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a b s t r a c t 

Within a supervised classification framework, labeled data are used to learn classifier parameters. Prior
to that, it is generally required to perform dimensionality reduction via feature extraction. These pre- 
processing steps have motivated numerous research works aiming at recovering latent variables in an
unsupervised context. This paper proposes a unified framework to perform classification and low-level
modeling jointly. The main objective is to use the estimated latent variables as features for classification
and to incorporate simultaneously supervised information to help latent variable extraction. The proposed
hierarchical Bayesian model is divided into three stages: a first low-level modeling stage to estimate la- 
tent variables, a second stage clustering these features into statistically homogeneous groups and a last
classification stage exploiting the (possibly badly) labeled data. Performance of the model is assessed
in the specific context of hyperspectral image interpretation, unifying two standard analysis techniques,
namely unmixing and classification.

1. Introduction

In the context of image interpretation, numerous methods have
been developed to extract meaningful information. Among them,
generative models have received a particular attention due to their
strong theoretical background and the great convenience they of- 
fer in term of interpretation of the fitted models compared to
some model-free methods such as deep neural networks. These
methods are based on an explicit statistical modeling of the data
which allows very task-specific model to be derived [1] , or either
more general models to be implemented to solve generic tasks,
such as Gaussian mixture model for classification [2] . Task-specific
and classification-like models are two different ways to reach an
interpretable description of the data with respect to a particular
applicative non-semantic issue. For instance, when analyzing im- 
ages, task-specific models aim at recovering the latent (possibly
physics-based) structures underlying each pixel-wise measurement
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[3] while classification provides a high-level information, reducing
the pixel characterization to a unique label [4] .

Classification is probably one of the most common way to inter- 
pret data, whatever the application field of interest [5] . This unde- 
niable appeal has been motivated by the simplicity of the resulting
output. This simplicity induces the appreciable possibility of ben- 
efiting from training data at a relatively low cost. Indeed, experts
can generally produce a ground-truth equivalent to the expected
results of the classification for some amount of the data. This su- 
pervised approach allows a priori knowledge to be easily incorpo- 
rated to improve the quality of the inferred classification model.
Nevertheless, supervised methods are significantly influenced by
the size of the training set, its representativeness and reliability [6] .
Moreover, in some extent, modeling the pixel-wise data by a single
descriptor may appear as somehow limited. It is the reason why
the user-defined classes often refer to some rather vague semantic
meaning with a possible large intra-class variability. To overcome
these issues, while simultaneously facing with theoretical limita- 
tions of the expected classifier ability of generalization [7] , an ap- 
proach consists in preceding the training stage with feature extrac- 
tion [8] . These feature extraction techniques, whether parametric
or nonparametric, have also the great advantage of simultaneously
and significantly reducing the data volume to be handled as well
as the dimension of the space in which the training should be sub-

E-mail addresses: adrien.lagrange@enseeiht.fr (A. Lagrange),
mathieu.fauvel@ensat.fr (M. Fauvel), stephane.may@cnes.fr (S. May), 
nicolas.dobigeon@enseeiht.fr (N. Dobigeon). 

https://doi.org/10.1016/j.patcog.2018.07.026 



sequently conducted. Unfortunately, they are generally conducted
in a separate manner before the classification task, i.e., without
benefiting from any prior knowledge available as training data.
Thus, a possible strategy is to consider a (possibly huge) set of fea- 
tures and selecting the relevant ones by appropriate optimization
schemes [9] .

This observation illustrates the difficulty of incorporating
ground-truthed information into a feature extraction step or, more
generally, into a latent (i.e., unobserved) structure analysis. Due to
the versatility of the data description, producing expert ground- 
truth with such degrees of accuracy and flexibility would be time- 
consuming and thus prohibitive. For example, for a research prob- 
lem as important and well-documented as that of source sep- 
aration, only very few and recent attempts have been made to
incorporate supervised knowledge provided by an end-user [10] .
Nonetheless, latent structure analysis may offer a relevant and
meaningful interpretation of the data, since various conceptual yet
structured knowledge to be inferred can be incorporated into the
modeling. In particular, when dealing with measurements provided
by a sensor, task-related biophysical considerations may guide the
model derivation [11] . This is typically the case when spectral mix- 
ture analysis is conducted to interpret hyperspectral images whose
pixel measurements are modeled as combinations of elementary
spectra corresponding to physical elementary components [12] .

The contribution of this paper lies in the derivation of a uni- 
fied framework able to perform classification and latent structure
modeling jointly. First, this framework has the primary advantage
of recovering consistent high and low level image descriptions, ex- 
plicitly conducting hierarchical image analysis. Moreover, improve- 
ments in the results associated with both methods may be ex- 
pected thanks to the complementarity of the two approaches. The
use of ground-truthed training data is not limited to driving the
high level analysis, i.e., the classification task. Indeed, it also makes
it possible to inform the low level analysis, i.e., the latent struc- 
ture modeling, which usually does not benefit well from such prior
knowledge. On the other hand, the latent modeling inferred from
each data as low level description can be used as features for clas- 
sification. A direct and expected side effect is the explicit dimen- 
sion reduction operated on the data before classification [7] . Fi- 
nally, the proposed hierarchical framework allows the classifica- 
tion to be robust to corruption of the ground-truth. As mentioned
previously, performance of supervised classification may be ques- 
tioned by the reliability in the training dataset since it is generally
built by human expert and thus probably corrupted by label er- 
rors resulting from ambiguity or human mistakes. For this reason,
the problem of developing classification methods robust to label
errors has been widely considered in the community [13,14] . Pur- 
suing this objective, the proposed framework also allows training
data to be corrected if necessary.

The interaction between the low and high level models is han- 
dled by the use of non-homogeneous Markov random fields (MRF)
[15] . MRFs are probabilistic models widely-used to describe spa- 
tial interactions. Thus, when used to derive a prior model within
a Bayesian approach, they are particularly well-adapted to capture
spatial dependencies between the latent structures underlying im- 
ages [16,17] . For example, Chen et al. [18] proposed to use MRFs
to perform clustering. The proposed framework incorporates two
instances of MRF, ensuring consistency between the low and high
level modeling, consistency with external data available as prior
knowledge and a more classical spatial regularization.

The remaining of the article is organized as follows.
Section 2 presents the hierarchical Bayesian model proposed
as a unifying framework to conduct low-level and high-level im- 
age interpretation. A Markov chain Monte Carlo (MCMC) method
is derived in Section 3 to sample according to the joint posterior
distribution of the resulting model parameters. Then, a particular

Fig. 1. Directed acyclic graph of the proposed hierarchical Bayesian model. (User- 
defined parameters appear in dotted circles and external data in squares). 

and illustrative instance of the proposed framework is presented in
Section 4 where hyperspectral images are analyzed under the dual
scope of unmixing and classification. Finally, Section 5 concludes
the paper and opens some research perspectives to this work.

2. Bayesian model

In order to propose a unifying framework offering multi-level
image analysis, a hierarchical Bayesian model is derived to relate
the observations and the task-related parameters of interest. This
model is mainly composed of three main levels. The first level, pre- 
sented in Section 2.1 , takes care of a low-level modeling achieving
latent structure analysis. The second stage then assumes that data
samples (e.g., resulting from measurements) can be divided into
several statistically homogeneous clusters through their respective
latent structures. To identify the cluster memberships, these sam- 
ples are assigned discrete labels which are a priori described by
a non-homogeneous Markov random field (MRF). This MRF com- 
bines two terms: the first one is related to the potential of a Potts-
MRF to promote spatial regularity between neighboring pixels; the
second term exploits labels from the higher level to promote co- 
herence between cluster and classification labels. This clustering
process is detailed in Section 2.2 . Finally, the last stage of the
model, explained in Section 2.3 , allows high-level labels to be es- 
timated, taking advantage of the availability of external knowledge
as ground-truthed or expert-driven data, akin to a conventional su- 
pervised classification task. The whole model and its dependences
are summarized by the directed acyclic graph in Fig. 1 .

2.1. Low-level interpretation 

The low-level task aims at inferring P R -dimensional latent vari- 
able vectors a p ( ∀ p ∈ P , { 1 , . . . , P } ) appropriate for representing
P respective d -dimensional observation vectors y p in a subspace
of lower dimension than the original observation space, i.e., R ≤d .
The task may also include the estimation of the function or addi- 
tional parameters of the function relating the unobserved and ob- 
served variables. By denoting Y = [ y 1 , . . . , y P ] and A = [ a 1 , . . . , a P ]
the d × P - and R × P - matrices gathering respectively the obser- 
vation and latent variable vectors, this relation can be expressed
through the general statistical formulation

Y | A , υ ∼ 9( Y ; f lat ( A ) , υ) , (1)

where 9(·, υ) stands for a statistical model, e.g., resulting from
physical or approximation considerations, f lat ( · ) is a deterministic
function used to define the latent structure and υ are possible ad- 
ditional nuisance parameters. In most applicative contexts aimed
by this work, the model 9( · ) and function f lat ( · ) are separable



with respect to the measurements assumed to be conditionally in- 
dependent, leading to the factorization

Y | A , υ ∼

P 
∏

p=1 

9( y p ; f lat ( a p ) , υ) . (2)

It is worth noting that this statistical model will explicitly lead to
the derivation of the particular form of the likelihood function in- 
volved in the Bayesian model.

The choice of the latent structure related to the function f lat ( · )
is application-dependent and can be directly chosen by the end- 
user. A conventional choice consists in considering a linear ex- 
pansion of the observed data y p over an orthogonal basis span- 
ning a space whose dimension is lower than the original one.
This orthogonal space can be a priori fixed or even learnt from
the dataset itself, e.g., leveraging on popular nonparametric meth- 
ods such as principal component analysis (PCA) [19] . In such case,
the model (1) should be interpreted as a probabilistic counter- 
part of PCA [20] and the latent variables a p would correspond to
factor loadings. Similar linear latent factors and low-rank models
have been widely advocated to address source separation prob- 
lems, such as nonnegative matrix factorization [21] . As a typical
illustration, by assuming an additive white and centered Gaus- 
sian statistical model 9( · ) and a linear latent function f lat ( · ), the
generic model (2) can be particularly instanced as

Y | A , s 2 ∼

P 
∏

p=1 

N 
(

y p ;Ma p , s 
2 I d

)

(3)

where I d is the d × d identity matrix, M is a matrix spanning
the signal subspace and s 2 is the variance of the Gaussian er- 
ror, considered as a nuisance parameter. Besides this popular class
of Gaussian models, this formulation allows other noise statistics
to be handled within a linear factor modeling, as required when
the approximation should be envisaged beyond a conventional Eu- 
clidean discrepancy measure [22] , provided that

E [ Y | A ] = f lat (A ) .

From a different perspective, the generic formulation of the sta- 
tistical latent structure (2) can also result from a thorough analysis
of more complex physical processes underlying observed measure- 
ments, resulting in specific yet richer physics-based latent models
[11,23] . For sake of generality, this latent structure will not be spec- 
ified in the rest of this manuscript, except in Section 4 where the
linear Gaussian model (3) will be more deeply investigated as an
illustration in a particular applicative context.

2.2. Clustering 

To regularize the latent structure analysis, the model is com- 
plemented by a clustering step as a higher level of the Bayesian
hierarchy. Besides, another objective of this clustering stage is also
to act as a bridge between the low- and high-level data inter- 
pretations, namely latent structure analysis and classification. The
clustering is performed under the assumption that the latent vari- 
ables are statistically homogeneous and allocated in several clus- 
ters, i.e., identities belonging to a same cluster are supposed to
be distributed according to the same distribution. To identify the
membership, each observation is assigned a cluster label z p ∈ K ,

{ 1 , . . . , K } where K is the number of clusters. Formally, the un- 
known latent vector is thus described by the following prior

a p | z p = k, θk ∼ 8(a p ; θk ) , (4)

where 8 is a given statistical model depending on the addressed
problem and governed by the parameter vector θk characterizing
each cluster. As an example, considering this prior distribution
as Gaussian, i.e., 8(a p ; θk ) = N (a p ;ψ k , 6k ) with θk =

{

ψ k , 6k 

}

, 

would lead to a conventional Gaussian mixture model (GMM) for
the latent structure, as in [24] (see Section 4 ).

One particularity of the proposed model lies in the prior on the
cluster labels z = [ z 1 , . . . , z P ] . A non-homogeneous Markov Random
Field (MRF) is used as a prior model to promote two distinct be- 
haviors through the use of two potentials. The first one is a local
and non-homogeneous potential parameterized by a K -by- J matrix
Q . It promotes consistent relationships between the cluster labels
z and some classification labels ω = [ ω 1 , . . . , ω P ] where ω p ∈ J ,

{ 1 , . . . , J } and J is the number of classes. These classification labels
associated with high-level interpretation will be more precisely in- 
vestigated in the third stage of the hierarchy in Section 2.3 . Pursu- 
ing the objective of analyzing images, the second potential is asso- 
ciated with a Potts-MRF [25] of granularity parameter β1 to pro- 
mote a piecewise consistent spatial regularity of the cluster labels.
The prior probability of z is thus defined as

P [ z | ω , Q ] =
1

C( ω , Q )
exp

(

∑

p∈P 

V 1 (z p , ω p , q z p ,ω p )

+ 

∑

p∈P 

∑

p ′ ∈V(p) 

V 2 (z p , z p ′ )

)

(5)

where V(p) stands for the neighborhood of p, q k, j is the k th ele- 
ment of the j th column of Q . The two terms V 1 ( · ) and V 2 ( · ) are
the classification-informed and Potts–Markov potentials, respec- 
tively, defined by

V 1 (k, j, q k, j ) = log (q k, j )

V 2 (k, k 
′ ) = β1 δ(k, k ′ )

where δ( · , · ) is the Kronecker function. Finally, C ( ω, Q ) stands for
the normalizing constant (i.e., partition function) depending of ω
and Q and computed over all the possible z fields [15]

C( ω , Q ) =
∑

z ∈K P 

exp

(

∑

p∈P 

V 1 (z p , ω p , q z p ,ω p ) +
∑

p∈P 

∑

p ′ ∈V(p) 

V 2 (z p , z p ′ )

)

= 

∑

z ∈K P 

∏

p∈P 

q z p ,ω p exp

(

β1

∑

p ′ ∈V(p) 

δ(z p , z p ′ )

)

. (6)

The equivalence between Gibbs random fields and MRF stated
by the Hammersley–Clifford theorem [15] provides the prior prob- 
ability of a particular cluster label conditionally upon its neigh- 
bors

P [ z p = k | z V(p) , ω p = j, q k,ω p ] ∝

exp

(

V 1 (k, j, q k, j ) +
∑

p ′ ∈V(p) 

V 2 (k, z p ′ )

)

(7)

where the symbol ∝ stands for “proportional to”.
The elements q k, j of the matrix Q introduced in the latter MRF

account for the connection between cluster k and class j , reveal- 
ing a hidden interaction between clustering and classification. A
high value of q k, j tends to promote the association to the clus- 
ter k when the sample belongs to the class j . This interaction en- 
coded through these matrix coefficients is unknown and thus mo- 
tivates the estimation of the matrix Q . To reach an interpreta- 
tion of the matrix coefficients in terms of probabilities of inter- 
dependency, a Dirichlet distribution is elected as prior for each col- 
umn q j = [ q 1 , j , . . . , q K, j ] T of Q = [ q 1 , . . . , q J ] which are assumed to
be independent, i.e.,

q j ∼ Dir (q j ; ζ1 , . . . , ζK ) . (8)

The nonnegativity and sum-to-one constraints imposed to the co- 
efficients defining each column of Q allows them to be interpreted



as probability vectors. The choice of such a prior is furthermore
motivated by the properties of the resulting conditional posterior
distribution of q j , as demonstrated later in Section 3 . In the present
work, the hyperparameters ζ1 , . . . , ζK are all chosen equal to 1, re- 
sulting in a uniform prior over the corresponding simplex defined
by the probability constraints. Obviously, when additional prior
knowledge on the interaction between clustering and classification
is available, these hyperparameters can be adjusted accordingly.

2.3. High-level interpretation 

The last stage of the hierarchical model defines a classifica- 
tion rule. At this stage, a unique discrete class label should be at- 
tributed to each sample. This task can be seen as high-level in the
sense that the definition of the classes can be motivated by their
semantic meaning. Classes can be specified by the end-user and
thus a class may gather samples with significantly dissimilar ob- 
servation vectors and even dissimilar latent features. The clustering
stage introduced earlier also allows a mixture model to be derived
for this classification task. Indeed, a class tends to be the union of
several clusters identified at the clustering stage, providing a hier- 
archical description of the dataset.

In this paper, the conventional and well-admitted setup of a
supervised classification is considered. This setup means that a
partial ground-truthed dataset c L is available for a (e.g., small)
subset of samples. In what follows, L ⊂ P denotes the subset of
observation indexes for which this ground-truth is available. This
ground-truth provides the expected classification labels for obser- 
vations indexed by L . Conversely, the index set of unlabeled sam- 
ples for which this ground-truth is not available is noted U ⊂ P,

with P = U + L and U ∩ L = ∅ . Moreover, the proposed model as- 
sumes that this ground-truth may be corrupted by class labeling
errors. As a consequence, to provide a classification robust to these
possible errors, all the classification labels of the dataset will be
estimated, even those associated with the observations indexed by
L . At the end of the classification process, the labels estimated for
observations indexed by L will not be necessarily equal to the la- 
bels c L provided by the expert or an other external knowledge.

Similarly to the prior model advocated for z (see Section 2.2 ),
the prior model for the classification labels ω is a non- 
homogeneous MRF composed of two potentials. Again, a Potts-MRF
potential with a granularity parameter β2 is used to promote spa- 
tial coherence of the classification labels. The other potential is
non-homogeneous and exploits the supervised information avail- 
able under the form of the ground-truth map c L . In particular, it
attends to ensure consistency between the estimated and ground- 
truthed labels for the samples indexed by L . Moreover, for the clas- 
sification labels associated with the indexes in U (i.e., for which no
ground-truth is available), the prior probability to belong to a given
class is set as the proportion of this class observed in c L . This set- 
ting assumes that the expert map is representative of the whole
scene to be analyzed in term of label proportions. If this assump- 
tion is not verified, the proposed modeling can be easily adjusted
accordingly. Mathematically, this formal description can be sum- 
marized by the following conditional prior probability for a given
classification label ω p

P [ ω p = j | ω V(p) , c p , ηp ] ∝

exp

(

W 1 ( j, c p , ηp ) +
∑

p ′ ∈V(p) 

W 2 ( j, ω p ′ )

)

. (9)

As explained above, the potential W 2 ( · , · ) ensures the spatial co- 
herence of the classification labels, i.e.,

W 2 ( j, j 
′ ) = β2 δ( j, j ′ ) .

More importantly, the potential W 1 ( j, c p , ηp ) defined by

W 1 ( j, c p , ηp )

= 

 

 



{

log (ηp ) , when j = c p

log ( 1 −ηp 
J−1 ) , otherwise

, when p ∈ L

log (π j ) , when p ∈ U

encodes the coherence between estimated and ground-truthed la- 
bels when available (i.e., when p ∈ L ) or, conversely for non- 
ground-truthed labels (i.e., when p ∈ U), the prior probability of
assigning a given label through the proportion π j of samples of
class j in c L . The hyperparameter ηp ∈ (0, 1) stands for the confi- 
dence given in c p , i.e., the ground-truth label of pixel p . In the case
where the confidence is total, the parameter tends to 1 and it leads
to ω p = c p in a deterministic manner. However, in a more realistic
applicative context, ground-truth is generally provided by human
experts and may contain errors due for example to ambiguities or
simple mistakes. It is possible with the proposed model to set for
example a 90% level of confidence which allows to re-estimate the
class label of the labeled set L and thus to correct the provided
ground-truth. By this mean, the robustness of the classification to
label errors is improved.

3. Gibbs sampler

To infer the parameters of the hierarchical Bayesian model in- 
troduced in the previous section, an MCMC algorithm is derived
to generate samples according to the joint posterior distribution of
interest which can be computed according to the following hierar- 
chical structure

p ( A , 2, z , Q , ω | Y ) ∝ p(Y | A ) p(A | z , θ) p(z | Q , ω ) p( ω )

with 2 ,
{

θ1 , . . . , θK 
}

. Note that, for conciseness, the nuisance pa- 
rameters υ have been implicitly marginalized out in the hierarchi- 
cal structure. If this marginalization is not straightforward, these
nuisance parameters can be also explicitly included within the
model to be jointly estimated.

The Bayesian estimators of the parameters of interest can then
be approximated using these samples. The minimum mean square
error (MMSE) estimators of the parameters A, 2 and Q can be ap- 
proximated through empirical averages

ˆ x MMSE = E [ x | Y ] ≈
1

N MC

N MC
∑

t=1 

x (t) (10)

where · ( t ) denotes the t th samples and N MC is the number of itera- 
tions after the burn-in period. Conversely, the maximum a posteri- 
ori estimators of the cluster and class labels, z and ω, respectively,
can be approximated as

ˆ x MAP = argmax
x 

p(x | Y ) ≈ argmax
x (t) 

p(x (t) | Y ) (11)

which basically amounts at retaining the most frequently gener- 
ated label for these specific discrete parameters [26] .

To carry out such a sampling strategy, the conditional posterior
distributions of the various parameters need to be derived. More
importantly, the ability of drawing according to these distributions
is required. These posterior distributions are detailed in what fol- 
lows.

3.1. Latent parameters 

Given the likelihood function resulting from the statistical
model (2) and the prior distribution in (4) , the conditional poste- 
rior distribution of a latent vectors can be expressed as follows:

p(a p | y p , υ, z p = k, θk ) ∝ p(y p | a p , υ) p(a p | z p = k, θk )

∝ 9( y p ; f lat ( a p ) , υ) 8(a p ; θk ) . (12)



3.2. Cluster labels 

The cluster label z p being a discrete random variable, it is pos- 
sible to sample the variable by computing the conditional proba- 
bility for all possible values of z p in K

P (z p = k | θk , ω p = j, q k, j )

∝ p(a p | z p = k, θk ) P (z p = k | z V(p) , ω p = j, q k, j )

∝ 8(a p ; θk ) q k, j exp

(

β1

∑

p ′ ∈V(p) 

δ(k, z ′ p )

)

. (13)

3.3. Interaction matrix 

The conditional distribution of each column q j ( j ∈ J ) of the
interaction parameter matrix Q can be written

p(q j | z , Q \ j , ω ) ∝ p(q j ) P (z | Q , ω )

∝ 

∏ K 
k =1 q 

n k, j
k, j 

C( ω , Q )
1 S K (q j ) . (14)

where Q \ j denotes the matrix Q whose j th column has been re- 
moved, n k, j = # { p| z p = k, ω p = j} is the number of observations
whose cluster and class labels are respectively k and j , and 1 S K (·)

is the indicator function of the K -dimensional probability simplex
which ensures that q j ∈ S K implies ∀ k ∈ K, q k, j ≥0 and

∑ K
k =1 q k, j =

1 .
Sampling according to this conditional distribution would re- 

quire to compute the partition function C ( ω, Q ), which is not
straightforward. The partition function is indeed a sum over all
possible configurations of the MRF z . One strategy would consist
in precomputing this partition function on an appropriate grid, as
in [27] . As alternatives, one could use to likelihood-free Metropo- 
lis Hastings algorithm [28] , auxiliary variables [29] or pseudo- 
likelihood estimators [30] . However, all these strategies remain of
high computational cost, which precludes their practical use for
most applicative scenarii encountered in real-world image analy- 
sis.

Besides, when β1 = 0 , this partition function reduces to
C( ω , Q ) = 1 . In other words, the partition function is constant
when the spatial regularization induced by V 2 ( · ) is not taken into
account. In such case, the conditional posterior distribution for q j
is the following Dirichlet distribution

q j | z , ω ∼ Dir (q j ;n 1 , j + 1 , . . . , n K, j + 1) , (15)

which is easy to sample from. Interestingly, the expected value of
q k, j is then

E
[

q k, j | z , ω
]

= 
n k, j + 1

∑ K
i =1 n i,k + K

which is a biased empirical estimator of P [ z p = k | ω p = j ] . This lat- 
ter result motivates the use of a Dirichlet distribution as a prior for
q j . Thus, it is worth noting that Q can be interpreted as a byprod- 
uct of the proposed model which describes the intrinsic dataset
structure. It allows the practitioner not only to get an overview of
the distribution of the samples of a given class in the various clus- 
ters but also to possibly identify the origin of confusions between
several classes. Again, this clustering step allows disparity in the
semantic classes to be mitigated. Intraclass variability results in the
emerging of several clusters which are subsequently agglomerated
during the classification stage.

In practice, during the burn-in period of the proposed Gibbs
sampler, to avoid highly intensive computations, the cluster la- 
bels are sampled according to (13) with β1 > 0 while the columns

of the interaction matrix are sampled according to (15) . In other
words, during this burn-in period, a certain spatial regularization
with β1 > 0 is imposed to the cluster labels and the interaction
matrix is sampled according to an approximation of its conditional
posterior distribution. 1 After this burn-in period, the granularity
parameter β1 is set to 0, which results in removing the spatial reg- 
ularization between the cluster labels. Thus, once convergence has
been reached, the conditional posterior distribution (15) reduces to
(14) and the iteraction matrix is properly sampled according to its
exact conditional posterior distribution.

3.4. Classification labels 

Similarly to the cluster labels, the classification labels ω are
sampled by evaluating their conditional probabilities computed for
all the possible labels. However, two cases need to be considered
while sampling the classification label ω p , depending on the avail- 
ability of ground-truth label for the corresponding p th pixel. More
precisely, when p ∈ U , i.e., when the p th pixel is not accompanied
by a corresponding ground-truth, the conditional probabilities are
written

P [ ω p = j| z , ω \ p , q j , c p , ηp ]

∝ P [ z p | ω p = j, q j , z ν(p) ] P [ ω p = j| ω V(p) , c p , ηp ]

∝ 
q z p , j π j exp

(

β2
∑

p ′ ∈ ν(p) δ( j, ω p ′ )
)

∑ K 
k ′ =1 q k ′ , j exp

(

β1
∑

p ′ ∈ ν(p) δ(k ′ , z p ′ )
) , (16)

where ω \ p denotes the classification label vector ω whose p th el- 
ement has been removed. Conversely, when p ∈ L , i.e., when the
p th pixel is assigned a ground-truth label c p , the conditional pos- 
terior probability reads

P [ ω p = j| z , ω \ p , q j , c p , ηp ]

∝ P [ z p | ω p = j, q j , z ν(p) ] P [ ω p = j| ω V(p) , c p , ηp ]

∝ 



 
 





q z p , j ηp exp ( β2 
∑ 

p ′ ∈ ν(p) δ( j,ω p ′ ) )
∑ K 

k ′ =1 q k ′ , j exp ( β1 
∑ 

p ′ ∈ ν(p) δ(k ′ ,z p ′ ) )
when ω p = c p

(1 −ηp ) q z p , j exp ( β2 
∑ 

p ′ ∈ ν(p) δ( j,ω p ′ ) )
(C−1) 

∑ K 
k ′ =1 q k ′ , j exp ( β1 

∑ 
p ′ ∈ ν(p) δ(k ′ ,z p ′ ) )

otherwise
(17)

Note that, as for the sampling of the columns q j ( j ∈ J ) of
the interaction matrix Q , this conditional probability is consid- 
erably simplified when β1 = 0 (i.e., when no spatial regular- 
ization is imposed on the cluster labels) since, in this case,
∑ K 

k ′ =1 q k ′ , j exp (β1
∑ 

p ′ ∈ ν(p) δ(k ′ , z p ′ )) = 1 .

4. Application to hyperspectral image analysis

The proposed general framework introduced in the previous
sections has been instanced for a specific application, namely the
analysis of hyperspectral images. Hyperspectral imaging for Earth
observation has been receiving increasing attention over the last
decades, in particular in signal/image processing literatures [31–
33] . This keen interest of the scientific community can be eas- 
ily explained by the richness of the information provided by such
images. Indeed, generalizing the conventional red/green/blue color
imaging, hyperspectral imaging collects spatial measurements ac- 
quired in a large number of spectral bands. Each pixel is asso- 
ciated with a vector of measurements, referred to as spectrum ,
which characterizes the macroscopic components present in this

1 This strategy can also be interpreted as choosing C ( ω, Q ) ×Dir( 1 ) instead of the
Dirichlet distribution (8) as prior for q j .



pixel. Classification and spectral unmixing are two well-admitted
techniques to analyze hyperspectral images. As mentioned earlier,
and similarly to numerous applicative contexts, classifying hyper- 
spectral images consists in assigning a discrete label to each pixel
measurement in agreement with a predefined semantic descrip- 
tion of the image. Conversely, spectral unmixing proposes to re- 
trieve some elementary components, called endmembers , and their
respective proportions, called abundance in each pixel, associated
with the spatial distribution of the endmembers in over the scene
[12] . Per se, spectral unmixing can be cast as a blind source sep- 
aration or a nonnegative matrix factorization (NMF) task [34] . The
particularity of spectral unmixing, also known as spectral mixture
analysis in the microscopy literature [35] , lies in the specific con- 
straints applied to spectral unmixing. As for any NMF problem, the
endmembers signatures as well as the proportions are nonnega- 
tive. Moreover, specifically, to reach a close description of the pixel
measurements, the abundance coefficients, interpreted as concen- 
trations of the different materials, should sum to one for each spa- 
tial position.

Nevertheless, yet complementary, these two classes of meth- 
ods have been considered jointly in a very limited number of
works [36,37] . The proposed hierarchical Bayesian model offers a
great opportunity to design a unified framework where these two
methods can be conducted jointly. Spectral unmixing is perfectly
suitable to be envisaged as the low-level task of the model de- 
scribed in Section 2 . The abundance vector provides a biophysi- 
cal description of a pixel which can be seen as a vector of latent
variables of the corresponding pixel. The classification step is more
related to a semantic description of the pixel. The low-level and
clustering tasks of general framework described, respectively, in
Sections 2.1 and 2.2 , are specified in what follows, while the clas- 
sification task is directly implemented as in Section 2.3 .

4.1. Bayesian model 

Low-level interpretation: According to the conventional linear
mixing model (LMM), the pixel spectrum y p ( p ∈ P) observed in d
spectral bands are approximated by linear mixtures of R elemen- 
tary signatures m r ( r = 1 , . . . , R ), i.e.,

y p =
R 

∑

r=1 

a r,p m r + e p (18)

where a p = [ a 1 ,p , . . . , a R,p ] T denotes the vector of mixing coeffi- 
cients (or abundances) associated with the p th pixel and e p is
an additive error assumed to be white and Gaussian, i.e., e p | s 2 ∼
N ( 0 d , s 

2 I d ) . When considering the P pixels of the hyperspectral
image, the LMM can be rewritten with its matrix form

Y = MA + E (19)

where M = [ m 1 , . . . , m R ] , A = [ a 1 , . . . , a P ] and E = [ e 1 , . . . , e P ] are
the matrices of the endmember signatures, abundance vectors and
noise, respectively. In this work, the endmember spectra are as- 
sumed to be a priori known or previously recovered from the hy- 
perspectral images by using an endmember extraction algorithm
[12] . Under this assumption, the LMM matrix formulation defined
by (19) can be straightforwardly interpreted as a particular in- 
stance of the low-level interpretation (1) by choosing the latent
function f lat ( · ) as a linear mapping f lat (A ) = MA and the statis- 
tical model 9( · , · ) as the Gaussian probability density function
parametrized by the variance s 2 .

In this applicative example, since the error variance s 2 is a nui- 
sance parameter and generally unknown, this hyperparameter is
included within the Bayesian model and estimated jointly with the
parameters of interest. More precisely, the variance s 2 is assigned a

conjugate inverse-gamma prior and a non-informative Jeffreys hy- 
perprior is chosen for the associate hyperparameter δ

s 2 | δ ∼ IG (s 2 ;1 , δ) , δ ∝ 
1 
δ

1 R + (δ) . (20)

These choices lead to the following inverse-gamma conditional
posterior distribution

s 2 | Y , A ∼ IG

(

s 2 ;1 + 
P d

2 
,
1
2

P 
∑

p=1 

‖ y p − Ma p ‖ 
2

)

(21)

which is easy to sample from, as an additional step within the
Gibbs sampling scheme described in Section 3 .

Clustering: In the current problem, the latent modeling
8( · ; · ) in (4) is chosen as Gaussian distributions elected for the
latent vectors a p ( p ∈ P),

a p | z p = k, ψ k , 6k ∼ N (a p ;ψ k , 6k ) (22)

where ψ k and 6k are the mean vector and covariance matrix asso- 
ciated with the k th cluster. This Gaussian assumption is equivalent
to consider each high-level class as a mixture of Gaussian distribu- 
tions in the abundance space. The covariance matrices are chosen
as 6k = diag (σ 2 

k, 1 , . . . , σ
2 
k,R 

) where σ 2 
k, 1 , . . . , σ

2 
k,R 

are a set of R un- 
known hyperparameters. The conditional posterior distribution of
the abundance vectors a p can be finally expressed as follows:

p(a p | z p = k, y p , ψ k , 6k )

∝ | 3k | 
− 1 

2 exp
(

−
1
2 
(a p − µk,p ) 

t 3
−1
k (a p − µk,p )

)

(23)

where µk,p = 3k ( 
1 
s 2 
M t y p + 6−1 

k ψ k ) and 3k = ( 1 
s 2 
M t M + 6−1 

k ) −1 . It
shows that the latent vector a p associated with a pixel belonging to
the k th cluster is distributed according to the multivariate Gaussian
distribution N (a p ;µk,p , 3k ) .

Moreover the variances σ 2
k,r 

are included into the Bayesian
model by choosing conjugate inverse-gamma prior distributions

σ 2
k,r ∼ IG (σ 2

k,r ; ξ , γ ) (24)

where parameters ξ and γ have been selected to obtain vague pri- 
ors ( ξ = 1 , γ = 0 . 1 ). It leads to the following conditional inverse- 
gamma posterior distribution

σ 2
r,k | A , z , ψ r,k ∼ IG

(

σ 2
k,r ;

n k
2 

+ ξ , γ +
∑

p∈I k 

(a r,p − ψ r,k ) 
2

2

)

(25)

where n k is the number of samples in cluster k , and I k ⊂ P is the
set of indexes of pixels belonging to the k th cluster (i.e., such that
z p = k ).

Finally, the prior distribution of the cluster mean ψ k ( k ∈ K)
is chosen as a Dirichlet distribution Dir( 1 ). Such a prior induces
soft non-negativity and sum-to-one constraints on a p . Indeed, these
two constraints are generally admitted to describe the abundance
coefficients since they represent proportions/concentrations. In this
work, this constraint is not directly imposed on the abundance
vectors but rather on their mean vectors, since E[ a p | z p = k ] = ψ k .
The resulting conditional posterior distribution of the mean vector
ψ k is the following multivariate Gaussian distribution

ψ k | A , z , 6k ∼ N S R

(

ψ k ;
1
n k

∑

p∈I k 

a p ,
1
n k

6k

)

(26)

truncated on the probability simplex

S R =

{

x = [ x 1 , . . . , x R ] T |∀ r, x r ≥ 0 and
R 

∑

r=1 

x r = 1

}

. (27)

Sampling according to this truncated Gaussian distribution can be
achieved following the strategies described in [38] .



Algorithm 1: Inference using Gibbs sampling.

1 Initialize all variables;
2 for N MC + N burn iterations do
3 foreach p ∈ P do sample a p from N (µk,p , 3k ) ;
4 foreach p ∈ P do sample z p from (13);
5 foreach j ∈ J do sample q j from

Dir (n 1 , j + 1 , . . . , n K, j + 1) ;
6 foreach p ∈ P do sample ω p from (16) and (17);
7 for k = 1 to K do

8 sample ψ k from N S R

(

1 
n k 

∑

p∈I k 
a p , 

1
n k 

6k

)

;

9 foreach r ∈ { 1 , . . . , R } do sample σ 2
r,k 

from

IG 

(

n k 
2 + ξ , γ +

∑

p∈I k 

(a r,p −ψ r,k ) 
2 

2 

)

;

10 end 

11 sample s 2 from IG 
(

1 + 
Pd 
2 , 

1
2

∑ P 
p=1 ‖ y p − Ma p ‖ 2 

)

;

12 sample δ from IG (1 , s 2 ) ;
13 if iteration > N burn then
14 update MMSE and MAP estimators
15 end

16 end

Full inference procedure is summarized in Algorithm 1 . It
should be noticed that MMSE and MAP estimators are updated on- 
line at each iteration after the burn-in period in order to save stor- 
age and thus possibly handle large dataset. Additionally, the num- 
ber of iteration is chosen in order to get a reasonable processing
time.

4.2. Experiments 

4.2.1. Synthetic dataset 

Synthetic data have been used to assess the performance of the
proposed analysis model and algorithm. Two distinct images, re- 
ferred to as Image 1 and Image 2 and represented in Fig. 2 , have
been considered. The first one is a 100 × 100 pixel image com- 
posed of R = 3 endmembers, K = 3 clusters and J = 2 classes.
The second hyperspectral image is a 200 × 200 pixel image which
consists of R = 9 endmembers, K = 12 clusters and J = 5 classes.
They have been synthetically generated according to the follow- 
ing hierarchical procedure. First, cluster maps have been gener- 
ated from Potts–Markov MRFs to obtain (b) and (d) from Fig. 2 .
Then, the corresponding classification maps have then been cho- 
sen by artificially merging a few of these clusters to define each
class and get (a) and (c) from Fig. 2 . For each pixel, an abundance
vector a p has been randomly drawn from a Dirichlet distribution
parametrized by a specific mean for each cluster. Finally the pixel
measurements Y have been generated using the linear mixture
model with real endmembers signatures of d = 413 spectral bands
extracted from a spectral library. These linearly mixed pixels have
been corrupted by a Gaussian noise resulting in a signal-to-noise
ratio of SNR = 30 dB. The real interaction matrix Q presented in
Fig. 2 (e) and (f) summarized the data structure by providing the
probability to be in a given cluster when belonging to a given class.

Fig. 3 represents the abundance vectors of each pixel in the
probabilistic simplex for Image 1. The three clusters are clearly
identifiable and the class represented in blue is also clearly divided
into two clusters.

To evaluate the interest of including the classification step into
the model, results provided by the proposed method have been
compared to the counterpart model proposed in [24] (referred to
as Eches model). The Eches model is a similar model which lacks
the classification stage and thus does not exploit this high-level

Fig. 2. Synthetic data. Classification maps of Image 1 (a) and Image 2 (b), corre- 
sponding clustering maps of Image 1 (c) and Image 2 (d), corresponding interaction 
matrix Q of Image 1 (e) and Image 2 (f). 

Fig. 3. Image 1. Left: colored composition of abundance map. Right: pixels in the 
probabilistic simplex (red triangle) with Class 1 (blue) and Class 2 (green). (For in- 
terpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article). 

information. Fig. 4 presents the directed acyclic graph summariz- 
ing the model and its dependences in this particular hyperspectral
framework and outlining the difference with Eches model. The pix- 
els and associated classification labels located in the upper quar- 
ters of the Images 1 and 2 have been used as the training set L .
The confidence in this classification ground-truth has been set to
a value of ηp = 0 . 95 for all the pixels ( p ∈ L ). Additionally, the
values of Potts-MRF granularity parameters have been selected as
β1 = β2 = 0 . 8 . In the case of the Eches model, the images have
been subsequently classified using the estimated abundance vec- 
tors and clustering maps, and following the strategy proposed in
[13] . The performance of the spectral unmixing task has been eval- 
uated using the root global mean square error (RGMSE) associated
with the abundance estimation

RGMSE (A ) =

√

1
P R

∥

∥ ˆ A − A 

∥

∥

2

F 
(28)



Table 1 

Unmixing and classification results for various datasets. 

RGMSE(A) Kappa Time (s) 

Image 1 Proposed model 3.23e-03 (1.6e-05) 0.932 (0.018) 171 (5.4) 
Eches model 3.24e-03 (1.4e-05) 0.909 (0.012) 146 (0.7) 

Image 2 Proposed model 1.62e-02 (1.62e-04) 0.961 (0.04) 950 (11) 
Eches model 1.61e-02 (2.71e-05) 0.995 (0.0 0 04) 676 (2.1) 

MUESLI image Proposed model N \ A 0.837 (5e-3) 7175 (102) 
Random Forest N \ A 0.879 (5e-4) 34 (1.3) 
Gaussian model N \ A 0.818 (8.7e-5) 4 (0.01) 

Fig. 4. Directed acyclic graph of the proposed model in the described hyperspectral 
framework. Part in blue is the extension made to the Eches model. (For interpreta- 
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article). 

where ˆ A and A denote, respectively, the estimated and actual ma- 
trices of abundance vectors. Moreover, the accuracy of the esti- 
mated classification maps has been measured with the conven- 
tional Cohen’s kappa. Results reported in Table 1 show that the ob- 
tained RGMSE are not significantly different between the two mod- 
els. Moreover, the comparison between processing times shows a
small computational overload required by the proposed model. It
should be noticed that this experiment has been conducted with a
fixed number of iterations of the proposed MCMC algorithm (300
iterations including 50 burn-in iterations).

A second scenario is considered where the training set includes
label errors. The corrupted training set is generated by tuning a
varying probability α to assign an incorrect label, all the other pos- 
sible labels being equiprobable. The probability α varies from 0 to
0.4 with a 0.05 step. In this context, the confidence in the classi- 
fication ground-truth map is set equal to ηp = 1 − α ( ∀ p ∈ L ). The
results, averaged over 20 trials for each setting, are compared to
the results obtained using a mixture discriminant analysis (MDA)
[39] conducted either directly on the pixel spectra, either on the
abundance vectors estimated with the proposed model. The result- 
ing classification performances for Image 1 are depicted in Fig. 5
as function of α. These results show that the proposed model per- 
forms very well even when the training set is highly corrupted (i.e.,
α close to 0.4).

Moreover, as already explained, another advantage of the pro- 
posed model is the interesting by-products provided by the
method. As an illustration, Fig. 6 presents the interactions matri- 
ces Q estimated for each image. From this figure, it is clearly pos- 
sible to identify the structure of the various classes and their hi- 
erarchical relationship with the underlying clusters. For instance,
for Image 2, it can be noticed that Class 1 is essentially composed
of two clusters which is confirmed by the true interaction matrix
presented in Fig. 2 (e).

A last scenario has been considered in order to show the inter- 
est of the proposed method in term of spectral unmixing. A more

Fig. 5. Classification accuracy measured with Cohen’s kappa as a function of label 
corruption α: proposed model (red), MDA with abundance vectors (blue) and MDA 
with measured reflectance (blue). Shaded areas denote the intervals corresponding 
to the standard deviation computed over 20 trials. (For interpretation of the refer- 
ences to color in this figure legend, the reader is referred to the web version of this 
article). 

Fig. 6. Estimated interaction matrix Q for Image 1 (top) and Image 2 (bottom). 

Fig. 7. Spectra used to generate the semi-synthetic image. 4 spectra are vegetation 
spectra and 2 are soil spectra. 

complex synthetic image has been generated to assess this point.
A 100 × 250-pixel real hyperspectral image has been unmixed us- 
ing the fully constrained optimization method described in [40] .
The obtained realistic abundance maps have been used to generate
a new image with new real endmembers signatures of d = 252
spectral bands extracted from a spectral library. The selected end- 
members presented in Fig. 7 has been chosen in order to be highly
correlated (4 vegetation spectra and 2 soils spectra). Moreover the
endmembers matrix M has been augmented by 9 endmembers not



Fig. 8. Semi-synthetic image. Panchromatic view of the hyperspectral image (a), 
ground-truth (b). 

Fig. 9. Evolution of RGMSE of the sampled ˆ A (t) matrix in function of the time for
the proposed model (red) and Eches model (blue). Results are averaged in time 
and score over 10 trials. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article). 

Fig. 10. Semi-synthetic image. Example of error map ( 
∥

∥ˆ a p − a p 
∥

∥

2 
) for proposed

model (a), example of error map for Eches model (b). 

present in the image. The obtained data is indeed both realistic
and challenging in term of unmixing. A panchromatic view of the
resulting image, made by summing all spectral bands, is presented
in Fig. 8 along with the ground-truth retrieved from the one pro- 
vided with the original image with J = 4 classes. A Gaussian noise
is finally added to this semi-synthetic image to get a signal-to- 
noise ratio of SNR = 10 dB.

Fig. 9 shows the evolution of RGMSE computed at each iteration
for 250 iterations using the sampled ˆ A (t) matrix and the known
A abundance matrix. For this experiment, the whole classification
ground-truth was provided to the proposed algorithm as expert
data c L and parameters have been set to β1 = 0 . 3 and β2 = 1 . 2
for the proposed model and β1 = 1 . 2 for Eches model. The evolu- 
tion of the RGMSE is presented in function of the time since iter- 
ation are longer with the proposed model than with Eches model.
Contrary to one would expect, the proposed model appears to be
much faster to converge in number of iterations resulting in a con- 
vergence in the same time than Eches model. The increase of com- 
plexity and processing time is compensated by the fact that the
classification information help significantly the convergence. More- 
over as shown in Fig. 10 , the error made by the proposed model
tends to be more spatially coherent than the error made by Eches
model which are sometimes scattered in small area. This limita- 
tion of Eches model is induced by the tendency to over-segment
the image in more clusters than necessary.

4.2.2. Real hyperspectral image 

Finally, the proposed strategy has been implemented to ana- 
lyze a real 600 × 600-pixel hyperspectral image acquired within
the framework of the multiscale mapping of ecosystem services by

Fig. 11. Real MUESLI image. Colored composition of the hyperspectral image (a), 
expert ground-truth (b), estimated clustering (c), training data (d), estimated clas- 
sification with proposed model (e) and estimated classification with random forest 
(f). 

very high spatial resolution hyperspectral and LiDAR remote sens- 

ing imagery (MUESLI) project 2 This image is composed of d = 438
spectral bands and R = 7 endmembers have been extracted using
the widely-used vertex component analysis (VCA) algorithm [41] to
obtain matrix M . The associated expert ground-truth classification
is made of 6 classes (straw cereals, summer crops, wooded area,
buildings, bare soil, pasture). In this experiment, the upper half of
the expert ground-truth has been provided as training data for the
proposed method. The confidence ηp has been set to 95% for all
training pixels to account for the imprecision of the expert ground- 
truth. The MRF granularity parameters of the proposed parameters
have been set to β1 = 0 . 3 and β2 = 1 since these values provide
the most meaningful interpretation of the image. Fig. 11 presents
a colored composition of the hyperspectral image (a), the expert
ground-truth (b) and the obtained results in terms of clustering
(c) and classification (d). Quantitative results in term of classifica- 
tion accuracy have been computed and are summarized in Table 1 .
Note that no performance measure of the unmixing step is pro- 
vided since no abundance ground-truth is available for this real
dataset.

For comparison purposed, classification has been conducted
with two conventional classifier namely random forest (RF) and
a Bayesian Gaussian model (GM) using scikit-learn library. Pa- 
rameters of the two classifiers have been optimized using cross- 
validation on the training set. Additionally, a principal component
analysis has been used in order to reduce dimension before feating
the Gaussian model. The proposed method appears to be compet- 
itive with these classifiers in term of classification at the cost of
an increase of processing time. It is nevertheless important to note
that the proposed method conducts additionally a spectral unmix- 
ing and estimates by-products of high interest for the user, for ex- 
ample matrix Q .

2 http://fauvel.mathieu.free.fr/pages/muesli.html .



Fig. 12. Real MUESLI image. Classification accuracy measured with Cohen’s kappa 
as a function of label corruption α: proposed model (red), random forest (blue), PCA 
+ Gaussian model (green). Shaded areas denote the intervals corresponding to the
standard deviation computed over 10 trials. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Additionally, the robustness with respect to expert mislabeling
of the ground-truth training dataset has been evaluated and com- 
pared to the performance obtained by a state-of-the-art random
forest (RF) classifier. Errors in the expert ground-truth have been
randomly generated with the same process as the one used for the
previous experiment with synthetic data (see Section 4.2.1 ). Confi- 
dence in the ground-truth has been set equal to ηp = 1 − α for all
the pixels ( p ∈ L ) where α is the corruption rate, with a maximum
of 95% of confidence. Parameters of the RF classifier have been op- 
timized using cross-validation on the training set. Classification ac- 
curacy measured through Cohen’s kappa is presented in Fig. 12 as
a function of the corruption rate α of the training set. From these
results, the proposed method seems to perform favorably when
compared to the RF classifier. It is worth noting that RF is one of
the prominent method to classify remote sensing data and that the
robustness to noise in labeled data is a well-documented property
of this classification technique [14] .

5. Conclusion and perspectives

This paper proposed a Bayesian model to perform jointly low- 
level modeling and robust classification. This hierarchical model
capitalized on two Markov random fields to promote coherence be- 
tween the various levels defining the model, namely, (i) between
the clustering conducted on the latent variables of the low-level
modeling and the estimated class labels, and (ii) between the es- 
timated class labels and the expert partial label map provided for
supervised classification. The proposed model was specifically de- 
signed to result into a classification step robust to labeling er- 
rors that could be present in the expert ground-truth. Simulta- 
neously, it offered the opportunity to correct mislabeling errors.
This model was particularly instanced on a particular application
which aims at conducting hyperspectral image unmixing and clas- 
sification jointly. Numerical experiments were conducted first on
synthetic data and then on real data. These results demonstrate
the relevance and accuracy of the proposed method. The richness
of the resulting image interpretation was also underlined by the
results. Future works include the generalization of the proposed
model to handle fully unsupervised low-level analysis tasks. In- 
stantiations of the proposed model in other applicative contexts
will be also considered.
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