695 research outputs found

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    Hyperspectral benthic mapping from underwater robotic platforms

    Get PDF
    We live on a planet of vast oceans; 70% of the Earth's surface is covered in water. They are integral to supporting life, providing 99% of the inhabitable space on Earth. Our oceans and the habitats within them are under threat due to a variety of factors. To understand the impacts and possible solutions, the monitoring of marine habitats is critically important. Optical imaging as a method for monitoring can provide a vast array of information however imaging through water is complex. To compensate for the selective attenuation of light in water, this thesis presents a novel light propagation model and illustrates how it can improve optical imaging performance. An in-situ hyperspectral system is designed which comprised of two upward looking spectrometers at different positions in the water column. The downwelling light in the water column is continuously sampled by the system which allows for the generation of a dynamic water model. In addition to the two upward looking spectrometers the in-situ system contains an imaging module which can be used for imaging of the seafloor. It consists of a hyperspectral sensor and a trichromatic stereo camera. New calibration methods are presented for the spatial and spectral co-registration of the two optical sensors. The water model is used to create image data which is invariant to the changing optical properties of the water and changing environmental conditions. In this thesis the in-situ optical system is mounted onboard an Autonomous Underwater Vehicle. Data from the imaging module is also used to classify seafloor materials. The classified seafloor patches are integrated into a high resolution 3D benthic map of the surveyed site. Given the limited imaging resolution of the hyperspectral sensor used in this work, a new method is also presented that uses information from the co-registered colour images to inform a new spectral unmixing method to resolve subpixel materials

    Advances in multispectral and hyperspectral imaging for archaeology and art conservation

    Get PDF
    Multispectral imaging has been applied to the field of art conservation and art history since the early 1990s. It is attractive as a noninvasive imaging technique because it is fast and hence capable of imaging large areas of an object giving both spatial and spectral information. This paper gives an overview of the different instrumental designs, image processing techniques and various applications of multispectral and hyperspectral imaging to art conservation, art history and archaeology. Recent advances in the development of remote and versatile multispectral and hyperspectral imaging as well as techniques in pigment identification will be presented. Future prospects including combination of spectral imaging with other noninvasive imaging and analytical techniques will be discussed

    Probabilistic Mixture Model-Based Spectral Unmixing

    Full text link
    Identifying pure components in mixtures is a common yet challenging problem. The associated unmixing process requires the pure components, also known as endmembers, to be sufficiently spectrally distinct. Even with this requirement met, extracting the endmembers from a single mixture is impossible; an ensemble of mixtures with sufficient diversity is needed. Several spectral unmixing approaches have been proposed, many of which are connected to hyperspectral imaging. However, most of them assume highly diverse collections of mixtures and extremely low-loss spectroscopic measurements. Additionally, non-Bayesian frameworks do not incorporate the uncertainty inherent in unmixing. We propose a probabilistic inference approach that explicitly incorporates noise and uncertainty, enabling us to unmix endmembers in collections of mixtures with limited diversity. We use a Bayesian mixture model to jointly extract endmember spectra and mixing parameters while explicitly modeling observation noise and the resulting inference uncertainties. We obtain approximate distributions over endmember coordinates for each set of observed spectra while remaining robust to inference biases from the lack of pure observations and presence of non-isotropic Gaussian noise. Access to reliable uncertainties on the unmixing solutions would enable robust solutions as well as informed decision making

    SCoT: a Python toolbox for EEG source connectivity

    Get PDF
    Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT—a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT

    Error characterization of spectral products using a factorial designed experiment

    Get PDF
    The main objective of any imaging system is to collect information. Information is conveyed in remotely sensed imagery by the spatial and spectral distribution of the energy reflected/emitted from the earth. This energy is subsequently captured by an overhead imaging system. Post-processing algorithms, which rely on this spectral and spatial energy distribution, allow us to extract useful information from the collected data. Typically, spectral processing algorithms include such procedures as target detection, thematic mapping and spectral pixel unmixing. The final spectral products from these algorithms include detection maps, classification maps and endmember fraction maps. The spatial resolution, spectral sampling and signal-to-noise characteristics of a spectral imaging system share a strong relationship with one another based on the law of conservation of energy. If any one of these initial image collection parameters were changed then we would expect the accuracy of the information derived from the spectral processing algorithms to also change. The goal of this thesis study was to investigate the accuracy and effectiveness of spectral processing algorithms under different image levels of spectral resolution, spatial resolution and noise. In order to fulfill this goal a tool was developed that degrades hyperspectral images spatially, spectrally and by adding spectrally correlated noise. These degraded images were then subjected to several spectral processing algorithms. The information utility and error characterization of these degraded spectral products is assessed using algorithm-specific metrics. By adopting a factorial designed experimental approach, the joint effects of spatial resolution, spectral sampling and signal-to-noise with respect to algorithm performance was also studied. Finally, a quantitative performance comparison of the tested spectral processing algorithms was made

    Hierarchical Bayesian image analysis: from low-level modeling to robust supervised learning

    Get PDF
    Within a supervised classification framework, labeled data are used to learn classifier parameters. Prior to that, it is generally required to perform dimensionality reduction via feature extraction. These preprocessing steps have motivated numerous research works aiming at recovering latent variables in an unsupervised context. This paper proposes a unified framework to perform classification and low-level modeling jointly. The main objective is to use the estimated latent variables as features for classification and to incorporate simultaneously supervised information to help latent variable extraction. The proposed hierarchical Bayesian model is divided into three stages: a first low-level modeling stage to estimate latent variables, a second stage clustering these features into statistically homogeneous groups and a last classification stage exploiting the (possibly badly) labeled data. Performance of the model is assessed in the specific context of hyperspectral image interpretation, unifying two standard analysis techniques, namely unmixing and classification

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble
    • …
    corecore