39 research outputs found

    The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations

    Full text link
    The interactions between PM2.5 and meteorological factors play a crucial role in air pollution analysis. However, previous studies that have researched the relationships between PM2.5 concentration and meteorological conditions have been mainly confined to a certain city or district, and the correlation over the whole of China remains unclear. Whether or not spatial and seasonal variations exit deserves further research. In this study, the relationships between PM2.5 concentration and meteorological factors were investigated in 74 major cities in China for a continuous period of 22 months from February 2013 to November 2014, at season, year, city, and regional scales, and the spatial and seasonal variations were analyzed. The meteorological factors were relative humidity (RH), temperature (TEM), wind speed (WS), and surface pressure (PS). We found that spatial and seasonal variations of their relationships with PM2.5 do exist. Spatially, RH is positively correlated with PM2.5 concentration in North China and Urumqi, but the relationship turns to negative in other areas of China. WS is negatively correlated with PM2.5 everywhere expect for Hainan Island. PS has a strong positive relationship with PM2.5 concentration in Northeast China and Mid-south China, and in other areas the correlation is weak. Seasonally, the positive correlation between PM2.5 concentration and RH is stronger in winter and spring. TEM has a negative relationship with PM2.5 in autumn and the opposite in winter. PS is more positively correlated with PM2.5 in autumn than in other seasons. Our study investigated the relationships between PM2.5 and meteorological factors in terms of spatial and seasonal variations, and the conclusions about the relationships between PM2.5 and meteorological factors are more comprehensive and precise than before.Comment: 3 tables, 13 figure

    Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring

    Get PDF
    In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed

    Air Quality over China

    Get PDF
    The strong economic growth in China in recent decades, together with meteorological factors, has resulted in serious air pollution problems, in particular over large industrialized areas with high population density. To reduce the concentrations of pollutants, air pollution control policies have been successfully implemented, resulting in the gradual decrease of air pollution in China during the last decade, as evidenced from both satellite and ground-based measurements. The aims of the Dragon 4 project “Air quality over China” were the determination of trends in the concentrations of aerosols and trace gases, quantification of emissions using a top-down approach and gain a better understanding of the sources, transport and underlying processes contributing to air pollution. This was achieved through (a) satellite observations of trace gases and aerosols to study the temporal and spatial variability of air pollutants; (b) derivation of trace gas emissions from satellite observations to study sources of air pollution and improve air quality modeling; and (c) study effects of haze on air quality. In these studies, the satellite observations are complemented with ground-based observations and modeling

    Spatially and temporally coherent reconstruction of tropospheric NO2 over China combining OMI and GOME-2B measurements

    Get PDF
    Tropospheric NO2 columns retrieved from OMI are widely used, even though there is a significant loss of spatial coverage due to multiple factors. This work introduces a framework for reconstructing gaps in the OMI NO2 data over China by using machine learning and an adaptive weighted temporal fitting method with NO2 measurements from GOME-2B, and surface measurements. The reconstructed NO2 has four important characteristics. First, there is improved spatial and temporal coherence on a day-to-day basis, allowing new scientific findings to be made. Second, the amount of data doubled, with 40% more data available. Third, the results are reliable overall, with a good agreement with MAX-DOAS measurements (R: 0.75-0.85). Finally, the mean of reconstructed NO2 vertical columns during 2015 and 2018 is consistent with the original data in the spatial distribution, while the standard deviation decreases in most places over mainland China. This novel finding is expected to contribute to both air quality and climate studies

    Towards a comprehensive view of dust events from multiple satellite and ground measurements: exemplified by the May 2017 East Asian dust storm

    Get PDF
    One or several aspects of the source, distribution, transport, and optical properties of airborne dust have been characterized using different types of satellite and ground measurements, each with unique advantages. In this study, a dust event that occurred over the East Asia area in May 2017 was exemplified to demonstrate how all the above-mentioned aspects of a dust event can be pictured by combining the advantages of different satellite and ground measurements. The data used included the Himawari-8 satellite Advanced Himawari Imager (AHI) true-colour images, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol vertical profiles, the Aura satellite Ozone Monitoring Instrument (OMI) aerosol index images, and the ground-based Aerosol Robotic Network (AERONET) aerosol properties and the ground station particulate matter (PM) measurements. From the multi-satellite/sensor (AHI, CALIOP, and OMI) time series observations, the dust storm was found to originate from the Gobi Desert on the morning of 3 May 2017 and transport north-eastward to the Bering Sea, eastward to the Korean Peninsula and Japan, and southward to south-central China. The air quality in China deteriorated drastically: the PM10 (PM&thinsp;&lt;&thinsp;10&thinsp;µm in aerodynamic diameter) concentrations measured at some air quality stations located in northern China reached 4333&thinsp;µg&thinsp;m−3. At the AOE_Baotou, Beijing, Xuzhou-CUMT, and Ussuriysk AERONET sites, the maximum aerosol optical depth values reached 2.96, 2.13, 2.87, and 0.65 and the extinction Ångström exponent dropped to 0.023, 0.068, 0.03, and 0.097, respectively. The dust storm also induced unusual aerosol spectral single-scattering albedo and volume size distribution.</p

    Identification of NO2 and SO2 pollution hotspots and sources in Jiangsu Province of China

    Get PDF
    Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are important atmospheric trace gases for determining air quality, human health, climate change, and ecological conditions both regionally and globally. In this study, the Ozone Monitoring Instrument (OMI), total column nitrogen dioxide (NO2), and sulfur dioxide (SO2) were used from 2005 to 2020 to identify pollution hotspots and potential source areas responsible for air pollution in Jiangsu Province. The study investigated the spatiotemporal distribution and variability of NO2 and SO2, the SO2/NO2 ratio, and their trends, and potential source contribution function (PSCF) analysis was performed to identify potential source areas. The spatial distributions showed higher values (>0.60 DU) of annual mean NO2 and SO2 for most cities of Jiangsu Province except for Yancheng City (1.2 was highest in winter, which varied between 9.14~32.46% for NO2 and 7.84~21.67% for SO2, indicating a high level of pollution across Jiangsu Province. The high SO2/NO2 ratio (>0.60) indicated that industry is the dominant source, with significant annual and seasonal variations. Trends in NO2 and SO2 were calculated for 2005–2020, 2006–2010 (when China introduced strict air pollution control policies during the 11th Five Year Plan (FYP)), 2011–2015 (during the 12th FYP), and 2013–2017 (the Action Plan of Air Pollution Prevention and Control (APPC-AC)). Annually, decreasing trends in NO2 were more prom-inent during the 12th FYP period (2011–2015: −0.024~−0.052 DU/year) than in the APPC-AC period (2013–2017: −0.007~−0.043 DU/year) and 2005–2020 (−0.002 to −0.012 DU/year). However, no prevention and control policies for NO2 were included during the 11th FYP period (2006–2010), result-ing in an increasing trend in NO2 (0.015 to 0.031) observed throughout the study area. Furthermore, the implementation of China’s strict air pollution control policies caused a larger decrease in SO2 (per year) during the 12th FYP period (−0.002~−0.075 DU/year) than in the 11th FYP period (−0.014~−0.071 DU/year), the APPC-AC period (−0.007~−0.043 DU/year), and 2005–2020 (−0.015~−0.032 DU/year). PSCF analysis indicated that the air quality of Jiangsu Province is mainly influenced by local pollution sources

    Quantification and evaluation of atmospheric pollutant emissions from open biomass burning with multiple methods: a case study for the Yangtze River Delta region, China

    Get PDF
    Air pollutant emissions from open biomass burning (OBB) in the Yangtze River Delta (YRD) were estimated for 2005–2015 using three (traditional bottom-up, fire radiative power (FRP), and constraining) approaches, and the differences among those methods and their sources were analyzed. The species included PM10, PM2.5, organic carbon (OC), elemental carbon (EC), CH4, non-methane volatile organic compounds (NMVOCs), CO, CO2, NOx, SO2 and NH3. The interannual trends in emissions with FRP-based and constraining methods were similar to the fire counts in 2005–2012, while those with the traditional method were not. For most years, emissions of all species estimated with the constraining method were smaller than those with the traditional method except for NMVOCs, while they were larger than those with the FRP-based method except for EC, CH4 and NH3. Such discrepancies result mainly from different masses of crop residue burned in the field (CRBF) estimated in the three methods. Chemistry transport modeling (CTM) was applied using the three OBB inventories. The simulated PM10 concentrations with constrained emissions were closest to the available observations, implying that the constraining method provided the best emission estimates. CO emissions in the three methods were compared with other studies. Similar temporal variations were found for the constrained emissions, FRP-based emissions, GFASv1.0 and GFEDv4.1s, with the largest and the lowest emissions estimated for 2012 and 2006, respectively. The temporal variations in the emissions based on the traditional method, GFEDv3.0, and the method of Xia et al. (2016) were different. The constrained CO emissions in this study were commonly smaller than those based on the traditional bottom-up method and larger than those based on burned area or FRP in other studies. In particular, the constrained emissions were close to GFEDv4.1s that contained emissions from small fires. The contributions of OBB to two particulate pollution events in 2010 and 2012 were analyzed with the brute-force method. Attributed to varied OBB emissions and meteorology, the average contribution of OBB to PM10 concentrations in 8–14 June 2012 was estimated at 37.6&thinsp;% (56.7&thinsp;µg&thinsp;m−3), larger than that in 17–24 June 2010 at 21.8&thinsp;% (24.0&thinsp;µg&thinsp;m−3). Influences of diurnal curves of OBB emissions and meteorology on air pollution caused by OBB were evaluated by designing simulation scenarios, and the results suggested that air pollution caused by OBB would become heavier if the meteorological conditions were unfavorable and that more attention should be paid to the OBB control at night. Quantified with Monte Carlo simulation, the uncertainty of the traditional bottom-up inventory was smaller than that of the FRP-based one. The percentages of CRBF and emission factors were the main source of uncertainty for the two approaches. Further improvement on CTM for OBB events would help better constrain OBB emissions.</p

    Air Pollution Meteorology

    Get PDF
    Although air pollution is usually linked with human activities, natural processes may also lead to major concentrations of hazardous substances in the low atmosphere. Pollutant levels may be reduced when emissions can be controlled. However, the impact of meteorological variables on the concentrations measured may be noticeable, and these variables cannot be controlled. This book is devoted to the influence of meteorological processes on the pollutant concentrations recorded in the low atmosphere. Measurements, cycles, statistical procedures, as well as specific variables such as the synoptic pattern, temperature inversion, or the calculation of back-trajectories, are considered in the studies included in this book to highlight the relationship between air pollution and meteorological variables. In addition, the state of the art of this subject following meteorological scales, from micro to macro-scale, is presented. Consequently, this book focuses on applied science and seeks to further current knowledge of what contribution meteorological processes make to the concentrations measured in order to achieve greater control over air pollution
    corecore