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Similarity, Retrieval, and Classification
of Motion Capture Data

Tido Röder

Abstract

Three-dimensional motion capture data is a digital representation of the complex spatio-
temporal structure of human motion. Mocap data is widely used for the synthesis of realistic
computer-generated characters in data-driven computer animation and also plays an impor-
tant role in motion analysis tasks such as activity recognition. Both for efficiency and cost
reasons, methods for the reuse of large collections of motion clips are gaining in importance
in the field of computer animation. Here, an active field of research is the application of
morphing and blending techniques for the creation of new, realistic motions from prerecorded
motion clips. This requires the identification and extraction of logically related motions scat-
tered within some data set. Such content-based retrieval of motion capture data, which is
a central topic of this thesis, constitutes a difficult problem due to possible spatio-temporal
deformations between logically related motions. Recent approaches to motion retrieval ap-
ply techniques such as dynamic time warping, which, however, are not applicable to large
data sets due to their quadratic space and time complexity. In our approach, we introduce
various kinds of relational features describing boolean geometric relations between specified
body points and show how these features induce a temporal segmentation of motion capture
data streams. By incorporating spatio-temporal invariance into the relational features and
induced segments, we are able to adopt indexing methods allowing for flexible and efficient
content-based retrieval in large motion capture databases.

As a further application of relational motion features, a new method for fully automatic
motion classification and retrieval is presented. We introduce the concept of motion templates
(MTs), by which the spatio-temporal characteristics of an entire motion class can be learned
from training data, yielding an explicit, compact matrix representation. The resulting class
MT has a direct, semantic interpretation, and it can be manually edited, mixed, combined
with other MTs, extended, and restricted. Furthermore, a class MT exhibits the characteristic
as well as the variational aspects of the underlying motion class at a semantically high level.
Classification is then performed by comparing a set of precomputed class MTs with unknown
motion data and labeling matching portions with the respective motion class label. Here, the
crucial point is that the variational (hence uncharacteristic) motion aspects encoded in the
class MT are automatically masked out in the comparison, which can be thought of as locally
adaptive feature selection.

Keywords: motion capture, similarity, relational feature, content-based, retrieval, classifica-
tion, indexing, motion template, segmentation, computer animation, multimedia information
retrieval
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bereitung der Bewegungsdaten und für die gute Zusammenarbeit.

Prof. Daniel Cremers danke ich für seine Bereitschaft zur Erstellung des Zweitgutachtens,
ebenso bei Prof. Gerald Sommer von der Universität Kiel für die Erstellung eines Gutacht-
ens für mein Promotionstipendium. Bodo Rosenhahn danke ich für hilfreiche Diskussionen,
Hinweise und Literaturquellen.

Der Studienstiftung des Deutschen Volkes gilt mein Dank für die finanzielle Unterstützung.
Ebenso bedanke ich mich bei Prof. Heinz-Josef Fabry für die regelmäßigen Treffen im Casa
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Chapter 1

Introduction

In our everyday lives, we are constantly confronted with human motion: we watch other people
as they move, and we perceive our own movements. Motion, in terms of physics, is a change
in the position of a body with respect to time. Since the human body is not simply a rigid
block but rather a complex aggregation of flexibly connected limbs and body parts, human
motion can have a very complex spatio-temporal structure. Our brain is highly specialized in
analyzing and understanding such complex motion information in real time, using as input
its multi-modal sensor arrays: the eyes, the ears, and, in the case of self-perception, the
somatosensoric haptic and position senses [Gol02].

Let us move from the real world to the digital domain by considering modern motion cap-
ture technology, which is capable of accurately digitizing a motion’s spatio-temporal structure
for further processing on a computer. On the one hand, the resulting mocap data can be used
for motion synthesis in data-driven computer animation. On the other hand, it provides
the basis for motion analysis in applications such as motion recognition, retrieval, and clas-
sification. Regarding both synthesis and analysis, the human perceptual system sets high
quality standards: our vast experience with natural human motion enables us to easily de-
tect unnatural or synthetic motions, and even low-level motion analysis tasks that seem so
easy to us—think of segmenting continuous motion into basic behavioral units—prove to be
a challenging task to a computer.

In the field of computer animation, the dominating technique for 3D character animation
has long been the traditional keyframing method, which is also employed in the generation
of 2D cartoons. Keyframing is the process of sketching out a motion by specifying certain
key poses and then interpolating the missing poses to obtain a continuous motion. For
keyframed animations to look realistic, the animator requires a lot of time and experience.
Hence, keyframing is very expensive, and the results are not always perfectly convincing. As
an advantage of keyframing, the animator has full control over the character. The modern
alternative to keyframing is the use of mocap data to drive the virtual character, resulting
in highly realistic animations. A well-known example is the Gollum character from the 2002
motion picture The Lord of the Rings: The Two Towers, which has been animated using
mocap data recorded from the actor Andy Serkis. The combination of the realistic looks of
the character itself and the mocap-generated movements creates the almost perfect illusion
of a sinister monster.

Two disadvantages are associated with mocap data. First, the recording equipment is
very expensive, and second, mocap data is difficult to edit without causing visible artifacts.

1



2 CHAPTER 1. INTRODUCTION

As a consequence, captured sequences that do not exactly match the director’s intentions
often have to be recaptured. Therefore, much attention in the computer graphics research
community has been directed at developing techniques for motion reuse via blending and
morphing. Starting with basic motion editing techniques [BW95, WP95], many different
methods have been suggested to create new, realistic motions from prerecorded motions,
see, for example, [GP00, PB02, AFO03, KG03, KG04, CH05, ZMCF05] and the references
therein. Techniques for motion reuse are often based on large motion databases, requiring
efficient retrieval, browsing, and annotation methods in order to fully exploit the variety of
available motion clips.

This leads us to the field of motion analysis, which constitutes a central topic of this
thesis. Only recently, motion capture data has become publicly available on a larger scale
(e. g., the CMU database [CMU03]), reinforcing the demand for efficient indexing and retrieval
methods. Our colleagues from Stuttgart Media University (HdM), who frequently produce
computer-generated movies involving mocap data, report on the typical “data graveyard”
problem: they have vast collections of mocap data without a way of knowing what kinds of
motions they have and where and how to search for certain motions. Annotating mocap files
by hand using descriptive filenames is tedious and only provides a partial solution to this
problem.

Here, content-based retrieval of motion capture data comes into play. The term refers
to techniques that can find motion clips by using only the data itself, without resorting to
manually generated metadata. However, most current techniques for content-based retrieval
of mocap data pay the price for the inherent complexity of human motion in terms of com-
putational complexity. The underlying question is the difficult problem of how to measure
similarity between motions or how to compare motions in a meaningful way. Since motions
that are perceived by a human as logically related may differ by significant spatio-temporal
deformations, some means for absorbing such deformations have to be built into the matching
technique, which causes high computational overhead. As a major contribution of the present
thesis, we introduce relational features in conjunction with temporal segmentation. By virtue
of these concepts, we can absorb spatio-temporal deformations at the feature level while using
efficient, index-based retrieval methods that are similar to full-text retrieval. The resulting
content-based retrieval system is another contribution of the present work.

As a further application of relational features, we propose a new concept for capturing
the spatio-temporal characteristics of an entire motion class in one explicit, compact matrix
representation called motion template (MT). An MT-based matching technique then provides
the basis for flexible and fully automatic retrieval and classification of mocap data, with
possible use in tasks such as activity recognition.

1.1 Overview and Contribution

This section has been written to give the “big picture” of what our contributions are and
provides the reader with a guide to proceeding through this thesis. Throughout the thesis,
we use the abbreviations Chap. (Chapter), App. (Appendix), Sect. (Section), Fig. (Figure),
Tab. (Table), Eqn. (Equation). Alternatively, equations are often referenced by an equation
number in parentheses such as (1.1). The symbol 2 denotes the end of a proof, whereas ⋄
denotes the end of a definition.
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Motion Capture Data. The remainder of Chap. 1 is devoted to motion capture data and
its underlying structure. After giving a formal definition, we briefly touch in Sect. 1.2 on the
history of mocap data and on modern recording equipment. We then explain how mocap
data is recorded in actual studio sessions. In Sect. 1.3, we introduce kinematic chains, which
are commonly used to model the human skeleton.

Similarity of Motions. Chap. 2 deals with various aspects of similarity that make the com-
parison of motions a difficult task. We start in Sect. 2.1 by a short overview of the research
in the field of perception, an important area of psychology. In Sect. 2.2–2.4, we then discuss a
large number of example motions, shedding light on global aspects of similarity, on the issue
of separating content from style, and on the difficult relation between logical and numerical
similarity. In Sect. 2.5, we exemplarily introduce two local similarity measures. After dis-
cussing a semi-local similarity measure in Sect. 2.6, the local similarity measures of Sect. 2.5
are put to use in global similarity measures based on the computationally expensive technique
of dynamic time warping (DTW). We conclude this chapter with examples and a comparative
evaluation in Sect. 2.8.

Relational Motion Features. Having raised the reader’s awareness of the problems that may
occur when comparing motions by means of numerical features such as 3D joint trajectories,
Chap. 3 then introduces our new concept of relational features and feature-induced temporal
segmentations. These features and the induced segments exhibit several properties that make
them well-suited for efficient and fault-tolerant comparison of motions:

1. Relational feature functions are largely invariant to various kinds of spatial transforma-
tions and deformations of poses.

2. Induced feature sequences are largely invariant to various kinds of spatio-temporal trans-
formations and deformations of motions.

3. Sequences of boolean feature vectors can be viewed as strings over the finite alphabet
Σ := {0, 1}f .

The key property of relational feature sequences is that they already absorb spatio-temporal
deformations at the feature level, forming a largely invariant “fingerprint” of a motion. This
enables the use of discrete matching strategies, which are particularly efficient.

Chap. 3 pursues an introduction-by-example approach by discussing a number of exam-
ples of relational motion features in Sect. 3.1. Then, we explain in Sect. 3.2 how a mocap
data stream can be divided into temporal segments derived from the corresponding feature
sequence. The following Sections 3.3 and 3.4 deal with the design of relational features and
explain the features that have been used in our experiments. Finally, we compare in Sect. 3.5
a global similarity measure based on relational features to the numerically-based similarity
measures of Sect. 2.8

Efficient Index-Based Motion Retrieval. In Chap. 4, we explain how our relational features
can facilitate efficient content-based retrieval in large mocap databases. Various query and
hit concepts are introduced in Sect. 4.1. We then explain how such hits can be efficiently
computed using an index structure based on inverted lists, see Sect. 4.2. The following section,
Sect. 4.3, describes a concrete retrieval system based on the query-by-example paradigm that
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uses the query and hit concepts introduced in the preceding sections. Experimental results
are provided in Sect. 4.4. The chapter is closed by a discussion in Sect. 4.5 and a summary
of related work in Sect. 4.6.

At this point, we would like to encourage the reader to watch our video Efficient Content-
based Retrieval of Motion Capture Data, which illustrates the concepts introduced in our
publications [MRC05b] and [MRC05c], see also Chap. 3 and Chap. 4. The video can be
found on our web site [MRC05a] and on the CD-ROM accompanying this thesis. Additional
material pertaining to our publication [DRME06a] is available at [DRME06b].

Motion Templates for Retrieval and Classification. It turns out that index-based motion
retrieval is capable of efficiently delivering high-quality retrieval results, but under one con-
dition: the user has to incorporate some prior knowledge about the intended motion hits by
selecting suitable features from a given set of relational features. This manual interaction is
a disadvantage in view of fully automatic retrieval, as required for automatic motion reuse
applications.

In Chap. 5 we introduce the new concept of motion templates (MT), which capture the
the spatio-temporal characteristics of an entire motion class in an explicit, compact matrix
representation. In addition this matrix representation has a direct, semantic interpretation.
An MT can be learned from training data, edited, modified, mixed, combined with other
MTs, extended, and restricted, thus providing a great deal of flexibility. The important idea
in MT-based motion matching is to fully automatically exclude the variational aspects of a
motion class in the comparison—allowing us to identify logically related motions even in the
presence of large variations. By “variational aspects” of a motion class, we mean certain
components that may change significantly between different realizations of a motion.

Sect. 5.1 describes how to learn MTs from suitable training data pertaining to a certain
motion class. Then, Sect. 5.2 describes in detail the above mentioned matching technique,
which masks out the variational aspects of the respective motion class. This technique is
then employed for DTW-based retrieval and classification, where we introduce an efficient,
index-based preprocessing step using keyframes to speed up the DTW computation. Often,
the words “recognition”, “understanding”, and “annotation” are used in a similar sense as
“classification”. In the following, we try to avoid the former two expressions, since they imply
that the goal is to acquire deeper knowledge about the purpose of a motion. To us, motion
classification and annotation refer to the process of assigning class labels to certain frames of
an unknown motion. The chapter closes with a discussion of related work in Sect. 5.3.

We recommend to watch our video Motion Templates for Automatic Classification and
Retrieval of Motion Capture Data, which accompanies our publication [MR06b], see also
Chap. 5. It can be found at [MR06a] and on the CD-ROM enclosed with this thesis.

Appendices. The four appendices contain supplemental technical details. In App. A, we
give a detailed treatment of various representations for rotations in R

3, including Euler an-
gles, quaternions, and the quaternionic exponential. Rotations play an important role in
skeleton-based mocap data, and parsing and manipulating mocap files requires some knowl-
edge of rotational representations. App. B reviews and compares several techniques for motion
smoothing based on quaternion filters. In App. C, we deal with the alignment of 3D point
clouds, a sub-task arising in one of the local similarity measures discussed in Chap. 2. Finally,
we describe in App. D the details of two common mocap file formats, ASF/AMC and BVH.
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Figure 1.1. Eadweard Muybridge’s electro-photography. Left: The horse in motion, taken from
[Muy87], 1887. Right: Woman walking downstairs (right to left), taken from [Muy01], 1901.

1.2 Motion Capture Data

Using motion capture techniques, one can record and store a digital approximation of a
human actor’s three-dimensional full-body movements. Besides the three spatial dimensions,
motions also depend on time. Since only a limited number of 3D body points can be captured
in their temporal evolution, and since the motion of neighboring points on the same limb are
highly correlated, one often restricts the set of captured points to certain joints of the human
skeleton. This leads to the following definition.

Definition 1.1 (Motion capture data stream)
A mocap data stream D with joint set J is a time-dependent sequence of frames or poses,

D : [1 : T ]→ P ⊂ R
3×|J |, (1.1)

where each pose P ∈ R
3×|J | specifies the 3D coordinates of the joints at a certain point in

time. The jth column of P , denoted as P j , corresponds to the 3D coordinates of joint j ∈ J .
The set [1 : T ] represents the time axis (for a fixed sampling rate), and P denotes the set
of poses, also referred to as the pose space. The curve described by the 3D coordinates of a
single joint j ∈ J is termed trajectory and denoted as Dj : [1 : T ]→ R

3. ⋄

The joint set, J , often corresponds to the nodes of a so-called kinematic chain model,
which may be thought of as a simplified version of the human skeleton, see Sect. 1.3 for more
details. Note that we only focus on full-body motion capture, excluding details such as facial
expressions.

1.2.1 Motion Capture Technology

Analog precursors to modern digital motion capture equipment have been developed since the
late 19th century, mainly for the purpose of kinematic and biomechanical motion analysis, see
[MCA06]. In 1872, one of the fathers of chronophotography, Eadweard Muybridge, developed a
photographic array consisting of up to 36 cameras, with which he could capture short 2D image
sequences at frame rates of about 25 Hz. He named his technique electro-photography because
the cameras were triggered electrically. Fig. 1.1 shows two of his famous image sequences.
The sequence Horse in motion was commissioned by Leland Stanford, the founder of Stanford
University, in the context of a bet: the objective was to prove that there are periods during a
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Figure 1.2. Braune and Fischer’s motion capture apparatus, around 1892. Taken from [BF87].

horse’s gallopping cycle when all four legs lift off the ground simultaneously. Fig. 1.1 shows
that Stanford won his bet.

Inspired by Muybridge’s work, Braune and Fischer [BF91, BF94, Fis99] invented the first
3D optical motion capture apparatus, which used active markers (emitting electric sparks)
attached to the actor’s body in combination with an electro-photographic stereo setup, see
Fig. 1.2. On the resulting photographic plates, they were able to measure the 2D trajectories
at a spatial resolution of 1 µm, allowing for high-precision 3D reconstructions. All required
computations had to be performed by hand, hence the evaluation of a single captured sequence
would take several months.

In the early 20th century, after cinematography as we know it today had been developed,
rotoscopy was invented as a technique for the production of animated figures. Rotoscopy is
the process of tracing photographic sequences (by an artist or by a computer) to produce
cartoon-like figures that move like real characters. Thus, rotoscopy can be seen as a simple
precursor to computer-generated animations using 3D mocap data.

With the dawn of the modern computer age, the first digital mocap systems were developed
in the early 1980s, see [Stu94]. The driving force behind this development was once again
biomechanical motion analysis. Mocap techniques for computer animation quickly followed,
eventually leading to the modern, commercial systems that are now in wide use. In the
following, we give a short overview of modern 3D mocap equipment. For a comparison of the
accuracy of different mocap systems, we refer to [Ric99].

Optical Mocap. The most common mocap systems are optical, marker-based systems. These
systems use a set of active (light-emitting) or passive (retro-reflective) markers that are at-
tached to the actor’s body. An array of 6–12 or even more digital cameras tracks the markers
at high spatial and temporal resolution, yielding 2D marker data from which the 3D marker
trajectories can be computed in real time, see Fig. 1.3. The resulting data has submillimeter
precision at frame rates of 60–240 Hz. A typical example of an optical mocap system is the
Vicon system [Vic06]. While being very expensive, optical mocap systems have the benefit of
being precise and scalable (more cameras can easily be added to enhance precision and enlarge
the capture volume). The disadvantage of optical mocap systems is that they will typically
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not be operable in outdoor settings since the cameras and tracking algorithms cannot handle
bright sunlight.

Magnetic Mocap. Magnetic mocap systems such as Ascension [Asc06] are also based on
body-worn markers, but the measuring method uses a magnetic field. The position and
orientation of the markers within the magnetic field can be determined in real time. Magnetic
mocap is less expensive and can operate outdoors, but it is very sensitive to distortions of the
magnetic field as caused by ferrous materials or electric appliances.

Mechanical Mocap. Mechanical mocap systems use body-attached sensors that directly
measure the movement of the joints. For example, the Gypsy system [Gyp06] uses an ex-
oskeleton to drive potentiometers providing real-time angle data at very high frame rates.
Similarly, the ShapeWrap [Sha06] technique is based on joint-attached, flexible extension me-
ters. The advantage of mechanical systems is their low price, their high reliabilty, and the
fact that they can be applied in outdoor settings. On the other hand, mechanical systems
are often based on a rather crude model of the human skeleton, yielding less accurate data.
Furthermore, the exoskeleton may interfere with the actor’s motions.

1.2.2 Capturing Motions

Motion capture is a complex process that consists of several stages and requires careful prepa-
ration. To give an impression of the typical workflow and the potential sources of errors in
mocap data, we outline the steps that were taken to record the main corpus of test data used
in this thesis, see also Sect. 5.1.2.

The first task was to create a detailed script describing the roughly 50 different motions
that were to be recorded by five different actors. These motions were rehearsed several times
before the recording sessions. Typically, several motions were grouped into a take, where each
take had a duration of at most one minute.

For the actual recording, we used a twelve-camera passive optical mocap system by Vicon
[Vic06] comprising six infrared and six visible red cameras, see Fig. 1.3. Setting up this sys-
tem from scratch requires roughly two hours of an expert’s time to facilitate proper camera
placement, wiring, software configuration, and calibration of the capture volume for metric
3D reconstruction of marker positions at millimeter precision. Since the accuracy of measure-
ments is highly sensitive to the absolute and relative orientation of the cameras, the capture
volume must be recalibrated on a regular basis.

Once the system is set up, each actor is equipped with a contrast-enhancing black nylon
suit to which passive markers are attached in a specific pattern using velcro pads. Additional
markers are worn on head- and wristbands and on special gloves, for a total of 44 markers.
Exactly placing the markers over bony landmarks so as to minimize skin shift and other
undesirable effects is a difficult task and requires expert knowledge. After marker placement,
a range-of-motion calibration has to be performed for each actor. Here, a prescribed sequence
of joint movements to their maximum extents is captured. This information then aids the real-
time process of assigning and tracking the identities of the indistinguishable passive markers.
Also, a static T-pose (Fig. 1.3) is captured, from which the semantics of each marker is
initialized by manual assignment.

During the recording sessions, it turned out that the velcro attachment of the markers
was not very stable, leading to frequent loss of one or more markers due to rapid motions
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Figure 1.3. Passive optical motion capture system based on retro-reflective markers attached to the
actor’s body. The markers are tracked by an array of six to twelve calibrated high-resolution cameras
arranged in a circle around the capture volume, which has a radius of approx. 2.5 m in this example.

or ground contact, which usually necessitated a new take for the respective motion. The net
total recording time for five actors was about 8 hours, where each actor repeated each take
several times.

The resulting raw 3D mocap data had to be cleaned by an expert, which took more than
a week. Cleaning a mocap data stream amounts to a manual inspection for lost markers,
markers that got mixed up by the tracking algorithm, and occluded markers. Each of these
situations has to be resolved by hand, usually guided by semi-automatic detection, interpo-
lation, and gap filling methods. Finally, after the cleaning stage, the data was fitted to a
skeletal model using commercial software. Besides taking considerable time, this step proved
to be highly heuristic and extremely hard to control in all details. As a result, typical skeletal
mocap data is by far not an exact representation of the actor’s motion even though it might
by visually pleasing. This condition is widely accepted in computer animation, but of course
intolerable for biomechanical or medical applications. The topic of skeletal fitting is still a
field of active research, see [dATS06, OBBH00].

1.3 Kinematic Chains

In computer animation, kinematic chains are a widely used tool for modeling complex, three-
dimensional movable objects such as the human skeleton, see Fig. 1.4 for an example. Ba-
sically, a kinematic chain is a hierarchical system of rigid bodies (here: line segments repre-
senting the bones) that are connected by movable joints with various degrees of freedom.

We focus on open kinematic chains, in which no cycles occur in the connection hierarchy—
that is, we require the connection hierarchy to be tree-structured. Starting from a root object,
child objects are attached, which may in turn have further child objects, and so on. If a parent
object moves by means of its degrees of freedom, the entire subtree below the parent object,
treated as a single rigid object, moves along. In other words, transformations of a child object
are meant to take place relative to a coordinate system that is fixed at the parent object. We
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Figure 1.4. Skeletal kinematic chain model consisting of rigid bones that are flexibly connected by
joints, which are highlighted by circular markers and labeled with joint names.

discuss some details on coordinate systems in Sect. 1.3.1 before giving a formal definition of
kinematic chains in Sect. 1.3.2.

If we know the state of all joints in a kinematic chain, we can compute the 3D position
and rotation of all involved rigid bodies relative to the root, i. e., up to an absolute position
and rotation. This computation is known as forward kinematics and will be described in
Sect. 1.3.2. As a consequence, the collective information about the state of all joints in a
kinematic chain—also referred to as the kinematic chain’s parameters or degrees of freedom
(DOF)—is a representation of the rigid body system that is essentially invariant to the group
of similarity transformations in 3D. This invariance property is often desirable for motion
synthesis and analysis tasks.

The joints of a kinematic chain are either revolute joints with up to three rotational DOF,
or they are prismatic joints with up to three translational DOF, or they are a combination
of both, totaling up to six DOF. The extreme case of a six DOF joint can be thought of as a
fully rotatable platform with a positioning device such as a gantry attached to it.

Most joints of the human skeleton can be reasonably well approximated by purely revolute
joints, so we will not further consider prismatic joints, see Sect. 1.3.4 for more details on this
assumption. The state of a revolute joint is described by some form of rotational representa-
tion such as a set of Euler angles, a unit quaternion, or a rotation matrix, cf. App. A. For
algebraic simplicity, we choose to describe rotations in terms of rotation matrices at this point.
We derive animated kinematic chains as sequences of kinematic chains with time-dependent
parameters in Sect. 1.3.3.

1.3.1 Local Coordinate Systems

Since a kinematic chain defines a hierarchical composition of rotations and translations, it is
helpful to think of the intermediary results at each level of the hierarchy in terms of local (or
affine) coordinate systems. A local coordinate system in R

3, L = (o; x1, x2, x3), is determined
by an origin o ∈ R

3 and three vectors x1, x2, x3 ∈ R
3, such that (xi − o)3i=1 forms a basis of

R
3. Any vector v ∈ R

3 can then be expressed as a linear combination

v = o +
3∑

i=1

αi(xi − o), (1.2)
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Figure 1.5. Action of the Euclidean motion T(R,t) of (1.3) on a vector v and on a reference frame
that is rigidly attached to v. The vector v′ is the image of v under T(R,t).

where
L
v:= (α1, α2, α3)

⊤ ∈ R
3 are the local coordinates of v with respect to L. In the following,

we will only consider the special case that (xi−o)3i=1 forms a right-handed, orthonormal basis.

We fix a world coordinate system W := (0; e1, e2, e3), where the ei are the vectors of
the standard basis of R3. The key to understanding the semantics of a kinematic chain are
coordinate transforms from local coordinate systems L to the world coordinate system W.

In our scenario of kinematic chains, local coordinate systems do not explicitly arise in the
form L = (o; x1, x2, x3). Instead, we are given a pair (R, t) ∈ SO3×R3 describing a coordinate
transform from the local coordinate system to the world system by means of the Euclidean
motion

T(R,t) : R3 → R
3

v 7→ Rv + t, (1.3)

where R ∈ SO3 is a rotation matrix and t ∈ R
3 is a translation vector. The explicit form of

the coordinate system L = (o; x1, x2, x3) can be read off from the pair (R, t) in the following
easy way: the origin o equals t, and the ith column of the matrix R = (r1 r2 r3) equals (xi−o).

Fig. 1.5 illustrates the action of a Euclidean motion: we start with a vector v ∈ R
3

expressed in some coordinate system, say (0; x, y, z), see Fig. 1.5 (a). T(R,t) first rotates v by
R (as shown in Fig. 1.5 (b) together with the rotated coordinate frame (0; Rx, Ry, Rz), which
is thought to be moving along with v) and then translates it by t (Fig. 1.5 (c)), yielding the
result vector v′ ∈ R

3. In plain words, this sequence of transformations can be interpreted as
embedding the local coordinate system within the world system.

Now, suppose we are given a coordinate vector
L
v expressed in the local coordinate system

L, which is defined relative to the world system by the pair (RW
L ,

W

t ) ∈ SO3×R3. That is,
W

t
is the origin of the local coordinate system expressed in world coordinates, and RW

L describes
the rotation of the local coordinate axes relative to the world coordinate axes. The world
coordinates for

L
v are then simply

W
v= RW

L

L
v +

W

t . (1.4)

It is always possible to add another level in a hierarchy of coordinate systems, replacing the
world system,W, by a new world system,W ′, see also Fig. 1.6. SupposeW is defined relative

to the new world systemW ′ by means of (RW′

W ,
W′

t ) ∈ SO3×R3. Applying Eqn. (1.4), the new
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world coordinates of v are

W′

v = RW′

W

W
v +

W′

t = RW′

W (RW
L

L
v +

W

t )+
W′

t = RW′

W RW
L

L
v +RW′

W

W

t +
W′

t . (1.5)

Observe that the rotations are successively applied in the sequence as they appear when
moving from the local coordinate system towards the world coordinate system.

1.3.2 Kinematic Chains and Forward Kinematics

The following definition provides a formal framework for the ideas that have been discussed
in the introduction to this chapter.

Definition 1.2 (Kinematic chain)
An (open) kinematic chain C = (J, r, B; Rr, tr, (Rb)b∈B, (tb)b∈B) is a rooted, edge-attributed
tree where

• J is a set of vertices (the joints),

• r ∈ J is the root,

• B ⊂ J × J is a set of edges that are directed away from the root (the bones),

• Rr ∈ SO3 is the root rotation,

• tr ∈ R
3 is the root translation,

• (Rb)b∈B ∈ (SO3)
|B| defines a relative joint rotation for each bone b ∈ B, and

• (tb)b∈B ∈ (R3)|B| defines a relative joint translation for each bone b ∈ B.

For a bone (j1, j2) ∈ B we say that j1 is the proximal joint (closer to the root) and j2 is the
distal joint (further away from the root). The parent of a joint j ∈ J r {r} is denoted by
p(j). The leaves of a kinematic chain are also referred to as end effectors. 2

Interpretation of Kinematic Chains. A kinematic chain C = (J, r, B; Rr, tr, (Rb)b∈B, (tb)b∈B)
provides hierarchical instructions about assembling and positioning the bones and joints in
3D, a process known as forward kinematics. Forward kinematics successively assigns local
coordinate systems to the distal joints of all bones by means of the relative joint rotations,
(Rb)b∈B, and the relative joint translations, (tb)b∈B. Each coordinate system at a distal joint
is specified relative to the coordinate system at the respective proximal joint, which is as-
sumed to have been computed in a previous step. Thus, a bone b ∈ B effectively rotates at
its proximal joint by Rb ∈ SO3, and the distal joint follows this rotation together with the
entire subtree rooted at the distal joint. The translation tb ∈ R

3 is the position of the distal
joint expressed in the rotated coordinate system of the proximal joint. In effect, the output of
forward kinematics is a set of 3D positions in world coordinates as well as rotations relative
to the world coordinate axes for all joints.

Note that we assign relative joint rotations and translations to the bones, where the
rotating joint of a bone is its proximal joint. At first sight, it may seem more natural to assign
relative joint rotations and translations to the joints, which would lead to a “dual” definition
of kinematic chains. However, such a definition would have two major disadvantages:
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Figure 1.6. The principle of forward kinematics, illustrating Equations (1.6) and (1.7). The origin

of the world coordinate system (left, bold coordinate axes) is marked as
W

0 . The joints r, j, and
j′ are shown as gray dots along with their respective coordinate systems. Dotted arrows stand for
rotations, while dashed arrows stand for translations (thus coinciding with the bones). All pairs
(R, t) of corresponding rotations and translations describe Euclidean motions that act relative to the
coordinate system at the starting point of the respective arrows, see Sect. 1.3.1.

1. The end effector joints would constitute a special case since we do not want any move-
ment at or beyond the end effectors. We would end up with two sets of joints that
would have to be treated differently: the rigid end effector joints and the movable inner
joints. Note that in our original, bone-based definition, this behavior arises in a natural
way since an end effector can never be the proximal joint of any bone.

2. Any joint with more than one incident bone would move these bones as a single rigid
unit, since the bones are expressed in the same local joint coordinate system, which
would move by a single joint rotation. Giving these bones the freedom of individual
movement would require additional zero-length dummy bones, which is unnecessarily
complicated. Nevertheless, such a joint-based definition of kinematic chains is used in
the BVH mocap file format, see Sect. D.2.

In our bone-based definition of kinematic chains, the root joint constitutes a special case since
it is not the distal joint of any bone—but this is more natural than the distinction between
end effector joints and non-end effector joints since the root parameters Rr and tr have a
special meaning, which will be explained next.

Forward Kinematics. Given a kinematic chain C = (J, r, B; Rr, tr, (Rb)b∈B, (tb)b∈B), the
starting point of forward kinematics is provided by the root rotation Rr and the root transla-
tion tr, which establish the root coordinate system relative to the world system, see Fig. 1.6.
Next, the bones that are incident to the root joint, i. e., all bones in the set Br := {(r, j) |
j ∈ J} ∩B, can be placed relative to the root coordinate system. For a bone (r, j) ∈ Br, the
world coordinates of the distal joint j are computed as in the local coordinate transform of
(1.4):

W

t j= RrR(r,j)︸ ︷︷ ︸
=:RW

j

t(r,j) + tr, (1.6)

where the rotation R(r,j) defines the rotation of the distal joint coordinate system against the
root coordinate system, and the composite rotation RW

j defines its rotation against the world
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coordinate system. Note in particular that the root is simultaneously viewed as a proximal
joint and a distal joint, i. e., the root can be thought of as a bone of length zero. This scheme
is then continued in an analogous fashion for deeper levels of the hierarchy. For example, the
world coordinates of the distal joint of a second-level bone (j, j′) ∈ Bj , are computed as in
(1.5):

W

t j′= RW
j R(j,j′)t(j,j′)+

W

t j= RrR(r,j) R(j,j′)︸ ︷︷ ︸
=:RW

j′

t(j,j′) + RrR(r,j)t(r,j) + tr. (1.7)

This bone placement scheme generalizes to Algorithm 1.1, ForwardKinematics, which
computes world coordinates for all joints as well as joint rotations relative to the world
coordinate system for a kinematic chain C.

Algorithm 1.1 ForwardKinematics

Input: Kinematic chain C = (J, r, B; Rr, tr, (Rb)b∈B, (tb)b∈B).

Output: (
W

t j)j∈J ∈ R
3×|J |, (RW

j )j∈J ∈ (SO3)
|J |,

W

t j : position of joint j ∈ J in world coordinates,
RW

j : rotation of the local coordinate system of joint j ∈ J relative to

the world coordinate system.

Procedure:
Starting at the root, use depth-first search or breadth-first search to traverse the kinematic
chain while evaluating equations (1.8) and (1.9) for each j ∈ J that is visited.

RW
j :=

{
Rr if j = r,

RW

p(j)R(p(j),j) otherwise.
(1.8)

W

t j :=

{
tr if j = r,

RW
j t(p(j),j)+

W

t p(j) otherwise.
(1.9)

For each j ∈ J , the tree structure and the traversal method ensure that RW

p(j) and
W

t p(j) have

been computed in a previous step. The entire procedure requires a total of |B| matrix-matrix
multiplications, |B| matrix-vector multiplications, and |B| vector additions.

1.3.3 Animated Skeletons and Motion Capture Data

Depending on the capturing hardware and the respective file format, raw motion capture data
can either be a time-dependent sequence of 3D coordinates of certain marker points or it can
be a time-dependent sequence of kinematic chain parameters, as we know from Sect. 1.2.1.
In the former case, there is not much to be done to make the data accessible to our feature
extraction (see Chap. 3), which works exclusively with sequences of 3D joint coordinates as
defined in Def. 1.1. In the latter case, we must first convert the kinematic chain parameters to
3D joint coordinates. From this point forward, we will only focus on the 3D joint coordinates

(
W

t j)j∈J , see Algorithm 1.1, since the rotations do not play a role for our purposes.
So far, we have considered fixed kinematic chains C = (J, r, B; Rr, tr, (Rb)b∈B, (tb)b∈B)

yielding 3D joint coordinates (
W

t j)j∈J ∈ R
3×|J | via forward kinematics. If we let any of the
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parameters Rr, tr, (Rb)b∈B, or (tb)b∈B vary over time, we obtain a time-dependent sequence of
kinematic chains, which in turn induces a time-dependent sequence of 3D joint coordinates.
Observe from (1.6) and (1.7) that varying the parameters (Rr, tr) of the root coordinate
system changes the global placement of the entire kinematic chain in the world coordinate
system since Rr and tr always appear last in the transformation hierarchy. Variations of
(Rb)b∈B induce rotations of the respective joints. Variations of the relative joint translations,
(tb)b∈B, correspond to prismatic joints with translational degrees of freedom, or non-rigid
bones. Recall that such behavior was ruled out in the introduction to Sect. 1.3, so the joint
translations (tb)b∈B will remain fixed.

The exact choice of (tb)b∈B depends on the geometry of the actor’s skeleton: the lengths
of the translation vectors encode the lengths of the actor’s bones, and the directions of the
translation vectors define a standard pose that the skeleton assumes when all rotations are the
identity. In practice, this standard pose is often chosen as in Fig. 1.4 or as a so-called T-pose,
where both arms are stretched out to the side, see Fig. 1.3. Most available mocap systems
require a semi-automatic calibration phase to determine appropriate values for (tb)b∈B, see
Sect. 1.2.1.

In the case of fixed relative joint translations, we also speak of a skeletal kinematic chain
or simply a skeleton and write

C = (J, r, B, (tb)b∈B︸ ︷︷ ︸
skeleton

; Rr, tr, (Rb)b∈B︸ ︷︷ ︸
DOF

). (1.10)

For the sake of clarity, we have regrouped the parameters of the kinematic chain into the
skeletal parameters J , r, B, (tb)b∈B, and the free parameters Rr, tr, (Rb)b∈B, which are also
known as the degrees of freedom (DOF) of the kinematic chain. For fixed skeletal parameters,
the space of all possible free parameters is known as the joint space J := SO3×R3×(SO3)

|B|.

Definition 1.3 (Animated skeleton)
Assuming a discretized time interval [1 : T ] as in Def. 1.1, an animated skeleton consists of
fixed skeletal parameters (J, r, B, (tb)b∈B) together with a mapping

DJ : [1 : T ] → J
t 7→ (Rr(t), tr(t), (Rb(t))b∈B), (1.11)

which encodes the evolution of the free parameters over time. By fixing a single joint, we
obtain an angle trajectory as a curve [1 : T ]→ SO3, in analogy to joint trajectories as defined
in Def. 1.1. ⋄

From an abstract point of view, the forward kinematics Algorithm 1.1 provides a mapping

f : J → P, (1.12)

which computes the 3D joint coordinates for a given set of free parameters. Applying forward
kinematics for all t ∈ [1 : T ], we can then compute a motion capture data stream from an
animated skeleton as D := f ◦DJ ,

D : [1 : T ] → P
t 7→ f(DJ (t)) =: P (t). (1.13)
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Figure 1.7. Top: Angle trajectories for a 500-frame ballet motion sampled at 120 Hz, adopted
from the CMU mocap database [CMU03]. The motion is annotated as “attitude/arabesque, jeté en
tourant, bending back” and comprises two 180◦ right turns, the second of which is jumped. The Euler
angles for all inner joints, measured in degrees, are color-coded as red (x rotation), green (y rotation),
and blue (z rotation). The upper-left subgraph shows the root translation, measured in multiples of
12.54 cm (a unit taken directly from the underlying mocap file format.) Bottom: The ballet motion
visualized by selected poses along with the 3D trajectories for the joints ‘root’ (red), ‘rankle’ (green),
‘lankle’ (blue), ‘rwrist’ (black), ‘rwrist’ (cyan).
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As an example, consider the ballet motion of Fig. 1.7, for which both the free parameters
(root translation and Euler angle trajectories) as well as selected 3D joint trajectories are
shown. A detailed account of rotational representations, including Euler angles, will be given
in App. A.

1.3.4 Modeling Humans as Kinematic Chains: A Valid Simplification?

It is obvious from Fig. 1.4 that our kinematic chain does not incorporate all of the 206
bones that are typically found in the grown-up human body—on the contrary, we reduce the
number of bones to 21, where we consider 19 joints comprising 1–3 rotational DOF. The total
number of rotational DOF is 41. This simplification is justified by the fact that our focus
lies on the analysis of large-scale, full-body motions. Our assumption is that most of the
time, the semantics of such motions is sufficiently clear from our simplified skeletal model.
Furthermore, we are deliberately masking out the details of human motion that would be
required for biomechanical analysis or similar applications.

Beyond the number of bones and their geometric placement, skeletal kinematic chains
differ from the anatomical and biomechanical truth in several other, more or less obvious ways,
see [Zat98]. First, centers of rotation are not fixed with respect to the respective predecessor
bones, and bones are neither perfectly rigid nor of fixed lengths. Hence, a skeletal kinematic
chain model cannot capture all the subtleties of complex human motion. As an example,
consider the motion of the human knee, which we model as a 1 DOF hinge joint. From the
point of view of a biomechanist, the knee joint has 6 DOF, three of which are translational
and three of which are rotational. The shoulder joint is an even more drastic example for the
failure of our 3 DOF approximation; improved shoulder joint models are therefore used for
tracking in computer vision [RKS+05], and even to enhance realism in animations [BPW93].

Only considering the skeleton ignores the fact that the human body mainly consists of soft
tissue surrounding the bones. There are more elaborate ways of representing human motion
such as the volumetric body model used by Green and Guan [GG04] to aid their tracking
algorithm in the context of markerless action recognition from monocular video data. Here,
an underlying kinematic chain is complemented by accurate surface, color, and reflectance
models that are specified in cylindrical coordinates around the bones. Again, such detail is
not required for our purpose since we exclusively work on 3D motion capture data for which
the tracking task has already been carried out by means of an optical motion capture system.

However, motion capture data recorded by any marker-based motion capture system does
contain errors that are due to the assumption of a pure rigid body system. Typically, one
implicitly assumes that the optical markers are rigidly connected to the underlying bones,
for which we have the skeletal model. This is not the case due to the actual soft-tissue
structure of the human body: wobbling mass, particularly observed in obese subjects, as well
as skin shifting are effects that can lead to significant displacements of the optical markers
relative to the bones. In several comparative studies using bone-implanted optical markers in
parallel with conventional skin-attached markers, Reinschmidt [Rei96] found from captured
locomotion sequences that Euler angles at the knee and ankle joints tend to be systematically
overestimated by optical markers due to skin shift. Typical magnitudes of deviation were
5◦–10◦. In terms of positional displacement, Lafortune et al. [LLL92] measured skin shifting
of up to 7 cm at the knee joint.

In our own motion capture recording sessions, we observed a further, potentially even
stronger source of errors. The black nylon suit that is used with the Vicon mocap system
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both for reasons of optical contrast and as a fixation for the optical markers shifts relative
to the body. For example, we found that the shoulder marker shifted by up to 10–12 cm
during a cartwheel motion due to tension and wrinkling of the nylon suit. As a final point,
converting the raw motion capture data, which consists of the optical markers’ trajectories,
to a skeleton-based representation may introduce significant errors due to heuristic fitting
strategies as well as numerical errors.

In conclusion, we can state that the spatial resolution of optical mocap systems is often
limited by the kinematic chain model and by certain factors that are inherent to the recording
process with optical markers. Even though the markers can be tracked at sub-millimeter
precision, the resulting animated skeleton will not be that accurate for many types of motions.
Such inaccuracies are no problem for our coarse retrieval and classification tasks but may turn
out to be troublesome for finer views on motion data.
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Chapter 2

Similarity of Motions

Designing suitable similarity measures is crucial to content-based retrieval and classification
of mocap data. Here, the main difficulty is that the underlying task of comparing two or
more motions is inherently ill-defined. Answers to the corresponding questions,

“What is it that characterizes similar motions? How can similarity be quantified?”

are diverse and always depend on the intended application. For example, one may want to
compare a walking and a jogging motion, see Fig. 2.1. At first sight, the trajectories and
corresponding poses seem to be rather similar. However, looking into more detail, the two
motions differ with respect to speed, relative timing, and important characteristics of the
3D trajectories. Depending on the application, one could consider these motions as similar
because both of them are instances of locomotion, or as dissimilar because one motion is
“walking” and the other motion is “jogging”.

Even in the comparison of two walking motions, large variations can be observed due to
differences in direction and speed (Fig. 2.4 (a)), style (Figs. 2.4 (b), 2.2), absolute body size
(Fig. 2.4 (a)), and many other parameters. A further factor is the identity of the performer,
giving rise to intra-individual variations between motion performances (Fig. 2.2).

In summary, motions that are deemed logically similar (in the above example, both mo-
tions are instances of locomotion) need not be numerically similar (the motions exhibit signif-

Figure 2.1. Left: four steps of a curved jogging motion. Right: four steps of a curved walking
motion. Both motions start from a standing pose. The trajectories of the joints ‘headtop’, ‘rankle’,
‘lankle’, ‘rfingers’, and ‘lfingers’ are shown.
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Figure 2.2. Two walking motions performed by different actors, in different speeds and styles. The
figure shows the 3D trajectories for ‘headtop’, ‘rfingers’, ‘lfingers’, ‘rankle’, and ‘lankle’. Logically
corresponding segments in the two motions are indicated by the same colors.

icant spatio-temporal variations). Conversely, we will also see examples of numerically similar
motions that are not logically similar.

All of the above mentioned discriminative motion parameters such as walking direction,
speed, or style belong to a set of more or less abstract motion aspects or aspects of similarity.
Similarity measures for mocap data usually focus on some of these aspects while deliberately
masking out others. In the case where an aspect is masked out, the similarity measure is said
to be invariant to the respective aspect.

In the following, we will discuss several important aspects of similarity. We start in
Sect. 2.1 with some remarks on human perception of motions. Then, we discuss certain
coarse, global aspects of similarity in Sect. 2.2 and proceed to stylistic, emotional aspects
in Sect. 2.3. The fundamental problem of assessing logical similarity by means of numerical
comparison is discussed in Sect. 2.4. Common similarity measures that have been proposed
in the literature are presented in Sect. 2.5, 2.6, and 2.7.

2.1 Human Perception of Motions

Many of our actions and much of our knowledge and skills depend on watching other humans
or animals as they move. Therefore, human beings are experts at perceiving, understanding,
and judging complex biological motion, see [Gol02, Chap. 8]. The field of perception is an
important constituent of psychology that can provide hints as to what kind of information
can be gained by visually observing human motion.

In the 1970s, Johansson [Joh75] developed the so-called point-light display to investigate
human perception of walking motions. Here, several light dots attached to a moving person
are recorded by a video camera in a darkened room. Test subjects watching such a video
perceived a random point cloud as long as the lights were not moving. As soon as the recorded
person started walking, the test subjects recognized a human walking motion (Fig. 2.3). This
demonstrates both the capability of the human brain to extrapolate from extremely sparse
data as well as the importance of the “structure from motion” concept, see [Gol02].

Moving from low-level motion perception towards human motion understanding, Ko-
zlowski and Cutting [KC77] found that test subjects were able to infer the gender of a walking
person from watching a corresponding point-light display. According to Runeson [RF81], it
is even possible to accurately estimate the weight of lifted objects from point-light displays.
Troje et al. [TWL05] found that human subjects performed very well at gait-based person
identification from point-light displays. They demonstrated that humans tend to focus on
kinematic parameters (gait frequency, amplitude) rather than on structural clues (absolute
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Figure 2.3. Point-light displays generated from mocap data, 45◦ frontolateral views onto the subject’s
right-hand side. Left: two poses from a walking motion. Right: two poses from a jumping motion
(arms swinging backwards and knees fully bent; maximum jumping height). Self-occlusions of the
body have not been considered.

size, body proportions) to distinguish different persons. However, one is still far from devel-
oping a general theory of how humans perceive and process motions [Gol02, Chap. 8]. Here,
concepts such as silhouette-based temporal templates [DB97] (not to be confused with motion
templates as introduced in Chap. 5) have been investigated.

Regardless of the capabilities of the human perceptual system, our task is to develop
automatic, computer-based methods for analyzing motion capture data. Typically, mocap
data is richer in content than point-light displays: it is three-dimensional, usually comprises
a larger number of markers, and provides structural information about how the individual
points are connected among each other. Note in particular that one can synthesize point-
light displays from mocap data [Tro02], see also Fig. 2.3. From these observations, one may
conclude that mocap data is in principle rich enough for a computer system to extract similar
high-level information as the human perceptual system is capable of extracting. In practice,
of course, computers are far from performing such tasks as reliably. Nevertheless, there are
specialized systems such as the mocap-based gender recognition system by Troje [Tro02] that
provide reliable results at least for controlled data.

2.2 Global Aspects of Similarity

Usually, two motions will be regarded as similar if their 3D representations only differ by
some global geometric transformation such as a translation or a rotation. To a certain extent,
this basic notion of similarity can be formalized in terms of group theoretical concepts.

Given a group G acting on R
3 such as the group of Euclidean motions, G induces a group

action G× P → P on the pose space P via

(g, P ) 7→ gP, (2.1)

where the jth column of gP is defined as (gP )j := gP j ∈ R
3. This group action on the pose

space induces a group action on the set of motion capture data streams with time axis [1 : T ]
by setting (gD)(t) := gD(t) for t ∈ [1 : T ]. Intuitively, the action of g on D amounts to a
simultaneous transformation of the entire motion by applying g to every pose. Then, each
mocap data stream D : [1 : T ]→ P defines a G-orbit GD := {gD | g ∈ G}, thereby inducing
an equivalence relation

D ≡ D′ :⇔ GD = GD′ (2.2)
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(a) (b)

Figure 2.4. (a) Global transformations applied to a walking motion. (b) Different walking styles.

on the set of all mocap data streams with time axis [1 : T ]. In other words, two mocap data
streams D and D′ are equivalent iff there is a group element g ∈ G such that gD = D′. Of
course, the resulting equivalence classes strongly depend on the group G.

One sensible choice for this invariance group G that will be encountered in Sect. 2.5.2 is
a subgroup of the group of 3D Euclidean motions containing combinations of rotations about
the (vertical) y axis with translations in the xz plane. Intuitively, two motions are equivalent
under this invariance group if they only differ by their absolute location in the xz plane and
a global rotation about the y axis. The invariance group could also be extended to include
uniform scalings of R3 as well as reflections. Examples of different walking motions that are
equivalent with respect to such an invariance group are shown in Fig. 2.4 (a).

Note that the strict requirement of identity in (2.2) leads to a boolean concept of simi-
larity, where motions are either entirely similar or entirely dissimilar, without any ranking in
between. This requirement can be softened to some extent, leading to fault-tolerant concepts
of similarity [CK04].

So far, the temporal aspect has been disregarded in this formulation: only mocap data
streams with the common time axis [1 : T ] can be compared. Instead, one could admit
global temporal scalings or even local stretching and contraction of the time axis. This
leads to the well-known method of dynamic time warping, enabling the comparison of data
streams that differ with respect to global and local spatio-temporal deformations, albeit at

high computational cost, see Sect. 2.4.1 and 2.7. In Chap. 3 and 4, we will present our feature
extraction and retrieval methods, which provide new ways of efficiently comparing motions
irrespective of spatial and temporal deformations.

2.3 Content vs. Style

More complex are variations that are due to different motion styles, see Figure 2.4 (b). For
example, walking motions may differ by performance (e. g., limping, tiptoeing, or marching),
by emotional expression or mood (e. g., “cheerful walking”, “furious walking”, “shy walk-
ing”), and by the complex individual characteristics determined by the person performing
the motion. The abstract concept of motion style appears in the literature in various forms
and is usually contrasted by some notion of motion content that is related to the semantics
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of the motion. Applications of motion retrieval and classification typically aim at identifying
related motions by content irrespective of motion style, see Sect. 2.4. Notable exceptions are
applications such as person and gender recognition, where certain aspects of motion style
are the decisive factor for asserting similarity. In the following, we give an overview of how
motion style and motion content are treated in the literature.

In the context of biometric gait analysis, Lee and Elgammal [LE04] define motion style as
the time-invariant, personalized aspects of gait, whereas they view motion content as a time-
dependent aspect representing different body poses during the gait cycle. Similarly, Davis
and Gao [DG03] view motions as depending on style, pose, and time. In their experiments,
they use PCA on expert-labeled training data to derive those factors (essentially linear com-
binations of joint trajectories) that best explain differences in style. Rose et al. [RCB98]
group several example motions that only differ by style into verb classes, each of which cor-
responds to a certain motion content. They synthesize new motions from these verb classes
by suitable interpolation techniques, where the user can control interpolation parameters for
each verb. These parameters are referred to as adverbs controlling the style of the verbs.
To synthesize motions in different styles, Brand and Hertzmann [BH00] use example motions
to train so-called style machines that are based on hidden Markov models (HMMs). Here,
motion style is captured in certain parameters of the style machine such as average state
dwell times and emission probability distributions for each state. On the other hand, motion
content is encoded as the most likely state sequence of the style machine. Hsu et al. [HPP05]
propose a system for style translation that is capable of changing motions performed in a
specific input style into new motions with the same content but a different output style.
The characteristics of the input and output styles are learned from example data and are
abstractly encoded in a linear dynamic system. A physically-based approach to grasping the
stylistic characteristics of a motion performance is proposed by Liu et al. [LHP05]. They
use a complex physical model of the human body including bones, muscles, and tendons, the
biomechanical properties of which (elasticity, stiffness, muscle activation preferences) can be
learned from training data to achieve different motion styles in a synthesis step. Troje [Tro02]
trains linear PCA classifiers to recognize the gender of a person from recorded gait sequences,
where the “gender” attribute seems to be located in the first three principal components of
a suitable motion representation. Using a Fourier expansion of 3D locomotion data, Unuma
et al. [UAT95] identify certain emotional or mood aspects of locomotion style (for instance,
“tired”, “brisk”, “normal”) as gain factors for certain frequency bands.

Pullen and Bregler [PB02] also use a frequency decomposition of motion data, but their
aim is not to pinpoint certain parameters that describe specific styles. Instead, they try to
extract those details of the data that account for the natural look of captured motion by
means of multiresolution analysis (MRA) on mocap data [BW95]. These details are found
in certain high-frequency bands of the MRA hierarchy and are referred to as motion texture
in analogy to the texture concept in computer graphics, where realistic surfaces are rendered
with texture mapping. The term ‘motion texture’ is also used by Li et al. [LWS02] in the
context of motion synthesis, but their concept is in no way related to the signal processing
approach of Pullen and Bregler [PB02]. In their parlance, motion textures are generative
statistical models describing an entire class of motion clips. Similar to style machines [BH00],
these models consist of a set of motion textons together with transition probabilities encoding
typical orders in which the motion textons can be traversed. Each motion texton is a linear
dynamic system (see also Hsu et al. [HPP05]) that specializes in generating certain subclips
of the modeled motion. Parameter tuning at the texton level then allows for manipulating
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Figure 2.5. Top row: a side kick. Bottom row: a frontal kick (2.3 seconds each.) The motions
are illustrated by selected poses that have been pulled apart in horizontal direction for a better
visualization.

stylistic details.

Inspired by the performing arts literature, Neff and Fiume [NF04, NF05] explore the
aspect of expressiveness in synthesized motions. Their system enables the user to describe
motion content in a high-level scripting language. The content can be modified globally and
locally by applying procedural character sketches and properties, which implement expressive
aspects such as “energetic”, “dejected”, or “old man”.

Returning to the walking example of Figure 2.4 (b), we are faced with the question of how
a walking motion can be characterized and recognized irrespective of motion style or motion
texture. Video-based motion recognition systems such as [Bre97, GG04] tackle this problem
by using hierarchical HMMs to model the motion content. The lower levels of the hierarchy
comprise certain HMM building blocks representing fundamental components of full-body
human motion such as “turning” or “raising an arm”. In analogy to phonemes in speech
recognition, these basic units are called dynemes by Green and Guan [GG04] or movemes
by Bregler [Bre97]. Dynemes/movemes and higher-level aggregations of these building blocks
are capable of absorbing some of the motion variations that distinguish different executions
of a motion.

2.4 Logical vs. Numerical Similarity

Our aim is to design similarity measures that consider two motions as similar if they represent
variations of the same action or sequence of actions. This notion is referred to as logical
similarity, see [KG04]. The “variations of an action or sequence of actions” typically concern
both the spatial and the temporal domain. In other words, we try to focus on motion content
while masking out motion style or texture. For example, the two walking motions shown
in Fig. 2.2 can be regarded as similar from a logical point of view even though they differ
considerably w. r. t. speed and style. As a further example, consider the two kicking motions
shown in Fig. 2.5: the kick in the top row is performed after the hip has been rotated to the
left, whereas the kick in the bottom row is performed with the hip facing forwards. However,
from a logical point of view, both motions are kicks that are directed to the right. Regarding
the two jumps shown in Fig. 2.6, the motion in the top row is much more energetic than the
motion in the bottom row, which can be seen from the different arm swings and the bending
of the knees. Yet both motions are forward jumps. Using the terminology of information
retrieval, such a situation may lead to a false negative: logical similarity that cannot be
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Figure 2.6. Top row: a forceful jump. Bottom row: a weak jump (1.4 seconds each.)

revealed by numerical comparison of the 3D coordinates or joint angle parameters.

Conversely, numerical similarity does not necessarily imply logical similarity. Often, only
minor nuances or partial aspects of a motion account for logical differences. Think of the
motions “standing on a spot” compared to “standing accompanied by weak waving with one
hand”: such inconspicuous, but decisive details are difficult to pick up for a full-body similarity
measure unless the focus of the similarity measure is primarily on the motion of the hands.
As a further example, consider the difference between walking and jogging as illustrated in
Fig. 2.1. These motions may of course be distinguished by their absolute speed. Yet, the
overall shape of most joints’ trajectories is very similar in both motions. A better indicator
would be the occurrence of simultaneous air phases for both feet, which is a discriminative
feature of jogging motions, see also Sect. 3.5. To carry this effect to the extremes, think
of the difference between “placing an object on a table” and “picking up an object from a
table” [KG04]. Even for a human, these motions are very hard to distinguish without any
information about whether the hand is gripping an object or not, see [KP06]. This may lead
to a false positive: logical similarity that is falsely asserted based on numerical comparison
of 3D coordinates or joint angle parameters.

Bridging the semantic gap between logical similarity as perceived by humans and nu-
merical similarity as can be quantified by a computer is one of the fundamental problems
addressed by this thesis. The following subsections discuss some of the aspects of similarity
that are particularly problematic in this context.

2.4.1 Spatio-Temporal Variations

In comparing two motions, one can often identify a common temporal structure such as the
periodic gait cycle of the walking and the running motions shown in Fig. 2.1. The six poses
shown for each of the motions roughly correspond to each other in that they belong to the
same phase of the gait cycle: both motions start with a standing pose, then the step sequence
“right-left-right-left” is performed. However, the gait cycles are out of phase, and the relative
phase shift may even change over time, just as the walking or jogging speed may change from
step to step. We refer to such distortions as temporal variations. Also, the poses belonging to
corresponding phases exhibit spatial variations when comparing walking and jogging: in the
jogging motion, the upper body leans forwards and the elbows are bent, while in the walking
motion, the posture is upright and the elbows are stretched. In combination, we refer to such
distortions as spatio-temporal variations.

Fig. 2.7 (a) demonstrates how minor local spatial variations (here: slightly turning to the
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(a) 90◦ left turn. (b) Staircase.

Figure 2.7. (a) Two walking motions comprising four steps (2.7 seconds). Both characters initially
look down the −z axis (approximately), then the red character turns to the left by almost 90◦ and
ends up looking down the −x axis. Simultaneously, the blue character walks in a straight line parallel
to the −z axis. (b) Two walking motions comprising three steps (1.8 seconds). The red character is
climbing a staircase.

left from step to step) can accumulate into major global deformations, yielding significantly
different trajectories. Also, interaction with the environment as shown in Fig. 2.7 (b) can
lead to spatio-temporal variations—the trajectories move upwards, following the (invisible)
staircase. Note that spatio-temporal variations are not restricted to cyclic motions. They
may occur in arbitrary, non-periodic motions such as jumping (Fig. 2.6) or kicking (Fig. 2.5).

It has been mentioned that the technique of dynamic time warping (DTW) can handle
temporal variations by suitably stretching or contracting the time axis to align corresponding
poses. Here, correspondence is asserted by means of a local similarity measure measuring
the similarity between isolated poses or between small temporal neighborhoods of poses,
see Sect. 2.5. To a certain extent, local similarity measures can absorb spatial variations.
Altogether, DTW is capable of comparing motions that differ by spatio-temporal variations.

2.4.2 Partial Similarity

Are the two instances of “rotating both arms forwards” as shown in Fig. 2.8 similar? In
other words, should the superimposed walking motion (blue character) have an influence on
the comparison? Looking at the corresponding 3D representations, the circular trajectory of
the hand is dragged out into a cycloid. Hence, the motions could be considered as dissimilar
since a cycloid and a circle are very different curves. The influence of the forward motion can
be eliminated by moving the root coordinate system of each pose into the world coordinate
system, which would transform the cycloid trajectory back into a circle. But even then, the
legs of the two characters would move in a different way.

The underlying problem is that of partial similarity or, more generally, relevance. Only
certain parts of the body (the arms) move in a similar way, while other parts (the legs) move
differently. Automatically detecting which parts of the body contain the relevant aspects is a



2.4. LOGICAL VS. NUMERICAL SIMILARITY 27

Figure 2.8. Three repetitions of “rotating both arms forwards”. The blue character is walking while
rotating the arms (2.7 seconds), whereas the red character is standing on one spot while rotating the
arms (2.3 seconds). The trajectories of the joints ‘rankle’, ‘lankle’, and ‘lfingers’ are shown.

difficult problem that is unsolved in the general case. The new concept of motion templates
as presented in Chap. 5 takes a step towards automatic detection of relevant motion aspects.
In general, however, some kind of manual input will be required to direct the “attention”
of the similarity measure to the relevant aspects. For example, a user of a motion retrieval
system could select the body parts that should be regarded in the comparison.

2.4.3 Similarity of Subsequences

Partial similarity as introduced above refers to the spatial aspects of motions in that certain
parts of the body or motion-derived features may behave similarly or differently, regardless
of any temporal aspects. The analogous concept for the temporal domain is that of similarity
of subsequences. In a typical retrieval scenario, one is given a long database motion, D,
that is to be compared with a short query motion, Q. The question is whether there is a
subsequence of D that is similar to Q, and not whether D is similar to Q in its entirety.
Hence, one needs appropriate mechanisms for identifying similar subsequences. One such
method is that of subsequence DTW, see [RJ93]. By contrast, one of our proposed retrieval
techniques (Chap. 4) uses a generalized form of exact full-text retrieval to efficiently identify
matching motion subsequences.

2.4.4 Noise and Artifacts

Noise is a further factor that may interfere with a similarity measure for motion clips. Mocap
data may contain high frequency noise as well as undesirable artifacts such as sudden “flips”
of a joint or systematic distortions due to wobbling mass, skin shift, or inadequacy of the
kinematic chain model, see Sect. 1.3.4. For example, consider the toe trajectory shown in
the ballet motion of Fig. 2.9, where the noise shows as extremely irregular sample spacing.
Such noise is usually due to adverse recording conditions, improper setup or calibration, or
data conversion errors. On the left hand side of Fig. 2.9, there is a discontinuity in the
trajectory, which results from a 3-frame flip of the hip joint. Such flips either result from
confusions of markers in the tracking process or from the mapping of marker data onto an
abstract skeletal model. Both high-frequency noise and discontinuities can also be observed
in the corresponding angle trajectories shown in Fig. 1.7. Ren et al. [RPE+05] have developed
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Figure 2.9. The ballet motion of Fig. 1.7. Only the noisy trajectory of the joint ‘ltoes’ is shown.

automatic methods for detecting “unnatural” movements in order to find noisy clips or clips
containing artifacts within a mocap database.

In practice, noisy mocap data such as the clip of Fig. 2.9 could not be used in the pro-
duction of a computer generated movie. One would first apply filtering and semi-automatic
cleaning techniques to remove the noise and the artifacts. Some typical motion filtering
techniques are described and compared in App. B. Also compare the noisy toe trajectory
of Fig. 2.9 to the filtered toe trajectories shown in Fig. B.4. Noise and artifacts are also
a problem in markerless, video-based mocap systems such as the system by Rosenhahn et
al. [RKS+05]. In view of such scenarios, it is important to design noise-tolerant similarity
measures for the comparison of mocap data. The use of qualitative, relational features op-
posed to quantitative, numerical features is a possible strategy to overcome some of the above
mentioned difficulties, see Chap. 3.

2.5 Local Similarity Measures

Motions can either be viewed as time-synchronized bundles of 3D trajectories (horizontal view,
fixing a joint) or as sequences of poses (vertical view, fixing a frame number), cf. Def. 1.1.
The vertical view is most often adopted in the construction of local similarity measures, where
individual poses are compared to each other. In a further step, such local similarity measures
are then incorporated into global similarity measures that take the temporal aspect of motions
into account, see Sect. 2.7.

At this point, it is interesting to note that even a single, expressive pose may convey a
lot of information about the motion context in which it is embedded, see also [NF04]. As a
simple example, consider the kicking motions of Fig. 2.5. The plain fact that the right leg is
raised with a stretched knee during the middle phase of the motion is sufficient to distinguish
“kicking” from many other motion classes. In general, it is often easier or more natural to
construct a dissimilarity measure than a similarity measure, i. e., a function c : P ×P → R≥0

that assumes the value zero for identical poses and positive values for dissimilar poses. Such
functions are often referred to as cost measures. It is usually possible to modify a cost
measure in such a way that it assumes larger values for higher degrees of similarity and vice
versa, thereby assuming the role of a score function. When appropriate, we therefore use the
terms “cost measure”, “dissimilarity measure”, “distance measure”, “score function”, and
“similarity measure” interchangably.
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In the following, we exemplarily discuss two local distance measures that are proposed
in the literature. We also performed some experiments with these distance measures, which
are described in Sect. 2.8. Other local distance measures, some of which are based on joint
velocities and accelerations, can be found in [AFO03, FF05, LCR+02]. For an overview and
comparative evaluation, see also [GY05].

2.5.1 Quaternion-Based Pose Distance

We have discussed in Sect. 1.3 how a character’s pose can be encoded by means of an absolute
translation and rotation for the root together with relative joint rotations for each of the bones.
One possible way of encoding the joint rotations is to use unit quaternions as described in
Sect. A.3. It turns out that a quaternion-based motion representation is well-suited for the
comparison of motions for the following reasons:

• Relative joint rotations are invariant to the group of 3D Euclidean motions.

• The geodesic distance on the set of unit quaternions, which forms the 3-sphere S3,
provides a natural distance measure for rotations.

However, there is a major drawback to comparing motions based on relative joint rotations,
as is also noted in [KGP02]: some of the rotations have a much greater overall effect on the
character’s pose than others. For example, small rotations in the shoulder joint can lead to
large changes in the position of the entire arm. Conversely, even large rotations in the wrist
joint do not have much influence on the overall pose. To make things worse, it is not possible
to fully compensate for this effect by introducing (constant) joint weights since the influence
of a rotation depends on the current pose. For example, the influence of the shoulder rotation
on the overall pose is larger with a stretched elbow than with a bent elbow.

Given two animated skeletons (cf. Sect. 1.3.3)

DJ (t) = (Rr(t), tr(t), (Rb(t))b∈B) and D′J (t) = (R′r(t), t
′
r(t), (R

′
b(t))b∈B) (2.3)

with common skeletal parameters (J, r, B, (tb)b∈B), we want to measure the distance between
two frames DJ (n) and D′J (m). To this end, we consider the individual distances between
corresponding joint rotations Rb(n) and R′b(m) for b ∈ B. Let qb and q′b be the unit quater-
nions describing the relative joint rotations Rb(n) and R′b(m), respectively. Similar to John-
son [Joh03] and Lee et al. [LCR+02], we define the quaternion-based pose distance between
the two frames as the total weighted quaternion distance

cquat(n, m) := cquat
(
DJ (n), D′J (m)

)
=
∑

b∈B

wb ·
2

π
· arccos

∣∣〈qb, q′b〉
∣∣ , (2.4)

where 〈·, ·〉 denotes the standard scalar product in R
4 and the wb are suitable weights with∑

b∈B wb = 1. The terms

cb(qb, q
′
b) :=

2

π
· arccos

∣∣〈qb, q′b〉
∣∣ (2.5)

measure distances between unit quaternions and can be interpreted as follows. The scalar
product 〈qb, q′b〉 gives the cosine of the angle ϕ ∈ [0, π] enclosed between qb and q′b, hence
ϕ = arccos〈qb, q′b〉. This is the geodesic distance, i. e., the length of the shortest connecting
path between the points qb and q′b on the four-dimensional unit sphere S3, see also App. B.
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Figure 2.10. Two possible quaternion distance measures. The graphs show the distance between qb

and q′b plotted against the enclosed angle ϕ ∈ [0, π]. The geodesic distance measure cb is shown in (a),
while the cosine measure c̃b is shown in (b).

What we are actually looking for is the geodesic distance on RP 3 = S3/{−1, 1}, which is the
set of unit quaternions where antipodal points are identified with each other. To see this, recall
that the quaternion parametrization defines a double cover of SO3 where antipodal points in
S3 describe the same rotation, see Sect. A.3. As the following considerations show, taking the
absolute value of the scalar product in (2.5) simulates this identification of antipodal points
on S3.

Starting from the situation where qb = q′b, we have ϕ = cb(qb, q
′
b) = 0, see Fig. 2.10 (a).

Now we let qb move move away from q′b with constant velocity, which leads to linearly in-
creasing values of ϕ. As soon as ϕ = π

2 , the two unit quaternions are perpendicular, and
cb(qb, q

′
b) = 1 due to the (optional) normalization factor of 2

π
. When q′b moves even further

away from qb than ϕ = π
2 , the value of cb(qb, q

′
b) decreases linearly and reaches zero at ϕ = π.

This is because q′b is now approaching and eventually reaching −qb, which is identified with
qb. Moving on to the case ϕ > π, the sequence repeats itself: q′b moves away from −qb until
ϕ = 3π

2 and then returns to qb, where ϕ = 2π ≡ 0.

It is noted in [Sho85] that the geodesic distance on RP 3 is equivalent to the angular
distance on SO3. As a consequence, moving with constant speed along the geodesic on RP 3

from qb to q′b corresponds to a rotation with constant angular velocity that transforms the
orientation encoded by qb into the orientation encoded by q′b, see also Sect. A.3.

Another possible quaternion distance is given by the cosine measure

c̃b(qb, q
′
b) := 1−

∣∣〈qb, q′b〉
∣∣ , (2.6)

which does not increase and decrease linearly. Instead, it behaves like 1 − | cos ϕ|, see
Fig. 2.10 (b). This penalizes larger deviations more than smaller deviations.

To some extent, the weights wb may be used to compensate for the above mentioned effect
that different joints have different amounts of influence on the overall 3D pose. For example,
one could give some of the proximal joints (belly, shoulders, hips) twice as much weight as
some of the more distal joints (neck, elbows, knees), and less weight to the wrists and the
ankles. This also allows the designer or user of a similarity measure to account for partial
similarity as discussed in Sect. 2.4.2.

2.5.2 3D Point Cloud Distance

In their work on motion graphs, Kovar and Gleicher [KGP02] propose a technique to identify
motion subclips within a given motion clip D that can be concatenated without visible arti-
facts at the transition points. They consider a transition from frame n to frame m as suitable
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(a) (b)

(c) (d)

Figure 2.11. Principle of the 3D point cloud distance, adopted from [KG03]. (a) The two poses
that are to be compared. (b) Inclusion of a temporal context for each of the poses. (c) Conversion to
point clouds. (d) Optimal alignment of point clouds to determine pose distance as sum of distances
of corresponding points.

if the corresponding poses D(n) and D(m) are similar with respect to a local distance measure
that is based on a comparison of certain pose-driven 3D point clouds.

The principle of their distance measure is explained in Fig. 2.11. Here, the goal is to
compare the two poses from a running sequence that are shown in Fig. 2.11 (a). Since we
want to detect smoothly blendable motion subclips, a temporal context around both frames
has to be incorporated in the comparison, as depicted in Fig. 2.11 (b). This is required
because the notion of smoothness implicitly depends on temporal derivatives, which in turn
depend on a local temporal context. Next, the two short pose sequences are converted to
3D point clouds, see Fig. 2.11 (c). Finally, an optimal alignment of the two point clouds is
computed, and the total residual distance between corresponding points constitutes the 3D
point cloud distance between frames n and m.

The authors of [KGP02] conjecture that measuring perceptual similarity between poses
would require to obtain these point clouds from a downsampled version of the 3D mesh
representing the character’s skin. Here, they argue that the skeleton-driven skin is all that is
seen by an observer, and that the skeleton is only a means to an end. Such an approach is
realistic in the context of professional animation systems, which provide that kind of skinning
and mesh data. However, for the sake of simplicity, we will use the relatively sparse 3D joint
coordinates of a skeleton-based motion capture representation or the raw 3D marker data.
The latter type of data is even closer to the downsampled mesh data proposed by Kovar
and Gleicher, since the optical markers are attached to the surface of the actor’s body. Our
experiments show that the type of point cloud data has very little effect on the results.

We will now formally define the 3D point cloud distance. Let D, D′ be motion capture
data streams with common joint set J . In comparing the pose D(n) to the pose D′(m), we
view both poses in the context of the ρ preceding frames and the ρ subsequent frames, yielding
the 2ρ+1 frame numbers [n−ρ : n+ρ] and [m−ρ : m+ρ], respectively. For D, the 3D points
corresponding to these poses form an ordered point cloud (Dj(i))i∈[n−ρ,n+ρ], j∈J containing
K := |J |(2ρ + 1) points in R

3. For short, we denote this point cloud by H := (pk)k∈[1:K].
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Analogously, we define the point cloud H ′ for the pose D′(m). As with all sliding window
techniques, the boundary cases require special attention. Here, the motions need to be padded
by ρ additional frames at the beginning and at the end. We employ symmetric padding using
parts of a time-reversed version of the original data streams, see Eqn. (3.24).

Having converted both poses into their point cloud representations, yielding H = (pk)k∈[1:K]

for D(n) and H ′ = (p′k)k∈[1:K] for D′(m), where pk = (xk, yk, zk)
⊤ ∈ R

3 and p′k = (x′k, y′k, z′k)
⊤ ∈

R
3, we align the two point clouds: H ′ is suitably rotated about the y axis by a rotation Ry(α)

and then shifted in the xz plane by an offset vector p := (x, 0, z)⊤ ∈ R
3. Symbolically, we

apply the following transformation to all p′k, k ∈ [1 : K]:

Ry(α)p′k + p =




cos α 0 sinα
0 1 0

− sinα 0 cos α






x′k
y′k
z′k


+




x
0
z


 . (2.7)

The parameters α ∈ R/2πZ, x ∈ R, and z ∈ R are chosen so as to minimize the error function

f(α, x, z) :=
K∑

k=1

wk‖pk − (Ry(α)p′k + p)‖2, (2.8)

where the wk ∈ R≥0 are suitable weights with
∑K

k=1 wk = 1. The value of f expresses
the weighted total squared Euclidean distance between corresponding points in H and the
transformed version of H ′. Then, the 3D point cloud distance c3D(n, m) between frames n
and m is the residual alignment error resulting from an optimal alignment of H and H ′ with
respect to the error function f :

c3D(n, m) := c3D
(
D(n), D′(m)

)
= min

α,x,z

K∑

k=1

wk‖pk − (Ry(α)p′k + p)‖2. (2.9)

Finding such an optimal alignment constitutes a restricted version of a so-called Procrustes
problem. Unrestricted Procrustes problems typically involve 3D Euclidean motions with six
DOF, opposed to our three DOF alignment, see [Fio01]. The following theorem gives explicit
formulas for the optimal parameters. A proof is given in App. C:

Theorem 2.1 The optimal parameters minimizing (2.8) are

α̂ = arctan

(∑K
k=1 wk(xkz

′
k − zkx

′
k)− (x̄z̄′ − z̄x̄′)

∑K
k=1 wk(xkx

′
k + zkz

′
k)− (x̄x̄′ + z̄z̄′)

)
(2.10)

x̂ = x̄− x̄′ cos α̂− z̄′ sin α̂ (2.11)

ẑ = z̄ + x̄′ sin α̂− z̄′ cos α̂, (2.12)

where x̄ :=
∑K

k=1 wkxk is the x component of the centroid of H, and the other
barred terms are defined similarly.

An equivalent way of stating (2.11) and (2.12), see also Lemma C.1, is



x̄
0
z̄


 = Ry(α̂)




x̄′

0
z̄′


+




x̂
0
ẑ


 . (2.13)
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Hence, the optimal transformation moves the centroid of H ′ onto the centroid of H.

The reason why the authors of [KGP02] restrict the transformation to three DOF is their
notion of global motion equivalence, cf. Sect. 2.2. Only admitting rotations about the y axis
stems from the following observation: for a wide range of motion classes, including locomotion,
it is difficult to perform equivalent motions that only differ with respect to a rotation about
any other axis than the y axis. This is due to gravity usually pulling us downwards, in the −y
direction. As a counter-example, consider a jumping jack vs. a snow angel, which would be
very similar if full six DOF Euclidean motions were admitted. However, the state of “lying
on the floor” has strong semantics, and the 3D point cloud distance does well in separating
it from “standing upright”.

Only admitting translations in the xz plane boils down to forbidding uneven terrain, which
is realistic in many cases. Nevertheless, this restriction may have undesirable consequences
in practical applications: sometimes, the ground level of motions changes between recording
sessions, leading to a constant difference in the y coordinate—which leads to a large 3D point
cloud distance even between otherwise identical motions. Similarly, 3D point cloud distance
as defined above is not invariant to scaling. However, such invariance could be incorporated
by a simple extension of (2.8).

Just as for the case of quaternion distance (see Sect. 2.5.1), choosing suitable weights wk,
k ∈ [1 : K], seems to be such a delicate issue that Kovar et al. [KG03, KGP02] simply set
wk := 1

K
for all k, which amounts to using no weights at all. They note that the weights could

be used to stress or mask out certain parts of the body in the comparison, depending on the
respective application. The weights could also be used to attribute different importance to
different frames within the temporal context [n − ρ : n + ρ], for example to smoothly taper
off the influence of the past and the future frames.

2.6 A Semi-Local Similarity Measure

Pullen and Bregler [PB02, Pul02] propose a system for texturing and synthesis of motion
capture data based on rough, keyframed motion sketches. For example, an animator might
provide a manually keyframed sketch of the lower-body motion for a walking sequence, the
objective being to suitably fill in the missing upper-body motion (synthesis) and to apply a
realistic look to the lower-body motion (texturing). Both texturing and synthesis require the
system to identify mocap clips in a given database that are similar to a manually specified
motion query. To measure similarity, Pullen and Bregler start by simultaneously segmenting
all angle trajectories of a mocap clip at certain positions in time, which are determined by the
local maxima and minima of one of the angle trajectories. To absorb local temporal warpings,
the segments are then resampled to unit length and compared using Euclidean distance. More
details on their method will be given in Sect. 4.6.

We refer to this way of measuring similarity as semi-local because motion-defined lo-
cal contexts are used for the comparison. The crucial point for such a method to work is
that logically similar motions are segmented at logically corresponding points in time. Our
technique of temporal segmentation based on relational features, which will be introduced
in Sect. 3.2, also yields segments forming logical units. These segments are then used for
retrieval, implicitly defining another semi-local similarity measure, see Chap. 4
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2.7 Global Similarity Measures

Dynamic time warping (DTW) is a well-known technique to find a global temporal alignment
between two given (time-dependent) sequences under certain restrictions. Intuitively, the
sequences are warped in a non-linear fashion to match each other as closely as possible. DTW
has first been used to compare different speech patterns in automatic speech recognition, see
[RJ93], and is similar to the Levenshtein or edit distance [Lev66] for strings. In fields such as
data mining and information retrieval, DTW has been successfully applied to automatically
cope with time deformations and different speeds associated with time-dependent data.

To compare two motions D and D′ of length N and M frames, respectively, we fix some
local distance measure c as introduced above. Evaluating c for all possible pairs of frames
taken from D and D′, we obtain an N×M cost matrix C = (c(n, m))n∈[1:N ],m∈[1:M ] containing
the matching costs for all pairs of frames. For example, Fig. 2.12 (a) shows the cost matrix for
the two walking motions of Fig. 2.7 (a) with respect to the quaternion distance, cquat, where
fourteen joint rotations (hips, knees, ankles, shoulders, elbows, belly, chest, neck, head) were
taken into account. The cost matrix is color-coded: dark colors correspond to low costs,
whereas lighter colors correspond to high costs. Contiguous paths within the matrix running
through areas of low cost indicate subsequences of the motions that are similar to each other.
For instance, the dark path along the main diagonal of the cost matrix in Fig. 2.12 (a)
indicates that both motions are globally very similar. Furthermore, the dark path along the
secondary diagonal starting at (160, 1) and ending at (320, 200) hints at partial similarity: the
first two steps of the straight-line walk are similar to the last two steps of the curved walk.
The indices (n, m) of points along such paths encode pairs of frames that can be matched
with low cost. DTW exploits these properties of low-cost paths in cost matrices to determine
suitable alignments of motions.

A warping path is a sequence w = (w1, . . . , wL) with wℓ = (jℓ, kℓ) ∈ [1 : N ] × [1 : M ] for
ℓ ∈ [1 : L] satisfying the following conditions:

(i) Boundary condition: w1 = (1, 1) and wL = (N, M).

(ii) Monotonicity condition: 1 ≤ j1 ≤ j2 ≤ . . . ≤ jL = N and 1 ≤ k1 ≤ k2 ≤ . . . ≤ kL = M .

(iii) Step size condition: wℓ+1 − wℓ ∈ {(1, 0), (0, 1), (1, 1)}.
The total cost of w is defined as

c(w) :=
L∑

ℓ=1

c(jℓ, kℓ). (2.14)

Now, let w∗ denote a warping path having minimal total cost among all possible warping
paths. Since w∗ is in general not uniquely determined, we take the one of smallest length-
lexicographical order. Then, the DTW distance DTW(D, D′) between the motions D and D′

is defined to be the total cost of w∗,

DTW(D, D′) := c(w∗). (2.15)

Note that DTW(D, D′) = 0 does not necessarily imply D = D′, i. e., DTW is not a metric.
An optimal warping path w∗ can be computed with O(NM) operations using dynamic pro-
gramming. For further details on DTW, on the computation of optimal warping paths, as
well as extensions and modifications of DTW, we refer to [RJ93].
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In the context of motion retrieval, notable applications of DTW and related techniques are
the match web by Kovar and Gleicher [KG04] as well as the methods by Wu et al. [WCYL03],
Liu et al. [LZWM05], or Forbes and Fiume [FF05]. These systems will be reviewed in Sect. 4.6.

2.8 Examples and Comparative Evaluation

We now discuss several examples to illustrate the quaternion and point cloud distance, the
concept of cost matrices, and DTW. All example motions have been recorded at a frame
rate of 120 Hz. Let us begin by comparing the two walking motions shown in Fig. 2.7 (a)
using quaternion distance as well as 3D point cloud distance. We identify the curved walking
motion, the trajectories of which are colored red in Fig. 2.7 (a), with D(n) and the straight-
line, blue motion with D′(m), where n ∈ [1 : 320], m ∈ [1 : 341]. The cost matrices1 for
the two motions are shown in Fig. 2.12. In the preceding section, we have already given an
interpretation of the quaternion cost matrix Cquat shown in Fig. 2.12 (a). The cost matrix C3D

for the 3D point cloud distance with ρ = 0 as shown in Fig. 2.12 (b) was computed using the
same fourteen joints as for the case of the quaternion distance (hips, knees, ankles, shoulders,
elbows, belly, chest, neck, head). The two matrices are very similar in overall structure, but
C3D appears to be much smoother. Particularly striking are the eight areas of large cost that
periodically appear in both cost matrices. These areas arise from the comparison of the most
dissimilar poses occurring in a walking cycle: the two extreme poses where the left/right foot
is in front of the body while the right/left foot is behind the body. The optimal rotation
parameters shown in Fig. 2.12 (e) reveal that the point cloud distance measure tries to align
these extreme poses by rotations of up to ±180◦ about the y axis, where the alternating signs
of the rotations corresponds to the alternating right/left steps of the gait cycle. Since the
left/right extreme poses of normal gait are mirrored copies of each other, they cannot be
perfectly aligned by means of a proper rotation, which leads to high costs.

Furthermore, this figure clearly reflects the fact that the red character of Fig. 2.7 (a) is
turning to the left by 90◦: starting from n = 1 and moving upwards along the vertical time
axis, one observes an increase of the optimal rotation angle from 0◦ to 90◦ in those areas
that correspond to the comparison of similar poses from the gait cycles. To interpret the
optimal translation parameters shown in Figs. 2.12 (c) and (d), recall that the red character
initially stands to the right of the blue character (; negative x translation for n ≤ 200 in
Figs. 2.12 (c)), then their paths cross (; zero x translation for n ≈ 200), and finally the red
character stands to the left of the blue character (; positive x translation for n > 200 in
Figs. 2.12 (c)). The optimal z translation can be interpreted similarly.

Fig. 2.13 shows the cost matrices for two instances of “rotating both arms forwards”,
where the first motion (vertical axis) is much faster than the second one (horizontal axis).
As in Fig. 2.8, the first motion is a superposition of walking and rotating the arms. The
resulting matrix Cquat as shown in Fig. 2.13 (a) seems to be blurred and contains only vague
information about a possible alignment. This is due to the vulnerability of the quaternion-
based cost measure to angular variations and out-of-phase motions (the left and the right arm
are not always perfectly in phase during rotation). As a consequence, the optimal warping
path, shown as a cyan-colored line, is jagged and appears to be unreliable due to the lack of
clear areas of low cost. By contrast, the matrix C3D clearly exhibits the repetitive structure

1In the illustrations of cost matrices C, we use a normalized color coding scheme that depends on the
minimal and maximal value appearing in C.
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Figure 2.12. (a) Quaternion-based cost matrix Cquat for the two walking motions of Fig. 2.7 (a).
(b) 3D point cloud-based cost matrix C3D using no temporal context (ρ = 0), shown along with
the optimal alignment parameters in (c)–(e). The vertical time axes (index n) correspond to the red
motion in Fig. 2.7 (a), where the character walks along a 90◦ left arc. The horizontal time axes (index
m) correspond to the blue, straight-line walk. Lengths are expressed in units of 12.54 cm (arbitrary,
taken from mocap file format), while the angle parameters α̂ are given in degrees. Instead of plotting
the parameters x̂0 and ẑ0 of the respective 2D Euclidean motions, we display in (c) and (d) the x
and z translation, respectively, between the point clouds’ centroids. Together with (e), these figures
contain the same information but are easier to interpret since they are independent of the rotation.
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Figure 2.13. Cost matrices for two instances of “rotating both arms forwards”, see Fig. 2.8. The first
motion (vertical axis) consists of walking while performing three fast arm rotations, while the actor of
the second motion (horizontal axis) is standing while performing three slow arm rotations.
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Figure 2.14. (a) Quaternion-based cost matrix Cquat for the motions “climbing stairs” and “walking”
of Fig. 2.7 (b). (b) 3D point cloud-based cost matrix C3D using no temporal context (ρ = 0). The
vertical time axes (index n) correspond to the red motion in Fig. 2.7 (b), where the character climbs
the stairs. The horizontal time axes (index m) correspond to the blue character.

of the motions since it is less vulnerable to the above mentioned influences. Also note that
the slope of the warping path encodes the relative speed difference between the two motions:
100 frames on the vertical axis roughly correspond to 225 frames on the horizontal axis, so
the first motion is about 2.25 as fast as the second motion.

In the next example, we compare the motions “climbing a staircase” and “walking at
ground level” as shown in Fig. 2.7 (b). Both motions comprise three steps and start with the
right foot. The cost matrix with respect to cquat is shown in Fig. 2.14 (a). Note that cquat

is invariant under all Euclidean motions of R3 including translations in y-direction (vertical
direction). Even though the actor in the first motion constantly moves upwards, the overall
progression of angle configurations in the climbing motion (first motion) roughly coincides
with the one in the regular walking motion (second motion). This is reflected by areas of
relatively low costs along the main diagonal. By contrast, the local cost measure c3D is not
invariant under translations in y-direction. This leads to high costs when comparing poses
towards the end of the first motion (the actor’s body is well above the ground level) with
poses of the second motion (the actor’s body is at ground level), see Fig. 2.14 (b).

Our fourth example involves two instances of “lying down on the floor” performed by two
different actors. Both motions start from an upright standing pose, and the final poses of the
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two motions are shown in Fig. 2.15 (c). The resulting cost matrices with respect to cquat and
c3D are shown in Fig. 2.15 (a) and (b), respectively. Note that the final poses are logically
similar (both actors are lying on the floor), while there are large differences in the elbow
angles, resulting in significant cquat-costs as shown in the upper right corner (yellow/orange)
of Fig. 2.15 (a). This is a typical example of partial (dis-)similarity as discussed above. The
difference in the arm’s position has a smaller overall effect on the c3D-cost, see the upper
right corner (black) of Fig. 2.15 (b). A further interesting observation is that the cquat-costs
between the standing poses at the beginning of one motion and the lying poses at the end
of the other motion are very small (see the area along the line from (500, 30) to (750, 30)).
Conversely, the c3D-costs of the same area are extremely high. This is due to the fact that
cquat is invariant under the full rotation group of R

3, whereas c3D is only invariant under
rotations about the vertical axis.

Next, we demonstrate the effect of the parameter ρ in the local cost measure c3D, see
Sect. 2.5.2. Recall that computing a distance value c3D(n, m) involves the comparison of
entire motion fragments of length 2ρ + 1 centered at the nth frame of the first motion and
at the mth frame of the second motion, respectively. Fig. 2.16 shows the cost matrices for
the parameters ρ = 0, ρ = 10, and ρ = 20, where two different jumping jack motions are
compared. For the case ρ = 0, no temporal context is used, and the value c3D(n, m) only
depends on the nth frame of the first and the mth frame of the second motion. In this case, C
low values not only along the main diagonal, but also along the “antidiagonal” (orthogonal to
the main diagonal). In other words, the poses of the first jumping jack motion are similar to
the corresponding poses of the time-reversed second jumping jack motion, see Fig. 2.16 (a).
By increasing ρ, the temporal progression of the frames gain more and more influence, which
leads to a smearing effect of the resulting cost matrix along the direction of the main diagonal,
see Fig. 2.16 (b) and (c). For example, the value ρ = 20 corresponds to a window length of 51
frames, encompassing nearly half a second of motion (at a frame rate of 120 Hz). Recall that
we consider the point clouds as ordered, so sequence matters during comparison. Hence, in
such a temporal context, the poses of the first jumping jack motion are no longer considered
to be similar to corresponding poses of the time-reversed second jumping jack (where the
poses within the temporal context are not reversed).

As a final example, we investigate the influence of noise on our local cost measures.
Fig. 2.17 (a) shows the cost matrix Cquat for the comparison of two noisy ballet motions that
are similar to the motion shown in Fig. 2.9. The discontinuities in the angle trajectories show
as vertical and horizontal stripes of high cost, in certain areas (n = 100) heavily occluding the
similarity matrix. The influence of the high-frequency noise is not as obvious. By contrast,
the c3D-based distance matrix of Fig. 2.17 (b) does not exhibit any artifacts or noise since
the 3D positions of the affected joints can still be matched with relatively low cost.

In general, the 3D point cloud distance is less vulnerable to artifacts than the quaternion-
based distance. However, computing cost matrices with respect to c3D is very time-consuming
since optimal alignments have to be computed for every pair of frames. For instance, comput-
ing the cost matrix C3D of Fig. 2.12 (b) took roughly two minutes, while Cquat of Fig. 2.12 (a)
could be computed in less than two seconds using a Matlab implementation.



2.8. EXAMPLES AND COMPARATIVE EVALUATION 39

200 400 600

100

200

300

400

500

600

700

0.1

0.15

0.2

0.25

0.3

0.35

200 400 600

100

200

300

400

500

600

700

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) Cquat (b) C3D (c)

Figure 2.15. (a) Quaternion-based cost matrix Cquat for two different actors lying down on the floor.
(b) 3D point cloud-based cost matrix C3D using no temporal context (ρ = 0). The final poses of the
motions are shown in (c).
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Figure 2.16. Cost matrices corresponding to two jumping jack motions with respect to c3D for
different choices of the temporal context parameter, ρ.
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Figure 2.17. Comparison of two different ballet motions that are similar to the motion shown in
Fig. 2.9. Both motions contain high-frequency noise as well as discontinuities in some trajectories.
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Chapter 3

Relational Motion Features

In a sense, motion capture data has a richer semantic content than, for example, pure video
data of a motion, since the 3D position and the meaning of all joints is known for every
pose. On the other hand, we have seen that numeric mocap data such as joint rotations
or 3D trajectories are not suited for fault-tolerant comparison of motions when focusing on
large-scale motion semantics. The main problem is that the granularity of mocap data is
too fine for our purpose: irrelevant details, noise, as well as spatial pose deformations may
interfere with the actual semantics that we are trying to capture. Furthermore, motions
typically exhibit global and local temporal deformations, i. e., different movement speeds and
timing differences. Existing approaches to motion comparison handle this problem by means
of computationally expensive techniques such as dynamic time warping [KG04] or hidden
Markov models [GG04].

To bridge the semantic gap between logical similarity and numerical similarity, we intro-
duce the concept of relational motion features, which describe boolean geometric relations
between specified points of a pose or between short sequences of poses, see also [MRC05b].
Examples of such features are discussed in Sect. 3.1. Relational features provide a compact,
semantically meaningful representation of motions and are largely invariant to various kinds of
spatial deformations of poses. Fixing a combination of relational features, we then introduce
a feature-driven method for temporal motion segmentation, see Sect. 3.2. It turns out that
the sequence of relational features corresponding to the temporal segments is largely invariant
to temporal deformations, enabling the use of efficient index-based retrieval techniques.

In view of practical applications, it is important to carefully design relational feature sets
so as to capture the aspects of interest while introducing as little redundancy as possible,
see Sect. 3.3. Here, we also explain the implementational details of relational features. In
Sect. 3.4, we then explicitly state the feature sets that have been used in our experiments on
motion retrieval and classification and discuss further examples of relational features applied
to concrete motions.

3.1 Examples of Relational Features

In the following discussion, we need the notion of a boolean feature, which we define as a
function F : P → {0, 1} that only assumes the values zero and one. Obviously, any boolean
expression of boolean features (evaluated pose-wise) is a boolean feature itself, examples being
the conjunction F1 ∧ F2 and the disjunction F1 ∨ F2 of boolean features F1 and F2.

41
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(a) Right foot in front? (b) Left hand in front?

(c) Left foot sideways? (d) Right hand raised? (e) Left foot raised?

(f) Both hands
touching?

(g) Right hand touching left leg? (h) Left hand touch-
ing head?

(i) Right knee bent? (j) Right foot fast? (k) Right hand moving up-
wards?

Figure 3.1. Examples of relational features. The joints defining the respective geometric or kinematic
entities (planes, velocities, etc.) are highlighted by red markers. If applicable, the joints that are
checked against those entities are highlighted by black markers.
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Forming a vector of f boolean features for some f ≥ 1, one obtains a combined feature

F : P → {0, 1}f . (3.1)

From this point forward, F will be referred to as a feature function and the vector F (P ) as
a feature vector or feature value of the pose P ∈ P. Any feature function can be applied to
a motion capture data stream D : [1 : T ] → P in a pose-wise fashion, which is expressed by
the composition F ◦D.

Relational features focus on semantically interpretable, boolean aspects of a pose or a short
sequence of poses expressing actions or interactions of certain body parts. As a basic example,
consider the test whether the right toes lie in front of the plane spanned by the left ankle,
the left hip and the root for a fixed pose, cf. Fig. 3.1 (a). More generally, let p1, . . . , p3 ∈ R

3

be four 3D points, the first three of which are in general position. Let 〈p1, p2, p3〉 denote the
oriented plane spanned by the first three points, where the orientation is determined by point
order. We also refer to this plane as the test plane. Then define

B(p1, p2, p3; p4) :=

{
1, if p4 lies in front of or on 〈p1, p2, p3〉,
0, if p4 lies behind 〈p1, p2, p3〉. (3.2)

From this we obtain a generic relational feature F
(j1,j2,j3;j4)
plane : P → {0, 1} for any four distinct

joints ji ∈ J , 1 ≤ i ≤ 4, by defining

F
(j1,j2,j3;j4)
plane (P ) := B(P j1 , P j2 , P j3 ; P j4). (3.3)

The concept of such relational features is simple but powerful, as we will illustrate by con-
tinuing the above example. Setting j1 :=‘root’, j2 :=‘lankle’, j3 :=‘lhip’, and j4 :=‘rtoes’, we

denote the resulting feature by F r := F
(j1,j2,j3;j4)
plane . The test plane determined by j1, j2, and

j3 is indicated in Fig. 3.1 (a) as a green disc. Since the root joint is placed slightly behind
the hip joints in our skeleton, this plane is slightly rotated about the longitudinal axis in a
standing pose. Therefore, the feature value F r(P ) is one for a pose P corresponding to a
person standing upright and zero when the right foot moves to the back or the left foot to the
front, which is typical for locomotion such as walking or running. Interchanging correspond-
ing left and right joints in the definition of F r and flipping the orientation of the resulting
plane, we obtain another feature denoted by F ℓ, which assumes the value one for a pose P
corresponding to a person standing upright and the value zero when the left foot moves to
the back or the right foot to the front

Let us have a closer look at the feature function F := F r ∧ F ℓ, which is one if and only
if both, the right as well as the left foot, are in front of the respective planes. It turns out
that F is very well suited to characterize any kind of locomotion, such as the walking motion
Dwalk : [1 : T ] → P that is shown in Fig. 3.2. The feature sequence F ◦D : [1 : T ] → {0, 1}
exhibits exactly two peaks for any locomotion cycle, from which one can easily read off the
frequency of the gait cycle (see Fig. 3.3). These peaks correspond to the short phases where
the legs pass by each other during walking.

The four joints in F
(j1,j2,j3;j4)
plane can be picked in various meaningful ways. For example,

in the case j1=‘root’, j2=‘lshoulder’, j3=‘rshoulder’, and j4=‘lwrist’, the feature expresses
whether the left hand is in front of or behind the body. Introducing a suitable offset, one
can alter the semantics of the feature: moving the test plane 〈P j1 , P j2 , P j3〉 to the front by
one length of the skeleton’s humerus, we obtain a feature that can distinguish between a pose
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Figure 3.2. A 100-frame walking motion sampled at 30 Hz. The motion starts with a standing pose,
then the step sequence left/right/left/right/left is performed. As a reference, the trajectories of the
joints ‘headtop’, ‘rankle’, ‘rtoes’, and ‘rfingers’ are shown.

1
F r ◦D

1
F ℓ ◦D

0 20 40 60 80 100

1
(F r ∧ F ℓ) ◦D

Figure 3.3. Boolean features F r, F ℓ, and F r∧F ℓ applied to the 100-frame walking motion D = Dwalk

of Fig. 3.2.

with a hand reaching out to the front and a pose with a hand kept close to the body, see
Fig. 3.1 (b).

Instead of specifying a test plane by means of three points in general position, it often
makes sense to express the plane in terms of a normal vector and a point of attachment. As
an example, consider Fig. 3.1 (c), where the test plane is defined to be normal to the line
connecting the two hip joints. Tracing along this line one hip width beyond the left hip joint,
one reaches the point of attachment for the test plane. By testing the left ankle against this
plane, one can then check whether the left foot is stretched out sideways or not.

In Fig. 3.1 (d), the normal of the test plane is given by the vector from the joint ‘chest’
to the joint ‘neck’ and passes through the neck joint. Testing against this plane, one can
detect whether a hand is raised above neck height or not. Note that this detection works irre-
spective of global position, orientation, and scale, since the plane is attached to the skeleton.
Considering the second pose of Fig. 3.1 (d), which depicts the middle phase of a cartwheel
motion, the condition that the hand is raised is properly detected even though the skeleton
is upside-down. This invariance to global position and orientation is a property shared by all
relational features that are defined purely in terms of joint-driven geometric entities.

As an example of a relational feature that is not strictly invariant to global orientation,
consider Fig. 3.1 (e), where we check whether the left foot is raised or not. Here, the normal
of the test plane is defined as the constant “up” vector (0, 1, 0)⊤, which does not move along
with the skeleton. The point of attachment, however, is defined relative to the skeleton in
the following way: locate the joint j that is closest to the ground (minimum y coordinate),
taking into account all joints except ‘ltoes’. Then define the point of attachment for the test
plane by starting at the 3D position of joint j and moving one length of the humerus in y
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‖vankle‖
‖vtoes‖
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F ankle ◦D

F toes ◦D

0

1

0
1

0

F fast ◦D

10 20 30 40 50 60 70 80 90 100

Figure 3.4. Top: Absolute velocities in cm/s of the joints ‘rankle’ (‖vankle‖, blue) and ‘rtoes’
(‖vtoes‖, red) in the walking motion D = Dwalk of Fig. 3.2. The black horizontal line at vfast = 63
cm/s indicates the velocity threshold. Middle: Thresholded velocity signals for ‘rankle’ and ‘rtoes’.
Bottom: Feature values for the feature F fast = F toes ∧ F ankle shown in Fig. 3.1 (j). The valley
between frames 50 and 67 corresponds to the footplant shown in Fig. 3.5.

direction. Even though the resulting relational feature is not invariant to global rotations of
a pose, it grasps the concept of a “raised” foot in all conceivable situations, which is all that
matters.

Some instances of a different class of relational features are shown in Fig. 3.1 (f)–(h).
Here, we check whether certain parts of the body are close to each other or not. To this
end, we consider ε-neighborhoods of certain line segments (often: bones) such as the hands
(Fig. 3.1 (f)), the legs and the feet (Fig. 3.1 (g)), or the head (Fig. 3.1 (h)). If a joint lies
within such a neighborhood, we assign the feature value one to denote “touching”, otherwise
zero to denote “not touching”. Note that ε-neighborhoods of line segments, shown in the
figures as blue transparent objects, are composed of two hemispheres joined by a cylinder. In
Fig. 3.1 (h), we removed one of the hemispheres since we do not consider the volume below
neck height as being close to the head. Of course, the choice of the threshold parameter ε is
crucial for the semantics of a relational feature. We will return to the subject of threshold
selection in Sect. 3.3.2.

Simply thresholding the joint angles of certain 1 DOF joints by a threshold α can also
lead to expressive features, see Fig. 3.1 (i). Here, we check whether the right knee is stretched
(feature value zero) or bent (feature value one). Similar features can be defined for the elbow
joints. A threshold angle of α = 120◦ turned out to be well-suited to distinguish the two
states “stretched” and “bent”.

So far, our relational features have only referred to a single pose at a time. We now discuss
some features that are related to approximated absolute joint velocities, requiring two or more
successive poses to compute the “discrete derivative” of joint trajectories. Fig. 3.1 (j) shows
the feature F fast := F toes ∧ F ankle, which is a movement detector for the right foot. F fast

checks whether the absolute velocity of both the right ankle (feature: F ankle) and the right
toes (feature: F toes) exceeds a certain velocity threshold, vfast. If so, the feature assumes
the value one, otherwise zero, see Fig. 3.4. This feature is well-suited to detect kinematic
constraints such as footplants. The reason why we require both the ankle and the toes to be



46 CHAPTER 3. RELATIONAL MOTION FEATURES

Figure 3.5. Details of the right foot in the walking motion of Fig. 3.2. The trajectories of the joints
‘rankle’ (blue dots) and ‘rtoes’ (red crosses) are shown. Additionally, the right foot and the lower leg
have been plotted for every other frame.

sufficiently fast is that we only want to consider the foot as being fast if all parts of the foot
are moving. For example, during a typical walking motion, there are phases when the ankle
is fast while the heel lifts off the ground, but the toes are still planted on the ground, see also
Fig. 3.5. Similarly, there are phases when the heel has already been planted on the ground,
leading to a zero velocity for the ankle, while the toes are still rotating downwards. In terms
of motion semantics, the foot is not moving in its entirety in both of these situations.

The feature shown in Fig. 3.1 (k) checks whether the right hand is moving into the direction
determined by the belly-chest segment. Effectively, this feature detects upward movements
of the right hand.

Discussion. In general, feature functions defined purely in terms of geometric or kinematic
entities that are expressible by joint coordinates are invariant under global transforms such
as Euclidean motions and scalings. Relational features are very coarse in the sense that they
express only a single geometric or kinematic aspect, masking out all other aspects of the
respective pose. This makes such features robust to variations in the motion capture data
stream that are not correlated with the aspect of interest. Using suitable boolean expressions
and combinations of several relational features then allows us to focus on or to mask out
certain aspects of the respective motion, see Chap. 4.

3.2 Temporal Segmentation

In order to achieve invariance to global and local temporal deformations, we now define a
feature-dependent temporal segmentation of motion capture data streams. Let F : P →
{0, 1}f be a fixed feature function. Then an F -segment of a data stream D is defined to be
a substream of D of maximal length consisting of consecutive frames that exhibit the same
feature value. Since each segment corresponds to a unique feature vector, the segments induce
a sequence of feature vectors, which we also refer to as the F -feature sequence of D and denote
by F [D]. If M is the number of F -segments of D and if D(tm) for tm ∈ [1 : T ], 0 ≤ m ≤M ,
is any representative pose of the mth segment, then

F [D] = (F (D(t0)), F (D(t1)), . . . , F (D(tM ))). (3.4)
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For example, applying the feature function Fwalk := (F r, F ℓ) : P → {0, 1}2 to the walking
motion D = Dwalk of Fig. 3.2 results in a temporal segmentation of D into 10 segments. The
corresponding Fwalk-feature sequence is

Fwalk[D] =
((

1
1

)
,
(

0
1

)
,
(

1
1

)
,
(

1
0

)
,
(

1
1

)
,
(

0
1

)
,
(

1
1

)
,
(

1
0

)
,
(

1
1

)
,
(

0
1

))
, (3.5)

as visualized in Fig. 3.6. A visualization in terms of 3D joint trajectories is given in Fig. 3.7.
Obviously, any two adjacent vectors of the sequence Fwalk[D] are distinct. The feature se-
quence clearly exhibits the structure of a walking motion, where phases with parallel feet,
reflected by the feature vectors

(
1
1

)
, alternate with phases where either the right or the left

foot is in front, reflected by the feature vectors
(

1
0

)
and

(
0
1

)
, respectively.

Furthermore, changing the combination of features will automatically lead to an adap-
tation of the induced segmentation. As an example, compare Figs. 3.7 and 3.8. The first
figure shows a segmentation with respect to Fwalk, whereas the second figure shows a seg-
mentation where the second component of Fwalk has been masked out, leaving only F r. Note
that all segments in Fig. 3.7 are subsegments of the segments in Fig. 3.8, corresponding to
the distinction whether the right foot is in front or not. Typically, fine features, i. e., feature
functions with many components, induce segmentations with many short segments, whereas
coarse features lead to a smaller number of long segments.

The crucial point is that the F -feature sequence of a mocap data stream not only inherits
the semantic qualities of the underlying relational features but is also robust to the local
and global time variations that typically distinguish logically related motions. The F -feature
sequence can thus be viewed as a “fingerprint” of a motion that is largely invariant under
spatio-temporal deformations. For example, the walking motion D = Delderlywalk shown in
Fig. 3.9 (a) together with its Fwalk-segmentation comprises five slow steps performed by an
elderly person. Yet, Delderlywalk has the same Fwalk-feature sequence as Dwalk. In general,
two motions that differ by some deformation of the time axis will yield the same feature
sequences, which is the key property used in our retrieval strategies, cf. Chap. 4.

As a further example, we segment the parallel-leg jumping motion D = Djump shown in
Fig. 3.10 by means of the feature function F jump := (F rknee, F lknee), which checks if the right
and left knee are bent or stretched. We obtain nine segments corresponding to the feature
sequence

F jump[D] =
((

0
0

)
,
(

0
1

)
,
(

1
1

)
,
(

0
1

)
,
(

0
0

)
,
(

0
1

)
,
(

1
1

)
,
(

0
1

)
,
(

0
0

))
. (3.6)

The structure of the jumping motion is as follows. Both legs are kept parallel throughout
the jump sequence and are stretched during the initial phase of arm-swing (segment 0 in
Fig. 3.10). The legs are then bent into a half-squatting position (segments 1–2), preparing
the following push-off (starting shortly before segment 3), during which the legs are stretched
once more. In the landing phase (starting shortly before segment 5), the legs absorb the
energy of the jump by bending as deep as before push-off (segment 6). The jump sequence
is concluded by stretching the legs into a normal standing position (segments 7–8). Such
a sequence of bending and stretching the knees is characteristic for many kinds of parallel-
leg jumping motions. However, segments number 1, 3, 5, and 7 are transitory segments of
very short duration. They assume one of the feature values

(
0
1

)
or
(

1
0

)
more or less randomly,

depending on which of the knees is bent/stretched first during the push off and landing phases.
We will explain in Chap. 4 how to manually exclude transitory segments in the comparison
of motions to some extent. In Chap. 5, we will then introduce an automatic way of detecting
and excluding such segments.
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1
F r ◦D

0 20 40 60 80 100

1
F ℓ ◦D

0 1 2 3 4 5 6 7 8 9

Figure 3.6. Boolean features F r and F ℓ applied to the 100-frame walking motion D = Dwalk of
Fig. 3.2. The temporal segmentation induced by the combined feature function Fwalk = (F r, F ℓ) is
indicated by vertical lines as well as colored bars and segment numbers corresponding to Fig. 3.7.
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Figure 3.7. Fwalk-segmentation of D = Dwalk. Fwalk-equivalent poses are indicated by identically
colored trajectory segments. The trajectories of the joints ‘headtop’, ‘rankle’, and ‘rfingers’ are shown.
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Figure 3.8. F r-segmentation of D = Dwalk.
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Figure 3.9. (a) Fwalk-segmentation and (b) F r-segmentation of D = Delderlywalk.
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Figure 3.10. F jump-segmentation of a parallel leg jumping motion D = Djump, where F jump-
equivalent poses are indicated by identically marked trajectory segments. The trajectories of the
joints ‘headtop’ and ‘rankle’ are shown.

As an example involving a more complex motion and a more complex feature function,
we consider a kick/punch combination, see Fig. 3.11. Here, we use a feature function F 4 :
P → {0, 1}4 consisting of the following four boolean features: “right knee bent”, (feature F20

of Table 3.2), “left elbow bent” (F8), “right foot raised” (F17), and “left hand reaching out
to the front” (feature E2 of Table 3.1). Note that there are 16 different feature combinations
with respect to F 4. Fig. 3.11 shows the 11 segments of the resulting F 4-segmentation.

Discussion. The main idea is that two motion capture data streams D1 and D2 can now
be compared via their F -feature sequences F [D1] and F [D2] instead of comparing the data
streams on a frame-to-frame basis. This has several advantages:

1. Since spatial and temporal invariance are already incorporated in the features and
segments, one can use efficient string matching methods to compare the data streams
instead of applying cost-intensive techniques such as DTW at the frame level.

2. One can decide which aspects of the motions to focus on by picking a suitable feature
function F .

3. In general, the number of segments is much smaller than the number of frames, which
accounts for efficient computations.

However, we have also seen that aspects of a motion that change nearly simultaneously can
lead to short transitory segments with unpredictable feature values, necessitating some kind
of fault tolerance mechanism for the comparison of feature sequences.

3.3 Feature Design

To facilitate retrieval in large motion databases containing a great variety of motions, it is
essential to provide the end-user of our retrieval system with a semantically rich set of features
covering different body parts and various aspects of motions. Of course, the requirements to
such a feature set will heavily depend on the intended application. The goal of our retrieval
system is to search for motion clips in view of their rough course of motion.

In this section, we describe our approach to designing such feature sets. Most features
have been derived from generic relational features, see Sect. 3.3.1, which depend on a set of
joints and some threshold values. Here, an appropriate selection of thresholds is crucial to
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0 1 2 3 4 5 6 7 8 9 10

Figure 3.11. Right foot kick followed by a left hand punch. The trajectories of the joints ‘headtop’,
‘rankle’, and ‘lfingers’ are shown. The segments are induced by a 4-component feature function F 4

comprising the thresholded angles for ‘rknee’ and ‘lelbow’ as well as features describing the relations
“right foot raised” and “left hand in front”.

designing semantically meaningful features. This topic will be discussed in Sect. 3.3.2. We
have also tested automatic methods of selecting appropriate joint combinations to be used
with generic features, see Sect. 3.3.4.

3.3.1 Generic Relational Features

Most of our features have been constructed from the following seven generic relational features,
which encode certain geometric and kinematic joint constellations. Recall from Sect. 3.1 the
discussion of the generic feature Fplane, which checks whether a certain joint lies in front of a
plane defined by three other joints. Similarly, each of the generic features

Fplane = F
(j1,j2,j3;j4)
θ,plane

Fnplane = F
(j1,j2,j3;j4)
θ,nplane

Ftouch = F
(j1,j2;j3)
θ,touch

Fangle = F
(j1,j2;j3,j4)
θ,angle (3.7)

Ffast = F
(j1)
θ,fast

Fmove = F
(j1,j2,j3;j4)
θ,move

Fnmove = F
(j1,j2,j3;j4)
θ,nmove

maps a given pose to the set {0, 1} and depends on a number of joints, denoted by j1, . . . , j4.
The term relational feature hails from the fact that a generic feature depending on n joints
can be viewed as an n-ary relation on the set J , given a fixed pose.

The latter three features involve velocities and therefore assume a short sequence of poses
centered at the current pose to be given. In contrast to the notation introduced in Sect. 3.1, all
generic features now depend on a threshold value or threshold range θ. All of our features can
be computed in linear time, where the complexity parameter is the length T of the respective
mocap data stream.
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The generic feature F
j1,j2,j3;j4)
θ,plane

Given four points p1, . . . , p4 ∈ R
3, the signed distance of p4 to the plane 〈p1, p2, p3〉 can be

computed as follows. First, determine a unit normal vector

n(p1, p2, p3) :=
(p1 − p3)× (p2 − p3)

‖(p1 − p3)× (p2 − p3)‖
, (3.8)

the orientation of which is given by the right-hand-rule. Then evaluate the Hesse normal
form, which yields the signed distance of p4 as

dplane(p1, p2, p3; p4) := 〈n(p1, p2, p3), p4 − p3〉, (3.9)

where positive values of d(p1, p2, p3; p4) indicate that p4 lies in the open half space into which
the normal n(p1, p2, p3) points. Next, we apply the thresholding function

Hθ(x) :=

{
1 if x ≥ θ
0 otherwise,

(3.10)

where θ, x ∈ R. For a given pose P ∈ P, we can then compute the feature value as

F
(j1,j2,j3;j4)
θ,plane (P ) = Hθ(dplane(P

j1 , P j2 , P j3 ; P j4)). (3.11)

In other words, Fplane assumes the value one iff joint j4 has a signed distance of at least
θ from the oriented plane spanned by the joints j1, j2 and j3. Compare the examples in
Figs. 3.1 (a), (b).

The generic feature F
(j1,j2,j3;j4)
θ,nplane

A similar test is performed by F
(j1,j2,j3;j4)
θ,nplane , but here we define the plane directly in terms of

a normal vector and an anchor point. For p1, . . . , p4 ∈ R
3, let

n(p1, p2) :=
p2 − p1

‖p2 − p1‖
. (3.12)

Then the Hesse normal form yields the signed distance of p4 as

dnplane(p1, p2, p3; p4) := 〈n(p1, p2), p4 − p3〉, (3.13)

where the plane passes through the anchor point p3. This allows us to define the feature value
for a given pose P ∈ P as

F
(j1,j2,j3;j4)
θ,nplane (P ) := Hθ(dnplane(P

j1 , P j2 , P j3 ; P j4)). (3.14)

Figs. 3.1 (c), (d) demonstrate the use of this generic feature.
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The generic feature F
(j1,j2;j3)
θ,touch

Given three points p1, p2, p3 ∈ R
3, this feature returns one iff p3 lies within the θ-neighborhood

of the line segment L connecting p1 and p2. The surface of this θ-neighborhood is a cylin-
der with radius θ and axis L that is capped by hemispheres of radius θ at both ends, see
Fig. 3.1 (f),(g) for an illustration. A unit normal vector for the bottom and top planes of
the cylinder points in the direction of the cylinder axis (directed from p1 to p2) is given by
n(p1, p2), cf. (3.12). The distance of p3 to the line 〈p1, p2〉 can then be computed as

dline(p1, p2; p3) := ‖(p3 − p1)× n(p1, p2)‖ = | sinα|‖p3 − p1‖, (3.15)

where α is the angle enclosed between p3 − p1 and n. Since we do not want to consider the
entire line 〈p1, p2〉 but rather the line segment L, the distance function dline is only valid as
long as p3 is closer to an inner point of L than to one of its endpoints. In the latter case, we
must use the distance functions

dpoint(p1; p3) := ‖p3 − p1‖ and dpoint(p2; p3) := ‖p3 − p2‖ (3.16)

To find out which of the distance functions applies, we use the distance function for the
bottom and top planes of the cylinder, which are

d1(p1, p2; p3) := 〈n(p1, p2), p3 − p1〉 and d2(p1, p2; p3) := 〈n(p1, p2), p3 − p2〉, (3.17)

respectively. This yields the distance function

dsegment(p1, p2; p3) :=





dpoint(p1; p3) if d1(p1, p2; p3) ≤ 0
dline(p1; p3) if d1(p1, p2; p3) > 0 ∧ d2(p1, p2; p3) < 0
dpoint(p1; p3) if d2(p1, p2; p3) ≥ 0.

(3.18)

The resulting feature value for a pose P ∈ P is

F
(j1,j2;j3)
θ,touch (P ) := 1−Hθ(dsegment(P

j1 , P j2 ; P j3)), (3.19)

where the subtraction from 1 amounts to a logical negation, which is necessary since we want
to assign a feature value of one if the distance is smaller than θ. In order to obtain a decision
surface where the lower hemisphere is removed (as shown in Fig. 3.1 (h)), one can alter the
distance function in the following way:

d′segment(p1, p2; p3) :=





∞ if d1(p1, p2; p3) ≤ 0
dline(p1; p3) if d1(p1, p2; p3) > 0 ∧ d2(p1, p2; p3) < 0
dpoint(p1; p3) if d2(p1, p2; p3) ≥ 0.

(3.20)

Analogous modifications allow for the removal of the upper hemisphere or both of the hemi-
spheres. Also note that this feature can check whether two joints are close to each other by
setting j1 = j2.

The generic feature F
(j1,j2;j3,j4)
θ,angle

This feature assumes the value one iff the angle enclosed between the directed segments
determined by (j2, j1) and (j3, j4) is within the angle range θ ⊆ [0, π]. Given four points
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p1, . . . , p4 ∈ R
3, we start by computing the unit vectors n(p1, p2) and n(p3, p4) pointing in the

directions of the two segments, cf. (3.12). The angle enclosed between n(p1, p2) and n(p3, p4)
is denoted as α(p1, p2; p3, p4) ∈ [0, π); more precisely, we mean the smaller of the enclosed
angles. This angle can now be computed as

α(p1, p2; p3, p4) := arccos〈n(p1, p2), n(p3, p4)〉. (3.21)

Note that n(p1, p2) points from p1 to p2 and n(p3, p4) points from p3 to p4. In case p1 = p3 = p,
this definition allows for the interpretation that there is a common joint between the two
segments joining at p, both of which point away from p. The feature value for a pose P ∈ P
is defined as

F
(j1,j2;j3,j4)
θ,angle (P ) := χθ(α(P j1 , P j2 ; P j3 , P j4)), (3.22)

where χθ : [0, π]→ {0, 1} is the characteristic function of the angle range θ ⊆ [0, π]. See also
Fig. 3.1 (i).

There are three reasons why we recompute angles from 3D joint positions instead of
directly using the joint angle information from the animated skeleton. First, we aim at
keeping our features independent of specific data formats, focusing exclusively on 3D joint
coordinates. Second, the joint angles that are specified in typical mocap files are usually
offset against our features’ joint angles by an angle that may vary between mocap files; for
example, the knee angle for a stretched knee is denoted as 0◦ in many mocap files, whereas
the above computations would yield 180◦. Finally, our method also works for two bones or
two joint-driven line segments that are not connected by a common joint; for example, it
could make sense to measure the angle of the arm against the direction of the spine.

The generic feature F
(j1)
θ,fast

The three remaining generic features operate on velocity data that is approximated from the
3D joint trajectories of the input motion. Given a mocap data stream D : [1 : T ] → P,
we focus on a single joint j ∈ J and consider its 3D trajectory Dj , which we think of as a
sequence (p(1), . . . , p(T )) in R

3. From this trajectory, we can compute approximate velocity
vectors by taking the “discrete derivative”

v(t) :=

{
p(t+1)−p(t)

∆t
if 1 ≤ t < T

v(T − 1) if t = T,
(3.23)

where ∆t is the inverse of the sampling rate, for example ∆t = 1
120 s in our ballet motion. Note

that we duplicate the last velocity vector to maintain the length of the original trajectory.

Mocap data may contain significant high-frequency noise components, which typically
leads to very noisy velocity data since the discrete derivative (3.23) corresponds to a highpass
filter. For example, consider the toe trajectory shown in the ballet motion of Fig. 2.9, where
the noise shows as extremely irregular sample spacing. The trajectory even contains some
obvious outliers on the left hand side of the figure. The black curve in Fig. 3.12 corresponds
to the magnitude of the 3D velocity vectors of the noisy toe trajectory and clearly shows some
major peaks corresponding to the outliers as well as high-frequency noise at all times.

Such spatial noise can be due to calibration and tracking errors, to inadequate data cleanup
such as unresolved marker occlusions and marker confusions, and to skeletal fitting errors.
We make the simple assumption that the three dimensions of the noise components in the
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3D velocity vectors are uncorrelated and the underlying stochastic process is stationary, so
suitable averaging over several velocity vectors should allow for some of the noise to cancel
out. To this end, we apply a moving average filter to the 3D velocity vectors.

We start by extending the sequence of velocity vectors using symmetric padding before
frame 1 and after frame T , yielding the infinite sequence ṽ : Z→ R

3 defined by

ṽ(t) :=





ṽ(1− t) if t < 1
ṽ(2T + 1− t) if t > T
v(t) otherwise.

(3.24)

The convolution filter Ch convolves its input sequence with the filter coefficients (hk)k∈[−K:K],
where convolution between a one-dimensional sequence and a sequence of 3D vectors is meant
in a coordinate-wise sense. Choosing

hk :=
e−

1
2(β 2k

2K+1)
2

∑K
k=−K e−

1
2(β 2k

2K+1)
2 (3.25)

for k ∈ [−K : K], we obtain a Gaussian lowpass filter mask of length 2K + 1, where the
parameter β corresponds to the inverse of the variance of the corresponding Gaussian dis-
tribution. We chose β = 2.5, see also [Har78]. The noise-reduced sequence is then given
by

v̄(t) := Ch[ṽ](t) = (h ∗ ṽ)(t) =

K∑

k=−K

hkṽ(t− k), (3.26)

which we evaluate for t ∈ [1 : T ]. Note that this is equivalent to filtering the 3D data prior
to computing the discrete derivative due to the linearity of convolution.

The red curve in Fig. 3.12 depicts the magnitude of the 3D velocity after filtering with the
Gaussian lowpass filter of length 2K+1 = 13, which roughly corresponds to the experimentally
determined window length of 100 ms. Most of the noise has been removed. This example
also demonstrates the noise reduction that is due to the averaging of uncorrelated 3D noise
components, which tend to cancel out before the absolute value is computed: the spikes
around frames 80, 125, and 240 would lead to much larger responses if the absolute value had
been applied prior to the filtering step. Of course, our filtering approach to noise removal
may as well remove some semantic details, but this is irrelevant since the focus of our features
is not on such details but rather on coarse, global properties. A different, quaternion-based
filtering approach is discussed in App. B.

Writing the filtered velocity sequence corresponding to the trajectory of joint j ∈ J in
operator notation as v̄[Dj ], we then define the feature value for a pose D(t) = P ∈ P as

F
(j1)
θ,fast(D(t)) := Hθ(‖v̄[Dj1 ](t)‖). (3.27)

Note that we require P to be embedded within the context of a mocap data stream D.

The generic feature F
(j1,j2,j3;j4)
θ,nmove

This feature considers the velocity of joint j4 relative to joint j3 and assumes the value one
iff the component of this velocity in the direction determined by the line segment from j1 to
j2 is above θ. The said velocity component can also be viewed as the signed, one-dimensional
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Figure 3.12. Absolute velocity in cm/s of the joint ‘ltoes’ in the ballet motion of Fig. 2.9. Two
velocity curves have been computed: the black curve shows the magnitude of the 3D velocity vectors
resulting from raw 3D data, whereas the red curve shows the corresponding values after the 3D velocity
vectors have been filtered with a Gaussian lowpass filter of length 108 ms, or 13 frames.

velocity of joint j4 relative to the plane determined by a normal vector (given by j1 and j2)
and the anchor joint j3. This was the motivation for the abbreviation “nmove”, where the
‘n’ stands for “normal”. See Fig. 3.1 (k) for an example.

We compute the desired velocity component in the following way. Given four points
p1 = Dj1(t), . . . , p4 = Dj4(t) ∈ R

3 from frame t ∈ [1 : T ] of a mocap data stream D, we first
determine the unit normal vector n(p1, p2), cf. (3.12). The filtered relative velocity vector

v̄(p3, p4) := v̄[Dj4 −Dj3 ](t) (3.28)

between joints j3 and j4 at time t is then projected onto n(p1, p2) by means of the inner
product, yielding the scalar velocity

v̄(p1, p2, p3; p4) := 〈n(p1, p2), v̄(p3, p4)〉, (3.29)

similar to (3.9). The feature value for a pose D(t) = P ∈ P is then defined as

F
(j1,j2,j3;j4)
θ,nmove (D(t)) := Hθ(v̄(Dj1(t), Dj2(t), Dj3(t); Dj4(t))) (3.30)

for a suitable velocity threshold θ.
Fig. 3.13 shows the output of an upward movement detector for the right hand, as intro-

duced in Fig. 3.1 (k), applied to a jumping motion. There is a clear peak in the velocity curve
corresponding to the upward motion of the hand during the phase of building up momentum
for the jump. Also note the rotational invariance of the feature: during the jumping motion
shown in Fig. 3.10, the upper body leans forwards. The “up” vector, which is identified with
the direction of the spine, follows this forward rotation such that the feature still returns the
value one during the arm swing.

The generic feature F
(j1,j2,j3;j4)
θ,move

This feature has similar semantics as F
(j1,j2,j3;j4)
θ,nmove , but the direction is given by the normal

vector of the oriented plane spanned by j1, j2, and j3.

Other generic features

We also considered the absolute value of the relative velocity between two points p1 and p2,
‖v̄(p1, p2)‖, cf. (3.28). This can be useful to eliminate the superposition of certain movements.
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Figure 3.13. Top: Velocity in cm/s of the joint ‘rwrist’ relative to the ‘belly’–‘chest’ direction in the
jumping motion D = Djump of Fig. 3.10. The black horizontal line at vfast = 58 cm/s indicates the

velocity threshold. Bottom: Feature values for F = F
(‘belly’,‘chest’,‘chest’;‘rwrist’)
58,nmove on D.

For example, during walking or running motions, the observed velocity of the foot can be
decomposed into the sum of the root’s forward velocity and the velocity of the foot relative
to the root. We eliminated the root’s forward velocity by modifying the feature shown in
Fig. 3.1 (j) so as to check the velocity of the right foot relative to the root. However, this has
the major disadvantage that the action of standing on a fixed spot while moving the hips leads
to a nonzero velocity of the foot, which renders such a feature inappropriate for detecting floor
contacts. But this was one of the main intentions behind the velocity features for the feet. In
general, relative velocities with respect to certain joints often lead to unforeseen effects that
preclude a meaningful comparison of motions. For these reasons, this type of features has
been dropped.

For the future, it would be interesting to investigate how dynamic parameters of a motion
(joint torques, forces, center-of-mass trajectories) can be used in the context of relational
features. In applications of both motion synthesis and analysis [ALP04, LHP05, NF05], it
is pointed out that dynamic parameters encode important information about motion style.
On the other hand, dynamic parameters can also provide important clues about the motion
content, see also [Krü06]. For example, walking in a slight curve to the left/right might be
distinguishable by certain asymmetries in the legs’ joint torques, whereas purely kinematic
parameters such as joint trajectories or velocities would not allow for such a distinction. On
the downside, dynamic parameters such as joint torques usually have to be derived from the
raw mocap data by means of inverse dynamics [KB96], which is highly sensitive to noise and
involves heuristics for resolving the weight distribution between the two legs.

3.3.2 Choosing Thresholds

Selecting appropriate generic features and suitable combinations of joints only determines
a part of the semantics of a relational feature. The other part comes from a semantically
meaningful choice of the threshold parameter θ. As an important point, note that variations
of θ may completely change the meaning of a relational feature, which in turn influences the
motion aspect that can be grasped by that feature. According to the different types of generic
features, there are different interpretations of such threshold values θ:

• Plane offsets θ ∈ R for the generic features Fθ,plane and Fθ,nplane (see Fig. 3.1 (b),(c),(e)),
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can be thought of as shifting the respective plane in the direction of the plane’s normal
vector. For example, choosing θ = 0 for the feature shown in Fig. 3.1 (b) yields a
detector for whether the hand is in front of the body or not. Increasing θ, one obtains
detectors for different magnitudes of reaching out in front of the body.

• Proximity thresholds θ ∈ R for the generic feature Fθ,touch (see Fig. 3.1 (f)–(h)) define
the notion of closeness between a joint and a body segment. As an example, one could
significantly increase θ for the “hands touching” detector shown in Fig. 3.1 (f), say, to
three upper arm’s lengths. The resulting feature would output the value one for most
realistic poses, except when the hands are deliberately stretched far apart from each
other. One could then use the negation of such a feature to detect “hands far apart”.

• Angle ranges θ ⊆ [0, π] for the generic feature Fθ,angle may be used to define the notion
of a “bent” or “stretched” joint, or they can define more general angle relations between
joint-driven or absolute segments such as the “spine horizontal” detector (feature F32

of Tab. 3.2). The detector for the condition “knee bent” shown in Fig. 3.1 (i)) uses the
angle range θ = [0◦, 120◦] and could be altered into a detector for “deep squatting” by
choosing, for instance, θ = [0◦, 75◦].

• Velocity thresholds θ ∈ R for the generic features Fθ,fast, Fθ,move, and Fθ,nmove (see
Fig. 3.1 (j),(k)) tune the features’ sensitivity to the speed of motions. For small values
of θ, even minute motion details will lead to a feature value of one. For larger values of
θ, increasingly brisk motions are required to trigger the feature.

In general, there is no “correct” choice for a threshold. The settings depend on the specific
application in mind and are left to the designer of the feature set. There will always be
cases where a threshold setting will be inappropriate to characterize a certain realization of
a motion. In Sect. 3.4, we will specify two manually designed feature sets that have been
successfully applied in our experiments to compare the overall course of full-body motions
while disregarding motion details.

To aid the designer of a feature set in choosing appropriate thresholds, it is also possible
to derive threshold values from training data by supervised learning techniques. Here, one
can supply a training set A of “positive” motions that should yield the feature value one for
most of its frames and a training set B of “negative” motions that should yield the feature
value zero for most of its frames. The threshold θ is then determined by a one-dimensional
optimization algorithm, which iteratively maximizes the occurrences of the output one for
the set A while maximizing the occurrences of the output zero for the set B, see [DRME06a,
Dem06]. However, finding suitable positive and negative training sets turned out to be difficult
in many cases since we expect most features to change their value over the course of a typical
motion. For some features even, the feature value one occurs very rarely, during rather
short, singular events (e. g., stretching out the hand during a punch). This necessitates very
short positive training clips comprising only the relevant frames. For the optimization to
make sense, the negative training clips should be chosen in such a way that the semantically
“correct” threshold is barely not exceeded, which is often problematic.

As the last step of computing relational feature values, we typically apply the thresholding
function Hθ to continuous values such as distances or velocities, which may be measured in
different units (inches, centimeters, or arbitrary multiples thereof) depending on the specific
motion capture file. To account for such differences in scale and to make motions performed
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(a) (b)

Figure 3.14. Relational feature that expresses whether the right leg is stretched sideways or not. (a)
The feature values may randomly fluctuate if the right ankle (green dot) is located close to the decision
boundary (blue disc). (b) Introducing a second, weaker decision boundary (position exaggerated for
a better visualization) prevents the feature from fluctuations.

by different characters comparable, we express our distance and velocity thresholds θ in terms
of certain constant, skeleton-defined distances, such as the length of the upper arm (humerus),
which scales well with the absolute size of the skeleton. We abbreviate the resulting length
unit as “hl” for “humerus length”. Similarly, we also use the relative length units “sw” and
“hw”, standing for “shoulder width” and “hip width”.

3.3.3 Robust Thresholding

The simple quantization scheme using the thresholding function Hθ as described for the
generic features above is prone to strong output fluctuations if the input value fluctuates
slightly around the threshold. To alleviate this problem, we employ a robust quantization
strategy with two thresholds: a stronger threshold, θ1, and a weaker threshold, θ2. As an
example, consider the “foot sideways” detector of Fig. 3.14 (a) with the right ankle located
close to the test plane, which is positioned θ1 = 1.2 hw to the right of the joint ‘rhip’. The
feature will yield the output value one as soon as the ankle protrudes through the test plane.

If the actor is standing with slightly spread legs such that the right ankle is very close to
the test plane, small changes of the ankle position or the hip orientation can lead to strong
zero/one-fluctuations of the boolean feature value, see Fig. 3.15. By introducing the weaker
threshold θ2 = 1.0 hw, which is indicated as the red plane in Fig. 3.14 and as the red line
in Fig. 3.15, insignificant fluctuations can be filtered out in the following way: we only let
the feature value switch over from one to zero if the distance falls below θ2. We refer to this
strategy as robust thresholding, in the literature it is also known as hysteresis thresholding
[Fau01, Chap. 4]. It turns out that this heuristic suppresses undesirable zero-one fluctuations
in relational feature values very effectively, see the lower graph in Fig. 3.15.

For θ1 > θ2, we replace the thresholding function Hθ by the robust thresholding operator
Hrobust

θ1,θ2
, which acts on a time-dependent sequence x : [1 : T ]→ R as follows:

Hrobust
θ1,θ2

[x](t) :=





1 if x(t) ≥ θ1

0 if x(t) < θ2

Hrobust
θ1,θ2

[x](t− 1) if x(t) < θ1 ∧ x(t) ≥ θ2

(3.31)
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Figure 3.15. Top: Distance d of the joint ‘rankle’ to the plane that is parallel to the blue plane
shown in Fig. 3.14 but passes through the joint ‘rhip’, expressed in the relative length unit “hip width”
(hw). The underlying motion is a Tai Chi move in which the actor is standing with slightly spread
legs. The red and blue horizontal lines at θ2 = 1 hw and θ1 = 1.2 hw, respectively, indicate the two
thresholds, corresponding to the red and blue planes of Fig. 3.14 (b). Middle: Thresholded distance
signals (blue and red) using the stronger threshold, θ1, and the weaker threshold, θ2, respectively.
Bottom: Thresholded distance signal using robust thresholding with both θ1 and θ2 (magenta).

where t ∈ [1 : T ] and Hrobust
θ1,θ2

[x](0) := Hθ1(x(1)). A similar robust thresholding operator can
replace the characteristic function χθ for the case of angle ranges θ ⊆ [0, π].

Experiment. For a quantitative evaluation of robust thresholding, we segmented a 60-minute
excerpt from the CMU mocap database [CMU03], which we refer to as DCMU

60 . We used two
versions of a combined feature function comprising the 11 relational features E13 to E23

(focusing on the lower extremities) of Tab. 3.1. Each feature exists in a nonrobust version
and in a robust version, giving rise to the combined feature functions F standard : P → {0, 1}11
and F robust : P → {0, 1}11. The total length of DCMU

60 was 499,416 frames sampled at 120 Hz.
The F standard-feature sequence for DCMU

60 consisted of 24, 078 segments with an average length
of 20.7 frames (σ = 131.2 frames), whereas the F robust-feature sequence consisted of 18, 715
segments with an average length of 26.7 frames (σ = 177.3 frames). The maximum segment
length was 6, 525 frames for the standard feature function vs. 11, 975 segments for the robust
feature function. This shows the tendency of growing longer segments with the robust version.
Fig. 3.16 gives a histogram of segment lengths for the two versions. The blue histogram
corresponds to F standard, while the purple/magenta overlaid histogram corresponds to F robust.
Up to segment length ℓ = 16, there are more frames belonging to segments of the respective
length for F standard. For larger segment lengths, the magenta-colored parts of the bars indicate
that F robust leads to more frames belonging to segments of medium length than F standard.
Note that the histogram is only shown for segment lengths of up to 120 frames.

As a result, we note that the effect of robust thresholding is to lengthen the induced
segments. The above considerations imply that this effect usually corresponds to unstable
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Figure 3.16. First 120 bins of histograms of segment lengths for the database DCMU
60 using the feature

functions F standard (blue histogram) and F robust (magenta/purple, transparently overlaid histogram).
Segment lengths ℓ run along the horizontal axis (measured in frames, 120 Hz sampling rate), while
the vertical axis denotes the number of frames, n(ℓ), belonging to a segment of length ℓ.

segments being merged into longer, semantically meaningful segments such as the phase of
“standing with spread legs” shown in Fig. 3.15.

3.3.4 Towards Automatic Feature Design

Besides learning adequate threshold values θ from training data, see Sect. 3.3.2, we also
conducted experiments with automatic methods of finding sensible joint combinations for our
generic relational features. In the following discussion, we exemplarily focus on the generic

features of type F
(j1,j2,j3;j4)
plane and F

(j1,j2,j3;j4)
nplane , which depend on four joints j1, . . . , j4 ∈ J .

Similar to the combinatorial approach of Carlsson and Sullivan [Car96, Car99, SC02] for 2D
motion analysis from video data, we consider all possible test planes that can be constructed
from the joints j1, j2, j3. For each of the

(
|J |
3

)
3-combinations of these joints, we test each of

the |J | − 3 joints that have not been used in the combination against the corresponding test
plane. In total, this gives us

(|J | − 3) ·
(|J |

3

)
= 4 ·

(|J |
4

)
= O(|J |4) (3.32)

relational features. To keep this number within reasonable bounds, we only focus on the
lower extremities in our experiments, admitting the |J | = 9 joints ‘root’, ‘r/lhip’, ‘r/lknee’,
‘r/lankle’, and ‘r/ltoes’, which yields 4 ·

(
9
4

)
= 504 different combinations. Since we want

to evaluate both F
(j1,j2,j3;j4)
plane and F

(j1,j2,j3;j4)
nplane , the total number of features is f := 1, 008.

For a minimal representation of the entire body with |J | = 17, one would obtain 9, 520
combinations, which turned out to be too unwieldy for the subsequent data analysis.

Two questions arise at this point. First, how does one automatically choose a meaningful
threshold for each of the f features? Our approach will be to omit the thresholding step,
working on raw distance signals. And second, how does one determine the quality of a
feature in an automatic fashion? To find out how standard data analysis techniques perform
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Figure 3.17. First three principal components (PC) of the training database. The different motion
classes are color-coded, from left to right: walking (red), walking backwards (green), shuffling (blue),
jogging (cyan), hopping on both legs (dark green), jumping jacks (pink), squats (brown), frontal kicks
(purple), side kicks (orange), and cartwheels (gray).
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Figure 3.18. Factor loadings, xik, for the first three principal components, plotted against the feature
number, k, which runs along the horizontal axis. The red circles indicate the maximum absolute factor
loading for each principal component. The dashed line marks the division between features of type

F
(j1,j2,j3;j4)
plane (features k = 1, . . . , 504) and F

(j1,j2,j3;j4)
nplane (features k = 505, . . . , 1, 008).
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Figure 3.19. Distance signals di, i = 1, 2, 3, each corresponding to the strongest factor load-
ing in principal component i, as marked by red circles in Fig. 3.18. Feature corresponding to d1:

F
(ltoes,rhip,rtoes;lhip)
plane ; to d2: F

(ltoes,rknee,rankle;lhip)
nplane ; to d3: F

(lhip,rknee,rankle;rhip)
nplane .
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(a) Basis was learned from full training database. (b) Basis was learned from locomotion only (walking,
walking backwards, shuffling, running, hopping).

Figure 3.20. 3D plots of the first three principal components for different training databases. Despite
the fact that PCA treats its input data as an unordered point set, we connected temporally adjacent
data points with lines to emphasize the time-dependency of the data. As in Fig. 3.17 and Fig. 3.19, the
different motion classes are color-coded as follows: walking (red), walking backwards (green), shuffling
(blue), jogging (cyan), hopping on both legs (dark green), jumping jacks (pink), squats (brown), frontal
kicks (purple), side kicks (orange), and cartwheels (gray).

in this setting, we decided to evaluate the features using Principal Component Analysis (PCA)
[Pea01].

Given an input set of data vectors in R
f , PCA finds an orthogonal basis X = {x1, . . . , xf} ⊂

R
f such that the variance σ2

1 of the data set’s projection onto x1 is maximal, the variance σ2
2

of the projection onto x2 is maximal within the remaining orthogonal complement, and so on.
Plotting the variances σ2

i over i for 1 ≤ i ≤ f , one typically observes an exponential drop-off
in the variance [FF05]. This property can be used for dimensionality reduction by projecting
the data onto the first p < f basis vectors of X , where the fidelity of approximation can be
controlled by the choice of p. The resulting data points are p-dimensional, and each of the p
dimensions is referred to as a principal component. In the context of statistical factor analysis
[Gor83], the first p basis vectors xi =

∑f
k=1 xikek, 1 ≤ i ≤ p, are interpreted as uncorrelated

factors or latent variables explaining the variance in the data. The vectors ek ∈ R
f form

the standard basis of Rf and stand for the individual features, while the coefficients xik are
referred to as factor loadings. Those features k for which |xik| is large contribute particularly
much to factor i. In that case, one also says that feature k loads on factor i.

For evaluation, we composed a representative training database, D : [1 : T ] → P, which
was a concatenation of 50 short motion clips comprising a total of T = 4, 975 frames sampled
at 30 Hz, or 166 seconds. The 50 motion clips were grouped into 10 motion classes, each
of which was performed by 5 different actors. The motion classes were walking, walking
backwards, shuffling, jogging (4 steps each), hopping on both legs (1 hop), jumping jacks,
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squats (3 repetitions each), frontal kicks, side kicks (2 repetitions each), and cartwheels (1
repetition). For each pose P = D(t), t ∈ [1 : T ] we then computed the distance values
dplane(P

j1 , P j2 , P j3 ; P j4) for the first half of the f = 1, 008 combinatorial features, and the
distance values dnplane(P

j1 , P j2 , P j3 ; P j4) for the second half of the features (see (3.9) and
(3.13), respectively.) This yields a real f × T matrix, the columns of which represent the
poses of the motion and are regarded as individual data points in R

f . Each row can be seen
as a time-dependent distance signal, which was centered by subtracting the mean. Then,
each signal was normalized by its range (the difference between the signal’s maximum and
minimum), effectively equalizing the signals’ amplitudes. This was necessary since some of
the signals would have larger amplitudes (and thus, higher energy—PCA would therefore
assign higher factor loadings) due to “unfair” leverage effects. For example, consider the
plane spanned by the fixed joints ‘lhip’, ‘root’, and ‘rhip’. Testing the joint ‘rankle’ against
this plane, one obtains a distance signal of much higher amplitude than if testing the joint
‘rknee’ since the former joint is further away from the hip than the latter joint. Yet, the two
distance signals express a conceptually similar feature. On the other hand, the normalization
artificially amplifies low-amplitude signals that may belong to features focusing on irrelevant,
small-scale motions. We had to accept this as a tradeoff, last but not least because the
features of type “nplane” systematically tended to yield smaller amplitudes than those of
type “plane”.

Note that we used raw distance signals as the input to the PCA algorithm, so the data
differs from the actual, thresholded, relational feature values. We omitted the thresholding
step because PCA does not make sense for binary data—being linear combinations of binary
data, the resulting principal components would not be binary themselves. Furthermore, PCA
is tailored to data with a multivariate normal distribution, which is clearly not given for
binary data. Nevertheless, we also performed the above experiment with thresholded, binary
data, where each distance signal was thresholded with its respective arithmetic mean. The
resulting principal components were very similar as in the case of unprocessed distance data.
In general, statistical data analysis for binary data is a problematic issue, to which we will
return in Sect. 3.3.5.

Fig. 3.17 depicts the first p = 3 principal components of our data set, which together
account for 66% of the variance. The quasi-periodic signals corresponding to the first four
motion classes (locomotion) are in phase and therefore strongly correlated throughout the
three principal components, which means that these motion classes can hardly be distin-
guished in the PCA-derived feature space, see Fig. 3.20 (a) for a 3D plot of the first three
principal components. Here, the dense, curved, colored trajectory cluster corresponds to the
four locomotion classes. The fact that walking and running are mapped to the same region
in the PCA space—and would therefore be confused by a classification or retrieval algorithm
based on this PCA space—is not surprising: after all, we are only focusing on the lower
extremities, very similar poses occur during typical walking and running sequences, and we
are disregarding the temporal aspect of the motions. This reinforces the need for additional
features such as our velocity features, which succeed in separating walking from running.

On the other hand, motion classes such as jumping jacks and squats can be easily distin-
guished from each other since their principal components behave very differently (opposing
signs, out of phase). This shows as well-separated, uniformly colored clusters in Fig. 3.20 (a).
Boolean relational features corresponding to the three principal components would yield sig-
nificantly different feature sequences for these motions. Again, this comes as no surprise since
these motions contain specific poses that are very different from any poses occurring in other
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motions. Similar findings hold for the kicking motions as well as the cartwheels. In general,
the occurrence of such characteristic poses provides valuable information about a motion and
often allows many candidate motion classes to be ruled out in motion classification, see also
Sect. 5.2.2.

To assess the influence of the training database on the derived PCA space, we learned
a second PCA basis using only the locomotion part of our database. Projecting the full
database into the space spanned by the first three basis vectors of that basis, we obtained the
representation shown in Fig. 3.20 (b). The dense locomotion cluster has uncoiled a bit, which
reflects the way that PCA chooses the basis vectors: since most of the locomotion data is
fairly similar, PCA has the liberty to focus on the small variations that distinguish different
locomotion styles. For the full training database, however, too much variance introduced by
other motion classes has to be captured by the first few principal components.

The principal components that we have discussed so far are linear combinations of f =
1, 008 features, which are not efficiently manageable in practice. We therefore focus on the
important features, which are those features with particularly high absolute factor loadings.
The factor loadings x1k, x2k, and x3k corresponding to the first three principal components
are plotted in Fig. 3.18 for 1 ≤ k ≤ f . Here, the features k = 1, . . . , 504 are of type “plane”,
while the features k = 505, . . . , 1, 008 are of type “nplane”. The most important features for
the first three principal component were identified by PCA as

F
(ltoes,rhip,rtoes;lhip)
plane , F

(ltoes,rknee,rankle;lhip)
nplane , F

(lhip,rknee,rankle;rhip)
nplane , (3.33)

respectively, see the plots in Fig. 3.19. Note that up to scale, the three features are very similar
to and in phase with the corresponding principal components. At first sight, these features
do not have an intuitive interpretation. However, the first feature grasps the relative forward-
backward movement of the legs (for instance during locomotion) by means of a plane that
rotates forwards and backwards about the right hip with high amplitude. The second feature
detects if the legs are spread sideways using a normal vector that contains a considerable
horizontal component when the legs are moved apart from each other (‘ltoes’ to ‘rhip’). The
difference between the first two features can also be seen by comparing the corresponding
distance signal in the locomotion and jumping jack segments in Fig. 3.19. The third feature
uses a normal vector that has a stable vertical component (‘lhip’ to ‘rknee’) and encodes the
upward-downward movement of the right foot relative to the hip, which can also be seen from
the third feature’s distance signal for squatting and kicking. Note that many features yield
very similar factor loadings, which stems from their high correlation: for instance, replacing
the joint ‘lankle’ by the joint ‘ltoes’ effectively leads to identical features.

Discussion. Automatically derived joint combinations lead to distance signals with high
variance, but they are usually incapable of grasping solitary or extreme poses, which are
semantically very important. Certain features that are zero for large proportions of time
might be very important, for example “kick” detectors that check if a foot is raised above
knee height. However, PCA would rather focus on those poses that occur most frequently
in the training data, ignoring rare poses. Here, it would be necessary to apply preclustering
strategies as proposed in [SKK04] to prevent frequently occurring poses from introducing
a bias. Also, it has been noted in the literature that human motion, is only adequately
represented with more elaborate, nonlinear models such as Local Linear Embedding (LLE),
see [LE04].
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Several authors such as Arikan and Forsyth [AFO03], Johnson [Joh03], or Forbes and
Fiume [FF05] apply PCA for dimensionality reduction prior to comparison of motion data.
Using PCA, BenAbdelkader et al. [BDC02] construct so-called Eigengait spaces for motion-
based people recognition from 2D video. Our PCA-based experiment differs from these ap-
plications in that their input data is either angle-based or video-pixel-based, while we use
distance values defined by our relational features. Furthermore, these applications use PCA
as an online preprocessing step for their similarity measures, while our scenario takes place
offline, at the feature design stage.

While providing opportunities for future research, this experiment reinforced us in having
our features designed by hand: to bridge the semantic gap and provide a user with the appro-
priate “language” in the query formulation step of our retrieval applications, it is important
to provide a rich set of intuitive, semantically interpretable features. Currently, this can only
be achieved by a human expert. Nevertheless, “good”, automatically designed features might
turn out to be valuable for fully automatic motion classification even if they are not intuitive.
Here, quality measures based on precision/recall statistics could be helpful, see also [Dem06].

3.3.5 Statistical Feature Analysis

There are two conflicting goals in the design of a relational feature set: on the one hand, we
want the resulting combined feature function to encompass as many semantically relevant as-
pects of a pose as possible. On the other hand, the features should exhibit as little redundancy
as possible in order to keep the total number of features small and to prevent certain aspects
from being overrepresented, which would introduce a bias. As an indicator of redundancy,
we evaluated pairwise correlations between features. Here, the fact that our features yield
binary instead of continuous data necessitates a more elaborate way of estimating correlation
than provided by the common product-moment correlation. Kubinger notes in [Kub03] that
the product-moment correlation tends to underestimate the true dependence between binary
variables if the frequency of co-occurrence of the value one is low. As an alternative, the
so-called tetrachoric correlation is proposed. Here, the fundamental assumption is that the
binary variables are thresholded versions of some latent continuous variables, which holds for
our features by construction.

The following example demonstrates the difference between product-moment and tetra-
choric correlations, see also [Dem06] for computational details and further examples. We
extracted the feature values for F5 of Tab. 3.2 (rhand moving upwards) from a 39-second
gynmastics sequence consisting of jumping jacks, running on the spot, squats, elbow-to-knee
exercises, rotating the arms, and twisting the upper body. Furthermore, we constructed a new
feature from F5 by flipping the direction of the test plane’s normal, yielding the detector F ′5
for “rhand moving downwards”. Clearly, these two features will never assume the value one
simultaneously. They are, however, closely related since the underlying continuous velocity
signals are identical up to a sign. Indeed, the tetrachoric correlation between the two result-
ing binary features was estimated as −0.97, while the product-moment correlation was only
−0.26. Other, less obvious correlations could also be revealed, for example a clear negative
correlation between the features E21 (rfoot sideways) and E23 (feet crossed over) of Tab.3.1.

Pairwise tetrachoric correlations can point at dependencies between relational features,
but they do not provide alternatives in a constructive fashion. However, simply removing one
of the dependent features can often be feasible without weakening the semantic expressiveness
of the feature set: for example, we decided not to include the above mentioned feature F ′5
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(rhand moving downwards) in order to keep our feature set F of Tab. 3.2 small. At first
sight, F could then be considered as unable to distinguish a resting hand from a hand moving
downwards, since the feature F5 (rhand moving upwards) would yield the feature value zero
for both cases. But we still have the feature F13 (rhand fast), which will distinguish the two
cases: a hand that is not moving upwards but is fast must be moving either downwards or
sideways. In general, such combinations of features can grasp additional aspects of a motion
by exploiting logical implications between elementary features. Adding additional features
that specialize on these aspects is not necessary.

3.4 Experimental Feature Sets

The design of relational motion features expressing intuitive, semantic qualities currently
requires the expertise of a human. This is the main conclusion from our experiments on
PCA-based methods for feature design and tetrachoric correlation for feature analysis as
well as extensive retrieval experiments with different feature sets. In designing our features
by hand, we incorporated most parts of the body, in particular the end effectors, so as to
create a well-balanced feature set. One guiding principle was to cover the space of possible
end effector locations by means of a small set of pose-dependent space “octants” defined by
three intersecting planes each (above/below, left of/right of, in front of/behind the body).
This subdivision is supported by our findings from PCA-based feature design, see Sect. 3.3.4.
Obviously, such a subdivision is only suitable to capture the rough course of a motion, since the
feature function would often yield a constant output value for small-scaled motions. Here, the

features of type F
(j1,j2,j3;j4)
move and F

(j1,j2,j3;j4)
nmove provide a finer view on motions by additionally

considering directional information.

We used common sense and human knowledge about the typical range of motions in
combination with the supervised learning technique introduced in Sect. 3.3.2 to determine
sensible threshold values θ. The resulting features sufficed to prove the applicability of our
concepts in the retrieval and classification scenarios. For the future, it would be desirable
to back up the design process by expert knowledge from the sports sciences or cognitive
psychology. Currently, however, these areas of science seem to have no theory about the
role of certain body-defined planes or other relational features for human motion perception
and understanding. The fundamental question of whether it is desirable to mimick human
perception for fully automatic motion analysis goes beyond the scope of this thesis.

Our initial retrieval experiments (Chap. 4) were performed with the feature set E consist-
ing of e = 31 relational features, see Tab. 3.1. Encoding relations within the upper part of the
body, relations within the lower part of the body, and interactions between the two parts, the
feature set is divided into the subsets “upper”, “lower”, and “mix”, which are abbreviated
as u, ℓ and m, respectively. Features with two entries in the ID column exist in two versions
pertaining to the right/left half of the body but are only described for the right half—the
features for the left half can be easily derived by symmetry. For the feature set E, we did not
yet use robust thresholding, thus necessitating only one threshold parameter, θ.

Later, we switched to the modified feature set F consisting of f = 39 relational features,

see Tab. 3.1. We removed the features of type F
(j1,j2;j3)
θ,touch , since they were too specific and

their semantics were often not clear: for example, the features E26/E27 (hands touching
head) would often yield the value one coincidentally, and increasing the threshold would
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ID set type j1 j2 j3 j4 θ description

E1/E2 u Fnplane root lshoulder rshoulder rwrist 1.0 hl rhand in front

E3/E4 u Fnplane chest neck neck rwrist 0.0 hl rhand above neck

E5/E6 u Fnplane lshoulder rshoulder rshoulder rwrist 1.0 sw rhand reaching sideways

E7/E8 u Fangle relbow rshoulder relbow rwrist [0◦, 120◦] relbow bent

E9/E10 u Ffast rwrist 2.5 hl/s rhand fast

E11 u Fnplane
Plane Π fixed at lshoulder, normal rshoulder→lshoulder.
Test: rwrist closer to Π than lwrist? hands crossed over

E12 u Ftouch
F

rfingers, rwrist; lfingers
θ, touch

∨ F
rfingers, rwrist; lwrist
θ, touch

∨

F
lfingers, lwrist; rfingers
θ, touch

∨ F
lfingers, lwrist; rwrist
θ, touch

0.4 hl hands touching

E13/E14 ℓ Fplane root lhip ltoes rankle 0 hl rfoot behind lleg

E15/E16 ℓ Fnplane (0, 0, 0)⊤ (0, 1, 0)⊤ root rankle -1.8 hl rfoot raised

E17/E18 ℓ Ffast F rankle
θ, fast ∧ F rtoes

θ, fast 2.5 hl/s rfoot fast

E19/F20 ℓ Fangle rknee rhip rknee rankle [0◦, 120◦] rknee bent

E21/E22 ℓ Fnplane lhip rhip rhip rankle 1.0 hw rfoot sideways

E23 ℓ Fnplane Plane Π fixed at lhip, normal rhip→lhip. Test: rankle closer to Π than lankle? feet crossed over

E24/E25 m Ftouch

F
rknee, rankle; rfingers
θ, touch

∨F
rknee, rankle; rwrist
θ, touch

∨F
rankle, rtoes; rfingers
θ, touch

∨

F
rankle, rtoes; rwrist
θ, touch

∨ F
lknee, lankle; rfingers
θ, touch

∨ F
lknee, lankle; rwrist
θ, touch

∨

F
rankle, rtoes; rfingers
θ, touch

∨ F
rankle, rtoes; rwrist
θ, touch

1 hl rhand touching either leg

E26/E27 m Ftouch neck headtop rfingers 1 hl rhand touching head

E28/E29 m Ftouch rhip lhip rfingers 1 hw rhand touching hips

E30 m Fangle F
root,neck;rhip,rknee
θ, angle

∧ F
root,neck;lhip,lknee
θ, angle

[0◦,120◦] torso bent

E31 m Ffast root 1.0 hl/s root fast

Table 3.1. The initial feature set, E, consisting of e = 31 relational features. The abbreviations
“hl”, “sw”, and “hw” denote the relative length units “humerus length”, “shoulder width”, and “hip
width”, respectively.

ID set type j1 j2 j3 j4 θ1 θ2 description

F1/F2 u Fnmove neck rhip lhip rwrist 1.8 hl/s 1.3 hl/s rhand moving forwards

F3/F4 u Fnplane chest neck neck rwrist 0.2 hl 0 hl rhand above neck

F5/F6 u Fmove belly chest chest rwrist 1.8 hl/s 1.3 hl/s rhand moving upwards

F7/F8 u Fangle relbow rshoulder relbow rwrist [0◦, 110◦] [0◦, 120◦] relbow bent

F9 u Fnplane lshoulder rshoulder lwrist rwrist 2.5 sw 2 sw hands far apart, sideways

F10 u Fmove lwrist rwrist rwrist lwrist 1.4 hl/s 1.2 hl/s hands approaching each other

F11/F12 u Fmove rwrist root lwrist root 1.4 hl/s 1.2 hl/s rhand moving away from root

F13/F14 u Ffast rwrist 2.5 hl/s 2 hl/s rhand fast

F15/F16 ℓ Fplane root lhip ltoes rankle 0.38 hl 0 hl rfoot behind lleg

F17/F18 ℓ Fnplane (0, 0, 0)⊤ (0, 1, 0)⊤ (0, ymin, 0)⊤ rankle 1.2 hl 1 hl rfoot raised

F19 ℓ Fnplane lhip rhip lankle rankle 2.1 hw 1.8 hw feet far apart, sideways

F20/F21 ℓ Fangle rknee rhip rknee rankle [0◦, 110◦] [0◦, 120◦] rknee bent

F22 ℓ Fnplane Plane Π fixed at lhip, normal rhip→lhip. Test: rankle closer to Π than lankle? feet crossed over

F23 ℓ Fnmove
Consider velocity v of rankle relative to lankle in rankle→lankle direction.
Test: projection of v onto rhip→lhip line large?

feet moving towards each
other, sideways

F24 ℓ Fnmove Same as above, but use lankle→rankle instead of rankle→lankle direction. feet moving apart, sideways

F25/F26 ℓ Ffast F rankle
θ, fast ∧ F rtoes

θ, fast 2.5 hl/s 2 hl/s rfoot fast

F27/F28 m Fangle neck root rshoulder relbow [25◦, 180◦] [20◦, 180◦] rhumerus abducted

F29/F30 m Fangle neck root rhip rknee [50◦, 180◦] [45◦, 180◦] rfemur abducted

F31 m Fplane rankle neck lankle root 0.5 hl 0.35 hl root behind frontal plane

F32 m Fangle neck root (0, 0, 0)⊤ (0, 1, 0)⊤ [70◦, 110◦] [60◦, 120◦] spine horizontal

F33/F34 m Fnplane (0, 0, 0)⊤ (0, −1, 0)⊤ (0, ymin, 0)⊤ rwrist -1.2 hl -1.4 hl rhand lowered

F35/F36 m Fplane Plane Π through rhip, lhip, neck. Test: rshoulder closer to Π than lshoulder? shoulders rotated right

F37 m Test: ymin and ymax close together? y-extents of body small

F38 m Project all joints onto xz-plane. Test: diameter of projected point set large? xz-extents of body large

F39 m Ffast root 2.3 hl/s 2 hl/s root fast

Table 3.2. The current feature set, F , consisting of f = 39 relational features. The abbreviations
“hl”, “sw”, and “hw” denote the relative length units “humerus length”, “shoulder width”, and “hip
width”, respectively.
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Figure 3.21. Relational feature matrices for (a) “walking” and (b) “jogging” using f = 4 features.
The matrices are color coded as black (0) and white (1), and the numbers in front of the rows refer to
Tab. 3.2. Time (measured in frames) runs along the horizontal axis.

prevent many instances of actually touching one’s head from being recognized. In part, this
was due to problems in the mocap data, where faulty skeleton fitting would lead to poses
where the hands are supposed to touch the head but end up being being separated from
the head by more than two head’s diameters. Instead, we added improved detectors for the
global pose to the new feature set: F31 (root behind frontal plane), F32 (spine horizontal),
F37 (y-extents of body small), and F38 (xz-extents of body large). We also incorporated some

features of type F
(j1,j2,j3;j4)
move and F

(j1,j2,j3;j4)
nmove . Absolute coordinates, as used in the definition

of features such as F17, F32, or F33, stand for virtual joints at constant 3D positions w. r. t.
an (x, y, z)⊤ world system in which the y axis points upwards. The symbols ymin/ymax denote
the minimum/maximum y coordinates assumed by the joints of a pose that are not tested.
Features such as F22 do not follow the same derivation scheme as the other features and are
therefore described in words.

In general, all of our relational features are defined in such a way that the feature value
zero corresponds to a neutral, standing pose. If a feature assumes the value one, something
“extraordinary” that is related to the intended semantics of the feature is happening. In
order to match this convention, the features E13/E14 and F15/F16 (“r/lfoot behind l/rleg”)
have been given the opposite semantics of Fig. 3.1 (a) and the previous explanations, where
the features yielded the value one for the states “r/lfoot in front of l/rleg”.

3.5 Measuring Motion Similarity with Relational Features

3.5.1 A Simple Example: Walking vs. Jogging

To compare the walking and the running motion of Fig. 2.1, we consider the feature function
F legs consisting of the f = 4 features F15/F16 (“r/lfoot behind l/rleg”) and F25/F26 (“r/lfoot
fast”). Denoting two two mocap data streams by D and D′ (lengths: N and M frames,
respectively), we compute the feature sequences X := F legs ◦D and X ′ := F legs ◦D′, which
we think of as feature matrices X ∈ {0, 1}f×N and X ′ ∈ {0, 1}f×M , see Fig. 3.21. We use
the functional notation X(n) to refer to the nth column of X for n ∈ [1 : N ]. A comparison
of Fig. 3.21 (a) and (b) reveals that the first two rows of the feature matrices are identical in
structure for the two motions. This corresponds to the fact that both walking and jogging
motions are dominated by an alternation of the condition “left/right foot in front”. The last
two rows differ by the occurrence of phases where both feet are simultaneously fast: these are
exactly the air phases of the jogging motion, see frames 50, 100, 150, and 200 of Fig. 3.21 (b).

Obviously, it is possible to determine the notion of similarity by selecting appropriate
features from the global feature set: based on their feature matrices, walking and jogging
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would be considered as similar if only the first two features were used, and as dissimilar if the
full feature function F legs was used.

3.5.2 Cost Matrices Based on Relational Features

Next, we construct a local distance measure based on relational features and compare the
resulting cost matrices to the quaternion distance and the 3D point cloud distance as intro-
duced in Sect. 2.5. As usual, we assume a fixed feature function F : P → {0, 1}f . Given two
mocap data streams D and D′ of lengths N and M , respectively, we compute their feature
matrices X := F ◦D and X ′ := F ◦D′. Individual boolean feature vectors are then compared
using the Hamming distance (counting the number of disagreements) as the local distance
measure. For n ∈ [1 : N ] and m ∈ [1 : M ], we define

crel(n, m) :=
1

f

f∑

i=1

|X(n)i −X ′(m)i|, (3.34)

where X(n)i ∈ {0, 1} denotes the ith entry of the feature vector X(n), and X ′(m)i is defined
similarly. Note that the Hamming distance coincides with the Manhattan (ℓ1) distance in the
case of boolean vectors.

Using the feature set F of Tab. 3.2 comprising f = 39 relational features, we computed the
cost matrices Crel for the example motions of Sect. 2.8. The results are shown in Fig. 3.22–
3.23. Comparing the two walking motions of Fig. 2.7 (a) using crel yields the cost matrix of
Fig. 3.22 (a), which exhibits more or less the same structure as the cost matrices of Fig. 2.12,
while the regions of high dissimilarity are not as dominant. A major difference is the apparent
block structure of Crel, which corresponds to the constant runs of feature vectors forming the
F -segmentation of the mocap data streams.

The cost matrix of Fig. 3.22 (b) for “rotating both arms forwards” is shown along with
an optimal warping path. The repetitive structure of the motions is as clear as in the cost
matrix C3D of Fig. 2.13 (b). Also, the warping path is very similar to the warping path of
Fig. 2.13 (b) (up to the jagged look that is due to the discrete nature of relational features) and
reflects the true underlying time warp. This is in contrast to the quaternion-based warping
path, which is a rather poor approximation of the true time warp. Similar findings hold for
the cost matrices of Fig. 3.23. The ballet example of Fig. 3.23 (c) shows the high degree of
noise tolerance of crel compared to the quaternion distance.

As a final example, we consider the cost matrices of Fig. 3.24, which correspond to the
comparison of “climbing stairs” and “walking”. The cost matrix of Fig. 3.24 (a) does not
exhibit a clear alignment path near the diagonal. This is due to significant differences in
certain features such as “knees bent” or “feet raised”, as well as different arm movements.
Restricting the feature function to F legs leads to the cost matrix of Fig. 3.24 (b), which shows
a very clear diagonal structure providing an alignment of the two motions.

In summary, relational features provide a good basis for a global similarity measure based
on DTW that can be computed much more efficiently than, for example, the 3D point cloud
distance. Also, the distance function crel is very robust to noise due to the strong quantization
of relational features. As a further benefit, it is possible to focus on certain aspects of the
motions by suitably choosing the underlying relational feature function, F . Yet, even without
a restriction of the feature function, crel works well for a large range of motions. In Sect. 4.3.1
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Figure 3.22. Cost matrices for (a) “walking” and (b) “rotating both arms forwards while walking”
based on relational features. Compare these figures to Fig. 2.12 and Fig. 2.13, respectively.
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Figure 3.23. Cost matrices for (a) “lying down”, (b) “jumping jack”, and (c) “ballet” based on
relational features. Compare these figures to Fig. 2.15, Fig. 2.16, and Fig. 2.17, respectively.
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Figure 3.24. Cost matrices for “climbing stairs” based on relational features using (a) the full feature
set F and (b) the restricted feature function F legs. Compare these figures to Fig. 2.14.

and Sect. 5.2, we will see how crel and variants can be used as a ranking function to postprocess
hits for motion queries.



Chapter 4

Efficient Index-Based Motion Retrieval

4.1 Query and Hit Concepts

Given a relational feature function F : P → {0, 1}f , we reduce the problem of motion retrieval
to a string matching problem over the alphabet {0, 1}f . To this end, we identify a motion
capture data stream with its F -feature sequence while storing the time duration in frames for
each of the constituting segments. We can then reconstruct the frame range corresponding
to any segment range within the F -feature sequence. We will now systematically introduce
several concepts of motion queries and hits for such queries, where each successive concept
adds further degrees of fault tolerance over the preceding concept. For further material
related to the contents of this chapter, we refer to [MRC05b] and to our web sites [MRC05a,
DRME06b], which also host the video that can be found on the accompanying CD-ROM.

The following notation is used throughout the subsequent sections. We are given a
database consisting of a collection D = (D1, D2, . . . , DI) of motion capture data streams
Di, i ∈ [1 : I]. To simplify things, we may assume that D consists of one large document D
by concatenating the documents D1, . . . , DI while keeping track of document boundaries in a
supplemental data structure. Fixing a feature function F : P → {0, 1}f , we use the notation
F [D] = ~w = (w0, w1, . . . , wM ) to denote the resulting F -feature sequence of D.

4.1.1 Exact Queries and Exact Hits

One possible way of formulating a motion query is to simply specify a feature sequence
~v = (v0, v1, . . . , vN ), which we will refer to as an exact query. Then, an exact hit for ~v in the
database feature sequence ~w = (w0, w1, . . . , wM ) is an element k ∈ [0 : M ] such that ~v is a
subsequence of consecutive feature vectors in ~w starting from index k. In symbols, we write
~v <k ~w, where

~v <k ~w :⇔ ∀i ∈ [0 : N ] : vi = wk+i. (4.1)

The set of all exact hits for ~v in the database D is defined as

HD(~v) := {k ∈ [0 : M ] | ~v <k ~w}. (4.2)

As an illustration, we search our example document Dwalk for the exact query ~vwalk,1 =((
1
0

)
,
(

1
1

)
,
(

0
1

))
using the feature function Fwalk. Fig. 4.1 shows the two resulting exact

hits, which start with the third and seventh element of Fwalk[Dwalk], respectively, hence
HDwalk

(~vwalk,1 = {3, 7}. Feature sequences are color-coded, and hits are visualized as copies

71
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of the query that are horizontally aligned with the database feature sequence at the respective
hit position, k. Here, each hit corresponds to a right/left step sequence, cf. Fig. 3.7.

The disadvantage of the exact hit concept is that a single mismatching segment can rule
out a hit even if all the other segments match, leading to a false dismissal. This can be seen
in Fig. 4.2, where we search for the query ~vjump,1 =

((
0
0

)
,
(

0
1

)
,
(

1
1

)
,
(

0
1

)
,
(

0
0

))
in the document

Djump as well as in a variation D′jump using the feature function F jump. The document D′jump

has been obtained from Djump by slightly modifying the motion in such a way that not the left
leg is bent first during the time period corresponding to segment number one, but the right
leg. Note that this modification does not change the overall semantics of the motion, but it
changes the feature vector of segment number one from

(
0
1

)
to
(

1
0

)
. Consequently, we obtain

only one hit for the exact query ~vjump,1 in D′jump, while we obtain two hits in the original
sequence Djump. The first hit corresponds to the sequence “standing with parallel legs—
building up momentum by bending knees—pushing off by stretching knees”. The second
hit corresponds to the sequence “stretched knees during flight phase—bending knees during
landing—standing with parallel legs”. Recall from Fig. 3.10 that segments number 1, 3,
5, and 7 are transitory segments of very short duration. They assume one of the feature
values

(
0
1

)
or
(

1
0

)
more or less randomly, depending on which of the knees is bent/stretched

first during the push off and landing phases. In our example, the feature vectors
(

0
1

)
arise

because the actor has a tendency to keep the right leg bent a bit longer than the left leg.
There are many possible transitions from, e.g.,

(
1
1

)
(legs bent) to

(
0
0

)
(legs stretched), such

as
(

1
1

)
→
(

0
0

)
,
(

1
1

)
→
(

0
1

)
→
(

0
0

)
, or

(
1
1

)
→
(

1
0

)
→
(

0
1

)
→
(

0
0

)
. Therefore, it is likely that

the feature sequences corresponding to other instances of jumping motions differ from ~w at
segments number 1, 3, 5, and 7, even if the two motions are very similar.

This example demonstrates a situation where our feature concept systematically fails to
provide the desired invariance under spatio-temporal deformations. If a motion inherently
contains aspects that change nearly simultaneously, such as bent/stretched knees during a
parallel-leg jump, one typically observes unstable, transitory segments of short duration be-
cause it is very improbable that the aspects change during the exact same frame if we assume
typical sampling rates of up to 120 Hz. To address this problem and to enhance the over-
all robustness of the retrieval, we will now extend the matching strategy by additional fault
tolerance mechanisms.

4.1.2 Fuzzy Queries and Fuzzy Hits

The concept of fuzzy queries allows the user to express uncertainty about parts of the query
by admitting a whole set of possible, alternative feature vectors at each position in the query
sequence. This is modeled as follows. A fuzzy set is a subset V ⊂ {0, 1}f . Then a fuzzy query
is defined to be a sequence ~V = (V0, V1, . . . , VN ) of fuzzy sets. Extending the definition in
(4.1), a fuzzy hit is an element k ∈ [0 : M ] such that ~V <k ~w, where

~V <k ~w :⇔ ∀i ∈ [0 : N ] : Vi ∋ wk+i. (4.3)

Obviously, the case Vi = {vi} for 0 ≤ i ≤ N reduces to the case of an exact hit. Similar to
(4.2), the set of all fuzzy hits for ~V in D is defined as

HD(~V ) := {k ∈ [0 : M ] | ~V <k ~w}. (4.4)

Consider Fig. 4.3 for an illustration of the fuzzy concept. Here, we search the document Dwalk

for the fuzzy query ~Vwalk,2 = (V0, V1, V2) with V0 = V2 =
{(

0
1

)
,
(

1
0

)}
and V1 =

{(
1
1

)}
using
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Fwalk[Dwalk]
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Figure 4.1. Upper row: feature sequence Fwalk[Dwalk]. Below: two exact hits (EH) for ~vwalk,1 in
Fwalk[Dwalk], indicated by copies of ~vwalk,1 that are horizontally aligned with Fwalk[Dwalk] at the match-
ing positions. In our notation, the hits read as ~vwalk,1 <3 Fwalk[Dwalk] and ~vwalk,1 <7 Fwalk[Dwalk].
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Figure 4.2. Middle rows, with feature vectors: feature sequences F jump[Djump] and F jump[D′jump].

Above: two exact hits (EH) for ~vjump,1 in F jump[Djump]. Below: the only exact hit in F jump[D′jump].

the feature function Fwalk. There are four fuzzy hits starting at positions 1, 3, 5, and 7,
respectively. Due to the admission of the fuzzy sets

{(
0
1

)
,
(

1
0

)}
at the first and third position

of the fuzzy query, both left/right and right/left step sequences can be found. Compare this to
the exact query in Fig. 4.1, where only right/left step sequences were found. In this example,
the fuzzy concept was employed to deliberately leave certain aspects of the query unspecified,
namely which foot should be in the front at the boundaries of the desired hits.

In Fig. 4.4, we search the document D′jump for the fuzzy query ~Vjump,2 = (V0, V1, V2, V3, V4)

with V0 = V4 =
{(

0
0

)}
, V1 = V3 =

{(
0
1

)
,
(

1
0

)}
, and V2 =

{(
1
1

)}
using the feature function

F jump. Comparing the resulting fuzzy hits to the exact hits in Fig. 4.2, it turns out that
both intended hits are now found. This shows that a further possible application of the fuzzy
concept is to mask out transitory segments by admitting all feature vectors that may occur
at the respective positions in the query.

4.1.3 Adaptive Fuzzy Hits

The concept of fuzzy hits as introduced above still lacks an important degree of flexibility:
so far, the fuzziness only refers to the spatial domain (admitting alternative choices for the
pose-based features) but does not take the temporal domain into account. More precisely, the
segmentation of the document D is only determined by the feature function F , disregarding
the fuzziness of the query ~V . Here, it would be desirable if the matching strategy allowed
for a fuzzy set to match with multiple successive elements of ~w. For example, considering
the fuzzy query ~Vwalk,3 = (V0, V1, V2) with V0 = V2 = {

(
0
1

)
} and V1 = {

(
1
0

)
,
(

1
1

)
}, one easily

checks in Fig. 4.3 that the set of fuzzy hits, HDwalk
(~V ), is empty. By contrast, one obtains

two hits for ~V using the concept of adaptive fuzzy search, see Fig. 4.5. Note that the fuzzy
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Figure 4.3. Upper row: feature sequence Fwalk[Dwalk]. Below: four fuzzy hits (FH) for ~Vwalk,2 in
Fwalk[Dwalk]. Fuzzy sets are represented by vertically stacked boxes of the respective color.
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Figure 4.4. Upper row: feature sequence F jump[D′jump]. Below: two fuzzy hits (FH) for ~Vjump,2

in F jump[D′jump].

set V1 is matched with the contiguous segment ranges 2–4 and 6–8, respectively. The two hits
correspond to left/right/left step sequences.

The general strategy is to adjust the temporal segmentation of D to the fuzziness of
the query during the matching as follows: supposing wk ∈ V0 with wk−1 /∈ V0 for some
index k0 := k ∈ [0 : M ], we determine the maximal index k1 ≥ k0 with wm ∈ V0 for all
m = k0, k0 + 1, . . . , k1 − 1 and concatenate all segments corresponding to these wm into one
large segment. By construction, wk1 /∈ V0. Only if wk1 ∈ V1, we proceed in the same way,
determining some maximal index k2 > k1 with wm ∈ V1 for all m = k1, k1 + 1, . . . , k2 − 1,
and so on. In case we find a sequence of indices k0 < k1 < . . . < kN constructed iteratively
in this fashion we say that k ∈ [0 : M ] is an adaptive fuzzy hit and write ~V <

ad
k ~w. The set of

all adaptive fuzzy hits for ~V in D is given by

Had
D (~V ) :=

{
k ∈ [0 : M ] | ~V <

ad
k ~w

}
. (4.5)

In view of this matching technique, we return to our example D = Dwalk and F = Fwalk

with the fuzzy query ~Vwalk,3, see Fig. 4.5. We obtain k0 = 1, k1 = 2, k3 = 5 for the first
hit and k0 = 5, k1 = 6, k2 = 9 for the second hit. In the case of the first hit, for example,
this means that V0 corresponds to segment 1 of ~w, V1 to segments 2–4, and V2 to segment
5, amounting to a coarsened segmentation of D. In this particular example, adaptive fuzzy
search can also be understood as simulating exact search on D with respect to a restricted
version of the feature function Fwalk: only the feature F r is relevant to the segmentation. In
general, adaptive fuzzy search enables a user to mask out some of the f components of the
feature function F to obtain a less restrictive search leading to more hits, see Sect. 4.3.

In Fig. 4.6, we search the document D′jump for the fuzzy query ~Vjump,3 = (V0, V1, V2) with

V0 = V2 =
{(

0
0

)}
and V1 =

{(
0
1

)
,
(

1
0

)
,
(

1
1

)}
using the feature function F jump. The adaptive

fuzzy hits are the same as the fuzzy hits shown in Fig. 4.4, but here the query is much simpler.
Intuitively, the query asks for any sequence that starts and ends with both knees stretched,
regardless of what happens in between.

Not all fuzzy queries lead to sensible adaptive fuzzy hits. For example, the fuzzy query
~V = (V0, V1, V2) with V0 =

{(
0
0

)
,
(

1
0

)}
, V1 =

{(
1
0

)}
, and V2 =

{(
0
1

)}
yields no adaptive



4.2. EFFICIENT COMPUTATION OF HITS 75

Fwalk[Dwalk]

AFH 1

AFH 2

((
1
1

))
0

((
0
1

))
1

((
1
1

))
2

((
1
0

))
3

((
1
1

))
4

((
0
1

))
5

((
1
1

))
6

((
1
0

))
7

((
1
1

))
8

((
0
1

))
9

((
1
1

))
10

Figure 4.5. Upper row: feature sequence ~w = Fwalk[Dwalk]. Below: two adaptive fuzzy hits

(AFH) for ~Vwalk,3.
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Figure 4.6. Upper row: feature sequence F jump[D′jump]. Below: two adaptive fuzzy hits (AFH)

for ~Vjump,3 in F jump[D′jump].

fuzzy hits on the document D = (w0, w1, w2) =
((

0
0

)
,
(

1
0

)
,
(

0
1

))
, even though the three feature

vectors of the document appear as elements of the three corresponding fuzzy sets. This is
due to the greedy strategy of choosing the maximal index k1 ≥ 0 with wm ∈ V0 for all
m = 0, . . . , k1 − 1; here, we obtain k1 = 2, so an adaptive fuzzy hit for ~V would now have to
satisfy w2 ∈ V1, which is not the case. The underlying problem is that the fuzzy sets V0 and V1

have a nonempty intersection, which makes the transition between these two sets during the
matching process inherently ill-defined. We therefore only allow admissible fuzzy queries with
Vn ∩Vn+1 = ∅ for n = 0, . . . , N − 1. In case a query is not admissible, one possible strategy is
to scan the query (from 0 to N) for fuzzy sets Vn that are supersets of their neighbors Vn−1

and Vn+1 (where V−1 = VN+1 := ∅). Such Vn are then replaced by Vn r(Vn−1∪Vn+1), leading
to an admissible query, see [Dem06].

Finally, we want to note that fuzzy search can be complemented by the concept of κ-
mismatch search, see [Rib06, CK04]. Here, one introduces another degree of inexactness by
permitting up to κ < N of the fuzzy sets in a query ~V = (V0, V1, . . . , VN ) to completely
disagree with the database sequence ~w. To maintain a certain degree of control over this
mismatch mechanism, it is possible to restrict the mismatchable fuzzy sets within ~V .

4.2 Efficient Computation of Hits

Exact hits and fuzzy hits can be computed efficiently by standard indexing techniques based on
inverted lists, see, e.g., [WMB99]. In this section, we first review the relevant data structures
and algorithms for exact and fuzzy retrieval. Then, we introduce an extension that enables
efficient computation of adaptive fuzzy hits by means of the same inverted list index.

4.2.1 Indexing based on Inverted Lists

To index our database D with respect to the feature function F , we store an inverted list
L(v) for each feature vector v ∈ {0, 1}f consisting of the indices k ∈ [0 : M ] of the sequence
~w = (w0, w1, . . . , wM ) with v = wk. The list L(v) tells us which of the F -segments of D
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exhibit the feature vector v. For our example D = Dwalk and F = Fwalk, we obtain from
(3.5) the inverted lists

L
((

1
1

))
= {0, 2, 4, 6, 8, 10},

L
((

0
1

))
= {1, 5, 9},

L
((

1
0

))
= {3, 7}, (4.6)

L
((

0
0

))
= ∅.

Inverted lists are sets represented as sorted, repetition-free sequences, accounting for efficient
computations. Depending on the context, our notation for inverted lists and derived objects
will switch between sequence and set notation. Note that consecutive entries of an inverted
list differ by at least two since consecutive items in any F -feature sequence are distinct by
construction.

In a preprocessing step, we construct an index IDF consisting of the 2f inverted lists L(v),
v ∈ {0, 1}f . Since the inverted lists store segment positions of the F -segmentation rather
than frame positions, and since each segment position appears in exactly one inverted list,
the index size is proportional to the number of segments of D, which is M + 1. Additionally,
we store the segment lengths and/or boundaries so that the frame positions can be recovered.
The time complexity of the indexing step is in O(M) as well, assuming that the processing
time for a single segment is constant. We refer to [CKK03, WMB99] for more details on
indexing.

4.2.2 Computing Exact Hits and Fuzzy Hits

The set HD(~v) of all exact hits for ~v in D as defined in (4.2) can be evaluated efficiently by
intersecting suitably shifted inverted lists:

HD(~v) = {k ∈ [0 : M ] | (v0 = wk) ∧ (v1 = wk+1) ∧ . . . ∧ (vN = wk+N )}
=

⋂

n∈[0:N ]

{k ∈ [0 : M ] | vn = wk+n}

=
⋂

n∈[0:N ]

(
{ℓ ∈ [0 : M ] | vn = wℓ} − n

)

=
⋂

n∈[0:N ]

(L(vn)− n), (4.7)

where the addition and substraction of a list and a number is understood component-wise
for every element in the list. The intersection in (4.7) can be computed iteratively, where we
employ the following trick: instead of additively adjusting the input lists L(vn) (which are
in general long) by −n, as suggested by (4.7), we adjust the lists appearing as intermediate
results (which are in general much shorter) by +1 prior to each intersection step. One easily
checks that after the final iteration, an adjustment of the resulting set by −(N +1) yields the
set of exact hits. This idea gives rise to Algorithm 4.1, ExactHits.

Time complexity. The worst-case time complexity of this algorithm occurs when all suc-
cessive lists that are to be intersected are identical, corresponding to the case where every
element of an inverted list belongs to a hit. Then, the required number of operations is



4.2. EFFICIENT COMPUTATION OF HITS 77

Algorithm 4.1 ExactHits

Input: ~v feature sequence of query.
IDF index consisting of the 2f inverted lists L(v), v ∈ {0, 1}f .

Output: HD(~v) list of exact hits.

Procedure:

(1) L0 := L(v0) + 1
(2) For n = 0, . . . , N − 1 compute Ln+1 := (Ln ∩ L(vn+1)) + 1
(3) HD(~v) = LN − (N + 1)

The loop invariant for step (2) is Ln = HD((v0, . . . , vn)) + n + 1 for n = 0, . . . , N .

proportional to the total number of elements in the inverted lists that are to be intersected,
equalling the product of query length (N + 1) and the number of hits.

In most practical cases, by far not all elements of the relevant inverted lists will have to be
inspected. The time complexity is determined by the number of hits, the length distribution
of the inverted lists, L0 := L(v0), . . . , LN := L(vN ), and by the complexity of the intersection
operation on sorted lists. Assume w. l. o. g. that we are intersecting the two lists L0 and
L1, where λ0 := |L0| ≤ |L1| =: λ1. Then, there are two possible intersection strategies:
merging and binary search. The merging strategy performs a linear scan through both lists
simultaneously, requiring O(λ0 + λ1) operations. Merging is the method of choice in case
λ0 ≈ λ1. The binary search strategy, on the other hand, performs a linear scan through
L0 and looks up each element of L0 in L1 using binary search, adding the element to the
result list in case the search is successful. This approach requires O(λ0 log λ1) operations and
becomes faster than merging if λ0 ≪ λ1.

Due to the commutativity of set intersection, the actual evaluation order of the intersection
(4.7) is irrelevant. Also note that the resulting list of hits, HD(~v), is always a subset of the
shortest list—in other words, the rarest feature vector determines the maximum number
of hits. Therefore, a more efficient implementation could start with the shortest list and
proceed in the order of ascending list lengths so as to cut down the size of the intermediary
results as quickly as possible, see [CKK03]. However, for didactic reasons that will become
apparent in the next section, we deliberately used a fixed processing sequence (n = 0, . . . , N)
in Algorithm 4.1.

Example. As an illustration, we apply Algorithm 4.1 to our example D = Dwalk, F = Fwalk,
and the query sequence ~vwalk,1 =

((
1
0

)
,
(

1
1

)
,
(

0
1

))
, cf. Fig. 4.1. Recall from (4.6) that in this

case L
((

1
1

))
= {0, 2, 4, 8, 10}, L

((
0
1

))
= {1, 5, 9}, and L

((
1
0

))
= {3, 7}.

(1) L0 := L
((

1
0

))
+ 1 = {4, 8}

(2) L1 := ({4, 8} ∩ {0, 2, 4, 8, 10}) + 1 = {5, 9}
L2 := ({5, 9} ∩ {1, 5, 9}) + 1 = {6, 10}

(3) HD(~vwalk,1) = L2 − 3 = {3, 7}

Fuzzy hits can be computed by the same algorithm with an additional preparation stage.
Given a fuzzy query ~V = (V0, V1, . . . , VN ), we compute for each Vn, n ∈ [0 : N ], the sorted
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Algorithm 4.2 AdaptiveFuzzyHits

Input: ~V fuzzy query, sequence of N + 1 fuzzy sets.
IDF index consisting of the 2f inverted lists L(v), v ∈ {0, 1}f .

Output: Had
D (~V ) list of adaptive fuzzy hits.

Procedure:

(1) R0 := R(V0) + T (V0), T 0 := T (V0)
(2) For n = 0, . . . , N − 1 assume

Rn = (p0, . . . , pI), Tn = (q0, . . . , qI),
R(Vn+1) = (r0, . . . , rJ), T (Vn+1) = (t0, . . . , tJ),
Rn ∩R(Vn+1) = (pi0 , . . . , piK ) = (rj0 , . . . , rjK ), for suitable indices
0 ≤ i0 < . . . < iK ≤ I and 0 ≤ j0 < . . . < jK ≤ J . Then define
Rn+1 := (Rn ∩R(Vn+1)) + (tj0 , . . . , tjK ),
Tn+1 := (qi0 , . . . , qiK ) + (tj0 , . . . , tjK ).

(3) Had
D (~V ) = RN − TN

The loop invariant for step (2) is that for n = 0, . . . , N , we have Rn = Had
D ((V0, . . . , Vn))+Tn,

where Tn holds the number of segments for each hit in Had
D ((V0, . . . , Vn)). In other words, the

entries of Rn denote hit candidates and always point to the beginning of the next (potentially
matching) group of segments.

union of inverted lists

L(Vn) :=
⋃

v∈Vn

L(v). (4.8)

Computing the union of the N sorted lists L(v) can be done with O(log N ·∑v |L(v)|) op-
erations using a parallel merge, where the logarithmic overhead stems from a min-heap data
structure used to keep track of the current minimum. The lists L(Vn) can then be used as
the input to the exact hit algorithm, since the set HD(~V ) can be expressed as

HD(~V ) =
⋂

n∈[0:N ]

(L(Vn)− n), (4.9)

cf. (4.7) and (4.3). This formula also shows that the complexity of computing HD(~V ) is
proportional to

∑N
n=0 |Vn| and not to

∏N
n=0 |Vn|, as could be suspected at first sight, cf. [CK04].

Example. As an illustration, we return to the example of Fig. 4.3, where the document
Dwalk is searched for the fuzzy query ~Vwalk,2 = (V0, V1, V2) with V0 = V2 =

{(
0
1

)
,
(

1
0

)}
and

V1 =
{(

1
1

)}
. We have L(V0) = L(V2) = {1, 3, 5, 7, 9} and L(V1) = {0, 2, 4, 6, 8, 10}. Applying

the algorithm, we obtain

(1) L0 := L(V0) + 1 = {2, 4, 6, 8, 10}
(2) L1 := ({2, 4, 6, 8, 10} ∩ {0, 2, 4, 6, 8, 10}) + 1 = {3, 5, 7, 9, 11}

L2 := ({3, 5, 7, 9, 11} ∩ {1, 3, 5, 7, 9}) + 1 = {4, 6, 8, 10}
(3) HD(~Vwalk,2) = L2 − 3 = {1, 3, 5, 7}
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4.2.3 Computing Adaptive Fuzzy Hits

It is possible to compute the set Had
D (~V ) efficiently using the same index IDF as for the case

of exact hits, see also [MRC05c]. Before describing the algorithm, we need to introduce
some more notation. Note that the list L(V ) for a fuzzy set V may contain sequences of
consecutive segment indices, i. e., ascending runs k0, k0 +1, k0 +2, . . . (opposed to an inverted
list L(v)). We consider sequences of consecutive segment indices of maximal length in L(V ).
Suppose L(V ) consists of K+1 such sequences with starting segments r0 < r1 < . . . < rK and
lengths t0, t1, . . . , tK ; then we define R(V ) := (r0, r1, . . . , rK) and T (V ) := (t0, t1, . . . , tK). For
example, if L(V ) = (2, 4, 5, 6, 9, 10), then R(V ) = (2, 4, 9) and T (V ) = (1, 3, 2). Obviously,
one can reconstruct L(V ) from R(V ) and T (V ). Note that by the maximality condition one
has rk + tk < rk+1 for 0 ≤ k < K. Extending the algorithm in Sect. 4.2.2, we can then
compute the set Had

D (~V ) as described in Algorithm 4.2, AdaptiveFuzzyHits.

Time complexity. The asymptotic complexity of Algorithm 4.2 is the same as that of Algo-
rithm 4.1 since the overhead for handling the sequences Tn is proportional to the number of
operations performed on the Rn.

Example. To illustrate the algorithm, we return to the example of Fig. 4.5. From the lists
L(V0) = L(V2) = (1, 5, 9) and L(V1) = (0, 2, 3, 4, 6, 7, 8, 10), we obtain R(V0) = R(V2) =
(1, 5, 9), T (V0) = T (V2) = (1, 1, 1) and R(V1) = (0, 2, 6, 10), T (V1) = (1, 3, 3, 1). Then

(1) R0 := (1, 5, 9) + (1, 1, 1) = (2, 6, 10)
T 0 := (1, 1, 1)

(2) R1 := ((2, 6, 10) ∩ (0, 2, 6, 10)) + (3, 3, 1) = (5, 9, 11)
T 1 := (1, 1, 1) + (3, 3, 1) = (4, 4, 1)
R2 := ((5, 9, 11) ∩ (1, 5, 9)) + (1, 1) = (6, 10)
T 2 := (4, 4) + (1, 1) = (5, 5)

(3) Had
D (~v) = R2 − T 2 = (1, 5).

4.3 A Retrieval System Using the Query-By-Example Paradigm

The indexing and retrieval techniques that have been introduced so far can be put to use in
a variety of query modes, see also [DRME06a]. Here, the possibilities range from isolated
pose-based queries (where a query consists of a single feature vector), over manually specified
feature sequences or fuzzy sets, up to query-by-example (QBE). In this section, we will discuss
the QBE mode, which is also summarized in Fig. 4.7 and Fig. 4.8.

Prior to the actual preprocessing step, an expert has to design a global feature function
F that covers all possible query requirements and provides the user with an extensive set of
semantically rich features. In other words, it is not imposed upon the user to specify such
features (even though this is also possible). Having fixed a feature function F , an index IDF
is constructed for a given database D and stored on disk, see Sect. 4.2.1. As an example,
one may use the feature set F of Tab. 3.2, which comprises f = 39 features. Note that
this feature set has been specifically designed to focus on full-body motions. However, the
described indexing and retrieval methods are generic, and the proposed test feature set may
be replaced as appropriate for the respective application.



80 CHAPTER 4. EFFICIENT INDEX-BASED MOTION RETRIEVAL

Query-By-Example

Preprocessing: Compute the index IDF .

Input: Short query motion clip.
Feature selection.
Fault tolerance settings and choice of ranking strategy.

Procedure: Automatic conversion of query motion into a fuzzy query
(with respect to the selected features).
Index-based retrieval, postprocessing, and ranking.

Output: Ranked list of hits.

Figure 4.7. Overview of the retrieval process based on the query-by-example paradigm.
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Figure 4.8. Left: The preprocessing stage. Right: The query stage.

We assume that the user input consists of a short query motion clip Q : [1 : T ] → P.
Furthermore, the user should be able to incorporate additional knowledge about the query,
e.g., by selecting or masking out certain body areas in the query. This is important to
account for partial similarity, see Sect. 2.4.2. For example, in movements such as “walking”
or “punching” only the lower or the upper part of the body may be of interest. To this end,
the user selects f ′ ≤ f relevant features from the given global feature set (i. e., components
of F ), where each feature expresses a certain relational aspect and refers to specific parts of
the body. The query-dependent specification of motion aspects then determines the desired
notion of similarity. In addition, parameters such as fault tolerance and the choice of a ranking
or postprocessing strategy can be adjusted.

In the retrieval procedure, the query motion, Q, is translated into a feature sequence
~v = F [Q] := (v0, . . . , vN ). The user-specified feature selection has to be encoded by a suitable
fuzzy query, where the irrelevant features correspond to alternatives in the corresponding
feature values. Denoting the coordinate functions of F : P → {0, 1}f as F i, i ∈ [1 : f ], a user-
specified feature selection can be encoded as an ordered subset S := {s1, . . . , sf ′} ⊆ [1 : f ].
We then denote the user-restricted feature function as FS := (F s1 , . . . , F sf ′ ). Similarly, we
denote the restriction of a feature vector v ∈ {0, 1}f to the components denoted by S as vS .
An exact query with respect to FS can now be simulated as an adaptive fuzzy query with
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Figure 4.9. Typical distribution of list lengths for an index of 108, 242 segments. The underlying
feature function has f = 14 components, corresponding to a theoretical number of 16, 384 inverted
lists. Out of these, 13, 008 lists are empty. The histogram shows the number of inverted lists, n(ℓ),
that have length 0 < ℓ ≤ 38.

respect to F , which allows us to perform all operations on the single index IDF —the major
advantage being that we do not have to recompute the indexes ID

F S for every user selection

S. The appropriate adaptive fuzzy query, ~V = (V0, . . . , VN ), is defined for n ∈ [0 : N ] via

Vn :=
{

v ∈ {0, 1}f | vS = vS
n

}
. (4.10)

Note in particular that ~V is always an admissible fuzzy query, since adjacent elements of the
underlying feature sequence, ~v, are distinct.

In the next step, the adaptive fuzzy hits for ~V are efficiently computed by the techniques
described in Sect. 4.1.3. Then, the hits may be postprocessed to convert segment positions
back to actual frame positions, using the supplementary data structures stored with the index,
see Sect. 4.2.1. Finally, the resulting hits can be ranked as described in Sect. 4.3.1.

The attentive reader may have noticed a problem with the indexing step: in practice,
the number 2f of inverted lists is far too large. For example, in our case of f = 39, we
obtain 239 lists. Luckily, typical mocap databases such as the 210-minute database D210 (see
Sect. 5.1.2) only yield a limited number of different feature vectors, leading to a limited number
of nonempty inverted lists. Fig. 4.9 shows a typical distribution of list lengths, exhibiting a
very quick decay. The underlying feature function corresponds to a subset of F , comprising
the 14 relational features marked as “u” (for “upper body”) in Tab. 3.2. There are only
3, 376 out of a possible 16, 384 inverted lists that are nonempty. Thus, a viable option to cope
with the problem of a growing number of inverted lists with growing f would be to store and
process only the nonempty inverted lists.

However, typical queries are posed with only very few selected features, say, 2–6 features.
Converting an exact query with respect to 6 features into an adaptive fuzzy query with 39
features would lead to very large fuzzy sets containing 239−6 = 233 feature vectors. Even
though only the feature vectors pertaining to nonempty lists would have to be considered,
this approach entails an unnecessarily large number of union operations, see Eqn. 4.8. In
other words, the problem is that indexing with respect to f = 39 features disassembles the
database into pieces that are much too small for a typical query—hence, the adaptive fuzzy
algorithm has to reassemble these pieces to achieve an adequate temporal granularity.

To avoid this computational overhead, we resort to the following approximation: we di-
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vide the set of our 39 boolean features into the three sets Fℓ (12 features), Fu (14 features),
and Fm (13 features) as indicated by Table 3.2. The subscripts “ℓ”, “u”, and “m” stand for
“lower body”, “upper body”, and “mix”, respectively. Identifying each feature set with the
corresponding feature function, we then construct separate indexes IDℓ , IDu , and IDm . Then,
retrieval amounts to querying the individual indexes and postprocessing the resulting hits
by additional merging and/or intersecting operations, see [DRME06a, Dem06]. However, the
number of such additional operations is by far outweighed by the savings resulting from the
significantly reduced overall number (212 + 214 + 213) of inverted lists. Also note that such
a postprocessing of hits obtained from queries on different indices is not strictly equivalent
to adaptive fuzzy retrieval on the full feature set, since the segmentations differ for each of
the indexes. A minor drawback is that each of the three indexes IDℓ , IDu , and IDm requires
an amount of memory linear in the overall number of Fℓ-, Fu-, and Fm-segments in D, re-
spectively. This effect, however, is largely attenuated by the fact that segment lengths with
respect to Fℓ, Fu, and Fm are generally larger compared to F -segment lengths, resulting in
fewer segments.

4.3.1 Ranking Strategies and Postprocessing of Hits

The feature function F is chosen so as to cover a broad spectrum of aspects appearing in
all types of motions. Therefore, considering a specific motion class, many of the features are
irrelevant for retrieval and should be masked out to avoid a large number of false negatives.
Here, false negatives refer to database motion clips that are similar to the query but that are
not retrieved by the system (e. g., due to over-specification). On the other hand, masking out
a large number of features may lead to a larger percentage of false positives, i. e., hits that
are not logically related to the query but coincidentally reveal the same relational aspects
encoded by the user-specified features.

One important observation is that even though many useless hits might have been re-
trieved, one can easily eliminate most of the false positives in a postprocessing step. While
the segment lengths (measured in frames) are left unconsidered in the retrieval process, they
often encode characteristic timing information. Considering such timing information, the hits
can be ranked by comparing the segment lengths of the respective hit with the corresponding
segment lengths of the query motion. We assume a query of length N + 1, where the query
segments have lengths νn frames for n ∈ [0 : N ]. Furthermore, we think of a corresponding hit
in which the matching segments have lengths µn, n ∈ [0 : N ]. Then, we define the following
ranking functions:

rℓ1(ν0, µ0, . . . , νN , µN ) :=
1

N + 1

N∑

n=0

|νn − µn| (4.11)

rlog(ν0, µ0, . . . , νN , µN ) :=
1

N + 1

N∑

n=0

∣∣∣∣log
νn

µn

∣∣∣∣ . (4.12)

The first ranking function, rℓ1 , simply measures the average absolute deviation of correspond-
ing segment lengths. In our experiments, this ranking function performed well if the query
and logically related hits only differed by minor, local time scalings. The second ranking func-
tion, rlog, is invariant to global time scalings since it only considers ratios of segment lengths
(instead of absolute durations). Additionally, the logarithm and the absolute value ensure
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Figure 4.10. The segment-wise time alignment of the two walking motions shown in Fig. 3.8 (cor-
responding to the vertical axis) and Fig. 3.9 (b) (corresponding to the horizontal axis) can be refined
via DTW-based methods restricted to the gray area.

that speeding up by a certain factor is penalized just as much as slowing down by the same
factor. Using these ranking functions to sort the hits in ascending order according to their
ranking value, many of the false positive hits (which often contain very short or extremely
long matching segments) can be found at the end of the ranked list.

A further strategy is to postprocess the hits by means of more refined DTW-based methods
using local distance measures as described in Sect. 3.5.2. Here, we propose a DTW-based
ranking strategy that uses the Hamming distance between the binary vectors of the F -feature
sequences. Depending on the user’s needs, the Hamming distance could only consider those
features that were selected for the query or could also be based on all features of the global
feature set. Let c(n, m) denote the Hamming distance between the nth vector in the F -feature
sequence of the query and the mth vector in the F -feature sequence of the hit. Then the hit’s
ranking value is determined by the cost of the optimal warping path in the corresponding
cost matrix C = (c(n, m)), see Sect. 3.5.2.

Here, the point is that even when working with a very coarse feature set and index-based
retrieval (possibly leading to hundreds of hits), the data is still very efficiently reduced from
a couple of hours (database) to a couple of minutes (hits), which is then well within reach
of computationally expensive DTW-techniques. Furthermore, the cost matrices are typically
very small because the query and the hits are compared at the segment level instead of the
frame level, thus working on strongly downsampled motion representations. This ranking
method is similar to the edit distance over the alphabet {0, 1}f , see Sect. 2.7. Further details
on DTW-based ranking can be found in [DRME06a, Dem06]

Finally, we sketch how index-based retrieval can be combined with DTW-based alignment
techniques as introduced in Sect. 2.7. Recall that two motion clips are considered as similar
if they possess (more or less) the same progression of relational features. Matching two
such progressions obtained from similar motions can be regarded as a time alignment of the
underlying motion data streams. Even though such alignments may be too coarse in view of
applications such as morphing or blending, they are quite accurate with respect to the overall
course of motion. We therefore suggest the following two-stage procedure: first use our index
to efficiently compute a coarse, segment-based alignment. Then refine this alignment resorting
to classical DTW-based techniques. The important point is that once a coarse alignment is
known, the DTW step can be done very efficiently since the underlying cost matrix need
only be computed within an area corresponding to the frames of the matched segments. This
is also illustrated by Fig. 4.10, where the two walking motions of Fig. 3.8 and Fig. 3.9 (b)
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Index e 2e #(lists) #(frames) #(segs) MB bytes
seg tr tf ti

∑
t

I60
ℓ 11 2048 409 425,294 21,108 0.72 35.8 26 10 6 42

I180
ℓ 11 2048 550 1,288,846 41,587 1.41 35.5 71 26 13 110

I60
u 12 4096 642 425,294 53,036 1.71 33.8 26 13 10 49

I180
u 12 4096 877 1,288,846 135,742 4.33 33.4 71 33 25 129

I60
m 8 256 55 425,294 19,067 0.60 33.0 26 20 3 49

I180
m 8 256 75 1,288,846 55,526 1.80 34.0 71 54 12 137

Table 4.1. Feature computation and index construction. Running times are in seconds.

are aligned. In order to avoid alignment artifacts, the restricted area is slightly enlarged, as
indicated by the gray area.

4.4 Experimental Results

We implemented our indexing and retrieval algorithms in Matlab 6.5 and tested them on
a 3.6 GHz Pentium 4 with 1 GB of main memory. The test database was a subset of the
Carnegie Mellon mocap database [CMU03], denoted as DCMU

180 , containing more than one
million frames of motion capture data (180 minutes sampled at 120 Hz). Since there is only
a very coarse and heterogeneous ground truth annotation available for the CMU database,
we resorted to evaluating representative queries. For these experiments, we used the feature
function E comprising 31 relational features, see Tab. 3.1. E is divided into the three subsets
Eℓ, Eu, and Em.

4.4.1 Indexing

We denote the indexes corresponding to Eℓ, Eu, and Em by I180
ℓ , I180

u , and I180
m , respectively.

In its columns, Table 4.1 shows the number e of feature components, the number 2e of inverted
lists, the number of nonempty inverted lists, the overall number of frames in the database,
the overall number of segments of the corresponding segmentation, the index size in MB, the
number of bytes per segment, and four running times tr, tf , ti, and

∑
t, measured in seconds.

tr is the portion of running time spent on data read-in, tf is the feature extraction time, ti
is the inverted list build-up time, and

∑
t is the total running time. To demonstrate the

scalability of our result, we quote analogous numbers for the indexes I60
ℓ , I60

u and I60
m built

from a subset DCMU
60 of DCMU

180 corresponding to 60 minutes of motion capture data. The
total size of DCMU

180 represented in the text-based AMC motion capture file format (App. D)
was 600 MB, a more compact binary double precision representation required about 370 MB.
Typical index sizes ranged between 0.7 and 4.3 MB, documenting the drastic amount of data
reduction our scheme achieves.

Table 4.1 shows that the number of segments (with respect to Eℓ, Eu, and Em) was only
about 3 to 12 percent of the number of frames contained in the database. Observe that index
sizes are proportional to the number of segments: the average number of bytes per segment is
constant for all indexes. The total indexing time is linear in the number of frames. This fact is
very well reflected by the table: for example, it took 42 seconds to build I60

ℓ , which is roughly
one third of the 110 seconds that were needed to build I180

ℓ . Note that more than half of
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1–9 hits 10–99 hits ≥ 100 hits
Type, #(segs)

µh σh µt (ms) µh σh µt (ms) µh σh µt (ms)
exact, |Q| = 5 3.0 2.4 16 44 28 20 649 567 144
exact, |Q| = 10 1.7 1.6 17 34 22 26 239 147 71
exact, |Q| = 20 1.1 0.6 19 32 26 36 130 5 52
fuzzy, |Q| = 5 3.6 2.5 23 44 27 29 1,878 1,101 291
fuzzy, |Q| = 10 2.4 2.1 28 40 26 35 1,814 1,149 281
fuzzy, |Q| = 20 2.0 1.9 42 36 24 35 1,908 1,152 294

Table 4.2. Statistics on 10, 000 random queries in I180
u using different query modes and query sizes,

grouped by the number of hits, h. µh and σh are the average/standard deviation of h for the respective
group, µt is the average query time in milliseconds.

(a) (b)

Figure 4.11. Selected frames from (a) 16 query-by-example hits for a left hand punch and from (b)
9 query-by-example hits for a squatting motion. The query clips are highlighted. Query features for
(a): E1, E2, E7, E8, query features for (b): E17, E18, E19, E22, E23; see Table 3.1.

the total indexing time was spent on reading in the data, e.g., 71 seconds for the 180-minute
index. The scalability of our algorithms’ running time and memory requirements permits us
to use much larger databases than those treated by Kovar and Gleicher [KG04], where the
preprocessing step to build a match web is quadratic in the number of frames (leading, e.g.,
to a running time of roughly 3, 000 seconds for a database containing only 37, 000 frames),
see also Sect. 4.6.

4.4.2 Retrieval

The running time to process a query very much depends on the size of the database, the
query length (the number of segments), the user-specified fuzziness of the query, as well as
the number of resulting hits. In an experiment, we posed 10,000 random queries (guaranteed
to yield at least one hit) for each of six query scenarios to the index I180

u , see Table 4.2. For
example, finding all exact Eu-hits for a query consisting of 5/10/20 segments took on average
16–144/17–71/19–52 milliseconds, depending on the number of hits. Finding all adaptive
fuzzy Eu-hits for a query consisting of 5/10/20 segments, where each fuzzy set of alternatives
had a size of 64 elements, took on average 23–291/28–281/42–294 ms.

Fig. 4.11 (a) depicts all 16 hits resulting from a query for a punch (retrieval time: 12.5 ms),
where only the four features E1/E2 (right/left hand in front) and E7/E8 (right/left elbow
bent) were selected, see Table 3.1. These four features induce a segmentation of the query
consisting of six segments, which suffice to grasp the gist of the punching motion. Further
reducing the number of features by selecting only E2 and E8 induces a 4-segment query
sequence and results in 264 hits, comprising various kinds of punch-like motions involving
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Figure 4.12. Selected frames from 19 query-by-example hits for a right foot kick. The query clip is
highlighted. Query features: E15, E16, E19, E20; see Table 3.1.

both arms. Finally, increasing the number of selected features by adding E3/E4 induces an
8-segment query sequence resulting in a single hit.

Fig. 4.11 (b) shows 9 hits out of the resulting 33 hits for a “squatting” motion (retrieval
time: 18 ms) using the five features E17, E18, E19, E22, and E23. The induced 5-segment query
sequence is characteristic enough to retrieve 7 of the 11 “real” squatting motions contained in
the database. Using a simple ranking strategy such as rℓ1 of Eqn. (4.11), these 7 hits appear
as the top hits. The remaining 26 retrieved hits are false positives, two of which are shown
on the right-hand side of Fig. 4.11 (b) as the skeletons “sitting down” on a virtual table edge.
One reason for this type of false positives is that the relevant feature used in the query for the
squatting motion thresholds the knee angle against a relatively high decision value of 120◦.
Hence, the knees of the sitting skeletons are just barely classified as “bent,” leading to the
confusion with a squatting motion. Omitting the velocity features E17 and E18 again results
in an induced 5-segment query, this time, however, yielding 63 hits (containing the previous
33 hits with the same top 7 hits). Among the additional hits, one now also finds jumping and
sneaking motions.

Finally, Fig. 4.12 shows all 19 query results for a “kicking” motion (retrieval time: 5 ms)
using E15, E16, E19, and E20. Out of these, 13 hits are actual martial arts kicks. The re-
maining six motions are ballet moves containing a kicking component. A manual inspection
of DCMU

180 showed that there are no more than the 13 reported kicks in the database, demon-
strating the high recall percentage our technique can achieve. Again, reducing the number
of selected features leads to an increased number of hits. In general, a typical source of false
positive hits is an inadequate choice of relational features in a query. For example, the ballet
jumps in Fig. 4.12 were found as matches for a kicking motion because only the right leg was
constrained by the query, leaving the left leg free to be stretched behind the body.

More retrieval results can be found at our web site [DRME06b]. Further results will also
be presented in Sect. 5.2, where we compare index-based retrieval to retrieval using motion
templates (MTs).

4.5 Discussion and Possible Extensions

In conclusion, our technique can efficiently retrieve high-quality hits with good precision/recall
percentages provided that the user adequately selects a small number of features reflecting
the important aspects of the query motion. This, in general, requires some experience as well
as parameter tuning. However, most features have strong semantics, which makes feature
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selection a very intuitive process. Also note that our algorithms were prototypically imple-
mented in Matlab, hence an efficient C implementation can be expected to further speed up
feature extraction, inverted list build-up, and querying by up to an order of magnitude.

Our retrieval method still suffers from a weakness that is associated with transitory seg-
ments as discussed in Sect. 4.1.1. Even though we showed in Sect. 4.1.2 how transitory seg-
ments can be absorbed by means of fuzzy queries, there are still some cases where the method
fails. Returning to the “jumping” example of Sect. 4.1.2, recall that the constructed fuzzy
query was capable of coping with transitions such as
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0
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)
, where both features

values switch at the same time, has still not been covered. This is due to the inability of
our retrieval methods to express insertions and deletions within a sequence: the fuzzy set
handling the transitory segment must be matched and may not be omitted in case it is not
needed. Recall that the less efficient technique of DTW can handle such insertions and dele-
tions: at this point, the tradeoff between efficiency and retrieval quality, corresponding to the
choice between index-based retrieval and DTW, becomes apparent. To remedy the problem
of simultaneous changes of feature values (which occurs very rarely at a sampling rate of 120
Hz), we can modify our retrieval algorithm so as to handle “dummy segments” within queries
for such transitions, thereby largely increasing the time complexity, see also [DRME06a].

In view of fully automatic motion retrieval, as required for motion reuse techniques such
as [AFO03, CH05, PB02], the required user interaction for manual feature selection turns
out to be a drawback. Even though the manual specification enables the user to incorporate
prior knowledge about the query, thus providing a great deal of flexibility, an option for fully
automatic feature selection would be important as well.

The following hierarchical approach is a possible ad-hoc solution to this problem. We
exemplarily discuss the idea by means of the feature function Eℓ, which consists of 11 features.

(0) Retrieve all hits with respect to Eℓ.

(1) If there are not enough hits, mask out one feature. This can be done in
(
9
1

)
= 9 ways,

leading to feature sets E1, . . . , E9. Then, process the query with respect to each of
these feature sets and take the union of all retrieved hits (here, one has to eliminate
multiplicities in the hits).

(2) If there are still not enough hits, we mask out any two features. This can be done in(
9
2

)
= 36 ways, leading to features sets E12, E13, . . . , E19, E23, . . . , E89. In analogy to

step (2), we process the query with respect to each of these feature sets.

(3) Continue in an analogous fashion until there are enough hits.

All retrieval operations can be performed on the single index Iu. Furthermore, note that the
hits retrieved in (0) are contained in the hits retrieved in (1), which in turn are contained in
the hits retrieved in (2), and so on. This induces a retrieval hierarchy, where the number of
hits increases but, in general, the quality of the hits decreases. In particular, masking out
features that are specific for the query may lead to a large number of unrelated and useless
hits. As an example, our “kicking” query of Fig. 4.12 yielded 1 hit in step (0), 9 hits in step
(1), 15 hits in step (2), and 251 hits in step (3). The quality of the hits in step (0)–(2) was still
acceptable, while step (3) led to many meaningless hits. Recall, however, that these results
can be refined by the ranking strategies of Sect. 4.3.1.
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A more sophisticated approach to automatic feature selection will be presented in Chap. 5.
Based on relational features and suitable training motions, we will derive a class representation
in form of a so-called motion template, which encodes the characteristic and the variational
aspects of the motion class. Such motion templates can be used to locally and globally adjust
the feature selection by masking out the variational aspects associated with the respective
motion class. This method facilitates fully automatic motion retrieval and classification on
large motion databases.

4.6 Related Work

In view of massively growing multimedia databases of various types and formats, efficient
methods for indexing and content-based retrieval have become an important issue. Vast
literature exists on indexing and retrieval in text, image, and video data, see, e. g., Witten et
al. and Sebe et al. [WMB99, SLZ+03] and references therein. For the music scenario, Clausen
and Kurth [CK04] give a unified approach to content-based retrieval; their group theoretical
concepts are a generalized form of our efficient retrieval technique. However, their framework
does not consider adaptive fuzzy search. The problem of indexing large time series databases
has also attracted great interest in the database community, where DTW-based and LCS-
based retrieval approaches are pursued, see, e. g., the work of Last et al., Keogh, and Vlachos
et al. [LKB04, Keo02, VHGK06].

Due to possible spatio-temporal variations, the difficult task of identifying similar motion
segments still bears open problems. Many of the previous approaches to motion comparison
are based on DTW in conjunction with features that are semantically close to the raw data,
using 3D positions, 3D point clouds, joint angle representations, or PCA-reduced versions
thereof, see [CVKG03, FF05, HPP05, KG04, KPZ+04, PB02, SKK04, WCYL03, YSLG05].
We exemplarily discuss some of these approaches.

Pullen and Bregler [PB02, Pul02]. Recall from Sect. 2.6 the semi-local similarity measure
that is employed by Pullen and Bregler in the context texturing and synthesis of motion
capture data. The input to their system are rough, keyframed motion sketches, such as
an animator’s sketch of the lower body motion in a walking sequence. Exploiting the fact
that different joint angles are typically highly correlated, the system tries to use a given
angle trajectory such as the hip angle to infer the missing upper-body angles in the walking
sequence. Based on this idea, similar mocap clips are retrieved from an underlying mocap
database using certain angle trajectories as the query. For full synthesis of certain body parts’
angle trajectories, the retrieval results are then suitably stitched together to form a smooth
and visually appealing animation. Texturing uses the same principle, but only certain high-
and mid-frequency bands resulting from an MRA analysis [BW95] of the data are modified.

The retrieval works as follows. First, the given query angle trajectories and the mocap
database are analyzed by MRA, and only a suitable low-frequency band is retained for the
following steps. Here, Pullen and Bregler [PB02, Pul02] make the assumption that the motion
content is contained mainly in that low-frequency band, see also Sect. 2.3. Next, all trajec-
tories are segmented according to the characteristics of a user-specified angle trajectory, for
example the hip angle: local maxima and local minima of the hip trajectory are determined,
and all trajectories are simultaneously segmented at the corresponding points in time. Build-
ing on the assumption that the chosen low-frequency band contains the motion content, one
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may further assume that logically similar motions will yield similar segmentations due to a
similar structure regarding local maxima and minima. Then, all query segments are processed
sequentially, where local temporal deformations are accounted for by linearly stretching or
compressing all segments from the mocap database (up to a factor of 4) to match the length
of the respective query segment. Finally, the squared Euclidean distance between the query
segment and the resampled database segments provides a ranking.

Liu et al. [LZWM05]. One problem of numerical features is their sensitivity towards pose
deformations, as may occur in logically related motions. To achieve more robustness, Liu et
al. use PCA and k-means clustering to transform motions described by their 3D trajectories
into sequences of cluster centroids, which absorb spatio-temporal variations. This strategy is
similar to our concept of temporal segmentation, but differs in the fact that their features have
no associated semantics, while relational features do. Similar to our segment-based similarity
measure and to the similarity measure of Pullen and Bregler [PB02], the technique by Liu
et al. can be classified as semi-local (see Sect. 2.6), where the basic units of comparison are
motion-dependent temporal segments. However, they provide no details on their retrieval
method except that exact string matching as well as approximate string matching (a variant
of DTW) have been successfully applied to compare a query’s cluster transition signature
against that of a large subset of the CMU mocap database [CMU03].

Forbes and Fiume [FF05]. Based on a quaternion representation, Forbes and Fiume learn a
PCA space from range of motion data so as to accurately represent as many different poses as
possible. To search for mocap clips, they project their motion database into the PCA space
and apply the same projection to a given query clip, resulting in high-dimensional, time-
dependent trajectories, see also Sect. 3.3.4 and Fig. 3.20 for the principle of PCA. Forbes and
Fiume claim that the Euclidean distance in the PCA space is a good measure of similarity
for individual poses. Under this assumption, they pursue the strategy of identifying motions
by means of certain characteristic poses, which are defined as the poses that are most distant
from the origin of the PCA space. See also [ACCO05] for alternative approaches to selecting
characteristic poses. Given the characteristic pose of the query motion, Forbes and Fiume
apply a spatial indexing data structure to find those database poses in the PCA space that
are closest to the characteristic pose. After clustering the resulting database poses, the results
are compared to the query’s PCA trajectory using DTW and ranked according to their DTW
distance. Some results for mocap databases with lengths ranging from 70 seconds to 11
minutes (120 Hz sampling rate) are reported, where query times are on the order of half a
second.

Wu et al. [WCYL03]. Similar to Forbes and Fiume [FF05], Wu et al. proceed in two stages:
they first identify start and end frames of possible candidate clips utilizing a pose-based index
structure and then compute the actual distance from the query via DTW on SOM-based
trajectory clusters.

Yu et al. [YSLG05]. A further attempt at designing a semi-local similarity measure is
described by Yu et al. [YSLG05]. They propose a DTW-based motion retrieval system using
Labanotation [Gue04, vL95], a versatile movement notation language developed in the dance
community. Queries can either be specified by directly entering a Laban sequence, or by



90 CHAPTER 4. EFFICIENT INDEX-BASED MOTION RETRIEVAL

providing a motion example. In the latter case, the query sequence is first converted to
Labanotion using a method by Hachimura and Nakamura [HN01]. The motion database is
also assumed to be annotated by a Laban transcription, and matching between the query and
the database is performed via DTW. However, querying a 19,000-frame mocap database for
a short motion clip comprising 150 frames takes 139 seconds using their method.

Match Web: Kovar and Gleicher [KG04]. In the approach of Kovar and Gleicher [KG04],
numerically similar motions are identified by means of a DTW-based index structure termed
match web. Recall that the key idea of DTW-based alignment between two motions D : [1 :
N ] → P and D′ : [1 : M ] → P was to compute a cost matrix C with respect to a local cost
measure and then to derive a cost minimizing warping path, which typically runs through a
“valley” of low cost in a neighborhood of the main diagonal of C. As was already mentioned in
Sect. 2.7, the cost matrix C reveals further similarity relations between subsegments of D and
D′, which are encoded by cost valleys running along secondary diagonals. This observation can
be exploited for content-based motion retrieval based on self-similarity. Instead of comparing
two different mocap data streams, the mocap data stream D is now compared to itself. Kovar
and Gleicher use the 3D point cloud distance c3D as the local similarity measure (Sect. 2.5.2),
yielding the quadratic self-similarity matrix C3D ∈ R

N×N . Fig. 4.13 shows an example of a
self-similarity matrix for a gymnastics motion. Obviously, the optimal warping path within
C3D is just the main diagonal, which has a total cost of zero since the distance measure c3D is
definite (identical poses have zero distance). Besides the main diagonal, there are secondary
diagonal paths of low costs. These paths denote segments of D that are similar to other
segments of D.

This principle can be exploited to identify similar motion fragments contained in D, which
can be though of as the concatenation of many database motions, where we keep track of
document boundaries in a supplemental data structure. Then, given a subclip of D that acts
as a query motion clip Q, the task is to identify all motion subclips in D that are similar
to Q. Such motion subclips are then referred to as hits. As an example, suppose the query
consists of the first squat (D(108:132)) of the gymnastics motion of Fig. 4.13. We consider the
part of the self-similarity matrix consisting of the “vertical stripe” above the query fragment,
see Fig. 4.14 (a). In the next step, all diagonal paths of low cost are identified within this
stripe. Finally, the projection of each such path onto the vertical axis corresponds to a hit,
see Fig. 4.14 (b). In our example, there are two partial warping paths p1 and p2 of low cost
running from cell (108, 108) to (132:132) and from cell (108 :133) to (132:159), respectively.
The projections of these paths result in the two hits D(108 : 132) (the query itself) and
D(133:159) (the second squat).

Based on this general strategy, Kovar and Gleicher have developed an index structure
named match web, which consists of all paths of low cost in a self-similarity matrix. Addi-
tionally the match web contains bridges of low total cost that connect certain paths if their
endpoints are close to each other. The match web allows for fast retrieval of numerically
similar motions. Kovar and Gleicher claim that a further step is possible: using a multi-step
search spawning new queries from previously retrieved motions allows for the identification
of logically similar motions using numerically similar motions as intermediaries. The authors
report good retrieval results, which are particularly suitable for their blending application.

There are several problems associated with a retrieval strategy based on a (precomputed)
self-similarity matrix as described above. First, being quadratic in the number of frames,
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Figure 4.13. Self-similarity matrix for a database motion D (sampling rate 12 Hz) consisting of
four jumping jacks (D(1 : 41)), a running motion (D(42 : 107)), two squats (D(108 : 159)), and two
repetitions of an alternating elbow-to-knee motion (D(160:215)).
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Figure 4.14. (a) Part of the self-similarity matrix shown in Fig. 4.13 consisting of the “vertical
stripe” above the query motion D(108:132) (corresponding to the first squat). (b) The two diagonal
paths of low cost (white lines) correspond to the two squats contained in the database.

computing and storing the self-similarity matrix is computationally expensive. Hence, such
a technique does not scale to large databases. Second, the suggested retrieval approach does
not allow the user to incorporate a-priori knowledge of the motion. For example, if the user
knows that the motion aspects of interest only regard the lower part of the body, he should
be able to mask out irrelevant motion aspects such as the arm movements. Finally, the fact
that the query motion must be contained in the database is a major drawback.
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Chapter 5

Motion Templates for Retrieval and
Classification

Based on [MR06b], we introduce in this chapter a generalization of relational feature matrices
(Sect. 3.5.1): the concept of motion templates (MTs) is suited to express the essence of an
entire class of motions. A motion template of dimension f and length K is a real-valued
matrix X ∈ [0, 1]f×K . Each row of an MT corresponds to one relational feature, and time
(in frames) runs along the columns, see Fig. 5.2 for an example. In the following, we assume
that all MTs under consideration have the same fixed dimension f . Intuitively, an MT can
be thought of as a “fuzzified” version of a feature matrix; for the proper interpretation of the
matrix entries, we refer to Sect. 5.1, where we describe how to learn an MT from training
motions by a combination of time warping and averaging operations. In Sect. 5.2.1, we then
explain how MTs can be applied for fully automatic, efficient, and robust motion retrieval
and classification. Additional results including a large number of illustrative videos can be
found on our web site [MR06a].

5.1 Learning MTs from Example Motions

Initialization. Given a set of γ > 0 example motion clips for a specific motion class, such as
the four cartwheels shown in Fig. 5.1 (left), our goal is to automatically learn a meaningful
MT that grasps the essence of the class. We start by computing the feature matrices with
respect to the feature set F of Tab. 3.2. The results are shown in Fig. 5.1 (right), where, for
the sake of clarity, we only display a subset comprising ten features contained in F . From
this point forward, we will consider feature matrices as a special case of MTs.

Weight vectors α ∈ R
K
>0 are attached to each of the MTs and initialized to α(k) = 1 for

all k. We then say that the kth column X(k) of X has weight α(k). During the learning
procedure, the total weight ᾱ :=

∑K
k=1 α(k) will always be at least one. These weights are

used to keep track of the time warping operations: initially, each column of an MT corresponds
to the real time duration of one frame, which we express by setting all weights α(k) to one.
Subsequent time warping may change the amount of time that is allotted to an MT column.
The respective weights are then modified so as to reflect the new time duration. Hence, the
weights allow us to unwarp an MT back to real time, similar to the strategy used in [HPP05].

93
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Figure 5.1. Left: Selected frames from four different cartwheel motions. Right: Corresponding
relational feature matrices for selected features. The columns represent time in frames, whereas the
rows correspond to boolean features encoded as black (0) and white (1). They are numbered in
accordance with the features defined in Table 3.2.

Warping. Now, the goal is to compute a semantically meaningful average over the γ input
MTs, which would simply be the arithmetic mean of the feature matrices if all of the motions
agreed in length and temporal structure. However, our MTs typically differ in length and re-
flect the temporal variations that were present in the original motions. This fact necessitates
some kind of temporal alignment prior to averaging. We do this by choosing one of the input
MTs as the reference MT, R, and applying DTW (Sect. 2.7) to compute optimal alignments
of the remaining MTs with R (we measure local distances of feature vectors by the Manhat-
tan (ℓ1) distance, which coincides with the Hamming distance for boolean feature vectors.)
According to these optimal alignments, the MTs are locally stretched and contracted, where
time stretching is simulated by duplicating MT columns, while time contractions are resolved
by forming a weighted average of the columns in question. As indicated above, the weights
α associated with an MT X must now be adapted accordingly: in case a column X(ℓ) was
matched to n columns R(k), . . . , R(k + n− 1) of the reference, the new weights α′(k + i) are
set to 1

n
α(ℓ) for i = 0, . . . , n − 1, i. e., the weight α(ℓ) is equally distributed among the n

matching columns. In case column R(k) of the reference was matched to multiple columns of
X, the new weight α′(k) is the sum of the weights of the matching columns in X.

Averaging. Now that all MTs and associated weight vectors have the same length as the
reference MT, we compute the weighted average over all MTs in a column-wise fashion as
well as the arithmetic mean α of all weight vectors. Note that the total weight, ᾱ, equals
the average length of the input motions. Fig. 5.2 (a) shows the results for our cartwheel
example, where the top left MT in Fig. 5.1 acted as the reference. Finally, we unwarp the
average MT according to the weight vector: column ranges with α(k) < 1 are unwarped
by contracting the respective MT columns into one average column (e. g., k = 6, . . . , 10 in
Fig. 5.2 (a)), while columns with α(k) > 1 are unwarped by duplicating the respective column
(e. g., k = 42). Since in general, columns will not have integer or reciprocal integer weights,
we additionally perform suitable partial averaging between adjacent columns such that all
weights but the last are one in the resulting unwarped MT, see Fig. 5.2 (b). Note that the
total weight, ᾱ, is preserved by the unwarping procedure. The average MT now constitutes a
combined representation of all the input motions, but it is still biased by the influence of the
reference MT, to which all of the other MTs have been aligned. Our experiments show that it



5.1. LEARNING MTS FROM EXAMPLE MOTIONS 95

20 40 60 80

3
4
5
6

15
16
29
30
33
34 0

0.5

1
1
2

20 40 60 80

3
4
5
6

15
16
29
30
33
34 0

0.5

1
1
2

(a) (b)

Figure 5.2. (a) Average MT and average weights computed from the MTs in Fig. 5.1 after all four
MTs have been aligned with the top left MT, which acted as the reference. The MTs are coded in
white (1), black (0), and shades of red and yellow for intermediary values. (b) Unwarped version of
the MT in (a).

Motion Class C Comment Size γ ᾱ M t(C)
CartwheelLeft left hand first on floor 21 11 105.3 6 17.0
ElbowToKnee start: relbow/lknee 27 14 36.6 5 4.9
JumpingJack 1 repetition 52 26 35.5 6 19.3
KickFrontRFoot 1 kick 30 15 53.3 5 9.4
KickSideRFoot 1 kick 30 15 48.9 6 10.1
LieDownFloor start: standing pose 20 10 165.0 5 25.6
RotateRArmBwd3 3 times 16 8 80.8 4 3.8
RotateRArmFwd3 3 times 16 8 83.6 4 3.9
Squat 1 repetition 52 26 47.3 5 24.6
WalkSideRight3 3 steps 16 8 123.0 3 5.5

Table 5.1. DMC contains 10 to 50 different variations for each of its 64 motion classes. This table
shows ten of the motion classes, along with their respective size, the size γ of the training subset, the
average length ᾱ in frames, as well as the number M of iterations and the running time t(C) in seconds
required to compute XC .

is possible to eliminate this bias by the following strategy: we let each of the original MTs act
as the reference and perform for each reference the entire averaging and unwarping procedure
as described above. This yields γ averaged MTs corresponding to the different references.
Then, we use these γ MTs as the input to a second pass of mutual warping, averaging, and
unwarping, and so on. The procedure is iterated until no major changes occur. Fig. 5.3 shows
the output for N = 11 training motions.

5.1.1 Interpretation of MTs

An MT learned from training motions belonging to a specific motion class C is referred to
as the class template XC for C. Note that the weight vector does not play a role any longer.
Black/white regions in a class MT, see Fig. 5.3, indicate periods in time (horizontal axis) where
certain features (vertical axis) consistently assume the same values zero/one in all training
motions, respectively. By contrast, red to yellow regions indicate inconsistencies mainly
resulting from variations in the training motions (and partly from inappropriate alignments).
Some illustrative examples will be discussed in Sect. 5.1.3. Intuitively, each row of such a
class template can be viewed as an estimate of the temporal distribution of the corresponding
feature’s values, which is highly class-dependent and thus an essential characteristic for C. The
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Figure 5.3. Left: Class MT for ‘CartwheelLeft’ based on γ = 11 training motions. The framed
regions are discussed in Section 5.1.3. Right: Corresponding quantized class MT, see Sect. 5.2.1.

interpretation of a single matrix entry xik := XC(k)i ∈ [0, 1] is that on average, a proportion
of xik of the training motions assumed the feature value one for feature i at frame number
k. Here, the semantics of a frame number k along a class template’s time axis is that of an
average time position, which makes sense because corresponding columns of the MTs have
been aligned.

5.1.2 Experimental Results

For our experiments, we systematically recorded several hours of motion capture data at a
sampling rate of 120 Hz, containing a number of well-specified motion sequences, which were
executed several times and performed by five different actors. Using this data, we built up
the database D210 consisting of roughly 210 minutes of motion data. Then, from D210, we
manually cut out suitable motion clips and arranged them into 64 different classes. Each
such motion class (MC) contains 10 to 50 different realizations of the same type of motion,
covering a broad spectrum of semantically meaningful variations. For example, the motion
class ‘CartwheelLeft’ contains 21 variations of a cartwheel motion, all starting with the left
hand. The resulting motion class database DMC contains 1, 457 motion clips, amounting to
50 minutes of motion data.

Table 5.1 gives an overview of some of the motion classes contained in DMC. We split
up DMC into two disjoint databases DMCT and DMCE, each consisting of roughly half the
motions of each motion class. The database DMCT served as the training database to derive
the motion templates, whereas DMCE was used as a training-independent evaluation database.
All databases were preprocessed by computing and storing the feature matrices. Here, we
used a sampling rate of 30 Hz, which turned out to be sufficient in view of MT quality. The
duration of the training motion clips ranged from half a second up to ten seconds, leading to
MT lengths between 15 and 300. The number of training motions used for each class ranged
from 7 to 26. Using 3 to 7 iterations, it took on average 7.5 s to compute a class MT on a
3.6 GHz Pentium 4 with 1 GB of main memory, see Table 5.1. For example, for the class
‘RotateRArmFwd3’, the total computation time was t(C) = 3.9 s with ᾱ = 83.6, N = 8, and
M = 4, whereas for the class ‘CartwheelLeft’, it took t(C) = 17.0 s with ᾱ = 105.3, N = 11,
and M = 6.

5.1.3 Examples

To illustrate the power of the MT concept, which grasps the essence of a specific type of motion
even in the presence of large variations, we discuss the class template for ‘CartwheelLeft’ as
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(a) ‘CartwheelLeft’ (N = 11)
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(b) ‘JumpingJack’ (N = 26)
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Figure 5.4. Class MT for (a) ‘CartwheelLeft’ and (b) ‘JumpingJack’ based on N = 1 and N = 26
training motions, respectively. For the sake of clarity, the rows corresponding to the 39 features are
grouped according to the lower, upper, and mixed feature set, see Table 3.2.

a representative example. Fig. 5.3 shows the cartwheel MT learned from N = 11 example
motions, which form a superset of the motions shown in Fig. 5.1. Recall that black/white
regions in a class MT correspond to consistent aspects of the training motions, while colored
regions correspond to variable aspects. The following observations illustrate that the essence
of the cartwheel motion is captured by our class MT. Considering the regions marked by boxes
in Fig. 5.3, the white region (a) reflects that during the initial phase of a cartwheel, the right
hand moves to the top (feature F5 in Table 3.2). Furthermore, region (b) shows that the right
foot moves behind the left leg (F15). This can also be observed in the first poses of Fig. 5.1.
Then, both hands are above the shoulders (F3, F4), as indicated by region (c), and the actor’s
body is upside down (F33, F34), see region (d) and the second poses in Fig. 5.1. The landing
phase, encoded in region (e), exhibits large variations between different realizations, leading
to the colored regions. Note that some actors lost their balance in this phase, resulting in
rather chaotic movements, compare the third poses in Fig. 5.1. The complete class MT for
‘CartwheelLeft’ is shown in Fig. 5.4 (a).

Next, we study the relatively homogeneous class ‘JumpingJack’, which contains motions
comprising one jumping cycle, starting and ending in the neutral standing pose. The ho-
mogeneity of the training motions is reflected by the absence of any major colored regions
in the resulting class template (Fig. 5.4 (b)), which was derived from 26 different training
motions. For the sake of clarity, we display the MTs as three separate parts corresponding
to the features of the upper, lower, and mixed feature sets, see Table 3.2. The consistently
black and white regions of the MT can be interpreted as follows: in all training motions,
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(a) ‘WalkSidewaysRight3’ (N = 8)
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(d) ‘RotateRightArmFwd3’ (N = 8)
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Figure 5.5. Left column: class MTs (shown only for the lower feature set) for (a) ‘WalkSide-
waysRight3’ with N = 8, (b) ‘WalkCrossoverRight3’ with N = 7, and (c) the combination of the two
classes with N = 15 training motions. Right column: class MTs (shown only for the upper feature
set) for (d) ‘RotateRightArmFwd3’, (e) ‘RotateRightArmBwd3’, and (f) its combination.

the right and the left hand are first moved to the top (F5 and F6 assume value one), then
remain raised (F3 and F4 assume value one), before they drop again at the end. The left and
right elbows are not bent throughout the entire movement (F7 and F8 only assume the value
zero). Furthermore, there are two phases where the hands are apart relative to the shoulders
(F9) and where the hands move together (F10). Also very consistent is the movement of the
lower part of the body. For example, the feet first move apart (F24), then are apart (F19),
and finally move together (F23). The two phases where both feet are in the air are reflected
by the values of the velocity features F25 and F26. As for the colored regions, some of the
actors performing the motion class ‘JumpingJack’ moved their hands slightly to the front
before their hands touched above their head, resulting in some colored values in the rows
corresponding to F1 and F2.

The motion classes ‘RotateRArmFwd3’ and ‘RotateRArmBwd3’ stand for three repeti-
tions of forward and backward rotation of the right arm, respectively. They are closely related,
even though we do not consider them as logically similar. The respective class MTs are shown
for the upper feature set in Fig. 5.5 (a) and (b). Even though the two class MTs exhibit a
similar zero-one distribution, there is one characteristic difference: in the forward rotation,
the right arm moves forwards (F1) exactly when it is raised above the shoulder (F3 is one).
By contrast, in the backward rotation, the right arm moves forwards (F1) exactly when it is
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below the shoulder (F3 is zero). Using the training motions of both classes, it is possible to
learn a single, combined MT, see Fig. 5.5 (c). Indeed, the resulting MT very well reflects the
common characteristics as well as the disagreements of the two involved classes.

5.2 MT-based Matching for Retrieval and Classification

Given a class C of logically related motions, we have derived a class MT XC that captures
the consistent as well as the inconsistent aspects of all motions in C. Our application of MTs
to automatic classification and retrieval are based on the following interpretation: the con-
sistent aspects represent the class characteristics that are shared by all motions, whereas the
inconsistent aspects represent the class variations that are due to different realizations. Then,
the key idea in designing a distance measure for comparing a class MT with unknown motion
data is to mask out the inconsistent aspects such that related motions can be identified even
in the presence of large variations. In Sect. 5.2.1, we define such a distance measure, which
is based on DTW. Our experiments on MT-based classification, annotation, and retrieval are
then described in Sect. 5.2.2–5.2.5.

5.2.1 MT-based Matching

In order to compare a class MT with the feature matrix resulting from an unknown mocap
data stream, we use a subsequence variant of DTW. The crucial point of our matching strategy
is the local cost measure, which disregards the inconsistencies encoded in the class MT. To
this end, we introduce a quantized MT, which has an entry 0.5 at all positions where the
class MT indicates inconsistencies between different executions of a training motion within
the same class. More precisely, let δ, 0 ≤ δ < 0.5, be a suitable threshold. Then for an
MT X ∈ [0, 1]f×K , we define the quantized MT by replacing each entry of X that is below
δ by zero, each entry that is above 1 − δ by one, and all remaining entries by 0.5. In our
experiments, we used the threshold δ = 0.1. See Fig. 5.3 for an example of a quantized MT.

Now, let D be a mocap data stream. The goal is to identify subsequences of D that are
similar to a given motion class C. Let X be a quantized class MT of length K and Y the
feature matrix of D of length L. We define for k ∈ [1 : K] and ℓ ∈ [1 : L] a local cost measure
cQ(k, ℓ) between the vectors X(k) and Y (ℓ). Let I(k) := {i ∈ [1 : f ] | X(k)i 6= 0.5}, where
X(k)i denotes a matrix entry of X for k ∈ [1 : K], i ∈ [1 : f ]. Then, if |I(k)| > 0, we set

cQ(k, ℓ) =
1

|I(k)|
∑

i∈I(k)

|X(k)i − Y (ℓ)i|, (5.1)

otherwise we set cQ(k, ℓ) = 0. In other words, cQ(k, ℓ) only accounts for the consistent entries
of X with X(k)i ∈ {0, 1} and leaves the other entries unconsidered. Furthermore, to avoid
degenerations in the DTW alignment, we use the modified step size condition pm+1 − pm ∈
{(2, 1), (1, 2), (1, 1)}, cf. condition (iii) of Sect. 2.7. This forces the slope of the warping path
to assume values between 1

2 and 2. Then, the distance function ∆C : [1 : L] → R ∪ {∞} is
defined by1

∆C(ℓ) :=
1

K
min

a∈[1:ℓ]

(
DTW

(
X , Y (a : ℓ)

))
, (5.2)

1Due to the modified step size condition, some of the DTW distances in (5.2) may not exist, which are then
set to ∞.
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Figure 5.6. (a) Distance function ∆C based on cQ of (5.1) for the quantized class MT ‘CartwheelLeft’
and a motion sequence D consisting of four cartwheels (reflected by the four local minima close to
zero), four jumping jacks, and four squats. The sampling rate is 30 Hz. (b) Corresponding distance
function based on the Manhattan distance without MT quantization, leading to a much poorer result.
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Figure 5.7. Resulting distance functions for a 35-second gymnastics sequence (30 Hz) consisting of
four jumping jacks, four repetitions of a skiing coordination exercise, two repetitions of an alternating
elbow-to-knee motion, and four squats with respect to the quantized class MTs for (a) ‘JumpingJack’,
(b) ‘ElbowToKnee’, and (c) ‘Squat’.
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Figure 5.8. Cost matrices corresponding to the distance functions of Fig. 5.7. The warping paths
corresponding to the local minima in Fig. 5.7 are indicated as blue lines.
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where Y (a : ℓ) denotes the submatrix of Y consisting of columns a through ℓ ∈ [1 : L] and the
DTW distance DTW

(
X , Y (a : ℓ)

)
is defined in analogy to Eqn. 2.15. Note that the function

∆C can be computed by means of subsequence DTW, see [RJ93]. Furthermore, one can derive
from the resulting DTW matrix for each ℓ ∈ [1 : L] the index aℓ ∈ [1 : ℓ] that minimizes (5.2).
The interpretation of ∆C is as follows: a small value ∆C(ℓ) for some ℓ ∈ [1 : L] indicates that
the subsequence of D starting at frame aℓ and ending at frame ℓ is similar to the motions
of the class C. Note that using the local cost function cQ of (5.1) based on the quantized
MT (instead of simply using the Manhattan distance) is of crucial importance, as illustrated
by Fig. 5.6. Here, a gymnastics motion comprising several repetitions of the motion classes
‘CartwheelLeft’, ‘JumpingJack’, and ‘Squat’ is matched against the quantized class MT for
‘CartwheelLeft’ in Fig. 5.6 (a) and against the non-quantized class MT in Fig. 5.6 (b). Observe
that the local minima in (a) are much closer to zero than in (b), corresponding to a better
separation between the motion classes. This improvement is due to the variational aspects
of the cartwheel template being masked out in the quantization step. Further examples are
discussed in Sect. 5.2.2.

5.2.2 MT-based Classification

In the classification scenario, we are given an unknown motion data stream D for which the
presence of certain motion classes C1, . . . , CP at certain times is to be detected. These motion
classes are identified with their respective quantized class MTs X1, . . . , XP , which are assumed
to have been precomputed from suitable training data. Now, the idea is to match the input
motion D with each of the Xp, p = 1, . . . , P , yielding the distance functions ∆p := ∆Cp . Then,
every local minimum of ∆p close to zero indicates a motion subsequence of D that is similar
to the motions in Cp. The subsequences of D corresponding to these minima can then be
labeled as belonging to the motion class Cp. As a result of the entire procedure, certain frame
ranges are labeled by certain motion classes, where some frame ranges may have received
more than one label and some frame ranges may have not been labeled at all. As an example,
we consider the distance functions for a 35-second gymnastics motion sequence with respect
to the motion classes C1 =‘JumpingJack’, C2 =‘ElbowToKnee’, and C3 =‘Squat’, see Fig. 5.7.
For C1, there are four local minima between frames 100 and 300, which exactly correspond
to the four jumping jacks contained in D, see Fig. 5.7 (a). Note that the remaining portion
of D is clearly separated by ∆1, yielding a value far above 0.1. Analogously, the two minima
in Fig. 5.7 (b) and the four minima in Fig. 5.7 (c) correspond to the two repetitions of the
elbow-to-knee exercise and the four squats, respectively. The corresponding cost matrices and
warping paths are shown in Fig. 5.8. Besides discussing further experiments, we also describe
how to choose suitable quality thresholds for ∆p in the next section.

5.2.3 MT-based Retrieval

The goal of content-based motion retrieval is to automatically extract all logically similar
motions of some specified type scattered in a motion capture database D. By concatenating
all documents of D, we may assume that the database is represented by one single motion
data stream D. To retrieve all motions represented by a class C, we compute the distance
function ∆C with respect to the precomputed class MT. Then, each local minimum of ∆C
below some quality threshold τ > 0 indicates a hit. To determine a suitable threshold τ
and to measure the retrieval quality, we conducted extensive experiments based on several
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databases. We start with the evaluation database DMCE, which consists of 718 motion clips
corresponding to 24 minutes of motion data, see Sect. 5.1.2. Recall that DMCE is disjoint
to the training database DMCT, from which the class MTs were derived. Fixing a quality
threshold τ , we computed a set Hτ of hits for each of the 64 class MTs in a fully automated
batch mode. Based on a manually generated annotation of DMCE used as the ground truth,
we then determined the subset H+

τ ⊆ Hτ of relevant hits corresponding to motion clips of the
respective class.

Tables 5.2 and 5.3 show the retrieval results for six different choices of τ . For example,
for the motion class ‘ClapHandsAboveHead’ and the quality threshold τ = 0.02, all of the
7 resulting hits are relevant—only one clapping motion is missing. Increasing the quality
threshold to τ = 0.04, one obtains 16 hits containing all of the 8 relevant hits. However, one
also obtains 8 false positives, mainly coming from the jumping jack class, which contains a
similar arm movement. The precision and recall values are very good for whole-body mo-
tions such as ‘JumpingJack’, ‘Cartwheel’, or ‘LieDownFloor’—even in the presence of large
variations within a class. Short motions with few characteristic aspects such as the class
‘GrabHighRHand’ are more problematic. For τ = 0.04, one obtains 49 hits containing 12 of
the 14 relevant movements. Confusion arises mainly with similar classes such as ‘DepositHigh-
RHand’ or ‘GrabMiddleRHand’ and with subsequences of more complex motions containing
a grabbing-like component such as the beginning of a cartwheel. Even from a semantical
point of view, it is hard to distinguish such motions. Similar confusion arises with increasing
values of τ for the kicking, walking/jogging, rotation, or sitting classes. However, most of the
relevant hits could be found among the top ranked hits in all cases. For the classes ‘Rotat-
eRArmFwd1’ and ‘RotateRArmBwd1’, see Fig. 5.5 (a) and (b), all relevant movements could
be correctly identified. Using a combined MT, as indicated by Fig. 5.5 (c), the two classes
could not be distinguished any longer—the characteristics that had separated the two classes
were now regarded as mere variations and therefore masked out in the retrieval process.

The above experiments imply that the quality threshold τ = 0.06 constitutes a good
trade-off between precision and recall. Since the distance function ∆C yields a ranking of
the retrieved hits in a natural way, our strategy is to allow for some false positives rather
than having too many false negatives. Furthermore, note that the running time and memory
requirements of MT-based retrieval depends linearly on the size of the database, where the
bottleneck is the computation of the distance function ∆C . For example, in case of the 24-
minute database DMCE, our Matlab implementation required 4–28 seconds to process one
query—depending on the respective MT length and the number of hits, see Tables 5.2 and
5.3.

5.2.4 Keyframes

To speed up the retrieval on large databases and to significantly reduce memory requirements,
we introduce an efficient preselection step to cut down the set of candidate motions prior to
computing ∆C . To this end, we label a small number of characteristic columns of each class
MT as keyframes. The underlying assumption is that most instances of a motion belonging
to the respective motion class will exhibit the feature vectors pertaining to the keyframes in
exactly the sequence denoted by the keyframe positions. In our experiments, the keyframes
were picked automatically using a simple heuristic: we basically chose two to five columns
from the quantized MT that had many “white” entries (i. e., entries close to one, indicating
some consistent action) and few “gray” entries (i. e., entries indicating inconsistencies).
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Motion Class C γ |Hτ | / |H+
τ | K t(∆C)

CartwheelLeft 10 1 4 6 8 9 10 106 12.971 4 6 8 9 10

ClapHandsAboveHead 8 5 7 16 39 61 81 25 4.145 7 8 8 8 8

DepositFloorR 16 4 7 15 31 48 70 73 9.590 1 4 12 13 15

DepositHighR 14 11 21 47 60 103 197 67 11.398 11 13 13 13 13

DepositLowR 14 16 22 33 58 104 174 68 10.568 10 12 13 13 13

DepositMiddleR 14 21 52 122 180 236 295 74 14.617 10 13 13 13 13

ElbowToKnee 13 8 11 12 13 13 22 36 4.198 11 12 13 13 13

GrabFloorRHand 8 6 8 11 20 41 75 61 8.365 7 7 8 8 8

GrabHighRHand 14 15 22 49 58 115 201 68 11.397 9 12 13 14 14

GrabLowR 14 14 20 33 55 88 150 73 10.958 10 13 14 14 14

GrabMiddleR 14 20 71 150 227 323 408 59 14.777 9 11 12 12 13

HitRHandHead 6 29 70 152 257 343 432 55 16.835 5 6 6 6 6

HopBothLegs 18 13 19 22 32 126 334 24 6.5613 17 17 18 18 18

HopLLeg 20 15 19 23 51 96 174 19 3.8315 19 20 20 20 20

HopRLeg 21 17 19 22 35 66 107 18 3.0817 19 21 21 21 21

JogLeftCircleRFootStart4 8 7 20 39 43 63 84 60 8.005 7 8 8 8 8

JogRightCircleRFootStart4 8 6 13 37 41 53 74 59 7.734 8 8 8 8 8

JumpDown 7 3 3 6 6 10 46 66 8.283 3 6 6 7 7

JumpingJack 26 25 26 26 26 33 40 34 4.1125 26 26 26 26 26

KickFrontLFoot 14 4 8 23 126 328 465 54 13.644 5 11 14 14 14

KickFrontRFoot 15 3 6 26 90 239 385 54 13.703 5 12 12 13 14

KickSideLFoot 13 2 6 16 26 87 299 55 11.611 3 8 12 13 13

KickSideRFoot 15 6 13 27 48 163 359 51 12.885 9 14 14 15 15

LieDownFloor 10 4 6 8 8 9 11 172 28.054 6 8 8 9 9

PunchFrontLHand 15 1 5 22 42 173 414 48 12.771 4 11 13 14 15

PunchFrontRHand 15 4 6 27 92 289 442 54 13.704 5 8 10 12 12

PunchSideLHand 15 7 13 24 48 229 500 41 13.055 8 11 13 14 15

PunchSideRHand 14 2 9 40 104 355 500 41 12.692 8 10 14 14 14

RotateBothArmsBwd1 8 7 7 8 8 11 30 29 3.477 7 8 8 8 8

RotateBothArmsFwd1 8 8 8 8 8 15 47 30 3.698 8 8 8 8 8

RotateLArmBwd1 8 5 6 10 14 51 157 29 5.345 6 8 8 8 8

RotateLArmFwd1 8 5 6 9 21 55 176 28 5.675 6 8 8 8 8

RotateRArmBwd1 8 6 6 7 34 70 151 27 5.166 6 7 8 8 8

RotateRArmFwd1 8 6 6 7 39 77 186 28 6.136 6 7 8 8 8

Table 5.2. First part of the retrieval results for the evaluation database DMCE for various class MTs.
Note that DMCE is disjoint to the training database DMCT, from which the class MTs were derived.
γ denotes the number of relevant motions contained in DMCE. |Hτ | (first rows) denotes the number
of hits and |H+

τ | (second rows) the number of relevant hits with respect to the quality thresholds
τ = 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1. Finally, K denotes the length of the class MT and t(∆C) the
running time in seconds required to compute the respective distance function ∆C .
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Motion Class C γ |Hτ | / |H+
τ | K t(∆C)

RotateRArm(Bwd&Fwd)1 16 12 12 39 101 235 453 26 9.9512 12 13 15 16 16

Shuffle2StepsLStart 6 11 20 57 122 255 383 48 13.225 6 6 6 6 6

Shuffle2StepsRStart 6 15 25 67 152 228 295 62 13.665 5 6 6 6 6

SitDownChair 10 4 9 17 29 53 70 83 12.924 8 10 10 10 10

SitDownFloor 10 9 15 25 34 48 61 106 15.784 6 9 10 10 10

SitDownKneelTieShoes 8 5 7 8 9 13 20 166 22.165 7 8 8 8 8

SitDownTable 10 19 31 80 125 184 260 69 15.229 10 10 10 10 10

Skier 15 12 13 15 16 25 56 36 4.8012 13 15 15 15 15

Squat 26 23 24 26 26 26 27 48 5.6923 24 26 26 26 26

StaircaseUp3 14 9 11 18 32 59 143 77 11.649 11 13 13 14 14

StandUpKneelToStand 8 4 6 15 26 53 89 49 6.864 5 7 7 7 7

StandUpLieFloor 10 3 7 10 14 18 23 129 16.473 7 8 8 10 10

StandUpSitChair 10 7 15 18 32 50 74 70 9.337 10 10 10 10 10

StandUpSitFloor 10 9 10 18 25 39 58 94 12.446 6 8 10 10 10

StandUpSitTable 10 29 53 104 191 266 345 59 15.5010 10 10 10 10 10

ThrowBasketball 7 3 5 5 16 38 68 94 12.333 5 5 7 7 7

ThrowFarR 7 3 8 11 20 62 92 128 17.613 7 7 7 7 7

ThrowSittingHighR 7 3 7 11 14 19 29 72 9.193 6 7 7 7 7

ThrowSittingLowR 7 3 7 11 14 31 53 66 9.273 7 7 7 7 7

ThrowStandingHighR 7 4 5 22 48 129 210 78 13.394 5 6 7 7 7

ThrowStandingLowR 7 5 7 18 128 247 340 81 15.595 6 7 7 7 7

TurnLeft 15 37 72 195 310 397 489 49 16.5012 15 15 15 15 15

TurnRight 15 39 81 174 261 344 427 54 16.3811 13 14 15 15 15

WalkFwdRFootStart4 8 17 21 25 44 69 131 82 11.427 7 8 8 8 8

WalkBwdRFootStart4 7 6 7 7 24 72 101 97 13.416 7 7 7 7 7

WalkCrossoverRight3 6 6 7 14 24 32 56 136 17.876 6 6 6 6 6

WalkSidewaysRight3 8 7 8 11 14 28 49 123 16.087 8 8 8 8 8

WalkLeftCircle4 9 13 21 24 41 73 118 83 11.617 8 9 9 9 9

WalkRightCircle4 7 14 18 22 41 67 129 84 11.785 6 7 7 7 7

Walk(Crossover & Sideways)Right3 14 13 14 18 29 49 69 135 17.9513 14 14 14 14 14

Table 5.3. Second part of the retrieval results for the evaluation database DMCE for various class
MTs. See Tab. 5.2 for an explanation.

Then, as a preprocessing step, we extract those segments from the unknown motion
database D that exhibit feature vectors matching the specified keyframes in the correct order
within suitable time bounds. More precisely, let v1, . . . , vJ ∈ {0, 0.5, 1}f be the sequence of
selected keyframe columns from the quantized MT, and let Y ∈ {0, 1}f×K be the feature
matrix for D. We are looking for minimal integer intervals [a : b] ⊆ [1 : K] such that there
exists an ascending sequence of frame numbers a = k1 < k2 < · · · < kJ = b satisfying

∀j ∈ [1 : J ] : Y (kj) ⋐ vj ∧ kJ − k1 + 1 ≤ T, (5.3)
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where for y ∈ {0, 1}f and v ∈ {0, 0.5, 1}f we define

y ⋐ v :⇔ yI(v) = vI(v), (5.4)

with I(v) := {i ∈ [1 : f ] | vi 6= 0.5}, similar to (5.1). In other words, the comparison of
y and v ignores the “gray” entries (vi = 0.5). The threshold T > 0 denotes the maximum
admissible temporal separation between the occurrence of the first and the last keyframe.

This preselection can be done efficiently using inverted lists as described in Sect. 4.2.1.
Similar to (4.10), we construct for each vj , j ∈ [1 : J ], a corresponding fuzzy set

Vj :=
{

v ∈ {0, 1}f | v ⋐ vj

}
. (5.5)

As in the case of adaptive fuzzy queries (Sect. 4.1.3), we assume that (V1, . . . , VJ) is an
admissible fuzzy query, where neighboring fuzzy sets are disjoint. Similar to (4.8), let Lj :=
L(Vj) be the sorted union of inverted lists corresponding to Vj . Since we are interested in
frame numbers rather than segment numbers (as stored in the inverted lists), we use the
additional information about segment boundaries stored along with the index to convert the
inverted lists Lj into suitable lists of frame numbers. For any segment number h pertaining
to the F -segmentation of D, let s(h) and e(h) denote the corresponding start and end frames,

respectively. Writing the jth inverted list as Lj = (h1
j , . . . , h

ℓj

j ), we first define the first list of
representative frame numbers

Λ1 := (e(h1
1), . . . , e(h

ℓ1
1 )), (5.6)

containing the end frames of the segments corresponding to L1. The remaining lists Λj for
2 ≤ j ≤ J are defined as

Λj := (s(h1
j ), . . . , s(h

ℓj

j )), (5.7)

containing the start frames of the segments corresponding to Lj . We make this distinction
for the following reason: recall that we are interested in finding minimal integer intervals
[a : b] ⊆ [1 : K] and corresponding sequences a = k1 < k2 < · · · < kJ = b satisfying
the property (5.3). For any such minimal sequence, k1 will be the end frame of a segment
matching v1, and kJ will be the start frame of a segment matching vJ . Hence, it is sufficient
to restrict our search to such frames.

Next, we perform a linear, simultaneous sweep through the Λj using the pointers p1, . . . , pJ ,
which are initialized to 1. The first candidate for a start index is a = k1 := Λ1(p1), since,
by construction, Y (k1) ⋐ v1. Incrementing the list pointer p2, we then search the second
inverted list for a candidate position k2 := Λ2(p2) with k2 > k1 satisfying |k2 − k1| ≤ T . If
such a k2 exists, we continue with the third list in the same fashion, and so on. In case a
sequence of indices k1 < k2 < . . . < kJ can be constructed in this way, we report a match
[a : b] = [k1 : kJ ], increment p1, and then restart the procedure at Λ1. If at any point during
the procedure a suitable kj cannot be found, we know that the current k1 cannot be the
starting position a of an interval [a : b] satisfying (5.3). The search is therefore restarted with
a new k1. If at any point a list pointer passes the end of its list, the procedure is terminated.

The matched intervals may not be disjoint. For example, this can be observed in periodic
motions such as walking. To minimize the amount of data that has to be processed by the
subsequent DTW matching, we perform another linear postprocessing sweep through the
matched intervals, conjoining overlapping intervals. To account for possible global differences
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(a) Automatic keyframe selection

Motion Class C #(kf) sel (m) sel (%) t(kf) γ |H0.06| |H+
0.06| t(∆C)

CartwheelLeft 2 2.8 1.3% 0.02 24 21 20 0.83
ElbowToKnee 2 0.8 0.4% 0.03 29 16 16 0.13
GrabHighRHand 2 8.9 4.2% 0.14 30 128 30 2.77
HopRightLeg 2 1.7 0.8% 0.25 75 81 64 0.27
JumpingJack 2 1.5 0.7% 0.09 52 50 50 0.19
KickFrontRFoot 2 3.2 1.5% 0.03 38 73 36 0.58
KickSideRFoot 2 2.2 1.0% 0.11 38 46 38 0.34
LieDownFloor 2 15.3 7.2% 0.06 20 24 16 4.42
RotateRArmFwd1 2 0.5 0.2% 0.48 66 6 5 0.17
SitDownChair 2 16.2 7.6% 0.11 20 27 4 3.00
Squat 2 2.2 1.1% 0.08 56 55 55 0.33
WalkCrossoverRight3 2 12.9 6.1% 0.03 16 137 16 4.33

(b) Manual keyframe selection

Motion Class C #(kf) sel (m) sel (%) t(kf) γ |H0.06| |H+
0.06| t(∆C)

GrabHighRHand 3 3.2 1.5% 0.16 30 59 30 1.08
LieDownFloor 3 6.5 3.1% 2.75 20 19 19 2.86
RotateRArmFwd1 3 1.0 0.5% 0.33 66 32 32 0.63
SitDownChair 3 3.8 1.8% 0.17 20 34 16 1.28
WalkCrossoverRight3 5 4.9 2.3% 0.14 16 66 16 2.06

Table 5.4. Upper: Retrieval results for the database D210 and τ = 0.06 based on automatic keyframe
selection. The second to fourth columns indicate the number of keyframes, the size of the preselected
data set in minutes and percent as well as the running time for the preprocessing step. γ is the
number of relevant motions in D210. |H0.06| and |H+

0.06| denote the number of hits and the number
of relevant hits, respectively. t(∆C) indicates the running time in seconds required to compute ∆C on
the preselected motions. Lower: Retrieval results for manually selected keyframes.

in motion speed between the MT and the unknown motion, we further extend the resulting
intervals by a certain number of frames ℓ and r to the left and to the right, respectively.
Assuming that the keyframes v1, . . . , vJ correspond to columns X(i1), . . . , X(iJ) from an MT
X ∈ [0, 1]f×K , we choose ℓ := 3i1 and r := 3(K− iJ +1). Furthermore, we choose the interval
length threshold T := 2(iJ − i1 +1), accounting for motions that are slower than the template
by up to a factor of 2.

Once a set of suitable motion segments has been precomputed in this way, we compute
the distance function ∆C only on those motion segments. This strategy has been applied
to our (unlabeled) 210-minute database D210, which was introduced in Sect. 5.1.2. Some
retrieval results as well as running times are summarized in Table 5.4 (a). To assess retrieval
quality, we manually inspected the set H0.06 of hits as well as the database D210 for each
class to determine the set H+

0.06 of relevant hits. For example, the database D210 contains
24 left cartwheels. Using two automatically determined keyframes, it took 20 milliseconds to
reduce the data from 210 to 2.8 minutes—1.3% of the original data. Then, MT retrieval was
performed on the preselected 2.8 minutes of motion, which resulted in 21 hits and took 0.83
seconds. These hits contained 20 of the 24 cartwheels.

Even though keyframes are a powerful tool to significantly cut down the search space,
there is also an attached risk: a single inappropriate keyframe may suffice to produce a large
number of false negatives. For example, this happened for the classes listed in Table 5.4 (b).
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For these classes, using more appropriate, manually selected keyframes led to a significant
improvement. A further benefit of the keyframe approach is that the large number of false
positives, as typical for short and unspecific motions, can be easily cut down by adding a
single keyframe. See, for example, the motion class ‘GrabHighRHand’ in Table 5.4 (a).

As a further test, we used the 180-minute database DCMU
180 containing motion capture

material from the CMU database [CMU03]. Similar results and problems can be reported as
for D210. Interestingly, our class MT X for ‘CartwheelLeft’ yielded no hits at all—as it turned
out, all cartwheels in DCMU

180 are right cartwheels. We modified X by simply interchanging the
rows corresponding to feature pairs pertaining to the right/left part of the body, see Table 3.2.
Using the resulting mirrored MT, four out of the known five cartwheels in DCMU

180 appeared
as the only hits. As a second interesting result, no relevant hits were reported as top hits
for our ‘Squat’ MT. A manual inspection showed that for all squatting motions of DCMU

180 the
arms are kept close to the body, whereas in the training motions the arms are consistently
stretched out in front of the body. Manually modifying the class MT by masking out the
features for the arm motions, we were able to retrieve most squatting motions from DCMU

180 .
In other words, the class MTs are invariant only under those variations that are reflected
by the training motions. Due to their semantic meaning, class MTs can easily be modified
in an intuitive way without any additional training data. Even designing a class MT from
scratch (without resorting to any training motions) proved to be feasible. For example, to
identify ‘sweeping with a hand brush’ in DCMU

180 , we defined an MT of length 50, setting all
matrix entries to 0.5 except for the rows corresponding to F13 (right hand fast), F32 (spine
horizontal), and F33 (right hand lowered), which were set to one. Eight out of ten hits in
DCMU

180 were relevant.

5.2.5 Comparison to Other Retrieval Methods

We compared our MT-based retrieval system to several baseline methods using subsequence
DTW on raw motion capture data with suitable local distance measures. It turned out that
such baseline methods show little or no generalization capability. The database (3.8 minutes,
or 6,750 frames sampled at 30 Hz) consisted of 100 motion clips: ten different realizations for
each of ten different motion classes. For each of the ten motion classes, we performed motion
retrieval in four different ways:

(MT) retrieval using a quantized class MT,

(RF) DTW using the relational feature matrix of a single example motion and Manhattan
distance,

(Q) DTW using unit quaternions and the cost measure cquat, and

(3D) DTW using 3D joint coordinates (normalized w. r. t. root rotation and size) and Eu-
clidean distance.

For each strategy, we computed a ∆ curve as in Fig. 5.6 and derived the top 5, top 10, and
top 20 hits. Table 5.5 shows the resulting recall values (note that there are exactly 10 correct
hits for each class) for five representative queries. As a further important quality measure of a
strategy, we computed the separation quotient, denoted by s, which is defined as the median of
∆ divided by the median of the cost of the correct hits among the top 10 hits. The larger the
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Motion Class rMT
5/10/20 sMT rRF

5/10/20 sRF r
Q
5/10/20 sQ r3D

5/10/20 s3D

CartwheelLeft 5/10/10 12.83 5/10/10 1.62 4/6/7 1.63 1/1/2 2.38
Squat 5/10/10 259.5 5/10/10 16.1 5/7/9 2.79 4/6/7 2.52
LieDownFloor 5/9/10 11.65 5/9/10 2.10 4/7/9 1.69 2/3/7 1.29
SitDownFloor 4/6/10 19.33 3/4/8 1.60 2/5/7 2.13 3/5/8 1.56
GrabHighRHand 5/7/9 33.93 5/8/8 9.72 3/5/8 3.39 1/3/4 2.22

Table 5.5. Recall values (r) in the top 5/10/20 ranked hits and separation quotients (s) for different
DTW-based retrieval methods: motion templates (MT), relational feature matrices (RF), quaternions
(Q), and relative 3D coordinates (3D).

value of s, the better the correct hits are separated from the false positives, enabling the usage
of simple thresholding strategies on ∆ for the retrieval. Only for our MT-based strategy, the
separation is good enough. These observations indicate that MT-based retrieval significantly
outperforms the other methods. More results can be found at our web site [MR06a].

We also compared MT-based retrieval to adaptive fuzzy querying as introduced in Chap. 4.
Recall that the performance of adaptive fuzzy querying heavily depends on the query formu-
lation, which involves manual specification of a query-dependent feature selection. For each
query, we carefully selected a suitable subset of features. The resulting precision/recall values
on DMC are very good and reflect what seems to be achievable by adaptive fuzzy querying,
see Table 5.6. For MT-based retrieval, we quote precision/recall values for two quality thresh-
olds, τ = 0.02 and τ = 0.06. Our experiments show that the retrieval quality of our fully
automatic MT-based approach is in most cases as good and in many cases even better than
that obtained by adaptive fuzzy querying, even after hand-tweaking the feature selection.
Hence, our MT-based approach enables us to replace manual, global feature selection by fully
automatic, local feature selection without loss of retrieval quality.

5.3 Related Work

Our MT-based approach to motion classification differs from other techniques in that we
work with an explicit motion representation learned exclusively from positive training exam-
ples describing the respective motion class. This is in contrast to typical supervised learning
techniques such as support vector machines (SVM) [DHS00], where classifiers are trained
from examples that are potentially labeled by many different classes. For SVM-based classi-
fiers, changing or adding only one training example may have an impact on the classification
performance for all classes known to the classifier—that is, the classifier implicitly uses the
information that there is a limited, known number of classes. As for MTs, only the single
MT corresponding to the respective class changes if a training motion is changed or added.
Each MT can then serve as a detector for the presence of a single motion class. Consequently,
a given set of MTs does not define a partition on the set of all possible motions: a motion
can be matched by many MTs. Having this in mind, we review some of the recent work on
motion classification, recognition, and annotation.

Arikan and Forsyth [AFO03]. Arikan and Forsyth propose a technique to synthesize realistic
motion sequences from user-specified, textual action commands where automatically selected
bits of a motion database are blended together. In a preprocessing step, each frame of
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elbow-to-knee cartwheel jumping jack hop both legs hop right leg

Adaptive fuzzy

recall 24/27 = 0.89 21/21 = 1.00 51/52 = 0.98 21/36 = 0.58 33/42 = 0.79

precision 24/26 = 0.92 21/21 = 1.00 51/55 = 0.93 21/34 = 0.62 33/182 = 0.18

ranking top 5 | 10 | 20 5 | 10 | 20 5 | 10 | 20 5 | 10 | 20 4 | 8 | 16 5 | 10 | 20

MT-based retrieval

recall (τ = 0.02) 23/27 = 0.85 12/21 = 0.57 51/52 = 0.98 34/36 = 0.94 40/42 = 0.95

precision (τ = 0.02) 23/23 = 1.00 12/12 = 1.00 51/51 = 1.00 34/38 = 0.89 40/40 = 1.00

recall (τ = 0.06) 27/27 = 1.00 19/21 = 0.90 52/52 = 1.00 36/36 = 1.00 42/42 = 1.00

precision (τ = 0.06) 27/27 = 1.00 19/19 = 1.00 52/52 = 1.00 36/69 = 0.52 42/73 = 0.57

hit on head kick right sit down lie down rotate both arms

Adaptive fuzzy

recall 12/13 = 0.92 25/30 = 0.83 16/20 = 0.80 19/20 = 0.95 16/16 = 1.00

precision 12/14 = 0.86 25/41 = 0.61 16/40 = 0.40 19/21 = 0.90 16/16 = 1.00

ranking top 5 | 10 | 20 5 | 9 | 12 5 | 8 | 15 5 | 7 | 10 5 | 10 | 18 5 | 10 | 16

MT-based retrieval

recall (τ = 0.02) 12/13 = 0.92 14/30 = 0.47 14/20 = 0.70 16/20 = 0.80 16/16 = 1.00

precision (τ = 0.02) 12/158 = 0.08 14/18 = 0.77 14/14 = 1.00 16/19 = 0.84 16/16 = 1.00

recall (τ = 0.06) 13/13 = 1.00 26/30 = 0.87 17/20 = 0.85 19/20 = 0.95 16/16 = 1.00

precision (τ = 0.06) 13/500 = 0.03 26/196 = 0.13 17/21 = 0.81 19/64 = 0.30 16/16 = 1.00

walk up staircase walk walk backwards walk sideways walk cross over

Adaptive fuzzy

recall 22/28 = 0.79 15/16 = 0.94 8/15 = 0.53 16/16 = 1.00 10/13 = 0.77

precision 22/23 = 0.96 15/33 = 0.45 8/22 = 0.36 16/17 = 0.94 10/13 = 0.77

ranking top 5 | 10 | 20 5 | 10 | 20 2 | 6 | 12 4 | 8 | 8 5 | 10 | 16 5 | 10 | 10

MT-based retrieval

recall (τ = 0.02) 22/28 = 0.76 15/16 = 0.94 15/15 = 1.00 16/16 = 1.00 13/13 = 1.00

precision (τ = 0.02) 22/22 = 1.00 15/45 = 0.33 15/15 = 1.00 16/16 = 1.00 13/13 = 1.00

recall (τ = 0.06) 27/28 = 0.96 16/16 = 1.00 15/15 = 1.00 16/16 = 1.00 13/13 = 1.00

precision (τ = 0.06) 27/67 = 0.40 16/88 = 0.18 15/57 = 0.26 16/19 = 0.84 13/48 = 0.27

Table 5.6. Comparison of hand-tuned fuzzy queries and MT-based queries on a subset of DMC.
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the motion database has been assigned to one or several predefined motion classes. This
assignment is performed by a semi-automatic annotation procedure using support vector
machine classifiers based on 3D trajectory data. Ramanan and Forsyth [RF03] also apply this
annotation technique for 3D motion data as a preprocessing step for automatic annotation of
2D video recordings of human motion, using hidden Markov models (HMMs) to match the
2D data with the 3D data.

Green and Guan [GG04]. Inspired by speech recognition with HMMs, Green and Guan
[GG04] use progressions of kinematic features such as motion vectors of selected joints, so-
called dynemes, for their video-based motion recognition system. Before a motion class can
be recognized, the structure of the HMM for that motion class has to be manually assembled
from a set of given building blocks and then has to be trained with suitable training data.
See also Sect. 2.3 for a discussion of their technique.

Gesture, dance, and gait recognition. Wilson and Bobick [WB99] apply HMMs for video-
based gesture recognition. Their main contribution is a parametrization of the HMM’s output
probabilities that enables certain aspects of gestures to be controlled by continuous param-
eters. As an example, they quote the gesture of “showing off the size of a fish that one
caught”. Here, the distance of the hands during the performance of the gesture has an impor-
tant meaning, which can be captured by their model. Opposed to such HMM-based motion
representations, where timing information is encoded in the form of transition probabilities,
MTs encode absolute and relative lengths of key events explicitly.

The motion recognition system described by Campbell and Bobick [CB95] is based on
a joint angle representation and has been applied to recognize the presence of nine different
types of ballet moves from unsegmented motion data streams. Similar to MTs, their technique
may also detect the presence of several motion classes at the same time.

Bissacco et al. [BCMS01] work with state-space (ARMA) models of 3D joint angles derived
from 2D video data to roughly distinguish three different types of gait (“walking”, “running”,
“climbing stairs”).

Temporal segmentation. Temporal segmentation of motion data, i. e., the process of break-
ing up continuous mocap data streams into groups of consecutive, logically related frames, is
another important task. Pure segmentation techniques, as opposed to classification/recognition
techniques, do not assign class labels or meaning to motion subclips. Typical examples are
the methods by Fod et al. [FMJ02] and Barbic et al. [BSP+04].



Chapter 6

Conclusions and Future Work

Motivated by the problem of identifying logically related motions even in the presence of
significant spatio-temporal variations, we have introduced a new class of boolean, relational
features—opposed to quantitative, numerical features used in previous approaches. These
features exploit a key property of mocap data, namely that each joint in a mocap data
stream has an explicit meaning. Our features are designed to inherit these explicit semantics,
thereby providing a basis for intuitive query formulation. While suitable combinations of
relational features are capable of absorbing spatial variations, we have seen that our concept of
temporal segmentation can absorb temporal variations that may distinguish similar motions.
Together, the concepts of relational motion features and feature-driven temporal segmentation
become a powerful tool for flexible, efficient, and automatic content-based motion retrieval
and classification.

Extending the notion of fault-tolerant fuzzy retrieval, we have proposed the concept of
adaptive fuzzy search to efficiently query large databases using the query-by-example mode.
Adaptive fuzzy search allows for the segmentation of the motion database to be automatically
adjusted to the fuzziness of the query at query time. The underlying index structure based
on inverted lists is very simple and only needs to be precomputed once. Furthermore, the
space and time complexity of indexing is linear in the size of the database. This solves
the problem of scalability emerging in DTW-based approaches such as the match web, see
[KG04]. While our methods are tuned towards generating false positive matches rather than
false dismissals, we have seen that simple ranking techniques can separate the correct hits
from the false positives. We have also sketched how our methods can be applied to accelerate
DTW-based time alignment of motion capture data streams: using simple boolean relations,
a rough pre-alignment can be computed that can then be refined by means of DTW.

As a drawback of the index-based retrieval approach, we have seen that motion variations
such as “insertions” or “deletions” of certain events cannot be handled, which is the price
that one pays for efficiency. As a further disadvantage in view of automation, our retrieval
scenario requires the user to select suitable features for each query in order to obtain high-
quality retrieval results. This is not feasible in case many different motion clips are to be
batch processed, as necessary in morphing and blending applications. We have sketched
a combinatorial method of trying out different feature functions, efficiently retrieving the
corresponding hits, and ranking the results.

Our final contribution was the introduction of motion templates and related techniques.
An MT encodes the characteristic as well as the variable aspects of a motion class in a single,
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compact matrix representation. We proposed an automatic procedure to learn a class MT
from example motions. We then applied class MTs to motion classification and retrieval.
By automatically masking out the variable aspects of a motion class in the retrieval process,
related motions can be automatically identified even in the presence of large variations and
without any user intervention. Extensive experimental results show that our methods work
with high precision and recall for whole-body motions and for longer motions of at least a
second. More problematic are very short and unspecific motion fragments. Here, the use of
suitably defined keyframes is a promising concept to not only speed up the retrieval process,
but also to eliminate false positives.

6.1 Future work

So far, our relational features have been manually designed. Automatic, combinatorial meth-
ods using standard data analysis techniques such as PCA did not result in useful features due
to the lack of semantics of arbitrary combinations of, for example, plane-defining joints. Here,
suitable alternatives facilitating automatic feature design have to be found. Somehow, the
statistics of a training motion database have to be incorporated in the feature design process
in a meaningful way.

Despite providing flexible fault-tolerance mechanisms, our index-based retrieval algorithms
still lead to a rather strict notion of motion similarity due to inherent limitations. In the spirit
of keyframes as discussed in Sect. 5.2.4, we plan to further investigate combined techniques
involving efficient index-based preselection and DTW-based methods. We have seen that a
single misplaced keyframe can lead to a large number of false dismissals. Hence, our heuristic
method of keyframe selection needs to be improved, incorporating more factors than just the
number of consistent entries contained in a column of an MT. Here, it might be possible to
use similar methods as described in [ACCO05], or genetic algorithms [Dem06].

We plan to extend our concepts, which are currently based on skeleton-based mocap data,
towards pure 3D trajectory data without bone length constraints (such as the widely used
C3D format), so as to make our techniques more readily applicable in computer animation and
computer vision. In collaboration with the HdM school of media sciences (Stuttgart), we also
plan to investigate how motion templates may be used as a tool for specifying animations—
replacing a keyframe-based by a template-based animation concept—similar to approaches
such as [RCB98, AFO03]. Further ideas regarding possible applications of relational features
and the MT concept involve motion classification scenarios appearing in fields such as sports
performance analysis, rehabilitation, or the stabilization and enhancement of markerless,
video-based motion capture [CH05].

As a theoretical issue, the convergence of the DTW-based warping and averaging algorithm
for MT computation has so far not been proven. Also, it would be interesting to assess
the suitability of this algorithm for multiple alignment problems. We are also planning to
compare motion templates with HMMs, and to compare the classification performance of
MTs to machine learning techniques such as SVMs.

Finally, it would be extremely valuable to the research community if publicly available
motion databases such as CMU [CMU03] were annotated by motion class labels at the frame
level, thus making experimental results comparable. For example, lacking such a common
database, it was not possible for us to objectively compare and combine our retrieval results
with those of related techniques such as the match web by Kovar and Gleicher [KG04].



Appendix A

Representing Rotations of R3

We have seen in Sect. 1.3 that rotations of three-dimensional Euclidean space play an im-
portant role in encoding motions via kinematic chains and forward kinematics (FK). Beyond
FK, various other problems involving kinematic chains are of interest, for example inverse
kinematics (IK), forward dynamics (FD), and inverse dynamics (ID). Given a fixed skeleton
and a set of joint positions and rotations, IK deals with the problem of finding suitable values
for the skeleton’s free parameters. In analogy, FD and ID deal with the problem of relat-
ing physical parameters such as time-dependent forces and torques to time-dependent joint
positions and rotations for a fixed skeleton. Such problems are typically solved by means of
optimization and interpolation methods involving rotations, thus requiring different kinds of
rotational representations. Apart from FK, IK, FD, and ID, a large number of motion editing,
warping, and blending techniques work with different rotational representations, for example
[BW95, Pop99, PB02]. This also holds true for numerical comparison of mocap data, see
[HPP05, SKK04, WCYL03]. Based in parts on [Fau01, För98, Gra98, Koe92, Sch97, Sho85],
this section presents some of the associated rotational representations and provides a basis
for Appendix D, where we give an overview of common mocap file formats.

Fundamental Properties of Rotations. A 3D rotation is a linear, bijective mapping of
R

3 onto itself that preserves angles, lengths, and “handedness”, thus mapping right-handed
orthonormal bases into right-handed orthonormal bases. In referring to the sign of the deter-
minant, we deliberately use the term “handedness” instead of “orientation” since the term
orientation is used in the graphics and vision communities to denote the rotational positioning
of an object in 3D, see [Fau01]. In this sense, rotations describe orientations in 3D. From
an abstract point of view, the set of all 3D rotations forms a subgroup of the automorphism
group Aut(R3), the so-called special orthogonal group of R3,

SO(R3) = {F ∈ Aut(R3) | F ∗ = F−1, detF = 1}, (A.1)

where F ∗ is the adjoint of F . SO(R3) is a three-dimensional Lie group. Unlike SO(R2), the
group SO(R3) is non-Abelian.

Parametrizations of SO(R3). Since the abstract rotation group SO(R3) is inaccessible to
practical computations, we study some of its parametrizations, i. e., continuous, surjective
mappings from a parameter space P onto SO(R3). Usually, P ⊆ R

n for some n ≥ 3. Desirable
properties of such a parametrization Π : P → SO(R3) are
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1. Uniqueness: Π should be bijective.

2. Compatibility with group structure of SO(R3): multiplication and inversion in SO(R3)
as well as the action of SO(R3) on R

3 should be easily expressible in terms of the
respective parameter vectors,

3. Continuity of inverse: the inverse image of a closed path in SO(R3) under Π should be
a closed path in P .

Especially the last property is often violated. The discontinuity of the parametrization’s
inverse can then lead to a situation where very similar rotations are encoded by very different
parameter vectors, thus precluding a meaningful comparison of rotations by their parameter
vectors.

The remainder of this chapter is structured as follows. Starting from the well-known
matrix representation in Sect. A.1, we introduce the axis/angle (Sect. A.2), quaternion
(Sect. A.3), and exponential parametrizations (Sect. A.4), which are closely related to each
other. We then discuss different types of Euler angle parametrizations in Sect. A.5. Each
of these parametrizations has its advantages and disadvantages, which are summarized in
Tab. A.1. Finally, Sect. A.6 provides a collection of conversion formulas between Euler an-
gles, quaternions, and rotation matrices.

A.1 Rotation Matrices

The most elementary parametrization of the rotation group is obtained by fixing a right-
handed orthonormal basis of R3. Then, any F ∈ SO(R3) can be uniquely represented as an
element of the matrix group

SO3 = {R ∈ GL3(R) | R⊤ = R−1, detR = 1}, (A.2)

as we have implicitly exploited in Sect. 1.3. The condition R⊤ = R−1 ⇔ RR⊤ = E3 implies
that the row and the column vectors of a matrix R ∈ SO3 form an orthonormal basis, and
the condition detR = 1 implies that the orientation of this basis is right-handed. Since
the columns of any matrix A are the image of the chosen basis under the action of the
endomorphism represented by A, these conditions are a restatement of the property that
rotations map right-handed orthonormal bases into right-handed orthonormal bases. These
facts make it easy to visualize the action of a rotation matrix on R

3, cf. Fig. 1.5.

The action of a rotation matrix becomes even clearer by the following considerations. It
can be shown that every R ∈ SO3 has the eigenvalue 1 with a corresponding one-dimensional
R-invariant subspace, the axis of rotation. The other two eigenvalues are complex conjugates
of the form e±iα, α ∈ (−π, π]. It turns out that there is a corresponding two-dimensional
R-invariant subspace, the plane of rotation, which is orthogonal to the axis of rotation, and
that R describes a two-dimensional rotation by an angle of α within the plane of rotation.
This implies that an axis of rotation and an angle describing the amount of rotation about
this axis can be found for every R ∈ SO3. The resulting axis/angle parametrization will be
set aside until Sect. A.2.

Performing a change of basis by a 3× 3 change matrix C, the columns of which form an
orthonormal basis composed of the axis of rotation and an arbitrary orthonormal basis of the
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matrix axis/angle quaternion exp Euler

redundancy / storage requirements - - + + ++ ++

uniqueness of representation ++ ◦ + + - -

overhead for handling parametrization - ◦ + - -

composing rotations + ◦ ++ ◦ -

computing action of rotation on vector + ◦ + ◦ -

inverting rotations ++ ++ + ++ ◦
constraining rotations ◦ + + + ++

parameter estimation ◦ ◦ + ++ -

differentiation, integration, optimization - + - ++ ◦
interpolation properties - - - ++ ◦ - -

global numeric stability ++ ++ ++ ◦ - -

comparing rotations by parameters ◦ + ++ + - -

geometric interpretation + ++ + + ++

ease of use, manually defining rotations ◦ + - + ++

Table A.1. Qualitative comparison of five different parametrizations of the rotation group SO(R3).
Depending on the respective property, the symbol “+” stands for easy/good, the symbol “-” for
difficult/bad, and the symbol “◦” for pros and cons/neutral/not applicable.

plane of rotation, the matrix representation of R becomes

R′ = CRC−1 =




1 0 0
0 cos α − sinα
0 sinα cos α


 , (A.3)

describing a rotation about the x axis by an angle of α according to the right-hand rule1.
Thus, every 3×3 rotation matrix is similar to a matrix of the form (A.3). Such basic rotations
about the coordinate axes will play an important role in the Euler angle parametrization, see
Sect. A.5.

Just like the isomorphic SO(R3), the matrix group SO3 is a three-dimensional Lie group.
Informally, it is straightforward to imagine why the dimension of SO3 must be three: there
are nine free entries in an arbitrary real 3×3 matrix R = (r1, r2, r3) with ri ∈ R

3, i = 1, 2, 3.
These nine entries are restricted by three nonlinear length conditions (|ri| = 1) and three
nonlinear orthogonality conditions (〈ri, rj〉 = 〈rj , ti〉 = 0 for i 6= j). It is noted in [Gra98]
that the restriction detR = 1 is subtly dependent on the previous six conditions, so it does
not count as an additional constraint. Thus, there are three degrees of freedom left, and six of
the nine parameters of the matrix representation are redundant. In the following, the group
SO(R3) and the matrix group SO3 are identified with each other.

Discussion. Rotation matrices are the standard choice when it comes to an algebraic treat-
ment of rotations. But even in practical implementations, rotation matrices are widely used in
spite of their redundancy. Often, 3× 3 rotation matrices appear in a natural way as building
blocks of 4× 4 homogeneous transformation matrices, which describe the more general class
of 3D projective mappings.

1Pointing the thumb of the right hand in the direction of the axis, the curled fingers indicate the direction
of rotation.
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Composing two rotations amounts to multiplying the corresponding 3×3 rotation matrices,
requiring 27 scalar multiplications and 18 scalar additions if carried out with naive matrix
multiplication. The action of a rotation on a vector can be computed by matrix-vector
multiplication, which requires 9 multiplications and 6 additions. Inverse rotations are obtained
by simply transposing the rotation matrix.

The problem of estimating a 3D rotation from observed point data is similar to the problem
of optimally aligning 3D point clouds w. r. t. 2D rigid motions as described in App. C. Given
two sets of observations, {p1, . . . , pK} ⊂ R

3 and {p′1, . . . , p′K} ⊂ R
3 with pi = Rp′i + εi for an

unknown rotation matrix R and noise vectors εi, the nine parameters of R can be estimated
in the following way. Writing the pi and p′i as the columns of the 3×K matrices P and P ′,
respectively, we can formulate the problem as ‖P − RP ′‖2 → min for some suitable matrix
norm ‖ · ‖. Up to certain degenerate cases, Arun et al. [AHB87] obtain the least-squares
solution from the singular value decomposition PP ′⊤ = UDV ⊤, where U, V ∈ O3 and D is
a 3 × 3 diagonal matrix, yielding the estimate R̂ = V U⊤ ∈ O3 ⊂ SO3. Umeyama [Ume91]
gives a simple extension to their algorithm that is guaranteed to provide the optimal solution
in SO3 even in degenerate cases.

Differentiation, integration, optimization of functions depending on a rotation, and inter-
polation of rotations are difficult with rotation matrices since these operations lead to or in-
volve matrices that are not elements of SO3. This, in turn, necessitates additional non-linear
constraints or, in numerical applications, frequent re-orthonormalization, which introduces
numerical errors, see [Gra98].

A.2 Axis/Angle

Any 3D rotation can be characterized by a directed axis of rotation Rv for v ∈ R
3 and an

angle of rotation, α ∈ (−π, π]. This allows us to define an axis/angle parametrization of SO3,
which maps pairs of unit-length vectors and angles to SO3,

R : S2 × S1 → SO3 . (A.4)

We will denote the rotation about the axis v by an angle of α by Rv(α). Of course, this
parametrization is not unique, since there are infinitely many parameters describing the iden-
tity (v arbitrary, α ∈ 2πZ). Here, one has to choose a single representative axis to represent
the identity, for example v = (1, 0, 0)⊤. Also, for any axis of rotation v ∈ S2, the negative,
−v, describes the same rotation if the angle of rotation is negated as well. It is therefore
sufficient to regard, for example, only the upper hemisphere of S2 together with one half
circle of the equator, one endpoint of which is removed.

The following theorem is due to the French mathematician Benjamin Olinde Rodrigues
(1794–1851) and provides an explicit conversion from axis/angle parameters to rotation ma-
trices, see [Fau01, Rod40].

Theorem A.1 (Rodrigues rotation formula) Let v ∈ S2 describe an axis of rotation and
let α ∈ (−π, π] be an angle of rotation. Then

Rv(α) = Dv + cos α (I3 −Dv) + sinα Sv, (A.5)
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where Dv is the dyadic product vv⊤, I3 is the 3 × 3 identity matrix, and Sv is the screw-
symmetric cross product matrix for v, defined by

Sv :=




0 −v3 v2

v3 0 −v1

−v2 v1 0


 . (A.6)

Proof: Applying the rotation about v to a vector p ∈ R
3, we obtain the vector p′ = Rv(α)p.

Now our goal is to find an expression for p′. We start by splitting the vector p into a component
p‖ that is parallel to v and a component p⊥ that is perpendicular to v, hence p = p‖ + p⊥.

The parallel component p‖ is the orthogonal projection of p onto v, so p‖ = 〈v, p〉v = v⊤pv =

vv⊤p = Dvp. Therefore, the perpendicular component is given by p⊥ = p−Dvp = (I3−Dv)p.
The rotation Rv(α) leaves p‖ unchanged, since p‖ is a scalar multiple of v, while the component

p⊥ is rotated by a 2D rotation within the orthogonal complement E := (span{v})⊥ of v.
We express this 2D rotation in a right-handed orthogonal basis for E, which is given by
(p⊥, v × p) = ((I3 −Dv)p, Svp). The vector v × p is perpendicular to both v and p⊥, and it
has the same length as p⊥ since ‖v× p‖ = ‖v× (p‖+ p⊥)‖ = ‖v× p⊥‖ = | sin π

2 |‖p⊥‖ = ‖p⊥‖.
This gives us the following expression for the rotated vector p′:

p′ = p‖ + cos α p⊥ + sinα (v × p)

= Dvp + cos α (I3 −Dv)p + sin α Svp (A.7)

= (Dv + cos α (I3 −Dv) + sinα Sv) p,

which concludes the proof. 2

Discussion. The axis/angle representation requires four parameters, where the redundant
DOF is the unit length constraint on the three axis parameters. The parametrization has
an intuitive geometric interpretation. Inverting a rotation given as an axis/angle pair can
be done by negating either the axis or the angle. Composing two rotations about the same
axis is trivial, but there is no easy way of composing rotations about different axes in terms
of their axis/angle representation. Applying an axis/angle rotation to a vector can either be
done by evaluating the Rodrigues formula or by first converting the axis/angle values to a
unit quaternion, see Sect. A.3. Many physically-based applications involving derivatives of
rotations for kinematics and dynamics make use of the axis/angle parametrization.

A.3 Quaternions

Similar to the axis/angle representation, the concept of quaternions allows for a compact
parametrization of 3D rotations by four parameters. From a differential geometric point of
view, the set of unit quaternions has a structure that is compatible with SO3 and is therefore
particularly well-suited for interpolation of rotations. Therefore, quaternions have become an
indispensable tool for the analysis and synthesis of human motions. In this section, we first
summarize some basic mathematical properties about quaternions and then describe their
relation to rotations. For further details, we refer to the literature such as [Por95, Sho85].

Quaternions have been introduced by Sir William Rowan Hamilton in 1843 as a non-
commutative extension of the complex numbers. Denoting the standard basis of R4 by the
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symbols 1, i, j, k, a quaternion q ∈ R
4 can be written uniquely as q = w + xi + yj + zk

for suitable w, x, y, z ∈ R. The part Re(q) := w ∈ R—a scalar—is called the real part of
q, whereas the part Im(q) := (x, y, z)⊤ ∈ R

3— a vector—is called the imaginary part of
q. A quaternion q is called pure if w = 0; the set of pure quaternions will be denoted
as H

0. In the following, we will also identify a vector p = (x, y, z)⊤ ∈ R
3 with a pure

quaternion p̃ := xi + yj + zk ∈ H
0. For two quaternions, q1 = w1 + x1i + y1j + z1k and

q2 = w2 + x2i + y2j + z2k, one defines the product quaternion q1 · q2 by

q1 · q2 := w1w2 − x1x2 − y1y2 − z1z2

+(w1x2 + w2x1 + y1z2 − z1y2)i (A.8)

+(w1y2 + w2y1 + z1x2 − x1z2)j

+(w1z2 + w2z1 + x1y2 − y1x2)k.

Now, it is an easy but tedious exercise to show that this indeed defines an associative and
distributive multiplication on R

4 with neutral element e = 1. Usually, one simply writes
q1q2 for q1 · q2. For a quaternion q = w + xi + yj + zk, the conjugate quaternion is defined
as q̄ := w − xi − yj − zk and the norm of q is defined as ||q|| :=

√
w2 + x2 + y2 + z2. A

straightforward computation shows that q−1 := q̄/||q||2 defines a right and left inverse in the
case q 6= 0, i. e., qq−1 = q−1q = 1. Note that the multiplication is not commutative—for
example, one has ij = −ji. Altogether, we have seen that R

4 equipped with vector addition
and the multiplication defined by (A.8) forms a skew field, which is often denoted by H in
honor of Hamilton.

For the imaginary numbers i, j, k ∈ H, the multiplication induces the following famous
relations:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. (A.9)

Actually, the multiplication in (A.8) is uniquely determined by these relations if one requires
the multiplication to be associative and distributive. Note that one also has ij = −ji,
jk = −kj, and ki = −ik. To obtain more readable formulas, one often writes a quaternion
q ∈ H as a tuple (s, v) with s = Re(q) and v = Im(q). Then, the following rules can be
formulated for quaternions q1 = (s1, v1) and q2 = (s2, v2):

q1q2 = (s1s2 − 〈v1, v2〉, s1v2 + s2v1 + v1 × v2) (A.10)

||q||2 = qq̄ = s2 + 〈v, v〉 (A.11)

q−1 =
(s,−v)

||q||2 . (A.12)

A quaternion of norm one is also referred to as a unit quaternion. The set of unit quaternions
forms a hypersphere S3 ⊂ H. It is not difficult to see that any unit quaternion q = w +
xi + yj + zk can be written as q = (cos α, u sinα) for a suitable angle α ∈ (−π, π] and
a unit vector u ∈ R

3: setting cos2 α := w2, we may conclude that x2 + y2 + z2 = sin2 α
due to the relation sin2 α + cos2 α = 1. Hence q = (cos α, u sinα) with the unit vector
u := (x, y, z)⊤/||(x, y, z)⊤||. The following results show that quaternions can be used to
describe rotations of R3.

Theorem A.2
(a) For every non-zero quaternion q ∈ H

∗ := H r {0}, the map ρq defined by

ρq(p) := qp̃q−1 (A.13)
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for p ∈ R
3, is a rotation of R3.

(b) Writing q ∈ H
∗ in the form q = (cos α, u sinα) for a suitable angle α ∈ (−π, π] and a

unit vector w ∈ R
3, ρq describes a rotation about the axis u by an angle of 2α.

(c) The map

ρ : H∗ → SO3, q 7→ ρq (A.14)

is a surjective group homomorphism from the multiplicative group H
∗ onto the group

SO3 with kernel R∗ := R r {0}. The restriction of ρ to S3 ⊂ H
∗ is also a surjective

group homomorphism with kernel {±1}.

Proof: Since ρ is homogeneous, i. e., ρq = ρλq for all λ ∈ R
∗ and q ∈ S3, we may restrict

our considerations to unit quaternions q, which we assume to be given as q = (s, v) =
(cos α, u sinα) with α ∈ (−π, π], u ∈ S2. We can then evaluate ρq(p) of (A.13), yielding the
quaternion p̃′:

p̃′ = qp̃q̄

= (s, v)(0, p)(s, −v)

= (−〈v, p〉, sp + v × p)(s, −v) (A.15)

= (−s〈v, p〉 − 〈sp + v × p, −v〉, v〈v, p〉+ s(sp + v × p) + (sp + v × p)× (−v))

= (0, 2v〈v, p〉+ 2s(v × p) + (s2 − ‖v‖2)p),

where the Grassmann identity a× (b× c) = b〈a, c〉 − c〈a, b〉 was used in the last step. With
the notation of Sect. A.2, this can be written as

p′ = (2Dv + 2sSv + (s2 − ‖v‖2)I3)︸ ︷︷ ︸
R(q)

p. (A.16)

Substituting s = cos α, v = u sinα, and ‖v‖2 = sin2 α, we obtain

R(q) = 2Dv + 2sSv + (s2 − ‖v‖2)I3

= 2 sin2 αDu + 2 cos α sinαSu + (cos2 α− sin2 α)I3

= (1− cos(2α))Du + sin(2α)Su + cos(2α)I3

= Du + cos(2α)(I3 −Du) + sin(2α)Su, (A.17)

where we used the double-angle formulas cos(2α) = 1−2 sin2 α = cos2 α−sin2 α and sin(2α) =
2 sinα cos α. The result (A.17) is exactly the Rodrigues rotation formula (A.5), describing a
rotation about the axis u by an angle of 2α. This proves (a) and (b).

To prove (c), one easily checks that the homomorphism properties ρq1q2 = ρq1 ◦ ρq2 and
ρ1H = 1SO3 hold. Furthermore, we found that ρ yields rotations according to the Rodrigues
rotation formula, so the surjectivity of ρ follows from the surjectivity of the axis/angle
parametrization, since one can define a surjective mapping (cos α, u sinα) 7→ (u, 2α) from
S3 to the axis/angle parameter space S2×S1, see Sect. A.2. The kernel properties of ρ follow
from ρq = 1SO3 ⇔ ∀p ∈ R

3 : ρq(p) = p ⇔ ∀p ∈ R
3 : qp̃ = p̃q, i. e., q is in the kernel of ρ iff

it commutes with all pure quaternions. The set of such quaternions q can be shown to be R.
The claimed properties for the restriction of ρ to S3 follow from the homogeneity of ρ. 2
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Example A.3 As an illustration, we consider the rotation of the vector p = (1, 0, 1)⊤ ∈
R

3 about the y axis by 2α = π. Regarded as a quaternion, p reads as p̃ = (0, 1, 0, 1)⊤.

By Thm. A.2 (b), the rotation is given by the quaternion q =
(
cos π

2 , sin π
2 (0, 1, 0)⊤

)⊤
=

(0, 0, 1, 0)⊤, the inverse of which is q−1 = q = (0, 0, −1, 0)⊤. Then

ρq(p) = qp̃q = (0, 0, 1, 0)⊤(0, 1, 0, 1)⊤(0, 0, −1, 0)⊤

= (0, 1, 0, −1)⊤(0, 0, −1, 0)⊤ = (0, −1, 0, −1)⊤. (A.18)

The map ρ describes a parametrization of rotations using S3 as the parameter space.
Identifying antipodal points on S3 as suggested by Thm. A.2 (c), one obtains the space
RP (3) := S3/{±1} known as real three-dimensional projective space. Then Thm. A.2 (c)
implies that ρ induces a bijective map RP (3) → SO3. Even more, one can show that this
map is continuous with a continuous inverse map. From a differential geometric point of view,
ρ exhibits the spherical geometry of SO3. The practical consequence of this parametrization
is that small changes of a rotation in SO3 also result in small changes of the correspond-
ing quaternion—the parametrization of SO3 based on quaternions is free from gimbal lock,
cf. Sect. A.5.4. Furthermore, any smooth path in SO3 corresponds to a smooth path in RP (3),
and vice versa.

Spherical Linear Interpolation. In animation systems, one often works with more or less
sparse sequences of keyframes. Each keyframe describes the state of an animated object, a
virtual camera, or a virtual light source. Then, the goal is to derive a smooth animation from
such a sequence of keyframes by using interpolation techniques for 3D positions as well as 3D
rotations. Due to the reasons discussed above, quaternions are ideally suited for interpolating
rotations.

There are many possible ways of interpolating between two unit quaternions q0, q1 ∈ S3.
For example, one could simply form convex combinations in R

4. Evaluating the convex
combination q(t) = tq0 + (1 − t)q1 for a parameter t ∈ [0, 1], one would obtain a straight
line of quaternions connecting q0 and q1 that cuts through the volume enclosed by the unit
sphere S3. Identifying the parameter t with time, one finds that such an interpolation leads to
rotations with non-constant angular velocity: while departing from the orientation described
by q0, the rotation accelerates and then decelerates while approaching q1, see [Sho85].

Here, the solution is to interpolate within S3. Then, the quaternion path runs along a unit
radius great circle arc on S3, resulting in a smooth interpolation between two orientations
by means of a time-dependent rotation of constant angular velocity. There are two different
approaches to computing the resulting spherical linear interpolation (slerp) between q0 and
q1, which both yield the same result, see [Sho85]. The first approach uses the group structure
of S3 and yields

slerp(t; q0, q1) = q0(q
−1
0 q2)

t (A.19)

for t ∈ [0, 1], where the quaternion power qt can be evaluated by the quaternionic logarithm
and the quaternionic exponential as exp(t log q), see Sect. A.4 and [Gra98, LS02]. The second
approach is geometrically motivated and gives

slerp(t; q0, q1) =
sin(1− t)α

sinα
q0 +

sin tα

sinα
q1, (A.20)

where 〈q0, q1〉 = cos α. For further details, we refer to [Sho85].
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Enforcing Path Continuity on S3. In real-world mocap data, angle trajectories are typ-
ically described by Euler angles, see Sect. A.5. Usually, the first step in any system that
processes mocap data is to convert the human-readable Euler angles into some representation
that is well-suited for practical computations, such as unit quaternions. The formulas given
in Sect. A.6.2 provide this conversion. Since we assume human motion to be continuous in
nature, we would like this continuity to be reflected in the angle trajectories. Of course, the
strict notion of continuity does not apply to our sampled data. However, unit quaternions
bear the risk of representing even continuous-time, unsampled motions as discontinuous tra-
jectories, since antipodal points on S3 are identified with each other. In effect, a continuous
path on S3 is free to jump to −q at any point q along the path while still representing the
same trajectory in SO3. Such an effect may also occur after our Euler-to-quaternion con-
version. The following simple strategy, see [Gra98, LS02], can be applied to suppress such
“flips” in a given sequence of unit quaternions q1, . . . , qT ∈ S3: construct a modified sequence
q′1, . . . , q

′
T ∈ S3, where successive quaternions are guaranteed to lie in the same hemisphere:

q′1 := q1

q′t+1 :=

{
qt+1, if 〈qt+1, qt〉 ≥ 0
−qt+1, otherwise.

(A.21)

Quaternion-to-Matrix Conversion. Given a unit quaternion q = (w, x, y, z)⊤ = (s, v), we
want to express the action of the “sandwich product” ρq on a vector p ∈ R

3 in matrix form.
We know from (A.16) that p′ = R(q)p with a rotation matrix

R(q) = 2Dv + 2sSv + (s2 − ‖v‖2)I3

=




2x2 2xy 2xz
2xy 2y2 2yz
2xz 2yz 2z2


+




0 −2wz 2wy
2wz 0 −2wx
−2wy 2wx 0


+ (w2 − x2 − y2 − z2)I3

=




w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy
2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx
2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2


 . (A.22)

Exploiting the unit length condition w2 + x2 + y2 + z2 = 1, we can achieve a slight
simplification of the diagonal entries:

R(q) =




1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2


 . (A.23)

These formulas are due to A. Cayley (1845). For an easy way of converting from rotation
matrices to quaternions, we refer to [Sho85].

Caveat: In the literature, especially in references from the graphics community such as
[Sho85], one also finds a transposed version of R(q). The reason is that the authors represent
vectors in R

3 as row vectors instead of column vectors.

Discussion. Quaternions are a compact representation of rotations using four real parame-
ters with one constraint (normalization of unit quaternion). The composition and inversion of
rotations correspond to multiplication and inversion in H, yielding easy and direct formulas.
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The equivalent to re-orthonormalization as required for rotation matrices during numeri-
cal computations is a simple re-normalization for unit quaternions. This operation is much
simpler to compute and does not change the rotation that is described by the quaternion.
Working with unit quaternions has the computational advantage that the inverse required in
(A.13) amounts to simple conjugation. Evaluating the map ρq for a unit quaternion q ∈ S3

on a vector p ∈ R
3 requires roughly as many multiplications as matrix-vector multiplication.

However, multiplying two quaternions requires only 16 scalar multiplications and 10 scalar
additions, cf. (A.10). Constraining rotations to a specified range using quaternions is possible
by the technique due to Liu and Prakash [LP03]. One of the main applications of quaternions
is spherical linear interpolation (slerp) for the purpose of computing meaningful intermediate
rotations. As a drawback, quaternions are not as intuitive as other parametrizations and are
therefore typically not found in the front end of applications involving 3D rotations.

A.4 Exponential Map

The Rodrigues rotation formula (A.5) was originally introduced as a shortcut for evaluating

the matrix exponential exp(S) =
∑∞

k=0
Sk

k! for skew-symmetric 3× 3 matrices S, see [Fau01].
It is easy to see that the matrix exponential of S must be a rotation matrix: from exp(S)⊤ =
exp(S⊤) = exp(−S), we obtain exp(S) exp(S)⊤ = exp(S−S) = I3, since S is a normal matrix
and therefore commutes with its transpose, and since commuting matrices A, B satisfy the
familiar relation exp(A) exp(B) = exp(A + B). Recall that the Rodrigues rotation formula
involved the skew-symmetric matrix Sv for a unit vector v ∈ R

3. It turns out that exp(αSv) =
Rv(α) for an angle α. Since the space of skew-symmetric 3×3 matrices is isomorphic to R

3 via
Sv, one can also define an exponential map R

3 → SO3 that directly maps vectors αv ∈ R
3 to

exp(αSv) = Rv(α). Now, such a construction still works if one replaces SO3 by the set of unit
quaternions, S3, see [Gra98]. To this end, we identify R

3 with the set of pure quaternions,
H

0, and define the quaternionic exponential map from H
0 to S3 as follows:

exp(0, v) :=





(1, 0, 0, 0)⊤ if v = (0, 0, 0)⊤(
cos
(
‖v‖
2

)
,

sin
(

‖v‖
2

)

‖v‖ v

)
otherwise,

(A.24)

where v ∈ R
3. We know from Sect. A.3 that the quaternion exp(0, v) describes a rotation

about the axis v by an angle of α := ‖v‖. The numerical instability as α approaches zero can
be handled by using the identity

sin
(

α
2

)

α
=

1

2
sinc

(α

2

)
, where sinc(x) :=

{
sin x

x
if x 6= 0

1 if x = 0,
(A.25)

since the sinc function is well-defined and continuous at the origin. In terms of Lie theory,
the quaternionic exponential maps the tangent space of S3 at the identity, T1S

3 ∼= H
0, to S3

while preserving distances and angles, see [BF01, LS02]. Exploiting the group structure of
S3, we can define the exponential map for the tangent space Tq0S

3 at an arbitrary quaternion
q0 ∈ S3 by means of a change of coordinates:

expq0
(q) := q0 exp(q−1

0 q), (A.26)

where q ∈ Tq0S
3.
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The resulting parametrization is not unique: adding multiples of 2π to the length of a
parameter vector v ∈ R

3 will yield the same rotation. However, by exploiting that a rotation
about v by α is equivalent to a rotation about −v by 2π − α, one can restrict the parameter
space to the open ball B := {v ∈ R

3 | ‖v‖ < π} by dynamic reparametrization, thus yielding
a one-to-one mapping from B to S3

r {(−1, 0, 0, 0)⊤}, see also [Gra98]. This allows us to
formulate a unique inverse mapping for the quaternionic exponential. Given a unit quaternion
q = (s, w) ∈ S3

r {(−1, 0, 0, 0)⊤}, we define the quaternionic logarithm of q as

log q :=

{ (
0, 2 arccos s

‖w‖ w
)

if q 6= (1, 0, 0, 0)⊤

(0, 0, 0, 0)⊤ otherwise .
(A.27)

Since the exponential map gives us ‖w‖ =
sin α

2
α

, where α = 2 arccos s, we can once again
use the sinc function to handle the numerical instability for α approaching zero: ‖w‖ =
1
2 sinc

(
α
2

) α→0−−−→ 1
2 . The quaternionic logarithm maps S3 to its tangent space at the identity,

T1S
3. In analogy to (A.26), we define the logarithm map for the tangent space Tq0S

3 at an
arbitrary quaternion q0 ∈ S3:

logq0
(q) := q0 log(q−1

0 q), (A.28)

where q ∈ S3
r {−q0}. One can check that expq0

◦ logq0
= logq0

◦ expq0
= idH for all q0 ∈ S3.

Discussion. The main advantage of the exponential map parametrization over the represen-
tations that have been discussed so far is that it only requires three parameters. Computing
the inverse rotation is simple, while composing rotations in terms of the parameter vector
is only possible if the axes are the same. To compute the action of a rotation on a vector,
one first has to evaluate the corresponding quaternion q and then use the mapping ρq. The
reason why the exponential map has become popular in computer animation, mainly for in-
verse kinematics and dynamics, are the good properties of the parametrization’s derivatives.
The exponential map is also used for interpolation and filtering of quaternion sequences, see
App. B.

A.5 Euler Angles

Leonhard Euler (1707-1783) proved that any 3D rotation can be expressed as a sequence of
three basic rotations about the coordinate axes. The three angles of rotation are referred to
as Euler angles, occasionally also as Tait-Bryan or Cardan angles, see also [Zat98]. In order
to use Euler angles as a parametrization for SO3, one has to make some choices:

• which axes to rotate about,

• in which order to rotate,

• whether to express rotations relative to a fixed coordinate frame or relative to a coor-
dinate frame that moves along with the basic rotations.

As usual, we will refer to the three axes of our right-handed coordinate system as x, y, and
z. For the time being, we will adhere to the following convention:

1. The first rotation, Rx(α1), rotates by an angle of α1 about the x axis of the coordinate
system (0; x, y, z).
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2. The second rotation, Ry(α2), rotates by an angle of α2 about the y axis of the coordinate
system (0; x, y, z).

3. The third rotation, Rz(α3), rotates by an angle of α3 about the z axis of the coordinate
system (0; x, y, z).

We will refer to this convention as the ←−−xyz Euler convention. The meaning of the arrow
will become clear in Sect. A.5.1, when we discuss the difference between fixed and moving
reference frames. At this point, we assume a fixed reference frame—the three rotation matrices
Ri ∈ SO3, i = 1, 2, 3, are representations of linear mappings with respect to the same basis.
The matrix representing the composition of these linear mappings is then obtained in the
usual way, i. e., by multiplying the respective matrices in a right-to-left sequence. Hence, the
effect of the above sequence of rotations is described by

R←−−xyz(α1, α2, α3) := Rz(α3)Ry(α2)Rx(α1), (A.29)

where the three basic rotation matrices are

Rx(α1) =




1 0 0
0 cos α1 − sinα1

0 sinα1 cos α1


 , (A.30)

Ry(α2) =




cos α2 0 sinα2

0 1 0
− sinα2 0 cos α2


 , (A.31)

Rz(α3) =




cos α3 − sinα3 0
sinα3 cos α3 0

0 0 1


 , (A.32)

with αi ∈ (−π, π]. Introducing the abbreviations ci := cos αi and si := sin αi for i = 1, 2, 3,
the final rotation matrix can be worked out to be

R←−−xyz(α1, α2, α3) = Rz(α3)Ry(α2)Rx(α1)

=




c3c2 −s3c1 + c3s2s1 s3s1 + c3s2c1

s3c2 c3c1 + s3s2s1 −c3s1 + s3s2c1

−s2 c2s1 c2c1


 (A.33)

The resulting Euler angle parametrization by can be thought of as a mapping

R←−−xyz : S1 × S1 × S1 → SO3 . (A.34)

As an example, let us consider the case αi = π
2 for i = 1, 2, 3. To visualize these Euler angles

under the ←−−xyz convention, place a book on the table in front of you so that the front cover
faces upwards and the spine of the book faces you. We assume that the x axis points to the
right, the y axis points upwards, and the z axis points straight at you2. The first rotation is
Rx

(
π
2

)
, so rotate the book by 90◦ about the x axis. The book now sits on its spine, the front

cover facing towards you. The second rotation is Ry

(
π
2

)
, which rotates the book counter-

clockwise by 90◦ on its spine so the front cover now faces to the right. The third rotation is

2It is helpful to use the thumb, the index finger, and the middle finger of your right hand to imagine the x,
y, and z axis, respectively.
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Rz

(
π
2

)
, which once more brings the front cover to the top, with the spine facing to the right.

In effect, we have rotated the book by 90◦ about the y axis. Using matrix notation, this can
be seen from the identity

R←−−xyz

(π

2
,
π

2
,
π

2

)
=




0 −1 0
1 0 0
0 0 1






0 0 1
0 1 0
−1 0 0






1 0 0
0 0 −1
0 1 0


 =




0 0 1
0 1 0
−1 0 0


 = Ry

(π

2

)
.

(A.35)
Our example also shows that this form of a parametrization is not a bijective mapping onto
SO3 since we have just found at least two triples of Euler angles describing the same rotation

under the ←−−xyz convention:
(

π
2 , π

2 , π
2

)⊤
and

(
0, π

2 , 0
)⊤

. To obtain a bijective mapping, the
parameter space needs to be restricted in a suitable way. Such issues are due to the gimbal
lock effect, which will be discussed in detail in Sect. A.5.4.

A further point regarding the uniqueness of Euler angles concerns the domain of the angle
α2. Even though the basic rotation Ry(α2) is defined for α2 ∈ (−π, π], it turns out that the
domain of α2 can be restricted to

[
−π

2 , π
2

]
in the composite rotation matrix R←−−xyz(α1, α2, α3)

because of the symmetry

R←−−xyz(α1, α2, α3) = R←−−xyz(π + α1, π − α2, π + α3) (A.36)

This is due to the following symmetry relations for sines and cosines, which are valid for all
ϕ ∈ R:

cos(π + ϕ) = − cos ϕ cos(π − ϕ) = − cos ϕ
sin(π + ϕ) = − sinϕ sin(π − ϕ) = + sin ϕ.

(A.37)

Therefore, the transition (α1, α2, α3)
⊤ 7→ (α′1, α′2, α′3)

⊤ := (π + α1, π − α2, π + α3)
⊤ as de-

scribed in (A.36) flips the signs of all c1, s1, c2, c3, and s3 terms in the matrix R←−−xyz(α1, α2, α3).
However, it is easy to verify that these sign changes cancel out due to the special arrangement
of sine and cosine products. The term s2, which only appears once as an isolated term in the
matrix, remains unchanged. Hence, the entire matrix does not change.

The value of the angle α2 can then be forced into the interval
[
−π

2 , π
2

]
for any given triple

of Euler angles (α1, α2, α3)
⊤ ∈ (−π, π]3. In case α2 ∈

(
−π,−π

2

)
∪
(

π
2 , π

]
, we reparameterize

to the angles (α′1, α′2, α′3)
⊤ := (π + α1, π − α2, π + α3)

⊤, where angle values beyond the
interval (−π, π] are reduced back into this interval modulo 2π. The resulting parameter space
for the ←−−xyz Euler convention is E3 := (−π, π]×

[
−π

2 , π
2

]
× (−π, π].

A.5.1 Moving Reference Frame vs. Fixed Reference Frame

It has been mentioned that another possible convention for performing successive rotations
is to rotate relative to a moving reference frame. In other words, we imagine a coordinate
frame that is attached to the rotating object, and successive rotations take place about the
axes of this rotated coordinate frame:

1. The first rotation, Rx(α1), rotates by an angle of α1 about the x axis of the coordinate
system (0; x, y, z).

2. The second rotation, Ry′(α2), rotates by an angle of α2 about the y′ axis of the rotated
coordinate system (0; x, y′, z′) := (0; x, Rx(α1)y, Rx(α1)z).
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3. The third rotation, Rz′′(α3), rotates by an angle of α3 about the z′′ axis of the twice-
rotated coordinate system (0; x′, y′, z′′) := (0; Ry′(α2)x, Rx(α1)y, Ry′(α2)Rx(α1)z).

The composite rotation can then be written as

R(α1, α2, α3) := Rz′′(α3)Ry′(α2)Rx(α1). (A.38)

The rotations Ry′(α2) and Rz′′(α3) do not refer to the axes of the world coordinate system
(0; x, y, z). To represent these rotations in terms of rotations about the world coordinate axes,
we use the following general rule:

Lemma A.4 Let v1, v2 ∈ R
3, ‖v1‖ = ‖v2‖ = 1, represent two axes of rotation, and let

α ∈ (−π, π] be an angle of rotation. If the two axes are related by v2 = Rv1 for a rotation
R ∈ SO3, then

Rv2(α) = RRv1(α)R⊤, (A.39)

i. e., Rv2(α) results from Rv1(α) by means of a change of basis by R.

Proof: The axis of rotation is the eigenspace of a rotation matrix corresponding to the
eigenvalue 1. Using v2 = Rv1 ⇔ v1 = R⊤v2, it is easy to see that v2 must span the axis of
rotation of RRv1(α)R⊤:

RRv1(α)R⊤v2 = RRv1(α)v1 = Rv1 = v2. (A.40)

Since both Rv1(α) and Rv2(α) rotate by an angle of α, this concludes the proof. 2

From the above considerations, we know that the y′ axis results from the y axis by applying
the rotation Rx(α1), so y′ = Rx(α1)y. Then, Lemma A.4 yields

Ry′(α2) = Rx(α1)Ry(α2)R
⊤
x (α1). (A.41)

Similarly, z′′ = Ry′(α2)Rx(α1)z = Rx(α1)Ry(α2)z gives us

Rz′′(α3) = Rx(α1)Ry(α2)Rz(α3)R
⊤
y (α2)R

⊤
x (α1). (A.42)

Putting it all together, we obtain the following formula:

R(α1, α2, α3) = Rz′′(α3)Ry′(α2)Rx(α1)

= Rx(α1)Ry(α2)Rz(α3)R
⊤
y (α2)R

⊤
x (α1)Rx(α1)Ry(α2)R

⊤
x (α1)Rx(α1)

= Rx(α1)Ry(α2)Rz(α3). (A.43)

Obviously, Euler rotations w. r. t. a moving reference frame can be expressed in the world
coordinate system by applying the basic rotations in reversed order. This motivates the
following notation:

R−−→xyz(α1, α2, α3) := Rx(α1)Ry(α2)Rz(α3), (A.44)

where the left-to-right arrow above the ‘xyz’ indicates that the corresponding basic rotations
are multiplied from left to right. Hence, we use the left-to-right arrow to indicate that the
basic rotations refer to a moving reference frame.
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A.5.2 Further Euler Conventions

So far, we have always used xyz conventions, where we first rotate about the x axis, then
about the y axis, and then about the z axis. Of course, it is possible to define other Euler
conventions with a different order of performing the basic rotations. In general, each of the
six permutations σ : {1, 2, 3} → {x, y, z} of the axes x, y, and z gives rise to two Euler
conventions by the following definition:

R−→σ (α1, α2, α3) := Rσ(1)(α1)Rσ(2)(α2)Rσ(3)(α3) (A.45)

R←−σ (α1, α2, α3) := Rσ(3)(α3)Rσ(2)(α2)Rσ(1)(α1), (A.46)

These six permutations are Σ3 := {xyz, xzy, yxz, yzx, zxy, zyx}. We call the permutation
σ the rotation order of an Euler convention, while the left-to-right or right-to-left arrows
indicate the multiplication order. Of course, there is a close relationship between the two
multiplication orders. Comparing (A.45) and (A.46), we can derive the following obvious
conversion formulas:

R←−σ (α1, α2, α3) = R−−→
r(σ)

(α3, α2, α1) (A.47)

R−→σ (α1, α2, α3) = R←−−
r(σ)

(α3, α2, α1), (A.48)

where r(σ) := (σ(3)σ(2)σ(1)) is the reverse of σ. In words, given the Euler angles of a rotation
w. r. t. a moving coordinate frame, the corresponding Euler angles for a fixed coordinate frame
can be found by reversing the rotation order and swapping α1 and α3, and vice versa. For
example,

R←−−xyz(α1, α2, α3) = R−−→zyx(α3, α2, α1). (A.49)

It has been mentioned above that the parameter space for the ←−−xyz Euler convention is E3 =
(−π, π]×

[
−π

2 , π
2

]
× (−π, π]. This parameter space applies to all Euler conventions that have

been studied so far.
In practice, there is a further common way of defining Euler angles. Instead of using

three different axes for the successive rotations, it is sufficient to choose two different axes
and then alternate rotations about these axes. This leads to the six additional rotation orders
Σ2 := {xyx, xzx, yxy, yzy, zxz, zyz}, which we refer to as two-axis rotation orders. Their
definition in terms of basic rotations is similar to the three-axis rotation orders. Considering
the difference between a fixed and a moving coordinate frame during successive basic rota-
tions, the same considerations as in Sect. A.5.1 apply. For example, in the case of a moving
coordinate frame and the xyx rotation order, we obtain

R−−→xyx(α1, α2, α3) = Rx(α1)Ry(α2)Rx(α3)

=




c2 s2s3 s2c3

s1s2 c1c3 − s1c2s3 −c1s3 − s1c2c3

−c1s2 s1c3 + c1c2s3 −s1s3 + c1c2c3


 , (A.50)

where the multiplication order is left-to-right. Conversely, the rotation

R←−−xyx(α1, α2, α3) = Rx(α3)Ry(α2)Rx(α1) (A.51)

describes the case of a fixed reference frame, corresponding to a right-to-left multiplication
order. Since any two-axis rotation order σ ∈ Σ2 is symmetric and therefore invariant un-
der string reversal, switching between a moving reference frame and a fixed reference frame
amounts to swapping the angles α1 and α3 in the corresponding triple of Euler angles.
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As a further simplification, any two-axis Euler convention allows for inversion of rotations
by directly manipulating the Euler angles. Here is an example for the −−→xyx convention:

R⊤−−→xyx(α1, α2, α3) = R⊤x (α3)R
⊤
y (α2)R

⊤
x (α1) = R−−→xyx(−α3,−α2,−α1), (A.52)

showing that inversion can be achieved by swapping the first and the third Euler angle and
then negating all angles. Note that an analogous strategy for inversion would fail for a three-
axis rotation order σ ∈ Σ3 because transposition leads to a reversal of the basic rotations,
which necessitates a change of the Euler convention from σ to r(σ).

Similar considerations as in Sect. A.5 show that the parameter space for two-axis Euler
conventions σ should be chosen as E2 := (−π, π]× [0, π]× (−π, π] due to the symmetries

R−→σ (α1, α2, α3) = R−→σ (π + α1, −α2, π + α3) (A.53)

for σ ∈ Σ2. The value of the angle α2 can then be forced into the interval [0, π] for any given
triple of Euler angles (α1, α2, α3)

⊤ ∈ (−π, π]3 by the following method. In case α2 ∈ (−π, 0),
we reparameterize to the angles (α′1, α′2, α′3)

⊤ := (π + α1, −α2, π + α3)
⊤, where angle values

beyond the interval (−π, π] are reduced back into this interval modulo 2π.
A complete list of conversion formulas between the twelve possible left-to-right Euler

conventions and other rotational representations will be given in Sect. A.6.1, A.6.3, A.6.2,
and A.6.4. Our considerations regarding the relation between right-to-left and left-to-right
multiplication orders enable the reader to easily derive the corresponding formulas for the
right-to-left Euler conventions.

A.5.3 Geometric Interpretation

We will now show geometrically what has already been shown algebraically: the xyz Euler con-
vention with a fixed reference frame and Euler angles (α1, α2, α3)

⊤ produces the same rotation
as the zyx Euler convention with a moving reference frame and Euler angles (α3, α2, α1)

⊤.
Of course, analogous geometrical arguments apply for other pairs of corresponding Euler
conventions.

Our considerations are inspired by a mechanical realization of three-dimensional rotations
by means of three gimbals or Cardan rings, see Fig. A.1. A gimbal is basically a planar ring
that can rotate about an axis fitted along one of the gimbal’s diameters. Now three such
gimbals of decreasing sizes are assembled within each other in a specific way:

• the axis of the outer (largest) gimbal is mounted in the direction of the z axis of a fixed
reference frame,

• the middle gimbal’s axis is y∗; it is mounted inside the outer gimbal such that y∗ is
orthogonal to the z axis of the outer gimbal,

• the inner (smallest) gimbal’s axis is x∗; it is mounted inside the middle gimbal such that
x∗ is orthogonal to the y∗ axis of the middle gimbal; the z∗ axis is defined as x∗ × y∗
and lies within the inner gimbal plane.

In their initial state, shown on the left hand side of Fig. A.1, the movable axes x∗, y∗, z∗ ∈
R

3 coincide with the fixed world coordinate axes x, y, z. Successive rotations move x∗, y∗, z∗
while maintaining the mechanically enforced invariants y∗ ⊥ z, x∗ ⊥ y∗, and z∗ ⊥ x∗. One
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Figure A.1. Geometric interpretation of Euler angles using a three-gimbal assembly. Sequence A
(top row): Euler convention zyx with a moving reference frame and Euler angles (α3, α2, α1)

⊤ =(
π
4 , π

6 , π
3

)⊤
. Sequence B (bottom row): Euler convention xyz with a fixed reference frame and

Euler angles (α1, α2, α3)
⊤

=
(

π
3 , π

6 , π
4

)⊤
. The arrangements on the left hand side represent the initial

configuration. Applying successive rotations leads to the arrangements on the right hand side. The
axes of each resulting coordinate system are shown within the inner gimbal.

important observation is that a rotation of a larger gimbal also moves the smaller gimbals,
since they are rigidly connected. This behavior is an exact simulation of what we have termed
“successive rotations with respect to a moving reference frame”. Conversely, a rotation of
a smaller gimbal does not affect the larger gimbals. This behavior simulates “successive
rotations with respect to a fixed reference frame”. Thus, the zyx Euler convention with a
moving reference frame can be simulated by first rotating the outer gimbal, then the middle
gimbal, and then the inner gimbal, to which the final coordinate system is attached. The
xyz Euler convention with a fixed reference frame can be simulated by first rotating the inner
gimbal, then the middle gimbal, and then the outer gimbal. The amount of rotation in each
step is given by the corresponding Euler angle.

We now define two sequences of rotations, sequence A and sequence B, which describe
the two Euler conventions in terms of the axes x∗, y∗, z∗. Then, the basic idea is to show
that after sequence A has been performed, applying the inverse operations of sequence B in
reverse order leads back to the initial state, hence sequence A must describe the same rotation
as sequence B. The sequences are illustrated by Fig. A.1.
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Sequence A: zyx with moving reference frame, Euler angles (α3, α2, α1)
⊤

step action consequences

A1 rotate about z by α3

y∗ rotates in z⊥, creating an angle of α3 between y∗ and y,
x∗ and z∗ follow the rotation,
the absolute position of y∗ does not change henceforth.

A2 rotate about y∗ by α2

x∗ rotates in y⊥∗ by an angle of α2,
z∗ follows the rotation,
the absolute position of x∗ does not change henceforth.

A3 rotate about x∗ by α1
z∗ rotates in x⊥∗ by an angle of α1,
(0; x∗, z∗, z∗ × x∗) is the final coordinate system.

Sequence B: xyz with fixed reference frame, Euler angles (α1, α2, α3)
⊤

step action consequences

B1 rotate about x∗ by α1 z∗ rotates in x⊥ by an angle of α1.

B2 rotate about y∗ by α2
x∗ rotates in y⊥ by an angle of α2,
z∗ follows the rotation.

B3 rotate about z by α3

y∗ rotates in z⊥, creating an angle of α3 between y∗ and y,
x∗ and z∗ follow the rotation,
(0; x∗, z∗, z∗ × x∗) is the final coordinate system.

Now we apply the inverse operations B−1
3 , B−1

2 , B−1
1 , in this sequence. After step A3, we

know that the x∗ axis encloses an angle of π
2 −α2 with the z axis, and the z∗ axis encloses an

angle of π
2 − α1 with the y∗ axis. In addition, y∗ is still in the same fixed position that was

established in step A1: y∗ and y enclose an angle of α3 in the z⊥ plane. The same position for
y∗ is also established by step B3 of sequence B, so performing B−1

3 brings the outer gimbal
into the state that would be observed if B1, B2 had been performed: y∗ and y are aligned.
Furthermore, B−1

3 moves the middle and the inner gimbal along with the outer gimbal, thus
maintaining the relative angles between the gimbals that have been established in steps A2

and A3. Therefore, performing B−1
2 undoes the rotation of α2 about y∗ and realigns x∗ with

x, while leaving the relative angle of the inner gimbal unchanged and also leaving y∗ and y
aligned. Finally, we can perform B−1

1 , which undoes the rotation of α1 about x∗ and realigns
z∗ with z. In summary, we have established the initial state where x∗, y∗, z∗ coincide with
x, y, z, respectively. Therefore, sequence A describes the same rotation as sequence B. 2

Gimbal Assembly for Two-Axis Euler Conventions. A simple modification of the gimbal
assembly described above allows us to simulate two-axis rotation orders such as xyx or zyz.
For xyx with a fixed reference frame, we simply change the neutral position shown in Fig. A.1
in the following way: we pivot the outer gimbal by π

2 about the y axis while keeping the middle
and inner gimbals fixed, see Fig. A.2 (a). This lines up the x∗ axis with the outer gimbal’s axis.
Successive rotations starting at the inner gimbal and progressing outwards then simulate the
←−−xyx Euler convention. Similarly, a gimbal assembly for the −→zyz Euler convention is obtained
from the neutral position shown in Fig. A.1 by pivoting the middle gimbal by π

2 about the y
axis, so that the z∗ axis and the outer gimbal’s axis line up.



A.5. EULER ANGLES 131

(a)

z∗
z

x∗

y∗ y

x

(b)

z∗

z
x∗

y∗ y

x

Figure A.2. Gimbal assembly for (a) the←−−xyx Euler convention, and for (b) the −→zyz Euler convention.
All Euler angles are zero.

A.5.4 Gimbal Lock

Gimbal lock is one of the major drawbacks associated with Euler angles. For three-axis Euler
conventions such as ←−−xyz, gimbal lock occurs whenever the angle α2 assumes one of the values
±π

2 , see Fig. A.3. In such a gimbal lock configuration, the outer and the middle gimbal are
clamped together in a common plane. For α2 = +π

2 , the x∗ axis points in the direction of
the −z axis, so a rotation about the x∗ axis by α has the same effect as a rotation about the
z axis by −α. Similarly, for α2 = −π

2 , the x∗ axis points in the direction of the z axis, so
a rotation about the x∗ axis by α has the same effect as a rotation about the z axis by α.
These situations lead to the following problems:

• There are infinitely many gimbal configurations describing the same rotation.

• One rotational DOF is lost, since two free parameters describe a one DOF rotation
about the fixed z axis. Specifically, the lost rotational DOF is the ability to rotate
about the normal of the outer/middle gimbal plane, since all available axes of rotation
are coplanar within that plane.

• As a consequence, a time-varying rotation of constant angular speed that runs through
a gimbal lock configuration may require infinitely rapid adjustments of the Euler angles.

For example, starting from the gimbal lock configuration in Fig. A.3 (a), it is mechanically
impossible to rotate about the x axis (currently aligned with the z∗ axis), unless one first
moves the outer and the middle gimbal to the position shown in Fig. A.3 (c), which can be
done without changing the resulting rotation (i. e., the inner gimbal can be held fixed while
rotating the middle and the outer gimbal). This effect is very undesirable in mechanical
systems and gave rise to the term gimbal lock. Early gyroscopic devices for attitude tracking
during spaceflight, as used in the Apollo space missions [All00], were based on our three-
gimbal construction. If the spacecraft moved into a certain “forbidden” orientation in space,
gimbal lock would occur, and subsequent rotations would not be trackable. Later, a fourth,
actively controlled gimbal was added, which guaranteed that gimbal lock could be avoided in
all possible orientations.

A popular description of gimbal lock that can be found in the literature, see, for exam-
ple, [Gra98, Sho85], simply states that “the x and the z axis become aligned, therefore one
rotational DOF is lost.” At first sight, this imprecise statement seems like a contradiction if
one thinks of xyz rotations with respect to a fixed reference frame. How can the x and the
z axis be aligned if they remain fixed? Here, the solution is that the authors are actually
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Figure A.3. Different gimbal lock configurations for the ←−−xyz Euler convention. (a)–(c) describe the

same rotation and (d)–(f) describe the same rotation, respectively. (a)
(
0, π

2 , 0
)⊤

, (b)
(

π
4 , π

2 , π
4

)⊤
,

(c)
(

π
2 , π

2 , π
2

)⊤
, (d)

(
0, −π

2 , 0
)⊤

, (e)
(
−π

4 , −π
2 , π

4

)⊤
, (f)

(
π
2 , −π

2 , −π
2

)⊤
.

referring to the x∗ axis and the z axis as becoming aligned. Regardless of whether successive
basic rotations are expressed in a fixed or in a moving reference frame, one can imagine a
reference frame that rotates along with the rotating object. This reference frame is shown in
Figs. A.2, A.1, and A.3 as the coordinate system (0; x∗, z∗, z∗ × x∗) drawn within the inner
gimbal. Here, the x∗ axis always represents the image of the x axis under the basic rotations
that have been applied so far and therefore serves as a memory aid during the third basic
rotation about z: the x∗ axis tells us from the rotating object’s point of view about which
axis it has already been rotated. Now if the x∗ axis becomes aligned with the z axis, the
object is rotated twice about the same axis. Note that the y∗ axis cannot be become aligned
with the z axis since it always satisfies the orthogonality constraint y∗ ⊥ z.

We will now investigate gimbal lock algebraically for α2 = +π
2 . Eqn. (A.33) gives us

R←−−xyz

(
α1,

π

2
, α3

)
=




0 − sinα3 cos α1 + cos α3 sin α1 sinα3 sinα1 + cos α3 cos α1

0 cos α3 cos α1 + sinα3 sinα1 − cos α3 sinα1 + sinα3 cos α1

−1 0 0


 .

(A.54)

Applying the trigonometric identities

cos(β − γ) = cos β cos γ + sinβ sin γ (A.55)

sin(β − γ) = sin β cos γ − cos β sin γ, (A.56)
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we obtain

R←−−xyz

(
α1,

π

2
, α3

)
=




0 sin(α1 − α3) cos(α1 − α3)
0 cos(α1 − α3) − sin(α1 − α3)
−1 0 0


 . (A.57)

The following factorizations provide an interpretation of this matrix:

R←−−xyz

(
α1,

π

2
, α3

)
=




cos(α1 + α3) sin(α1 − α3) 0
− sin(α1 − α3) cos(α1 − α3) 0

0 0 1






0 0 1
0 1 0
−1 0 0




= R⊤z (α1 − α3)Ry

(π

2

)
= Rz(α3 − α1)Ry

(π

2

)
, (A.58)

or R←−−xyz

(
α1,

π

2
, α3

)
=




0 0 1
0 1 0
−1 0 0






1 0 0
0 cos(α1 − α3) − sin(α1 − α3)
0 sin(α1 − α3) cos(α1 − α3)




= Ry

(π

2

)
Rx(α1 − α3). (A.59)

Hence, the matrix R←−−xyz

(
α1,

π
2 , α3

)
describes a rotation about the x axis by an angle of α1−α3

followed by a rotation about the y axis by an angle of π
2 . Alternatively, the matrix can be

interpreted as a rotation about the y axis by an angle of π
2 followed by a rotation about the

z axis by an angle of α3 − α1.
As a result, we note that all Euler angles in the one-dimensional set

M+
←−−xyz

(β) :=

{(
α1, +

π

2
, α3

)⊤
| α1 − α3 = β

}
⊂ E3 (A.60)

describe the same rotation. Similar interpretations can be derived for the case α2 = −π
2 ,

yielding the one-dimensional set

M−
←−−xyz

(β) :=

{(
α1, −

π

2
, α3

)⊤
| α1 + α3 = β

}
⊂ E3 (A.61)

of Euler angles leading to the same rotation. Since we want our Euler parametrization to
be bijective, we remove the sets M+

←−−xyz
(β) and M−

←−−xyz
(β) from the parameter space E3 for all

β ∈ (−π, π] up to a single representative
(
0, ±π

2 , β
)⊤

from each set:

Ẽ3 := E3 r

⋃

β∈(−π,π]

(
M±
←−−xyz

(β) r

{(
0, ±π

2
, β
)⊤})

. (A.62)

Other three-axis Euler conventions σ have different properties regarding the sets M+
σ (β) and

M−
σ (β). For example, the defining relations α1−α3 = β and α1+α3 = β must be interchanged

for the −−→zxy convention, which we will encounter in a real-world example later in this section.
For two-axis rotation orders such as xyx or zyz, gimbal lock occurs for α2 ∈ {0, π}. This
becomes immediately clear by comparing Fig. A.2 and Fig. A.3 (a), which represent the same
gimbal configuration.

The gimbal lock phenomenon results from a more fundamental problem attached to any
parametrization of SO3 that uses three parameters. The function R←−−xyz : R3 → SO3 as defined
in (A.33) is continuous and surjective. To obtain a unique Euler representation for a rotation,
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we had to restrict the parameter space to a subset Ẽ3 ⊂ R
3. Here, it can be shown that

there is no choice for Ẽ3 such that R←−−xyz restricted to Ẽ3 is bijective with a continuous inverse

R−1
←−−xyz

: SO3 → Ẽ3. This is due to a well-known topological fact stating that SO3 is not

homeomorphic to any subset of R3.

Experiment. To demonstrate the effects associated with gimbal lock, we consider the three

unit quaternions q1 = (1, 0, 0, 0)⊤, q2 =
(

1
2

√
2, 0, 1

2

√
2, 0

)⊤
, and q3 =

(
1
2

√
2, 0, 0, 1

2

√
2
)⊤

.
The first and the third quaternion correspond to the ←−−xyz Euler angles p1 = (0, 0, 0)⊤ and

p3 =
(
0, 0, π

2

)⊤
, respectively. The second quaternion corresponds to the set of gimbal lock

angles M+
←−−xyz

(0) =
{(

α1,
π
2 , α3

)⊤ | α1 = α3

}
, which we had removed from the parameter space

E3 up to the representative
(
0, π

2 , 0
)⊤

.

Now we use spherical linear interpolation as defined in Sect. A.3 to construct a continuous
path q : [0, 1]→ S3 with q(0) = q(1) = q1, q(1

3) = q2, and q(2
3) = q3. The path q connects q1

with q2, q2 with q3, and q3 with q1 into a closed round-trip path, which describes a continuous
change of orientation with constant angular speed along each segment. Fig. A.4 shows a
projection of the resulting path into R

3. Note that we only compute a regularly sampled
version of the path comprising 3, 000 samples. Next, we apply the inverse of the ←−−xyz Euler
parametrization to obtain the path p := R−1

←−−xyz
◦q : [0, 1]→ Ẽ3. It turns out that the image of p

in the Euler angle space, labeled in Fig A.5 as ∆α
(4)
2 = 0◦, is disconnected: on the way from

p2 to p3 the path first runs to p4 =
(

π
4 , π

2 , π
4

)⊤
. The path would now lead to p3 along the

line M+
←−−xyz

(0) in a continuous fashion, but with infinite velocity. However, since we removed

M+
←−−xyz

(0) from the parameter space, the path has a discontinuity at t = 1
3 , so there is a jump

to p
(4)
2 =

(
0, π

2 , 0
)⊤

. This reflects the discontinuity of R−1
←−−xyz

near gimbal lock configurations.

To investigate the behavior of R−1
←−−xyz

in the neighborhood of this discontinuity, we construct

a sequence of paths q(i) on S3 leading through q1, q
(i)
2 , and q3, where q

(i)
2 approaches q2 =

(1
2

√
2, 0, 1

2

√
2, 0)⊤ from a certain direction for increasing i. We choose this direction in such

a way that p
(i)
2 := R−1

←−−xyz
(q

(i)
2 ) =

(
0, π

2 −∆α
(i)
2 , 0

)⊤
for ∆α

(i)
2 > 0. Three resulting paths p(i)

are shown in Fig. A.5 (a)–(c) for different values of ∆α
(i)
2 . The closer the point p

(i)
2 approaches

p
(4)
2 , the larger the velocity gets along the connection between p

(i)
2 and p3. Here, the fact that

we work with regularly sampled versions of the paths q(i) enables us to estimate the velocity
along the path by means of the distance between subsequent dots describing the path.

The discontinuity of R−1
←−−xyz

near gimbal lock configurations is similar to the discontinuity

of the inverse of the Earth’s latitude/longitude parametrization at the north pole and the
south pole: with a latitude near ±90◦, moving a small distance in east or west direction
requires very large changes in longitude. For a latitude of exactly ±90◦, the longitude can
vary without affecting the current position on the Earth’s surface.

Avoiding Gimbal Lock by Reparametrization. In 3D graphics and animation systems such
as Maya, Euler angles are used as a GUI tool for interactively specifying 3D rotations.
Here, the gimbal lock effect would lead to very unintuitive behavior: the user could change
a parameter value without any effect on the rotation. Therefore, the Euler convention is
switched as soon as α2 gets closer to 90◦ than some threshold, say, 5◦. For example, if the
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Figure A.4. A closed path on S3 connecting three unit quaternions q1, q2, q3 by means of spherical
linear interpolation. The 3D visualization has been obtained by orthogonally projecting R

4 onto the
subspace (span{(1, 1, 1, 1)⊤})⊥, the axes of which are denoted by i′, j′, and k′.
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Figure A.5. Minor variations of the closed path shown in Fig. A.4 are transformed to Euler angles
by means of the inverse of the ←−−xyz Euler parametrization, yielding paths in the Euler angle space,

Ẽ3. From left to right, the points p
(i)
2 := (0, π

2 − ∆α
(i)
2 , 0)⊤, i = 1, . . . , 4, successively approach the

gimbal lock configuration (0, π
2 , 0)⊤. By ∆α

(i)
2 , we denote the distance of Euler angle α2 to the

critical configuration. The discontinuity of the parametrization’s inverse leads to a disrupted path for

∆α
(4)
2 = 0◦. The red dashed line indicates a part of M+

←−−xyz
(0).

initial Euler convention is ←−−xyz and the current Euler angles are (0◦, 86◦, 0◦)⊤, one could
reparametrize to the ←−−xzy convention and (0◦, 0◦, 86◦)⊤. Note that in general, the conversion
between Euler conventions is not as straightforward as in this example. The simplest way is
to convert to quaternions (see Sect. A.6.2) and then back to Euler angles (see Sect. A.6.4).

Real-world Examples. Fig. A.6 shows −−→zxy Euler angle and quaternion trajectories describing
the right knee angle for a 30-second modern dance motion. The Euler angles have been taken
directly from a BVH motion capture file (cf. Sect. D.2), whereas the quaternions have been
derived by the conversion formulas given in Sect. A.6.2. Since the knee joint has only one
DOF, since the axis of rotation for the knee coincides with the x axis, and since the makers of
this particular moction capture file decided to use the −−→zxy convention, this is a good setting
to observe gimbal locks. We are dealing with a one DOF joint, so there should be constant
rotation or no rotation at all about the z and the y axis. Indeed, the angles α1 and α3 are
close close to zero most of the time. However, as the angle α2 gets close to the value π

2
for certain frames, the angles α1 and α3 assume none-zero values. This effect is particularly
strong around frames 800 and 1, 450. Here, both α1 and α3 assume large absolute values of
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Figure A.6. −−→zxy Euler angles (top) and quaternions (bottom) for the right knee angle in a 1, 653-
frame modern dance motion, sampled at 60 Hz. The parameters are color-coded. Euler angles: blue
(α1), green (α2), and red (α3). Quaternions: blue (w), green (x), red (y), and cyan (z). The horizontal
axis represents time in frames.

opposing signs, which effectively cancel out since the z axis is aligned or nearly aligned with
the y axis in this situation. A perfect one DOF joint rotating about the x axis would keep the
Euler angles for z and y at zero. However, the Euler angles in Fig. A.6 have been obtained
from an inverse kinematics solver, which seems to have had no constraints on the Euler angles
for gimbal lock configurations. Comparing the Euler angles to the corresponding quaternions,
no such discontinuous behavior can be observed.

Now imagine comparing this mocap data stream to a second, very similar instance of this
dance motion by means of their Euler angles. It is very probable that the large values of α1

and α3 around certain frames would not occur in this way for the second instance, even if
the corresponding knee angles were very close to each other. This would strongly support
the incorrect decision that the two motions are dissimilar. Therefore, Euler angles are not
suitable for the comparison of motion capture data.

Discussion. In summary, Euler angles are a very compact and intuitive representation of ro-
tations, which have a direct geometric interpretation and facilitate a semantically meaningful
way to constrain rotations by simply constraining the domain of the Euler angles. On the
other hand, due to the discontinuities in the inverse of the parametrization, computing with
Euler angles can lead to unforeseen artifacts. In particular, comparing rotations via their
Euler angles may be problematic—near or at gimbal lock configurations, small variations of
the rotation are reflected in large variations of the Euler angles. Also, interpolation of rota-
tions via Euler angles typically leads to rotations with non-constant angular velocity, which
is perceptually disturbing. In view of such tasks, some of the representations that have been
discussed in the previous sections are more suitable.
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Nevertheless, Euler angles are frequently used as an input tool in animation and graphics
applications such as manual keyframe animation, postprocessing of motion capture data,
or construction of 3D models. Here, they provide mostly intuitive and interactive three-
dimensional control over rotations, since each of the angles has an easy interpretation and
can be visualized by appropriate methods. We have seen that Euler angles are typically used
to encode mocap data using skeleton-based mocap file formats such as BVH or ASF/AMC,
see also App. D.

Certain Euler conventions allow for easy inversion of rotations in terms of Euler angles,
but composing rotations in terms of Euler angles is generally not possible. Finally, Euler
angles are suited for solving differential equations involving rotations, and for differentiation
and optimization purposes, but only as long as the specific application only involves rotations
that do not correspond to gimbal lock configurations, see [Gra98].

A.6 Compendium of Conversion Formulas

This section provides a compendium of explicit conversion formulas for converting Euler
angles to and from rotation matrices and unit quaternions. As an extension to the collections
in [Sho85, Sho94], explicit conversions for all Euler conventions are given. These formulas
are essential for parsing, writing, and editing motion capture files in kinematic-chain-based
formats such as ASF/AMC or BVH, see App. D.

A.6.1 Euler Angles to Matrix

The Euler-to-matrix conversion formulas for the left-to-right multiplication order can be found
in Tab. A.2. We focus on the left-to-right multiplication order (corresponding to a moving
reference frame) since this is the type of convention used in the popular BVH mocap file
format. As we know from (A.47), we have R−−→xyz(α1, α2, α3) = R←−−zyx(α3, α2, α1), so the corre-
sponding formulas for the right-to-left multiplication order can be read off by reversing the
rotation order and swapping α1 with α3. As usual, we abbreviate the trigonometric functions
in the following way:

ci := cos αi and si := sinαi for i = 1, 2, 3. (A.63)

A.6.2 Euler Angles to Quaternion

As we know from Sect. A.3, the scalar part s of a unit quaternion (s, v) ∈ H is the cosine of
half the angle of rotation, and the vector part v points along the axis of rotation, where the
length of v is the sine of half the angle of rotation. Therefore, the three basic Euler rotations
(A.30)–(A.31) have the following quaternion representations:

qx(α1) =
(
cos

α1

2
, sin

α1

2
, 0, 0

)⊤
(A.76)

qy(α2) =
(
cos

α2

2
, 0, sin

α2

2
, 0
)⊤

(A.77)

qz(α3) =
(
cos

α3

2
, 0, 0, sin

α3

2

)⊤
(A.78)
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R−−→xyz(α1, α2, α3) =




c2c3 −c2s3 s2

s1s2c3 + c1s3 −s1s2s3 + c1c3 −s1c2

−c1s2c3 + s1s3 c1s2s3 + s1c3 c1c2


 (A.64)

R−−→xzy(α1, α2, α3) =




c2c3 −s2 c2s3

s1s3 + c1s2c3 c1c2 −s1c3 + c1s2s3

−c1s3 + s1s2c3 s1c2 c1c3 + s1s2s3


 (A.65)

R−−→yxz(α1, α2, α3) =




c1c3 + s1s2s3 −c1s3 + s1s2c3 s1c2

c2s3 c2c3 −s2

−s1c3 + c1s2s3 s1s3 + c1s2c3 c1c2


 (A.66)

R−−→yzx(α1, α2, α3) =




c1c2 −c1s2c3 + s1s3 c1s2s3 + s1c3

s2 c2c3 −c2s3

−s1c2 s1s2c3 + c1s3 −s1s2s3 + c1c3


 (A.67)

R−−→zxy(α1, α2, α3) =



−s1s2s3 + c1c3 −s1c2 s1s2c3 + c1s3

c1s2s3 + s1c3 c1c2 −c1s2c3 + s1s3

−c2s3 s2 c2c3


 (A.68)

R−−→zyx(α1, α2, α3) =




c1c2 −s1c3 + c1s2s3 s1s3 + c1s2c3

s1c2 c1c3 + s1s2s3 −c1s3 + s1s2c3

−s2 c2s3 c2c3


 (A.69)

R−−→xyx(α1, α2, α3) =




c2 s2s3 s2c3

s1s2 c1c3 − s1c2s3 −c1s3 − s1c2c3

−c1s2 s1c3 + c1c2s3 −s1s3 + c1c2c3


 (A.70)

R−−→xzx(α1, α2, α3) =




c2 −s2c3 s2s3

c1s2 −s1s3 + c1c2c3 −c1c2s3 − s1c3

s1s2 s1c2c3 + c1s3 c1c3 − s1c2s3


 (A.71)

R−−→yxy(α1, α2, α3) =




c1c3 − s1c2s3 s1s2 s1c2c3 + c1s3

s2s3 c2 −s2c3

−c1c2s3 − s1c3 c1s2 −s1s3 + c1c2c3


 (A.72)

R−−→yzy(α1, α2, α3) =



−s1s3 + c1c2c3 −c1s2 c1c2s3 + s1c3

s2c3 c2 s2s3

−s1c2c3 − c1s3 s1s2 c1c3 − s1c2s3


 (A.73)

R−−→zxz(α1, α2, α3) =




c1c3 − s1c2s3 −s1c2c3 − c1s3 s1s2

c1c2s3 + s1c3 −s1s3 + c1c2c3 −c1s2

s2s3 s2c3 c2


 (A.74)

R−→zyz(α1, α2, α3) =



−s1s3 + c1c2c3 −c1c2s3 − s1c3 c1s2

s1c2c3 + c1s3 c1c3 − s1c2s3 s1s2

−s2c3 s2s3 c2


 (A.75)

Table A.2. Euler-to-matrix conversion for the twelve Euler conventions with left-to-right multiplica-
tion order.
Input: Euler angles (α1, α2, α3)

⊤ and an Euler convention.
Output: corresponding rotation matrix R ∈ SO3.
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for α ∈ (−π, π]. Multiplying these basic quaternions together in the respective order yields
the twelve Euler angle to quaternion conversion formulas given in Tab. A.3. For example, the
conversion for the −−→xyz Euler convention is as follows:

q−−→xyz(α1, α2, α3) = qx(α1)qy(α2)qz(α3)

=




cos(α1
2 ) cos(α2

2 ) cos(α3
2 )− sin(α1

2 ) sin(α2
2 ) sin(α3

2 )
sin(α1

2 ) cos(α2
2 ) cos(α3

2 ) + cos(α1
2 ) sin(α2

2 ) sin(α3
2 )

cos(α1
2 ) sin(α2

2 ) cos(α3
2 )− sin(α1

2 ) cos(α2
2 ) sin(α3

2 )
cos(α1

2 ) cos(α2
2 ) sin(α3

2 ) + sin(α1
2 ) sin(α2

2 ) cos(α3
2 )


 (A.79)

A.6.3 Matrix to Euler Angles

To demonstrate the derivation scheme for the following twelve matrix-to-Euler conversion
formulas, we consider the −−→xyz convention as an example. Given an arbitrary rotation ma-
trix R = (rij) ∈ SO3, we perform comparison of coefficients with the −−→xyz Euler-to-matrix
conversion, (A.64):

R−−→xyz(α1, α2, α3) =




c2c3 −c2s3 s2

s1s2c3 + c1s3 −s1s2s3 + c1c3 −s1c2

−c1s2c3 + s1s3 c1s2s3 + s1c3 c1c2


 !

=




r11 r12 r13

r21 r22 r23

r31 r32 r33


 ,

(A.92)
which gives us s2 = r13, or

α2 = arcsin r13 ∈
[
−π

2
,
π

2

]
. (A.93)

As long as α2 6= ±π
2 , computing the Euler angles is straightforward. Using the identities

s1c2 = −r23, c1c2 = r33, s3c2 = −r12, and c3c2 = r11, we can apply the two-argument inverse
tangent, see Fig. A.7,

arctan2 : R2
r{0} → (−π, π], arctan2(y, x) :=





arctan y
x

if x > 0
arctan y

x
+ π if x < 0

π
2 if x = 0, y > 0
−π

2 if x = 0, y < 0
undefined otherwise,

(A.94)

where arctan : R→
(
−π

2 , π
2

)
, to obtain

α1 = arctan2(s1c2, c1c2) = arctan2(−r23, r33), (A.95)

α3 = arctan2(s3c2, c3c2) = arctan2(−r12, r11), (A.96)

since the terms c2 6= 0 cancel out in the arguments of the inverse tangent functions.
The case α2 = ±π

2 ⇒ c2 = 0 corresponds to a gimbal lock configuration where the
effect of the Euler angles α1 and α3 cannot be distinguished, see Sect. A.5.4. We resolve
this situation by the arbitrary (but convenient) choice of α1 = 0, or c1 = 1, s1 = 0. This
greatly simplifies the matrix entries at positions (2, 1) and (2, 2) in R−−→xyz(α1, α2, α3), yielding
s3 = r21 and c3 = r22. Thus, we obtain for the case α2 = ±π

2

α1 = 0, (A.97)

α3 = arctan2(s3, c3) = arctan2(r21, r22). (A.98)
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q−−→xyz(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) sin( α2
2

) sin( α3
2

)
sin( α1

2
) cos( α2

2
) cos( α3

2
) + cos( α1

2
) sin( α2

2
) sin( α3

2
)

cos( α1
2

) sin( α2
2

) cos( α3
2

)− sin( α1
2

) cos( α2
2

) sin( α3
2

)
cos( α1

2
) cos( α2

2
) sin( α3

2
) + sin( α1

2
) sin( α2

2
) cos( α3

2
)


 (A.80)

q−−→xzy(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

) + sin( α1
2

) sin( α2
2

) sin( α3
2

)
sin( α1

2
) cos( α2

2
) cos( α3

2
)− cos( α1

2
) sin( α2

2
) sin( α3

2
)

cos( α1
2

) cos( α2
2

) sin( α3
2

)− sin( α1
2

) sin( α2
2

) cos( α3
2

)
cos( α1

2
) sin( α2

2
) cos( α3

2
) + sin( α1

2
) cos( α2

2
) sin( α3

2
)


 (A.81)

q−−→yxz(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

) + sin( α1
2

) sin( α2
2

) sin( α3
2

)
cos( α1

2
) sin( α2

2
) cos( α3

2
) + sin( α1

2
) cos( α2

2
) sin( α3

2
)

sin( α1
2

) cos( α2
2

) cos( α3
2

)− cos( α1
2

) sin( α2
2

) sin( α3
2

)
cos( α1

2
) cos( α2

2
) sin( α3

2
)− sin( α1

2
) sin( α2

2
) cos( α3

2
)


 (A.82)

q−−→yzx(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) sin( α2
2

) sin( α3
2

)
cos( α1

2
) cos( α2

2
) sin( α3

2
) + sin( α1

2
) sin( α2

2
) cos( α3

2
)

sin( α1
2

) cos( α2
2

) cos( α3
2

) + cos( α1
2

) sin( α2
2

) sin( α3
2

)
cos( α1

2
) sin( α2

2
) cos( α3

2
)− sin( α1

2
) cos( α2

2
) sin( α3

2
)
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q−−→zxy(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) sin( α2
2

) sin( α3
2

)
cos( α1

2
) sin( α2

2
) cos( α3

2
)− sin( α1

2
) cos( α2

2
) sin( α3

2
)

cos( α1
2

) cos( α2
2

) sin( α3
2

) + sin( α1
2

) sin( α2
2

) cos( α3
2

)
sin( α1

2
) cos( α2

2
) cos( α3

2
) + cos( α1

2
) sin( α2

2
) sin( α3

2
)


 (A.84)

q−−→zyx(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

) + sin( α1
2

) sin( α2
2

) sin( α3
2

)
cos( α1

2
) cos( α2

2
) sin( α3

2
)− sin( α1

2
) sin( α2

2
) cos( α3

2
)

cos( α1
2

) sin( α2
2

) cos( α3
2

) + sin( α1
2

) cos( α2
2

) sin( α3
2

)
sin( α1

2
) cos( α2

2
) cos( α3

2
)− cos( α1

2
) sin( α2

2
) sin( α3

2
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q−−→xyx(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) cos( α2
2

) sin( α3
2

)
cos( α1

2
) cos( α2

2
) sin( α3

2
) + sin( α1

2
) cos( α2

2
) cos( α3

2
)
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2

) sin( α2
2

) cos( α3
2

) + sin( α1
2

) sin( α2
2

) sin( α3
2

)
sin( α1

2
) sin( α2

2
) cos( α3

2
)− cos( α1

2
) sin( α2

2
) sin( α3

2
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q−−→xzx(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) cos( α2
2

) sin( α3
2

)
cos( α1

2
) cos( α2

2
) sin( α3

2
) + sin( α1

2
) cos( α2

2
) cos( α3

2
)

cos( α1
2

) sin( α2
2

) sin( α3
2

)− sin( α1
2

) sin( α2
2

) cos( α3
2

)
cos( α1

2
) sin( α2

2
) cos( α3

2
) + sin( α1

2
) sin( α2

2
) sin( α3

2
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q−−→yxy(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) cos( α2
2

) sin( α3
2

)
cos( α1

2
) sin( α2

2
) cos( α3

2
) + sin( α1

2
) sin( α2

2
) sin( α3

2
)

cos( α1
2

) cos( α2
2

) sin( α3
2

) + sin( α1
2

) cos( α2
2

) cos( α3
2

)
cos( α1

2
) sin( α2

2
) sin( α3

2
)− sin( α1

2
) sin( α2

2
) cos( α3

2
)


 (A.88)

q−−→yzy(α1, α2, α3) =




cos( α1
2

) cos( α2
2

) cos( α3
2

)− sin( α1
2

) cos( α2
2

) sin( α3
2

)
sin( α1

2
) sin( α2

2
) cos( α3

2
)− cos( α1

2
) sin( α2

2
) sin( α3

2
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q−−→zxz(α1, α2, α3) =
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q−−→zyz(α1, α2, α3) =
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Table A.3. Euler-to-quaternion conversion for the twelve Euler conventions with left-to-right multi-
plication order.
Input: Euler angles (α1, α2, α3)

⊤ and an Euler convention.
Output: corresponding unit quaternion q ∈ H.
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Figure A.7. Plots of the two-argument arctan2 function. The function returns the angle enclosed
between the argument vector and the x axis, restricted to the range (−π, π]. Left: 3D plot of arctan2.
Right: Color-coded 2D plot of arctan2. The colors range from black (−π) over red (0) to white (π).

For the Euler conventions using two axes such as −−→xyx, there is a slight difference in the
derivation. The isolated term is not s2 but c2, see (A.70), and the domain of α2 is now [0, π],
corresponding to the range of the inverse cosine function. Gimbal lock occurs for α2 ∈ {0, π}.
Everything else works in the same way as described above, except that now the s2 terms
cancel out in the arguments of the inverse tangents.

Tab. A.4 gives the resulting conversion formulas for all twelve Euler conventions with left-
to-right multiplication order. As usual, the formulas for the right-to-left multiplication order
can be read off by looking up the formulas for the reversed rotation order and interchanging
α1 with α3.

A.6.4 Quaternion to Euler Angles

To convert a unit quaternion q = (w + xi + yj + zk) ∈ H, ‖q‖ = 1, to Euler angles, we
can compose the quaternion-to-matrix conversion (A.23) with the matrix-to-Euler conversion
(Sect. A.6.3) for the desired Euler convention. Tab. A.5 gives the resulting formulas for all
twelve Euler conventions with left-to-right multiplication order.
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Convention α2 6= ±π
2 α2 = ±π

2

−−→xyz
α1 = arctan2(−r23, r33) α1 = 0
α2 = arcsin r13 α2 = arcsin r13

α3 = arctan2(−r12, r11) α3 = arctan2(r21, r22)

−−→xzy
α1 = arctan2(r32, r22) α1 = 0
α2 = arcsin(−r12) α2 = arcsin(−r12)
α3 = arctan2(r13, r11) α3 = arctan2(−r31, r33)

−−→yxz
α1 = arctan2(r13, r33) α1 = 0
α2 = arcsin(−r23) α2 = arcsin(−r23)
α3 = arctan2(r21, r22) α3 = arctan2(−r12, r11)

−−→yzx
α1 = arctan2(−r31, r11) α1 = 0
α2 = arcsin r21 α2 = arcsin r21

α3 = arctan2(−r23, r22) α3 = arctan2(r32, r33)

−−→zxy
α1 = arctan2(−r12, r22) α1 = 0
α2 = arcsin r32 α2 = arcsin r32

α3 = arctan2(−r31, r33) α3 = arctan2(r13, r11)

−−→zyx
α1 = arctan2(r21, r11) α1 = 0
α2 = arcsin(−r31) α2 = arcsin(−r31)
α3 = arctan2(r32, r33) α3 = arctan2(−r23, r22)

Convention α2 6∈ {0, π} α2 ∈ {0, π}

−−→xyx
α1 = arctan2(r21, −r31) α1 = 0
α2 = arccos r11 α2 = arccos r11

α3 = arctan2(r12, r13) α3 = arctan2(−r23, r22)

−−→xzx
α1 = arctan2(r31, r21) α1 = 0
α2 = arccos r11 α2 = arccos r11

α3 = arctan2(r13, −r12) α3 = arctan2(r32, r33)

−−→yxy
α1 = arctan2(r12, r32) α1 = 0
α2 = arccos r22 α2 = arccos r22

α3 = arctan2(r21, −r23) α3 = arctan2(r13, r11)

−−→yzy
α1 = arctan2(r32, −r12) α1 = 0
α2 = arccos r22 α2 = arccos r22

α3 = arctan2(r23, r21) α3 = arctan2(−r31, r33)

−−→zxz
α1 = arctan2(r13, −r23) α1 = 0
α2 = arccos r33 α2 = arccos r33

α3 = arctan2(r31, r32) α3 = arctan2(−r12, r11)

−→zyz
α1 = arctan2(r23, r13) α1 = 0
α2 = arccos r33 α2 = arccos r33

α3 = arctan2(r32, −r31) α3 = arctan2(r21, r22)

Table A.4. Matrix-to-Euler conversion for the twelve Euler conventions with left-to-right multiplica-
tion order.
Input: rotation matrix R = (rij) ∈ SO3 and an Euler convention.
Output: Euler angles (α1, α2, α3)

⊤ for the respective Euler convention.
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Convention α2 6= ±
π
2

α2 = ±π
2

−−→xyz

α1 = arctan2(−(2yz − 2wx), 1− 2x2 − 2y2) α1 = 0
α2 = arcsin(2xz + 2wy) α2 = arcsin(2xz + 2wy)
α3 = arctan2(−(2xy − 2wz), 1− 2y2 − 2z2) α3 = arctan2(2xy + 2wz, 1− 2x2 − 2z2)

−−→xzy

α1 = arctan2(2yz + 2wx, 1− 2x2 − 2z2) α1 = 0
α2 = arcsin(−(2xy − 2wz)) α2 = arcsin(−(2xy − 2wz))
α3 = arctan2(2xz + 2wy, 1− 2y2 − 2z2) α3 = arctan2(−(2xz − 2wy), 1− 2x2 − 2y2)

−−→yxz

α1 = arctan2(2xz + 2wy, 1− 2x2 − 2y2) α1 = 0
α2 = arcsin(−(2yz − 2wx)) α2 = arcsin(−(2yz − 2wx))
α3 = arctan2(2xy + 2wz, 1− 2x2 − 2z2) α3 = arctan2(−(2xy − 2wz), 1− 2y2 − 2z2)

−−→yzx

α1 = arctan2(−(2xz − 2wy), 1− 2y2 − 2z2) α1 = 0
α2 = arcsin(2xy + 2wz) α2 = arcsin(2xy + 2wz)
α3 = arctan2(−(2yz − 2wx), 1− 2x2 − 2z2) α3 = arctan2(2yz + 2wx, 1− 2x2 − 2y2)

−−→zxy

α1 = arctan2(−(2xy − 2wz), 1− 2x2 − 2z2) α1 = 0
α2 = arcsin(2yz + 2wx) α2 = arcsin(2yz + 2wx)
α3 = arctan2(−(2xz − 2wy), 1− 2x2 − 2y2) α3 = arctan2(2xz + 2wy, 1− 2y2 − 2z2)

−−→zyx

α1 = arctan2(2xy + 2wz, 1− 2y2 − 2z2) α1 = 0
α2 = arcsin(−(2xz − 2wy)) α2 = arcsin(−(2xz − 2wy))
α3 = arctan2(2yz + 2wx, 1− 2x2 − 2y2) α3 = arctan2(−(2yz − 2wx), 1− 2x2 − 2z2)

Convention α2 6∈ {0, π} α2 ∈ {0, π}

−−→xyx

α1 = arctan2(2xy + 2wz, −(2xz − 2wy)) α1 = 0
α2 = arccos(1− 2y2 − 2z2) α2 = arccos(1− 2y2 − 2z2)
α3 = arctan2(2xy − 2wz, 2xz + 2wy) α3 = arctan2(−(2yz − 2wx), 1− 2x2 − 2z2)

−−→xzx

α1 = arctan2(2xz − 2wy, 2xy + 2wz) α1 = 0
α2 = arccos(1− 2y2 − 2z2) α2 = arccos(1− 2y2 − 2z2)
α3 = arctan2(2xz + 2wy, −(2xy − 2wz)) α3 = arctan2(2yz + 2wx, 1− 2x2 − 2y2)

−−→yxy

α1 = arctan2(2xy − 2wz, 2yz + 2wx) α1 = 0
α2 = arccos(1− 2x2 − 2z2) α2 = arccos(1− 2x2 − 2z2)
α3 = arctan2(2xy + 2wz, −(2yz − 2wx)) α3 = arctan2(2xz + 2wy, 1− 2y2 − 2z2)

−−→yzy

α1 = arctan2(2yz + 2wx, −(2xy − 2wz)) α1 = 0
α2 = arccos(1− 2x2 − 2z2) α2 = arccos(1− 2x2 − 2z2)
α3 = arctan2(2yz − 2wx, 2xy + 2wz) α3 = arctan2(−(2xz − 2wy), 1− 2x2 − 2y2)

−−→zxz

α1 = arctan2(2xz + 2wy, −(2yz − 2wx)) α1 = 0
α2 = arccos(1− 2x2 − 2y2) α2 = arccos(1− 2x2 − 2y2)
α3 = arctan2(2xz − 2wy, 2yz + 2wx) α3 = arctan2(−(2xy − 2wz), 1− 2y2 − 2z2)

−→zyz

α1 = arctan2(2yz − 2wx, 2xz + 2wy) α1 = 0
α2 = arccos(1− 2x2 − 2y2) α2 = arccos(1− 2x2 − 2y2)
α3 = arctan2(2yz + 2wx, −(2xz − 2wy)) α3 = arctan2(2xy + 2wz, 1− 2x2 − 2z2)

Table A.5. Quaternion-to-Euler conversion for the twelve Euler conventions with left-to-right multi-
plication order.
Input: unit quaternion q = (w + xi + yj + zk) ∈ H, ‖q‖ = 1, and an Euler convention.
Output: Euler angles (α1, α2, α3)

⊤ for the respective Euler convention.
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Appendix B

Motion Smoothing with Quaternion
Filters

Motion capture data is often noisy and may contain severe artifacts such as discontinuities
in the trajectories, see Fig. 2.9 for an example. In Sect. 3.3.1, we have successfully applied
smoothing based on 3D trajectories to suppress noise in the computation of velocity data for
individual joints. We will present alternative smoothing methods in this chapter.

Other features consider joint angles or the relative position of several joints at a time.
Here, it does not make sense to remove noise by smoothing all 3D trajectories that define a
motion: this may violate the distance constraints imposed by the skeleton. In other words,
since each 3D trajectory would be smoothed individually, the bones could suddenly become
longer or shorter, see also [Krü06]. In extreme cases, this would lead to anatomically impossi-
ble joint constellations. Instead, we pursue the approach of smoothing the angle trajectories
of our animated skeleton and then applying forward kinematics to obtain smoothed 3D tra-
jectories while ensuring that the skeletal distance constraints are preserved. However, due
to the spherical structure of the group of 3D rotations, smoothing angle trajectories is not
as straightforward as smoothing 3D position data, see also App. A. This topic has received
much attention in the literature, see, for example, [BF01, FLPJ04, LS02] and the references
therein.

We evaluated three smoothing approaches using angle trajectories in quaternion represen-
tation. The first two approaches compute different kinds of weighted moving averages over
quaternion sequences. The third approach, orientation filtering, transfers the concept of LTI
filters to the set of unit quaternions, S3. This is done by considering displacements between
successive quaternions in the tangent space to S3, which is isomorphic to R

3, then suitably
filtering these displacements, and finally mapping the result back to S3. Directly smoothing
the Euler angles that are usually provided in motion capture files does not make sense due
to the singularities of the Euler angle parametrization, see App. A.

In the following, we assume that we want to smooth an angle trajectory represented as
a sequence of unit quaternions, q : [1 : T ] → S3. We use the notation q(t) for t ∈ [1 : T ] to
refer to individual quaternions in the sequence q. To avoid the troublesome boundary cases,
we apply symmetric padding as defined in (3.24), yielding the infinite sequence q̃ : Z→ S3.

145
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B.1 Weighted Averages in R
4

This first approach could be dubbed the “brute force” approach since it does not respect
the spherical geometry of S3. The idea is straightforward and, according to Buss and Fill-
more [BF01], has been used extensively in the literature for computing averages on spheres.
Given a sequence of real weights, h = (hk)k∈[−K:K] with

∑K
k=−K hk = 1, we regard the input

quaternions as vectors in R
4 and compute their convolution (h ∗ q̃)(t) for t ∈ [1 : T ]. As in

Sect. 3.3.1, the convolution between a one-dimensional sequence and a sequence of vectors is
meant in a coordinate-wise sense:

Ch[q̃](t) = (h ∗ q̃)(t) =
K∑

k=−K

hkq̃(t− k). (B.1)

The resulting linear combinations will usually not be in S3, so we simply normalize them
back to S3. This leads to the filter Φh

R4 , which computes the normalized, weighted average
in R

4 as follows, see also [LS02]:

Φh
R4 [q̃](t) :=

{
Ch[q̃](t)
‖Ch[q̃](t)|

if ‖Ch[q̃](t)‖ > 0

q̃(t) otherwise.
(B.2)

Observe that the case where a linear combination has a length of exactly zero is handled by
returning the quaternion q̃(t) that is currently at the center of the (imagined) sliding mask.
Lee and Shin [LS02] discuss this strategy of handling zero-length linear combinations. The
motivation is to simulate the behavior of an averaging filter, which does not alter a symmetric
configuration. Assuming for a moment the typical case of strictly positive weights, we are
dealing with convex combinations. For a convex combination of unit quaternions to be zero,
their linear span in R

4 must include the origin. This implies that not all quaternions can
lie within one (open) hemisphere, so their mutual distances must be relatively large. Since
moving along half a great circle on S3 already corresponds to a full rotation by 2π, the
corresponding motion will typically be very fast.

A theoretical constellation where a convex combination would be exactly zero is the case
where all weights are identical and all input quaternions are equally spaced along a great circle
on S3. Now imagine some slight noise moving the quaternions out of their ideal configuration.
Typically, the resulting convex combination would be a nonzero vector of very small magnitude
pointing in a random direction. The “average” unit quaternion would then be obtained as
a normalized version of this random direction. In this way, minor noise components can
be strongly amplified in such unstable configurations. Generally, the normalized, weighted
average in R

4 will only be meaningful if the input quaternions lie within a small neighborhood,
since the spherical geometry of S3 does not play an important role in that case.

B.2 Spherical Weighted Averages

Karcher [Kar77] first studied the intrinsic mean of a finite set of points on a Riemannian
manifold, which has later become known as the Karcher mean. Buss and Fillmore [BF01]
reinvented the Karcher mean for the special case of spherical averages, compare the description
in [FLPJ04]. The aim is to define a weighted average of unit quaternions purely in terms of
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Algorithm B.1 SphericalWeightedAverage

Input: q(1), . . . , q(N) ∈ S3: Unit quaternions, all lying within an open hemisphere of S3

h1, . . . , hN ∈ R>0: Positive weights with
∑N

n=1 hn = 1
ε > 0: Termination if length of gradient is smaller than ε

Output: q ∈ S3 approximating A(h1, q(1), . . . , hN , q(N))

Procedure:

1. Initialize q0 :=
∑N

n=1 hnq(n)

‖
∑N

n=1 hnq(n)‖
.

2. Iterate

qj+1 := qj exp

(
N∑

n=1

hn log((qj)−1 q(n))

)
(B.3)

until
∥∥∥
∑N

n=1 hn log((qj)−1q(n))
∥∥∥ < ε for some j.

3. Return q := qj+1.

the intrinsic geometry of S3. To this end, the geodesic distance

dist(q0, q1) := arccos〈q0, q1〉 = ‖ logq0
(q1)‖ (B.4)

of unit quaternions q0, q1 ∈ S3 is considered, see also Sect. 2.5.1 as well as Sect. A.4 for
the definition of the quaternionic logarithm and the quaternionic exponential. The spherical
average of q0 and q1 is uniquely determined if q0 6= −q1 and can be computed by spherical
linear interpolation as q 1

2
:= slerp(1

2 ; q0, q1), cf. Sect. A.3. Now q 1
2

satisfies the property that

it minimizes the total squared geodesic distance dist(q, q0)
2 +dist(q, q1)

2 among all choices for
q. Generalizing the total squared geodesic distance to N quaternions q(1), . . . , q(N) ∈ S3 and
associated positive weights h1, . . . , hN ∈ R>0 with

∑N
n=1 hn = 1, we define the cost function

f(q; h1, q(1), . . . , hN , q(N)) :=
N∑

n=1

hn dist(q, q(n))2 (B.5)

and then define the spherical weighted average of q(1), . . . , q(N) as

A(h1, q(1), . . . , hN , q(N)) := argmin
q∈S3

f(q; h1, q(1), . . . , hN , q(N)). (B.6)

In a vector space, the centroid,
∑N

n=1 hnq(n), would be the unique minimizer of f , but we
have seen that S3 is not closed under weighted summation. As a further difference, the
spherical weighted average does not share the associativity property of the centroid. In other
words, one cannot compute A(h1, q(1), . . . , hN , q(N)) by successive slerps between point pairs.
By contrast, in a vector space, the centroid can be computed by forming successive convex
combinations of point pairs.

One can show that the spherical weighted average exists and is unique if all quaternions qn

lie in a common open hemisphere—which excludes the configuration that has been discussed
above, where all quaternions are equally spaced along a great circle. In the non-degenerate
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case, however, A(h1, q(1), . . . , hN , q(N)) can be approximated to arbitrary precision by an
iterative gradient descent method with linear convergence rate, see [BF01, FLPJ04]. The
authors of [BF01] also give a more elaborate algorithm with quadratic convergence rate,
which we do not discuss here. The algorithm uses a result by Karcher [Kar77] stating that
the negative gradient of f at q ∈ S3 is the centroid of the logarithms of the q(n) taken at q:

−∇f(q) =
N∑

n=1

hn logq(q(n)) (B.7)

Introducing a step size δ > 0, this yields the following iterative gradient descent:

qj+1 := expqj

(
δ

N∑

n=1

hn logqj (q(n))

)

= qj exp

(
(qj)−1δ

N∑

n=1

hnqj log((qj)−1 q(n))

)
(B.8)

= qj exp

(
δ

N∑

n=1

hn log((qj)−1 q(n))

)
.

The exponential at qj , expqj , maps the negative gradient back to S3 and appends it to qj as a
spherical displacement, yielding the updated unit quaternion qj+1. Buss and Fillmore [BF01]
show that using a constant step size of δ = 1 is sufficient for spherical data. They also suggest

to use the normalized, weighted average in R
4 for initialization, q0 :=

∑N
n=1 hnq(n)

‖
∑N

n=1 hnq(n)‖
. This

leads to Algorithm B.1, SphericalWeightedAverage.
In analogy to the filter Φh

R4 , which computes normalized, weighted averages in R
4, we

define the spherical weighted averaging filter Φh
S3 by means of

Φh
S3 [q̃](t) := A(h−K , q̃(t−K), . . . , hK , q̃(t + K)) (B.9)

for t ∈ [1 : T ], where we assume positive filter coefficients h = (hk)k∈[−K:K] summing to 1.

As we will see in Sect. B.4, the operators Φh
R4 and Φh

S3 yield very similar outputs most of the
time; only for quaternion signals exhibiting large angular velocities, they behave differently,
see also the discussion in Sect. B.1. Even though the spherical averaging filter, Φh

S3 , provides
a sound concept of averaging on S3, one could raise the question of whether the overhead of
spherical averaging is justified in our application of motion smoothing—the degenerate cases
where Φh

R4 fails rarely occur in motion data.

B.3 Orientation Filters

Lee and Shin [LS02] introduce orientation filters to transfer the concept of LTI filters to S3.
They consider the general case of (possibly negative) filter coefficients h = (hk)k∈[−K:K] with∑K

k=−K hk = 1, and pursue a three-step strategy: first, compute displacements

ω(t) := log
(
q−1(t) q(t + 1)

)
∈ R

3 (B.12)

for t ∈ [1 : T − 1], which can be interpreted as angular velocities. Then convolve the padded
sequence ω̃ with a filter mask g that can be precomputed from h, yielding as output a filter
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Algorithm B.2 OrientationFilter

Input: q : [1 : T ]→ S3: Quaternion trajectory with dist(q(t), q(t + 1)) < π
2 (see Sect. A.3)

h−K , . . . , hK ∈ R: Arbitrary weights with
∑K

k=−K hk = 1
Output: Φh

o [q] : [1 : T ]→ S3, the filtered version of q

Procedure:

1. Compute the orientation filter mask g = g(h) as in (B.17).

2. Compute the sequence of angular velocities, ω : [1 : T − 1]→ R
3, as

ω(t) := log
(
q−1(t) q(t + 1)

)
(B.10)

3. Compute the filtered quaternion sequence from the padded version of ω as

Φh
o [q](t) := q(t) exp

(
K−1∑

k=−K

gkω̃(t− k)

)
. (B.11)

gain vector in R
3 for each time index t. Finally, apply the filter gain at time t to the

corresponding original data point, q(t), by means of the exponential map.
The underlying idea is to view each quaternion of the input sequence as a multiplicative

cumulation of its predecessors by means of the telescoping product

q(t) = q(1)
t−1∏

k=1

q−1(k) q(k + 1) = q(1)
t−1∏

k=1

exp (ω(k)) . (B.13)

From this, an additive cumulative representation for q in terms of a vector sequence p : [1 :
T ] → R

3 is derived by demanding p(t + 1) − p(t) = log(q−1(t)q(t + 1)) = ω(t), where the
starting point p(1) ∈ R

3 can be chosen arbitrarily:

p(t) := p(1) +
t−1∑

k=1

log
(
q−1(k) q(k + 1)

)
. (B.14)

If q(1) is known, the sequence q can be reconstructed from p by evaluating

q(t) = q(1)
t−1∏

k=1

exp (p(k + 1)− p(k)) . (B.15)

The sequence p can be interpreted as a sampled curve in R
3, the linear velocity profile of

which coincides with the angular velocity profile of q. In particular, note that both linear and
angular velocities are vectors in R

3. We will see that p need not be computed explicitly, but
it helps to build intuition.

Applying the convolution mask h to the symmetrically padded vector sequence p̃, one
obtains the filtered sequence Ch[p̃]. Instead of directly mapping Ch[p̃] back to S3 via (B.15),
which would introduce drifting errors, Lee and Shin [LS02] consider the filter gains Ch[p̃](t)−
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p(t), which are vectors in R
3. The exponentials of the filter gains are spherical displacements

in S3 of the same magnitude as the filter gains (since the exponential map preserves lengths).
These spherical displacements are applied to the original data points, q(t), by means of
quaternion multiplication. This yields the orientation filter

Φh
o [q](t) := q(t) exp

(
Ch[p̃](t)− p(t)

)
, (B.16)

where the ‘o’ stands for “orientation”.
It turns out that the cumulative definition of p allows us to compute the filter gains from

the sequence ω without explicitly considering the sequence p. One can check that the following
orientation filter mask g constructed from h by

gk :=

{ ∑K
j=k+1 aj if 0 ≤ k ≤ K − 1

−∑k
j=−K aj if −K ≤ k < 0

(B.17)

satisfies the identity Cg[ω̃](t) = Ch[p̃](t) − p(t) for t ∈ [1 : T ], see [LS02]. Algorithm B.2
summarizes the computation of this filtering process.

Discussion. Orientation filters inherit important properties from LTI (linear time invariant)
filters for vector space data, see [LS02]. They are time invariant as well as invariant under
coordinate transformations: in a pointwise sense, a Φh

o [q] b = Φh
o [aqb] for all a, b ∈ S3 and

q : [1 : T ] → S3. As an advantage over spherical weighted average filters Φh
S3 , orientation

filters can handle arbitrary filter coefficients. This also enables highpass filtering of orientation
data, which typically requires negative filter coefficients. Highpass filters for motion data can
be used for multiresolution analysis to extract the motion texture [Pul02, PB02].

In case we assume the filter coefficients to be strictly positive, orientation filters are
remarkably similar to spherical weighted averages for a wide range of input data. We will
now compare the two approaches to explain the similarity of filter outputs that we observed
in our experiments, see Sect. B.4. Plugging the expression (B.10) for ω(t) into (B.11), we
obtain (up to symmetric padding)

Φh
o [q](t) = q(t) exp

(
K∑

k=−K

gk log
(
q−1(t− k) q(t− k + 1)

)
)

. (B.18)

Formally, the differences between (B.18) and the iteration formula (B.3) for the spherical
weighted average are that the inverse quaternion appearing in the logarithms in (B.18) is
not constant for each term of the sum, as in (B.3), and the filter mask g is used instead of
h. As an illustration, consider Fig. B.1. Given seven unit quaternions q(−3), . . . , q(3) ∈ S3

and the filter mask h = (1
7 , 1

7 , 1
7 , 1

7 , 1
7 , 1

7), we compute iteration number j + 1 of the spherical
averaging algorithm (top row of Fig. B.1) as well as the filter gain for the corresponding
orientation filter mask, g = (−1

7 ,−2
7 ,−3

7 , 3
7 , 2

7 , 1
7) (bottom row of Fig. B.1). To make the

two situations comparable, we assume that the current estimate of the spherical weighted
average is qj = q(0), which has actually been proposed by Fletcher [FLPJ04] as an alternative
mode of iniatialization (q0) for the spherical weighted average. The next step is to compute
the logarithms of certain spherical displacements: for the spherical weighted average, the
displacements are taken from q(0) to the other six quaternions, while for the orientation
filter, the displacements are taken between successive quaternions.
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Figure B.1. Top row: Computing the gradient for spherical averaging with h = ( 1
7 , 1

7 , 1
7 , 1

7 , 1
7 , 1

7 ).
Bottom row: Computing a filter gain with the orientation filter mask g = (− 1

7 ,− 2
7 ,− 3

7 , 3
7 , 2

7 , 1
7 ). The

left column shows a point set on S3 with spherical displacements shown as gray arrows. The middle
column shows the logarithms of these displacements. The right column shows the respective weighted
versions of the logarithms together with their vector sums, which are drawn as bold arrows.

The resulting logarithms are vectors in R
3. For the case of spherical averaging, their

weighted sum with respect to h is the desired negative gradient, −∇f , of the cost function,
f . For the case of orientation filtering, the special construction of g has the effect that
displacements for k < 0 are weighted with negative coefficients, while displacements for k ≥ 0
are weighted with positive coefficients. By this construction, the resulting filter gain computed
by the orientation filter is very similar to the negative gradient computed by the iterative
spherical averaging. In fact, if we were not dealing with spherical data but with vector space
data, the two resulting vectors would be exactly the same, see [LS02]. In our case, the closeness
of the two results depends on the diameter of the set of input quaternions. The smaller the
diameter, the less the distortion that is incurred by the logarithm map to the tangent space
and the exponential map back to S3. A small diameter will typically be given if the underlying
motion is not too fast and the filter mask is not too long. Under this assumption, the vector
displacements computed by spherical averaging and orientation filtering, respectively, are very
similar. Both algorithms then append the respective displacements to the quaternion q(0)
by means of the exponential map. Thus, under certain conditions, one iteration of spherical
averaging has a similar effect as orientation filtering.

We note a further important property of orientation filters: they can handle degenerate
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cases such as symmetric configurations along a great circle, which are invalid as input for
spherical weighted average filters. This is due to the fact that orientation filters compute
spherical displacements locally, between successive quaternions. Therefore, the logarithms are
always defined as long as the geodesic distances between successive quaternions are guaranteed
to be less than π.

B.4 Evaluation of Smoothing Strategies

Objective evaluation of filter methods for orientation data is difficult due to the lack of
analysis techniques such as the Fourier transform for time-discrete signals q : [1 : T ]→ S3 or
time-continuous signals q : R → S3. We will therefore discuss some representative examples
demonstrating the noise removal properties of the three filtering strategies. We start with a
synthetic example, see Fig. B.2. The signal q consists of two repetitions of a smooth path on
S3 and is artificially degraded in the following way. We generated a 3D zero-mean Gaussian
white noise signal with σ = 0.1, computed the corresponding spherical displacements via the
exponential map and applied these displacements to the quaternions in the signal q, yielding
the noisy signal q′. Around frame 75, a discontinuity was inserted by setting five successive
frames to some constant quaternion (not an antipodal jump.) Also note the discontinuity in
the middle of the signal that results from the concatenation of the two repetitions.

We used the Gaussian filter mask h with a relatively large length of 2K + 1 = 71,
see Eqn. (3.25), which is very similar to the binomial filter mask proposed by Lee and
Shin [LS02]—actually, the binomial filter mask is an approximation of the Gaussian filter
mask. The three filters Φh

R4 , Φh
S3 , and Φh

o were then applied to q′, taking 60 ms, 6, 600 ms,
and 125 ms to compute, respectively. The former two filters succeeded in removing most
of the Gaussian noise. The orientation filter, Φh

o , yielded a similar output as the spherical
average filter, Φh

S3 , but the noise suppression was not as successful, especially during the
discontinuities (where high angular velocities occur). This effect is most likely due to the
distortions incurred by the logarithm map—the filter gains computed in R

3 do not exactly
correspond to the ideal displacements that would be required in S3. Comparing Φh

R4 and Φh
S3 ,

there are almost no differences in the filter output except at the discontinuity at t = 200,
where Φh

R4 produced some distortions opposed to the “ideal average” computed by Φh
S3 .

Regarding real motion capture data, we investigated the ballet motion of Fig. 2.9. The
angle trajectory of the joint ‘lankle’ is slightly noisy and exhibits a discontinuity at frame
130 that results in a visible flip of the ankle, see Fig. B.3 and Fig. B.4. Again, all three
filtering strategies yielded visually very similar results and succeeded in removing most of
the noise. The similarity of the outputs can also be seen in Fig. B.5, where we extend
the velocity example of Fig. 3.12. After filtering all joints’ angle trajectories with the three
filtering strategies, we recomputed the joints’ 3D positions via forward kinematics. Then, we
computed the absolute 3D velocity as in Sect. 3.3.1. The resulting smoothed velocity curves
are fairly similar to the results obtained after lowpass filtering the 3D trajectories.

As a result, we note that even though orientation filtering provides a flexible framework
for applying the concept of FIR filters to S3, the smoothing task seems to be handled better
by the other filtering strategies. For well-conditioned data, the efficient normalized weighted
average filter in R

4 is feasible. Spherical weighted averaging seems to yield the best results but
is very slow. None of the three filtering techniques facilitates a clean removal of discontinuities.
Here, either manual intervention or a “spherical median filter” would be required.
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Figure B.2. Filtering a synthetic 400-frame quaternion signal with a Gaussian filter h of length 71.
From top to bottom: original signal q; added Gaussian noise (σ = 0.1); filter response of normalized
averaging filter in R

4; filter response of spherical weighted averaging filter; filter response of orientation
filter. The four components of the quaternions are color-coded: blue (w), red (x), green (y), cyan (z).
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Figure B.3. Filtering a 100-frame quaternion signal corresponding to frames 100–200 of the angle
trajectory of the joint ‘lankle’ in the ballet motion of Fig. 2.9. We used a Gaussian filter h of length
13. From top to bottom: original signal q; filter response of normalized averaging filter in R

4; filter
response of spherical weighted averaging filter; filter response of orientation filter. The four components
of the quaternions are color-coded: blue (w), red (x), green (y), cyan (z).



154 APPENDIX B. MOTION SMOOTHING WITH QUATERNION FILTERS

(a)

(b)

(c)

Figure B.4. The 500-frame ballet motion of Fig. 1.7 and Fig. 2.9 filtered with (a) normalized
averaging in R

4, (b) spherical weighted averaging, (c) orientation filtering using a Gaussian filter of
length 13, or 108 ms, for all angle trajectories. The trajectory of the joint ‘ltoes’ is shown.
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Figure B.5. Detail (frames 100–200) of the velocity curves of Fig. 3.12, plus the velocity curves
corresponding to the filtered ballet motions of Fig. B.4. ‖v‖, black: raw 3D data; ‖v̄‖, red: after 3D
filtering with a 13-frame Gaussian filter h; ‖vR4‖, green: after normalized averaging in R

4 with h;
‖vS3‖, cyan: after spherical weighted averaging with h; ‖vo‖, blue: after orientation filtering with h.



Appendix C

2D Alignment of 3D Point Clouds

We denote the optimal alignment parameters minimizing (2.8) by α̂, x̂, and ẑ. It turns
out that these parameters can be computed analytically. The key idea is to separate the
optimization of the rotation angle α from the optimization of the translational offsets x and
z, which is possible due to the following lemma, cf. [AHB87, HP03, Ume91]:

Lemma C.1 Let (α̂, x̂, ẑ) = argminα,x,z f(α, x, z). Then the optimal offset parameters de-
pend on the optimal rotation angle in the following way:

p̂ :=




x̂
0
ẑ


 =




x̄− x̄′ cos α̂− z̄′ sin α̂
0

z̄ + x̄′ sin α̂− z̄′ cos α̂


 = p̄−Ry(α̂)p̄′ (C.1)

where p̄ := (x̄, 0, z̄)⊤ is the projection of the centroid of H onto the xz plane, x̄ :=
∑K

k=1 wkxk

is the x component of p̄, and the other barred terms are defined similarly.

Proof: According to the following rule for differentiable mappings F : Ra → R
b,

∂

∂ui
‖F (u)‖2 = 2

b∑

j=1

Fj(u)
∂

∂ui
Fj(u), (C.2)

the partial derivative of f with respect to x is

∂f(α, x, z)

∂x
= −2

K∑

k=1

wk(xk − x′k cos α− z′k sinα− x)

= −2(x̄− x̄′ cos α− z̄′ sinα− x), (C.3)

where we exploited that the wk sum to unity. Similarly, the partial derivative of f with
respect to z is

∂f(α, x, z)

∂z
= −2(z̄ + x̄′ sinα− z̄′ cos α− z). (C.4)

Since the parameters α̂, x̂, and ẑ minimize the error function f , the derivatives (C.3) and

(C.4) must vanish at (α̂, x̂, ẑ). Setting ∂f(α,x,z)
∂x

∣∣∣
α̂,x̂,ẑ

and ∂f(α,x,z)
∂z

∣∣∣
α̂,x̂,ẑ

to zero and solving for

x̂ and ẑ, respectively, we obtain (C.1). Since the zero of the first derivative is unique and since

155
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f is a nonnegative function, only a local minimum can occur at the resulting p̂. Furthermore,
p̂ must be the global minimizer since the domain of f is not bounded. 2

Corollary C.2 Let (α̂, x̂, ẑ) = argminα,x,z f(α, x, z). Then

α̂ = argmin
α

g(α) := argmin
α

K∑

k=1

wk‖qk −Ry(α)q′k‖2, (C.5)

where qk := pk− p̄, q′k := p′k− p̄′ are the centralized versions of the points pk, p′k, respectively.

Proof: According to Lemma C.1, optimal values of x and z must obey equation (C.1). We
may therefore restrict the parameter space of the original optimization problem to such offset
vectors that satisfy p = p(α) = p̄ − Ry(α)p̄′, where p(α) := (x(α), 0, z(α))⊤. Plugging this
expression into (2.8), we obtain

f(α, x(α), z(α)) =
K∑

k=1

wk‖pk − (Ry(α)p′k + p(α))‖2

=

K∑

k=1

wk‖pk − (Ry(α)p′k + p̄−Ry(α)p̄′)‖2

=
K∑

k=1

wk‖pk − p̄−Ry(α)(p′k − p̄′)‖2 (C.6)

=
K∑

k=1

wk‖qk −Ry(α)q′k‖2

= g(α),

which shows that the optimal α for f can be found by minimizing g. 2

Theorem C.3 The optimal parameters minimizing (2.8) are

α̂ = arctan

(∑K
k=1 wk(xkz

′
k − zkx

′
k)− (x̄z̄′ − z̄x̄′)

∑K
k=1 wk(xkx

′
k + zkz

′
k)− (x̄x̄′ + z̄z̄′)

)
(C.7)

x̂ = x̄− x̄′ cos α̂− z̄′ sin α̂ (C.8)

ẑ = z̄ + x̄′ sin α̂− z̄′ cos α̂ (C.9)

Proof: The optimal offset values, x̂ and ẑ, have been derived in Lemma C.1. According to
Corollary C.2, we can minimize g to determine the optimal rotation angle, α̂. Introducing
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the symbols qk =: (Xk, Yk, Zk)
⊤ and q′k =: (X ′k, Y ′k, Z ′k)

⊤, the derivative of g is

dg(α)

dα

(C.2)
= 2

K∑

k=1

wk [ (Xk −X ′k cos α− Z ′k sinα)(X ′k sinα− Z ′k cos α)

+(Zk + X ′k sin α− Z ′k cos α)(X ′k cos α + Z ′k sin α) ]

= 2

K∑

k=1

wk [ (XkX
′
k + ZkZ

′
k) sinα + (−XkZ

′
k + ZkX

′
k) cos α (C.10)

+(−(X ′k)
2 + (Z ′k)

2 + (X ′k)
2 − (Z ′k)

2) sin α cos α

+X ′kZ
′
k(sin

2 α + cos2 α)−X ′kZ
′
k(sin

2 α + cos2 α) ]

= 2
K∑

k=1

wk

[
(XkX

′
k + ZkZ

′
k) sin α− (XkZ

′
k − ZkX

′
k) cos α

]
.

We introduce the abbreviations

A :=
K∑

k=1

wk(XkX
′
k + ZkZ

′
k) (C.11)

B :=
K∑

k=1

wk(XkZ
′
k − ZkX

′
k) (C.12)

and solve the equation dg(α)
dα

∣∣∣
α̂

= 0 for α̂, yielding

A sin α̂ = B cos α̂

⇔ sin α̂

cos α̂
=

B

A
(C.13)

⇔ α̂1 = arctan

(
B

A

)
∨ α̂2 = arctan

(
B

A

)
+ π,

where we assume the range of the arctan function to be [0, π). Obviously, the two possible
solutions α̂1,2 lie on opposing sides of the unit circle. According to the extreme value theorem,
g must assume a global minimum and a global maximum on its domain R/2πZ, since this
set is compact and g is continuous. Furthermore, since R/2πZ has no boundary points due
to its circular topology, the global minimum must occur at one of the stationary points, α̂1

or α̂2. We consider the second derivative of g:

d2g(α)

dα2
= 2(A cos α + B sinα). (C.14)

Evaluating d2g(α)
dα2 at α̂1 ∈ [0, π), we obtain

2(A cos α̂1 + B sin α̂1) = 2c(A2 + B2) ≥ 0, (C.15)

since cos arctan(B
A

) = cA and sin arctan(B
A

) = cB for some c > 0. The degenerate case
A2 + B2 = 0 only occurs when all of the points qk and q′k lie on the y axis and are therefore
unaffected by the rotation Ry(α). As a sanity check, we also evaluate the second derivative
at α̂2 = α̂1 + π, which gives

2(A cos α̂2 + B sin α̂2) = −2c(A2 + B2) ≤ 0, (C.16)
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since sin(α̂1 + π) = − sin(α̂1) and cos(α̂1 + π) = − cos(α̂1). Therefore, the global minimum
occurs at α̂1 and the global maximum occurs at α̂2.

Resubstituting A, B, Xk = xk − x̄, Zk = zk − z̄, X ′k = x′k − x̄′, and Z ′k = z′k − z̄′ yields

α̂ = arctan

(∑K
k=1 wk(xkz

′
k − zkx

′
k)− (x̄z̄′ − z̄x̄′)

∑K
k=1 wk(xkx

′
k + zkz

′
k)− (x̄x̄′ + z̄z̄′)

)
. (C.17)

2



Appendix D

Motion Capture File Formats

D.1 The ASF/AMC Format

ASF/AMC is a skeleton-based mocap file format that was developed by the computer game
producer Acclaim. With the demise of Acclaim in 2004, usage of this format seems to have
been discontinued, and it is not being developed any further. Furthermore, the format is
very poorly documented, the only sources are web pages such as [oW99a]. Yet there is a
large corpus of ASF/AMC mocap data available to the public, for example the CMU mocap
database [CMU03]. Commercial mocap software such as Vicon BodyBuilder offers export
options to the ASF/AMC format.

Mocap data in ASF/AMC format is described by two separate ASCII-coded files: an ASF
file contains the fixed skeleton information, while an AMC file encodes the free parameters.
Typically, there will be a single ASF file for each actor, which can be used with multiple
AMC files recorded by that actor. ASF files are bone-based in contrast to the joint-based
BVH files (Sect. D.2). The Euler conventions used in ASF and AMC files are always based on
a fixed reference frame, for example ←−−xyz, see Sect. A.5.1. In this section, we discuss the ASF
and the AMC file formats and describe how they map to animated skeletons as introduced
in Sect. 1.3.3.

D.1.1 ASF

The following excerpt from an ASF file was taken from the CMU database [CMU03]. Individ-
ual sections within ASF files are delimited by keywords preceded by a colon (:), for example
:name. An ASF file is divided into three blocks: a header, the bone data, and the skeletal
hierarchy.

# Example of an ASF file.

# Comments are denoted by a hash sign.

:version 1.10

:name MY_SKELETON

:units

mass 1.0

length 0.45

angle deg

:documentation

This is an ASF test file. Documentation

can have an arbitrary number of lines.

#########################################################

:root

159
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order TX TY TZ RX RY RZ

axis XYZ

position 0 0 0

orientation 0 0 0

:bonedata

begin

id 1

name lhipjoint

direction 0.603808 -0.713975 0.35448

length 2.2025

axis 0 0 0 XYZ

end

begin

id 2

name lfemur

direction 0.34202 -0.939693 0

length 6.55877

axis 0 0 20 XYZ

dof RX RY RZ

limits (-160.0 20.0)

( -70.0 70.0)

( -60.0 70.0)

end

begin

id 3

name ltibia

direction 0.34202 -0.939693 0

length 6.80302

axis 0 0 20 XYZ

dof RX

limits (-10.0 170.0)

end

begin

id 4

name lfoot

direction 0.09185 -0.25235 0.963267

length 2.03446

axis -90 0 20 XYZ

dof RX RZ

limits (-45.0 90.0)

(-70.0 20.0)

end

.

.

.

begin

id 30

name rthumb

direction -0.707107 0 0.707107

length 0.691594

axis -90 -45 0 XYZ

dof RX RZ

limits (-45.0 45.0)

(-45.0 45.0)

end

#########################################################

:hierarchy

begin

root lhipjoint rhipjoint lowerback

lhipjoint lfemur

lfemur ltibia

ltibia lfoot

lfoot ltoes

rhipjoint rfemur

rfemur rtibia

rtibia rfoot
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rfoot rtoes

lowerback upperback

upperback thorax

thorax lowerneck lclavicle rclavicle

lowerneck upperneck

upperneck head

lclavicle lhumerus

lhumerus lradius

lradius lwrist

lwrist lhand lthumb

lhand lfingers

rclavicle rhumerus

rhumerus rradius

rradius rwrist

rwrist rhand rthumb

rhand rfingers

end

In the following, we explain some of the important sections of an ASF file.

:units length specifies a constant by which all coordinates and lengths appear-
ing in ASF and AMC files have to be divided to obtain inches. This is the
situation for CMU data. Other variants have been encountered where
the data has to be multiplied by the constant to obtain centimeters.

angle can be either deg or rad, standing for degree or radians.

:root The root node is treated separately in ASF files since it is not a proper
bone consisting of both a proximal and a distal joint, but rather a single
joint. However, those bones that are directly incident to the root are
not necessarily rigidly connected to the root but can move by means of
their proximal joint.

order specifies the order in which the root’s degrees of freedom appear
in associated AMC files. For example, “TX” stands for translation in x
direction, while “RY” stands for rotation about the y axis.

axis defines the Euler convention for the root coordinate system, which
is independent of the order of appearance in the AMC file as specified
by order. A value of “XYZ” stands for the Euler convention ←−−xyz.

position is a coordinate triplet describing a translational offset for the
root. This can be used to change the starting position of the skeleton
without altering the AMC data.

orientation is an Euler angle triplet in the convention given by axis,
which describes a rotational offset for the root. This can be used to
change the starting orientation of the skeleton without altering the AMC
data.

:bonedata A list of bones, each of which is delimited by begin/end pairs.

id is an optional numeric identifier for the bone.

name is supposed to contain no whitespace characters and provides a
unique textual description for the bone.
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direction is a coordinate triplet specifying a vector in the world coor-
dinate system, which indicates the direction of the bone in the skeleton’s
neutral pose.

length is the bone’s length. Multiplying a normalized version of the
direction vector by length, one obtains the offset vector to the bone’s
distal joint.

axis is a triplet of Euler angles referring to the skeleton’s neutral pose.
It specifies the rotational offset of the bone’s local coordinate system
against the world coordinate system, always using the ←−−xyz convention.
Confusingly, the Euler convention that is given behind the axis Euler
triplet has nothing to do with this rotational offset. Instead, it specifies
the Euler convention that is used for the rotational degrees of freedom
of this bone.

dof is an optional field declaring the bone’s degrees of freedom and
their sequence of appearance in associated AMC files, as for the case of
the root’s order field. Note that the Euler convention for the bone’s
local coordinate system is independent of their order of appearance in
the AMC file. The Euler convention is specified by the axis field (see
above). Usually, only rotational DOFs are specified for the bones. If
less than three rotational DOFs are given, the unspecified Euler angles
must be set to be zero.

limits is an optional field declaring a valid interval for each DOF, given
in the same sequence as the DOFs. The intervals are specified by a start
and end value and are enclosed in parentheses. This information is
intended for motion editing applications only and does not imply that
the data in associated AMC files is actually clipped to the specified
range.

:hierarchy Enclosed in a begin/end pair, this section describes the tree structure
of the kinematic chain. Each line specifies a parent (first entry) and its
children (following entries), where parents must be either the root or
must have been previously referenced as a child. All references are in
terms of the bones’ name fields.

D.1.2 AMC

The AMC file format is as simple as it is impractical to parse. Neither does it contain a
field for the sampling rate, nor does its header specify the total number of frames, nor does
it give the name of the associated ASF file. Some AMC files contain that information in
non-standard comment fields, but we decided to encode the sampling rate and the ASF file
in the AMC filename.

After the two header lines, an AMC file gives a list of frames, where each frame is delimited
by its frame number. The following lines specify the degrees of freedom for all bones that
have associated dof fields. The first entry in a line is the bone name, the following entries
are the corresponding values for the DOFs, where the sequence is specified by the order and
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dof fields of the respective bone in the ASF file.

The sequence of bones could be different for every frame. In practice, however, one can
assume that all frames specify the bones in the same order, which can be exploited to notably
speed up the parsing. Generally, AMC data takes rather long to parse due to the high
redundancy and the text-based representation, opposed to a binary format. Readability by a
human, not speed, was an issue for the designers of the ASF/AMC format.

Here is an example of a one-frame AMC file associated to the above ASF file.

:FULLY-SPECIFIED

:DEGREES

1

root 8.25657 15.4288 6.98449 6.82839 -8.42357 1.70701

lowerback -12.2602 -2.18333 -5.50437

upperback -0.70081 -2.30222 2.4283

thorax 6.47028 -1.33088 5.28671

lowerneck 2.07852 -15.724 -16.5646

upperneck 4.67254 -21.8828 12.1131

head 4.19382 -10.9818 4.95799

rclavicle 0 0

rhumerus -35.355 15.7653 -90.7264

rradius 37.2218

rwrist -7.61225

rhand -19.101 20.8962

rfingers 7.12502

rthumb 7.20768 -8.9611

lclavicle 0 0

lhumerus -35.7523 -10.6979 92.1621

lradius 38.1065

lwrist 22.5441

lhand -8.19849 44.3013

lfingers 7.12502

lthumb 17.7178 73.5141

rfemur -20.0494 10.5411 21.064

rtibia 41.0307

rfoot -30.5875 -12.6663

rtoes -6.70629

lfemur -20.5304 2.9253 -26.2642

ltibia 42.4012

lfoot -13.1633 22.5873

ltoes -13.3539

D.1.3 Mapping ASF/AMC Files to Animated Skeletons

In Sect. 1.3.3, we had introduced the notion of an animated skeleton:

t 7→ (J, r, B, (tb)b∈B︸ ︷︷ ︸
ASF

; Rr(t), tr(t), (Rb(t))b∈B︸ ︷︷ ︸
AMC

). (D.1)

The set of bones, B, is given by an ASF file’s bonedata: section. Each bone contributes
its distal joint to the joint set, J . Furthermore, J contains the root, r, which is encoded
separately in the ASF file. The joint translations, (tb)b∈B, are given for each bone by the
direction and length fields, as described above. These vectors directly refer to the world
system, hence one obtains the ASF skeleton’s neutral pose (Fig. D.1, left) by appending these
vectors to each other according to the hierarchy given by B.

The values of the free parameters given by the AMC file are interpreted as follows. Using
the appropriate Euler conversion (Sect. A.6) as specified by the root’s order field, the root
rotation, Rr(t), can be computed for each frame t ∈ [1 : T ]. The root translation, tr(t), is
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directly given in world coordinates. Care has to be taken when interpreting the Euler angle
data that is given for each bone. First, missing DOFs have to be padded by zero angles at
the appropriate positions to obtain full triples of Euler angles. Next, the axis values for each
bone have to be converted to a rotation using the ←−−xyz Euler convention. We denote the axis
rotation for bone b ∈ B by Ab ∈ SO3. The time-dependent rotation of bone b as computed
from the AMC file is denoted by R′b(t). Then the bone rotation of the animated skeleton,
Rb(t), is obtained by a change of basis as

Rb(t) := AbR
′
b(t)A

−1
b . (D.2)

D.2 The BVH Format

The BVH format is a skeleton-based mocap format that was developed by the mocap services
company Biovision. The name BVH stands for “Biovision hierarchical data”. A short docu-
mentation can be found at the web page [oW99b]. A BVH file encodes both the skeleton and
the free parameters in two blocks, which are titled HIERARCHY and MOTION. The HIERARCHY

reflects the tree structure of the kinematic chain by means of a nested structure, where each
joint definition is enclosed by braces {}, and a joint’s children are listed in the hierarchy level
below that joint. The MOTION section contains one line of ASCII-coded numbers for each
frame, describing the free parameters. BVH files use Euler conventions that are based on a
moving reference frame such as −−→zxy, see Sect. A.5.1, and assume that all angles are given in
degrees. Lengths are usually specified in centimeters. Here is an excerpt from a BVH file that
was taken from the free BVH collection [BVH06].

HIERARCHY

ROOT Hips

{

OFFSET 0.0000 0.0000 0.0000

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT Chest

{

OFFSET -0.1728 10.2870 0.1254

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Chest2

{

OFFSET 0.3229 15.8173 -2.6440

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftCollar

{

OFFSET -0.0683 16.8828 0.2989

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftShoulder

{

OFFSET 16.0110 -3.0750 2.0528

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftElbow

{

OFFSET 2.6153 -25.4187 1.7231

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftWrist

{

OFFSET 2.3595 -22.4741 1.0488

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 1.4871 -13.9919 1.1523

}
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}

}

}

}

JOINT RightCollar

{

OFFSET -0.0683 16.8828 0.2989

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightShoulder

{

.

.

.

}

}

.

.

.

}

.

.

.

}

MOTION

Frames: 2

Frame Time: 0.033333

-37.1120 93.3657 37.7112 -3.72 -4.75 1.31 0.76 12.64 1.56 ........... 5.23 -13.70 9.02

-37.1110 93.3769 37.7082 -3.69 -4.70 1.27 0.67 12.70 1.64 ........... 5.22 -13.69 8.98

In the following, we explain some of the important keywords and sections of a BVH file.

ROOT This keyword defines and names a root joint, below which all other joints
are assembled. There are BVH files with multiple root joints, enabling
more than one character and/or interaction with motion captured ob-
jects such as balls to be represented.

JOINT Defines and names a joint that is not a root.

OFFSET This is a mandatory field for every joint. It defines the world coordinates
of the translation vector from the parent joint to the current joint.

CHANNELS Declares the number, type, sequence of appearance in the MOTION sec-
tion, and the Euler convention of the joint’s free parameters. For ex-
ample, Xrotation stands for a rotational degree of freedom about the
x axis, while Yposition denotes a translational degree of freedom along
the y axis. “Zrotation Xrotation Yrotation” stands for the −−→zxy Eu-
ler convention.

End Site Declares an end effector joint, which can only have an OFFSET field.

Frames: The number of frames, corresponding to the number of data lines that
follow below.

Frame Time: The inverse of the sampling rate, measured in seconds.

Data block Each data line, corresponding to a single frame, lists the numeric values
describing free parameters in the same sequence as the CHANNEL fields
appear in the HIERARCHY block.
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D.2.1 Mapping BVH Files to Animated Skeletons

The joint set, J , contains all JOINTs appearing in a BVH file, including the root and the End

Site joints. The root, r, is given by the BVH’s ROOT field. By the “parent” relation, one
obtains the set of bones, B:

B := {(j1, j2) ∈ J × J | j1 is parent of j2}. (D.3)

The relative joint translations, tb, are given by the OFFSET vectors. These vectors directly
refer to the world system, hence one obtains the BVH skeleton’s neutral pose (Fig. D.1, right)
by appending these vectors to each other according to the hierarchy given by B. Note that in
the neutral pose, all local coordinate systems at the joints are aligned with the world system.

The root translation, tr(t), as well as the root rotation, Rr(t), can be directly read off from
the data block for each frame t ∈ [1 : T ]. Assigning the root rotations to the bones works
according to the following scheme: for a bone b = (j1, j2) ∈ B, the relative joint rotation
Rb(t) is given by the Euler angles corresponding to joint j1. Observe that as a consequence of
this assignment, bones with a common proximal joint (such as the left/right clavicle and the
neck, or the left/right hip joints and the spine) rotate about that common joint as a single,
rigid unit.

Figure D.1. Neutral poses of the ASF skeleton (left) and the BVH skeleton (right). The respective
local coordinate systems are shown at each bone’s proximal joint. For the BVH skeleton, the local
coordinate systems are aligned with the world system. The axes are color-coded as red, green, and
blue arrows, standing for the x, y, and z axis, respectively.
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D.3 Mapping Mocap Data to the Standard Skeleton

Throughout this thesis, we have used the joint-based standard skeleton of Fig. 1.4. Table D.3
explains how the joints of the standard skeleton correspond to the joints of typical ASF and
BVH skeletons.

Joint of standard skeleton Distal joint of ASF bone Joint of BVH skeleton
root root Hips
lhip lhipjoint LeftHip
lknee lfemur LeftKnee
lankle ltibia LeftAnkle
ltoes ltoes LeftAnkle EndSite
rhip rhipjoint RightHip
rknee rfemur RightKnee
rankle rtibia RightAnkle
rtoes rtoes RightAnkle EndSite
belly lowerback Chest
chest upperback Chest2
neck thorax Neck
head upperneck Head
headtop head Head EndSite
lclavicle thorax LeftCollar
lshoulder lclavicle LeftShoulder
lelbow lhumerus LeftElbow
lwrist lwrist LeftWrist
lfingers lfingers LeftWrist EndSite
rclavicle thorax RightCollar
rshoulder rclavicle RightShoulder
relbow rhumerus RightElbow
rwrist rwrist RightWrist
rfingers rfingers RightWrist EndSite

Table D.3. Mapping ASF and BVH skeletons to the joints of the standard skeleton of Fig. 1.4.

D.4 The C3D Format

The C3D format is used by many suppliers of mocap hard- and software to export and
exchange raw motion capture data. It is a binary format that is not skeleton-based but
instead specifies the 3D trajectories of all markers. A documentation is available at [C3D06],
and parsers for Matlab and other programming languages can be found at [CMU03]. One
important characteristic of the C3D format is that it allows for additional data streams to be
synchronized and stored together with the mocap data. As an example of a typical application,
digitized force data from a force plate could be recorded in parallel with the mocap data.
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erpunktes und die äusseren Kräfte. Abhandl. d. Math.-Phys. Cl. d. k. Sächs.
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S3, 118
RP 3, 120
SO(R3), 113

artifacts, 27
ASF/AMC, 159

bone, 11
BVH, 164

C3D, 167
calibration, 7
Cardan ring, 128
center of mass, 56
chronophotography, 5
class template, 95
classification, 101
coordinate frame

fixed, 127
moving, 127

coordinate system
affine, 9
local, 9
root, 12
world, 10

coordinates
local, 10

cost matrix, 34
cost measure, 28, 99

database
evaluation, 96
motion class, 96
training, 96

degree of freedom, see DOF
deletion, 87
DOF, 9, 14

AMC file, 162
ASF file, 162
BVH file, 165

rotational, 131

DTW, 22

subsequence, 27, 99

dynamic time warping, see DTW

dynamics, 56

dyneme, 24, 110

electro-photography, 5

Euclidean motion, 10

Euler angle, 123

convention, 124

inversion, 128

reference frame, 125

expressive, 24

factor, 62

loadings, 62

false negative, 25, 82

false positive, 25, 82

feature

boolean, 41

function, 43

global, 79

generic relational, 43, 50

Fθ,angle, 52

Fθ,fast, 53

Fθ,move, 55

Fθ,nmove, 54

Fθ,nplane, 51

Fθ,plane, 51

Fθ,touch, 52

matrix, 68

relational, 2, 41

selection, 80

sequence, 46

value, 43

vector, 43

filter gain, 149, 150

force, 56
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forward kinematics, 9, 12
frame, 5

Gaussian lowpass filter, 54
gimbal, 128
gimbal lock, 120, 125, 131

hit, 90
adaptive fuzzy, 73, 74, 79
exact, 71, 76
false negative, 82
false positive, 82
fuzzy, 72, 77

index, 76, 82, 105
insertion, 87
intrinsic mean, 146
invariance, 20, 22
inverted list, 75, 105

joint, 11
distal, 11
end effector, 11
prismatic, 9
proximal, 11
revolute, 9
root, 12
rotating, 11
shoulder, 16
space, 14
torque, 56

Karcher mean, 146
keyframe, 102
keyframing, 1
kinematic chain, 8, 11

ASF, 163
BVH, 164
open, 8
skeletal, 14

Labanotation, 89
latent variable, 62
load, 62

markers
active, 6
bone-implanted, 16
magnetic, 7

optical, 6
passive, 6
placement, 7, 16
shifting, 16, 17
skin-attached, 16

match web, 85, 90, 111
metadata, 2
morphing and blending, 2
motion

analysis, 1, 2
artifacts, 27
aspect, 20
classification, 101
content, 23, 88
data stream, 5
Euclidean, 10
fingerprint, 3, 47
noise, 27
retrieval, 71, 99
reuse, 2
style, 22
synthesis, 1
texton, 23
texture, 23
unnatural, 28

motion analysis
biomechanical, 6, 16

motion capture
accuracy, 17
cleaning, 8
magnetic, 7
marker placement, 7, 16
mechanical, 7
optical, 6
skeletal fitting, 8
technology, 5

motion capture data, 5
ASF/AMC format, 159
BVH format, 164
C3D format, 167
recording, 7

motion class, 96
motion template, 93

class, 95
quantized, 99
reference, 94

moveme, 24
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MT, 93
multiplication order, 127

noise, 27, 53

orientation filter, 145, 148, 150
mask, 150

padding, 54
parameter, 9

free, 14
AMC, 163
BVH, 164

skeletal, 14
ASF, 163
BVH, 164

parametrization, 113
PCA, 62
perception, 20
phoneme, 24
point-light display, 20
pose, 5

distance
3D point cloud, 31
quaternion-based, 29

space, 5
Procrustes, 32
projective space, 120

quaternion, 118
conjugate, 118
exponential map, 122
logarithm, 123
norm, 118
path continuity, 121
pure, 118
sequence, 121
unit, 118

query
admissible fuzzy, 75, 105
by example, 79
exact, 71
fuzzy, 72
mismatch, 75

range of motion, 7, 89
ranking, 22, 81, 82
relational feature, 41

relevance, 26
retrieval, 71, 99

content-based, 2
Rodrigues matrix, 116
root, 8, 11
rotation

angle, 116
axis, 114, 116
basic, 115
matrix, 114
order, 127

three-axis, 124
two-axis, 127

plane, 114
reference frame, 125
relative joint, 11
root, 11

rotoscopy, 6

score function, 28
segment, 46

boundaries, 76, 81, 105
length, 76
transitory, 47, 72

segmentation, 2
self-similarity matrix, 90
semantic gap, 25, 41
separation quotient, 107
similarity, 19

aspect of, 20
emotional, 23
mood, 23

logical, 19, 24
measure, 28
numerical, 20
partial, 26
perceptual, 31
subsequence, 27

similarity measure
global, 34
local, 26, 28
semi-local, 33, 88, 89

similarity, motion, 2
skeleton, 14, 16

animated, 14
ASF/AMC, 163
BVH, 166
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standard, 8, 167
skin shift, 16, 17
slerp, 120
spherical weighted average, 147
style machines, 23
style translation, 23

T-pose, 7
take, 7
temporal templates, 21
test plane, 43
tetrachoric correlation, 65
thresholding

hysteresis, 58
robust, 58

training example
positive, 108

trajectory
angle, 14
joint, 5

translation
relative joint, 11
root, 11

variations
spatial, 25
spatio-temporal, 25
temporal, 25, 46

velocity, 53
verbs and adverbs, 23

warping path, 34
wobbling mass, 16




