2,552 research outputs found

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    10081 Abstracts Collection -- Cognitive Robotics

    Get PDF
    From 21.02. to 26.02.2010, the Dagstuhl Seminar 10081 ``Cognitive Robotics \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Areas of Same Cardinal Direction

    Get PDF
    Cardinal directions, such as North, East, South, and West, are the foundation for qualitative spatial reasoning, a common field of GIS, Artificial Intelligence, and cognitive science. Such cardinal directions capture the relative spatial direction relation between a reference object and a target object, therefore, they are important search criteria in spatial databases. The projection-based model for such direction relations has been well investigated for point-like objects, yielding a relation algebra with strong inference power. The Direction Relation Matrix defines the simple region-to-region direction relations by approximating the reference object to a minimum bounding rectangle. Models that capture the direction between extended objects fall short when the two objects are close to each other. For instance, the forty-eight contiguous states of the US are colloquially considered to be South of Canada, yet they include regions that are to the North of some parts of Canada. This research considers the cardinal direction as a field that is distributed through space and may take on varying values depending on the location within a reference object. Therefore, the fundamental unit of space, the point, is used as a reference to form a point-based cardinal direction model. The model applies to capture the direction relation between point-to-region and region-to-region configurations. As such, the reference object is portioned into areas of same cardinal direction with respect to the target object. This thesis demonstrates there is a set of 106 cardinal point-to-region relations, which can be normalized by considering mirroring and 90° rotations, to a subset of 22 relations. The differentiating factor of the model is that a set of base relations defines the direction relation anywhere in the field, and the conceptual neighborhood graph of the base relations offers the opportunity to exploit the strong inference of point-based direction reasoning for simple regions of arbitrary shape. Considers the tiles and pockets of same cardinal direction, while a coarse model provides a union of all possible qualitative direction values between a reference region and a target region

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations

    Stochastic techniques for the design of robust and efficient emission trading mechanisms

    Get PDF
    The assessment of greenhouse gases (GHGs) emitted to and removed from the atmosphere is highon both political and scientific agendas internationally. As increasing international concern and cooper- ation aim at policy-oriented solutions to the climate change problem, several issues have begun to arise regarding verification and compliance under both proposed and legislated schemes meant to reduce the human-induced global climate impact. The issues of concern are rooted in the level of confidence with which national emission assessments can be performed, as well as the management of uncertainty and its role in developing informed policy. The approaches to addressing uncertainty that was discussed at the 2nd International Workshop on Uncertainty in Greenhouse Gas Inventories 1 attempt to improve national inventories or to provide a basis for the standardization of inventory estimates to enable comparison of emissions and emission changes across countries. Some authors use detailed uncertainty analyses to enforce the current structure of the emissions trading system while others attempt to internalize high levels of uncertainty by tailoring the emissions trading market rules. In all approaches, uncertainty analysis is regarded as a key component of national GHG inventory analyses. This presentation will provide an overview of the topics that are discussed among scientists at the aforementioned workshop to support robust decision making. These range from achieving and report- ing GHG emission inventories at global, national and sub-national scales; to accounting for uncertainty of emissions and emission changes across these scales; to bottom-up versus top-down emission analy- ses; to detecting and analyzing emission changes vis-a-vis their underlying uncertainties; to reconciling short-term emission commitments and long-term concentration targets; to dealing with verification, com- pliance and emissions trading; to communicating, negotiating and effectively using uncertainty
    • …
    corecore