301 research outputs found

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)

    REVIEW OF WIRELESS MIMO CHANNEL MODELS

    Get PDF
    The need to increase spectral efficiency has led to the design of multiple antenna systems for both transmit and receive sides otherwise known as MIMO. Channel modeling forms an integral part of this design. Therefore it is very important to investigate and understand existing MIMO channel models. This paper provides a detailed review of existing MIMO channel models, their characteristics, tradeoffs and challenges. As with most models in the scientific and technical fields, open issues in MIMO channel modeling have also been enumerated. http://dx.doi.org/10.4314/njt.v35i2.2

    Realistic geometry-based stochastic channel models for advanced wireless MIMO systems

    Get PDF
    The employment of multiple antennas at both the Transmitter (Tx) and Receiver (Rx) enables the so-called Multiple-Input Multiple-Output (MIMO) technologies to greatly improve the link reliability and increase the overall system capacity. MIMO has been recommended to be employed in various advanced wireless communication systems, e.g., the Fourth Generation (4G) wireless systems and beyond. For the successful design, performance test, and simulation of MIMO wireless communication systems, a thorough understanding of the underlying MIMO channels and corresponding models are indispensable. The approach of geometry-based stochastic modelling has widely been used due to its advantages, such as convenience for theoretical analysis and mathematical tractability. In addition, wireless Vehicle-to-Vehicle (V2V) communications play an important role in mobile relay-based cellular networks, vehicular ad hoc networks, and intelligent transportation systems. In V2V communication systems, both the Tx and Rx are in motion and equipped with low elevation antennas. This is di erent from conventional Fixed-to-Mobile (F2M) cellular systems, where only one terminal moves. This PhD project is therefore devoted to the modelling and simulation of wireless MIMO channels for both V2V and F2M communication systems. In this thesis, we rst propose a novel narrowband Three Dimensional (3D) theoretical Regular-Shape Geometry Based Stochastic Model (RS-GBSM) and the corresponding Sum-of-Sinusoids (SoS) simulation model for non-isotropic MIMO V2V Ricean fading channels. The proposed RS-GBSM has the ability to study the impact of the Vehicular Tra c Density (VTD) on channel statistics and jointly considers the azimuth and elevation angles by using the von Mises-Fisher (VMF) distribution. Moreover, a novel parameter computation method is proposed for jointly calculating the azimuth and elevation angles in the SoS channel simulator. Based on the proposed 3D theoretical RS-GBSM and its SoS simulation model, statistical properties are derived and thoroughly investigated. The impact of the elevation angle in the 3D model on key statistical properties is investigated by comparing with those of the corresponding Two Dimensional (2D) model. It is demonstrated that the 3D model is more practical to characterise real V2V channels, in particular for pico-cell scenarios. Secondly, actual V2V channel measurements have shown that the modelling assumption of Wide Sense Stationary (WSS) is valid only for very short time intervals. This fact inspires the requirement of non-WSS V2V channel models. Therefore, we propose a novel 3D theoretical wideband MIMO non-WSS V2V RS-GBSM and corresponding SoS simulation model. Due to the dynamic movement of both the Tx and Rx, the Angle of Departure (AoD) and Angle of Arrival (AoA) are time-variant, which makes our model non-stationary. The proposed RS-GBSMs are su ciently generic and adaptable to mimic various V2V scenarios. Furthermore, important local channel statistical properties are derived and thoroughly investigated. The impact of non-stationarity on these channel statistical properties is investigated by comparing with those of the corresponding WSS model. The proposed non-WSS RS-GBSMs are validated by measurements in terms of the channel stationary time. Thirdly, realistic MIMO channel models with a proper trade-o between accuracy and complexity are indispensable for the practical application. By comparing the accuracy and complexity of two latest F2M standardised channel models (i.e., LTE-A and IMT-A channel models), we employ some channel statistical properties as the accuracy metrics and the number of Real Operations (ROs) as the complexity metric. It is shown that the LTE-A MIMO channel model is simple but has signi cant aws in terms of the accuracy. The IMT-A channel model is complicated but has better accuracy. Therefore, we focus on investigating various complexity reduction methods to simplify the IMT-A channel model. The results have shown that the proposed methods do not degrade much the accuracy of the IMT-A channel model, whereas they can signi cantly reduce the complexity in terms of the number of ROs and channel coe cients computing time. Finally, to investigate the non-stationarity of the IMT-A MIMO channel model, we further propose a non-WSS channel model with time-varying AoDs and AoAs. The proposed time-varying functions can be applied to various scenarios according to moving features of Moving Clusters (MCs) and a Mobile Station (MS). Moreover, the impacts of time-varying AoDs and AoAs on local statistical properties are investigated thoroughly. Simulation results prove that statistical properties are varied with time due to the non-stationarity of the proposed channel model. In summary, the proposed reference models and channel simulators are useful for the design, testing, and performance evaluation of advanced wireless V2V and F2M MIMO communication systems

    Radio Propagation Channel Characterization and MIMO Over-the-Air Testing

    Get PDF

    Characterization of Single- and Multi-antenna Wireless Channels

    Get PDF
    The wireless propagation channel significantly influences the received signal, so that it needs to be modeled effectively. Extensive measurements and analysis are required for investigating the validity of theoretical models and postulating new models based on measurements. Such measurements, analysis, and modeling are the topic of this thesis. The focus of the included contributions are Multiple-Input Multiple-Output (MIMO) propagation channels and radio channels for sensor network applications. Paper I presents results from one of the first MIMO measurements for a double-directional characterization of the outdoor-to-indoor wireless propagation channel. Such channels are of interest for both cellular and wireless LAN applications. We discuss physical aspects of building penetration, and also provide statistics of angle and delay spreads in the channel. The paper also investigates the coupling between DOD and DOA and the two spectra are found to have non-negligible dependence. We test the applicability of three analytical channel models that make different assumptions on the coupling between DODs and DOAs. Our results indicate that analytical models, that impose fewer restrictions on the DOD to DOA coupling, should be used preferrably over models such as the Kronecker model that have more restrictive assumptions. Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO measurements analyzed in Paper I. A subset of parameters of the COST 273 channel model, a generic model for MIMO propagation channels, are characterized for the outdoor-to-indoor scenario. MPC parameters are extracted at each measured location using a high-resolution algorithm and clusters of MPCs are identified with an automated clustering approach. In particular, the adopted clustering approach requires that all MPC parameters must be similar in order for the MPCs to form a cluster. A statistical analysis of the identified clusters is performed for both the intra- and inter-cluster properties. Paper III analyzes the spatial fading distribution for a range of canonical sensor deployment scenarios. The presented results are relevant to communicating within, and between, clusters of nodes. Contrary to the widely accepted assumption in published literature that the channel is AWGN at a small-enough distance, our measurements indicate that values of the Rice factor do not, in general, increase monotonically as the Tx-Rx distance is reduced. A probability mixture model is presented, with distance dependent parameters, to account for the distance dependent variations of the Rice factor. A simulation model that includes small- and large-scale fading effects is presented. According to the modeling approach, a sensor node placed anywhere within the spatial extent of a small-scale region will experience the channel statistics applicable to that region. Paper IV presents results characterizing a radio channel for outdoor short-range sensor networks. A number of antennas are placed on the ground in an open area and time-variation of the channel is induced by a person moving in the vicinity of the nodes. The channel statistics of both the LOS path and the overall narrowband signal are non-stationary. We investigate the stationarity interval length to be used for small-scale analysis. Our analysis of the various measured links shows that the Rx signal strength is significantly influenced by a moving person only when the person blocks the LOS path. We present a generic approach for modeling the LOS blockage, and also model the time-variant Doppler spectrum of the channel's scattered components

    Measurement, modelling and performance evaluation of the MIMO radio channel

    Get PDF

    Hardware emulation of wireless communication fading channels

    Get PDF
    This dissertation investigates several main challenges to implementing hardware-based wireless fading channel emulators with emphasis on incorporating accurate correlation properties. Multiple-input multiple-output (MIMO) fading channels are usually triply-selective with three types of correlation: temporal correlation, inter-tap correlation, and spatial correlation. The proposed emulators implement the triply-selective fading Channel Impulse Response (CIR) by incorporating the three types of correlation into multiple uncorrelated frequency-flat Rayleigh fading waveforms while meeting real-time requirements for high data-rate, large-sized MIMO, and/or long CIR channels. Specifically, mixed parallel-serial computational structures are implemented for Kronecker products of the correlation matrices, which makes the best tradeoff between computational speed and hardware usage. Five practical fading channel examples are implemented for RF or underwater acoustic MIMO applications. The performance of the hardware emulators are verified with an Altera Field-Programmable Gate Array (FPGA) platform and the results match the software simulators in terms of statistical and correlation properties. The dissertation also contributes to the development of a 2-by-2 MIMO transceiver testbench that is used to measure real-world fading channels. Intensive channel measurements are performed for indoor fixed mobile-to-mobile channels and the estimated CIRs demonstrate the triply-selective correlation properties --Abstract, page iv

    On Channel Emulation Methods in Multiprobe Anechoic Chamber Setups for Over-The-Air Testing

    Get PDF
    corecore