiento:
ethodology, Validation, Supervision, Writing – review & editing. Al-
erto Jaenal: Data curation, Writing – original draft. Nicolai Petkov:
unding acquisition, Project administration, Supervision, Writing – re-
iew & editing. Javier Gonzalez-Jimenez: Conceptualization, Project
dministration, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work has been supported by the research projects WISER
DPI2017-84827-R), funded by the Spanish Government and financed
y the European Regional Development’s funds (FEDER), ARPEGGIO
PID2020-117057GB-I00), funded by the European H2020 program,
y the grant number FPU17/04512 and the UG PHD scholarship pro-
ram from the University of Groningen. We gratefully acknowledge
he support of NVIDIA Corporation with the donation of the Titan

Pascal used for this research. We would like to thank the Center
or Information Technology of the University of Groningen for their
upport and for providing access to the Peregrine high performance
omputing cluster.

eferences

randjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2016). NetVLAD: CNN
architecture for weakly supervised place recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 5297–5307).

ajcsy, R., Aloimonos, Y., & Tsotsos, J. K. (2018). Revisiting active perception.
Autonomous Robots, 42(2), 177–196.

eattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., et al.
(2016). Deepmind lab. arXiv preprint arXiv:1612.03801.

rockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., et al.
(2016). Openai gym. arXiv preprint arXiv:1606.01540.

uatois, A., Flumian, C., Schultheiss, P., Avarguès-Weber, A., & Giurfa, M. (2018).
Transfer of visual learning between a virtual and a real environment in honey
bees: the role of active vision. Frontiers in Behavioral Neuroscience, 12, 139.

Burgueño, A. M., Ruiz-Sarmiento, J. R., & Gonzalez-Jimenez, J. (2021). Autonomous
docking of mobile robots by reinforcement learning tackling the sparse reward
problem. In Lecture notes in computer science: Vol. 12862, (pp. 392–403). Cham:
Springer International Publishing, http://dx.doi.org/10.1007/978-3-030-85099-9_
32.

abon, Y., Murray, N., & Humenberger, M. (2020). Virtual kitti 2. arXiv preprint
arXiv:2001.10773.
12
Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., et al. (2017).
Matterport3d: Learning from rgb-d data in indoor environments. arXiv preprint
arXiv:1709.06158.

Cheng, J., Cheng, H., Meng, M. Q.-H., & Zhang, H. (2018). Autonomous navigation
by mobile robots in human environments: A survey. In 2018 IEEE international
conference on robotics and biomimetics (ROBIO) (pp. 1981–1986). http://dx.doi.org/
10.1109/ROBIO.2018.8665075.

Fernandez-Chaves, D., Matez-Bandera, J. L., Ruiz-Sarmiento, J. R., Monroy, J.,
Petkov, N., & Gonzalez-Jimenez, J. (2021). Exploiting spatio-temporal coherence for
video object detection in robotics. In International Conference on Computer Analysis
of Images and Patterns (pp. 186–196). Springer.

Fernandez-Chaves, D., Ruiz-Sarmiento, J., Petkov, N., & Gonzalez-Jimenez, J. (2019).
Integration of cnn into a robotic architecture to build semantic maps of indoor
environments. In International work-conference on artificial neural networks (pp.
313–324). Springer.

Fernandez-Chaves, D., Ruiz-Sarmiento, J., Petkov, N., & Gonzalez-Jimenez, J. (2020).
From object detection to room categorization in robotics. In Proceedings of the 3rd
international conference on applications of intelligent systems (pp. 1–6).

Fernandez-Chaves, D., Ruiz-Sarmiento, J., Petkov, N., & Gonzalez-Jimenez, J. (2021b).
Vimantic, a distributed robotic architecture for semantic mapping in indoor
environments. Knowledge-Based Systems, 232, Article 107440. http://dx.doi.org/10.
1016/j.knosys.2021.107440.

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI
dataset. International Journal of Robotics Research, 32(11), 1231–1237.

Gerkey, B., Vaughan, R. T., & Howard, A. (2003). The player/stage project: Tools
for multi-robot and distributed sensor systems. Vol. 1, In Proceedings of the 11th
international conference on advanced robotics (pp. 317–323). Citeseer.

González-Jiménez, J., Galindo, C., & Ruiz-Sarmiento, J. (2012). Technical improvements
of the Giraff telepresence robot based on users’ evaluation. In 2012 IEEE RO-MAN:
The 21st IEEE international symposium on robot and human interactive communication
(pp. 827–832). IEEE.

Haskins, A. J., Mentch, J., Botch, T. L., & Robertson, C. E. (2020). Active vision in
immersive, 360 real-world environments. Scientific Reports, 10(1), 1–11.

Hu, Y., & Meng, W. (2016). RosUnitySim: Development and experimentation of a real-
time simulator for multi-unmanned aerial vehicle local planning. SIMULATION,
92(10), 931–944.

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in
the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, Amherst: University of Massachusetts.

Jaenal, A., Moreno, F.-A., & Gonzalez-Jimenez, J. (2021). Appearance-based sequential
robot localization using a patchwise approximation of a descriptor manifold.
Sensors, 21(7), 2483.

Josifovski, J., Kerzel, M., Pregizer, C., Posniak, L., & Wermter, S. (2018). Object
detection and pose estimation based on convolutional neural networks trained with
synthetic data. In 2018 IEEE/RSJ international conference on intelligent robots and
systems (IROS) (pp. 6269–6276). IEEE.

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., et al. (2018). Unity:
A general platform for intelligent agents. arXiv preprint arXiv:1809.02627.

Kang, K., Belkhale, S., Kahn, G., Abbeel, P., & Levine, S. (2019). Generalization through
simulation: Integrating simulated and real data into deep reinforcement learning
for vision-based autonomous flight. In 2019 international conference on robotics and
automation (ICRA) (pp. 6008–6014). IEEE.

oenig, N., & Howard, A. (2004a). Design and use paradigms for gazebo, an open-
source multi-robot simulator. Vol. 3, In 2004 IEEE/RSJ international conference on
intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566) (pp. 2149–2154).
IEEE.

oenig, N., & Howard, A. (2004b). Design and use paradigms for Gazebo, an open-
source multi-robot simulator. Vol. 3, In 2004 IEEE/RSJ international conference on
intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566) (pp. 2149–2154).
http://dx.doi.org/10.1109/IROS.2004.1389727.

i, Q., Zhu, J., Liu, J., Cao, R., Fu, H., Garibaldi, J. M., et al. (2020). 3D map-guided
single indoor image localization refinement. ISPRS Journal of Photogrammetry and
Remote Sensing, 161, 13–26.

in, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
Microsoft COCO: Common objects in context. In European conference on computer
vision (pp. 740–755).

inowes, J. (2015). Unity virtual reality projects. Packt Publishing Ltd.
artins, G. S., Ferreira, J. F., Portugal, D., & Couceiro, M. S. (2019). Modsem: Towards

semantic mapping with distributed robots. In K. Althoefer, J. Konstantinova, &
K. Zhang (Eds.), Towards autonomous robotic systems (pp. 131–142). Cham: Springer
International Publishing.

iller, A. H., Feng, W., Fisch, A., Lu, J., Batra, D., Bordes, A., et al. (2017). Parlai: A
dialog research software platform. arXiv preprint arXiv:1705.06476.

aseer, M., Khan, S., & Porikli, F. (2018). Indoor scene understanding in 2.5/3d for
autonomous agents: A survey. IEEE Access, 7, 1859–1887.

avarro, F., Fdez, J., Garzón, M., Roldán, J. J., & Barrientos, A. (2018). Integrating
3D reconstruction and virtual reality: A new approach for immersive teleoperation.
Vol. 694, In Advances in intelligent systems and computing (pp. 606–616). Springer
Verlag, http://dx.doi.org/10.1007/978-3-319-70836-2_50.

http://refhub.elsevier.com/S0957-4174(22)01201-5/sb2
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb2
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb2
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1606.01540
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb5
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb5
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb5
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb5
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb5
http://dx.doi.org/10.1007/978-3-030-85099-9_32
http://dx.doi.org/10.1007/978-3-030-85099-9_32
http://dx.doi.org/10.1007/978-3-030-85099-9_32
http://arxiv.org/abs/2001.10773
http://arxiv.org/abs/1709.06158
http://dx.doi.org/10.1109/ROBIO.2018.8665075
http://dx.doi.org/10.1109/ROBIO.2018.8665075
http://dx.doi.org/10.1109/ROBIO.2018.8665075
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb10
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb11
http://dx.doi.org/10.1016/j.knosys.2021.107440
http://dx.doi.org/10.1016/j.knosys.2021.107440
http://dx.doi.org/10.1016/j.knosys.2021.107440
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb14
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb14
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb14
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb15
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb15
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb15
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb15
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb15
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb16
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb17
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb17
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb17
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb18
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb18
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb18
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb18
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb18
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb19
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb19
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb19
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb19
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb19
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb20
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb20
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb20
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb20
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb20
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb21
http://arxiv.org/abs/1809.02627
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb23
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb24
http://dx.doi.org/10.1109/IROS.2004.1389727
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb26
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb26
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb26
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb26
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb26
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb28
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb29
http://arxiv.org/abs/1705.06476
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb31
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb31
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb31
http://dx.doi.org/10.1007/978-3-319-70836-2_50


Expert Systems With Applications 208 (2022) 117970D. Fernandez-Chaves et al.

R

R

R

S

S

S

S

T

T

T

V

W
W

X

Z

Z

Z

Pan, X., You, Y., Wang, Z., & Lu, C. (2017). Virtual to real reinforcement learning for
autonomous driving. arXiv preprint arXiv:1704.03952.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., et al. (2018). VirtualHome:
SImulating household activities via programs. Cs.Cv, arXiv:1806.07011v1.

Qiu, W., & Yuille, A. (2016). Unrealcv: Connecting computer vision to unreal engine.
In European conference on computer vision (pp. 909–916). Springer.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros:
an open-source robot operating system. Vol. 3, In ICRA workshop on open source
software (3.2), (p. 5). Kobe, Japan.

Roldán, J. J., Peña-Tapia, E., Garzón-Ramos, D., de León, J., Garzón, M., del Cerro, J.,
et al. (2019). Multi-robot systems, virtual reality and ROS: Developing a new
generation of operator interfaces. Vol. 778, In Studies in computational intelligence
(pp. 29–64). Springer Verlag, http://dx.doi.org/10.1007/978-3-319-91590-6_2.

uiz-Sarmiento, J. R., Galindo, C., & González-Jiménez, J. (2015). Exploiting semantic
knowledge for robot object recognition. Knowledge-Based Systems, 86, 131–142.

uiz-Sarmiento, J. R., Galindo, C., & González-Jiménez, J. (2017). Robot@home, a
robotic dataset for semantic mapping of home environments. International Journal of
Robotics Research, 36(2), 131–141. http://dx.doi.org/10.1177/0278364917695640.

uiz-Sarmiento, J.-R., Galindo, C., Monroy, J., Moreno, F.-A., & Gonzalez-Jimenez, J.
(2019). Ontology-based conditional random fields for object recognition.
Knowledge-Based Systems, 168, 100–108.

ong, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., & Funkhouser, T. (2017). Semantic
scene completion from a single depth image. In Proceedings of 30th IEEE conference
on computer vision and pattern recognition.

traub, D., & Rothkopf, C. A. (2021). Looking for image statistics: Active vision with
avatars in a naturalistic virtual environment. Frontiers in Psychology, 12, 431.

traub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., et al. (2019). The
replica dataset: A digital replica of indoor spaces. arXiv arXiv:1906.05797.
13
ynnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., et al. (2016).
Torchcraft: a library for machine learning research on real-time strategy games.
arXiv preprint arXiv:1611.00625.

aira, H., Rocco, I., Sedlar, J., Okutomi, M., Sivic, J., Pajdla, T., et al. (2019). Is this
the right place? Geometric-semantic pose verification for indoor visual localization.
In Proceedings of the IEEE/CVF international conference on computer vision (ICCV).

ian, Y., Gong, Q., Shang, W., Wu, Y., & Zitnick, C. L. (2017). Elf: An extensive,
lightweight and flexible research platform for real-time strategy games. arXiv
preprint arXiv:1707.01067.

odorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems
(pp. 5026–5033). IEEE.

inyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., et al.
(2017). Starcraft ii: A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.

u, Y., Kirillov, A., Massa, F., Lo, W.-Y., & Girshick, R. (2019). Detectron2.
u, Y., Wu, Y., Gkioxari, G., & Tian, Y. (2018). Building generalizable agents with a

realistic and rich 3D environment. ICLR, arXiv:1801.02209v1.
iao, J., Owens, A., & Torralba, A. (2013). SUN3D: A database of big spaces

reconstructed using SfM and object labels. In Computer vision (ICCV), 2013 IEEE
international conference on (pp. 1625–1632).

hao, W., Queralta, J. P., & Westerlund, T. (2020). Sim-to-real transfer in deep
reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on
computational intelligence (SSCI) (pp. 737–744). IEEE.

heng, J., Zhang, J., Li, J., Tang, R., Gao, S., & Zhou, Z. (2020). Structured3D: A large
photo-realistic dataset for structured 3D modeling. Cs.Cv, arXiv:1908.00222v3.

uñiga-Noël, D., Ruiz-Sarmiento, J.-R., & Gonzalez-Jimenez, J. (2019). Intrinsic calibra-
tion of depth cameras for mobile robots using a radial laser scanner. In International
conference on computer analysis of images and patterns (pp. 659–671). Springer.

http://arxiv.org/abs/1704.03952
http://arxiv.org/abs/1806.07011v1
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb35
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb35
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb35
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb36
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb36
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb36
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb36
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb36
http://dx.doi.org/10.1007/978-3-319-91590-6_2
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb38
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb38
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb38
http://dx.doi.org/10.1177/0278364917695640
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb40
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb40
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb40
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb40
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb40
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb42
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb42
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb42
http://arxiv.org/abs/1906.05797
http://arxiv.org/abs/1611.00625
http://arxiv.org/abs/1707.01067
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb47
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb47
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb47
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb47
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb47
http://arxiv.org/abs/1708.04782
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb49
http://arxiv.org/abs/1801.02209v1
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb52
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb52
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb52
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb52
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb52
http://arxiv.org/abs/1908.00222v3
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb54
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb54
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb54
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb54
http://refhub.elsevier.com/S0957-4174(22)01201-5/sb54

	Robot@VirtualHome, an ecosystem of virtual environments and tools for realistic indoor robotic simulation
	Introduction
	Related work
	Virtual environments
	Datasets

	Robot@VirtualHome ecosystem overview
	The ecosystem's core: the tools
	Environment modeling
	Appearance Control
	Virtual Robot

	Running simulations
	Demand on computational resources: quantitative analysis
	Modeling and simulating robots by means of virtual agents
	The Robot@VirtualHome dataset
	Use case: Building semantic maps
	Use case: Appearance-based localization

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


