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Abstract

The wireless propagation channel significantly influences the received signal, so
that it needs to be modeled effectively. Extensive measurements and analysis
are required for investigating the validity of theoretical models and postulat-
ing new models based on measurements. Such measurements, analysis, and
modeling are the topic of this thesis. The focus of the included contributions
are Multiple-Input Multiple-Output (MIMO) propagation channels and radio
channels for sensor network applications.

Paper I presents results from one of the first MIMO measurements for a
double-directional characterization of the outdoor-to-indoor wireless propaga-
tion channel. Such channels are of interest for both cellular and wireless LAN
applications. We discuss physical aspects of building penetration, and also
provide statistics of angle and delay spreads in the channel. The paper also in-
vestigates the coupling between DOD and DOA and the two spectra are found
to have non-negligible dependence. We test the applicability of three analyt-
ical channel models that make different assumptions on the coupling between
DODs and DOAs. Our results indicate that analytical models, that impose
fewer restrictions on the DOD to DOA coupling, should be used preferrably
over models such as the Kronecker model that have more restrictive assump-
tions.

Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO
measurements analyzed in Paper I. A subset of parameters of the COST 273
channel model, a generic model for MIMO propagation channels, are character-
ized for the outdoor-to-indoor scenario. MPC parameters are extracted at each
measured location using a high-resolution algorithm and clusters of MPCs are
identified with an automated clustering approach. In particular, the adopted
clustering approach requires that all MPC parameters must be similar in order
for the MPCs to form a cluster. A statistical analysis of the identified clusters
is performed for both the intra- and inter-cluster properties.

Paper III analyzes the spatial fading distribution for a range of canonical
sensor deployment scenarios. The presented results are relevant to communi-
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iv Abstract

cating within, and between, clusters of nodes. Contrary to the widely accepted
assumption in published literature that the channel is AWGN at a small-enough
distance, our measurements indicate that values of the Rice factor do not, in
general, increase monotonically as the Tx-Rx distance is reduced. A probability
mixture model is presented, with distance dependent parameters, to account
for the distance dependent variations of the Rice factor. A simulation model
that includes small- and large-scale fading effects is presented. According to
the modeling approach, a sensor node placed anywhere within the spatial ex-
tent of a small-scale region will experience the channel statistics applicable to
that region.

Paper IV presents results characterizing a radio channel for outdoor short-
range sensor networks. A number of antennas are placed on the ground in an
open area and time-variation of the channel is induced by a person moving in
the vicinity of the nodes. The channel statistics of both the LOS path and the
overall narrowband signal are non-stationary. We investigate the stationarity
interval length to be used for small-scale analysis. Our analysis of the various
measured links shows that the Rx signal strength is significantly influenced
by a moving person only when the person blocks the LOS path. We present
a generic approach for modeling the LOS blockage, and also model the time-
variant Doppler spectrum of the channel’s scattered components.
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Chapter 1

Introduction

Though origins of radio communication can be traced to the experiments of O.
Lodge [1] and Marconi [2], wireless communication became accessible to the
masses only after introduction of cellular telephony around 1980. Since then,
mobile phone technology has evolved into economically the most significant
form of wireless communication, with currently over 3 billion registered users
worldwide. From the humble beginnings of first-generation networks that pro-
vided voice-only service, modern day mobile networks are capable of providing
reliable voice and high data-rate services such as multi-media messaging and
internet access. In addition to cellular networks, e.g., Global System for Mo-
bile Communication (GSM) [3], Wireless Local Area Networks (WLANs) [4]
are in widespread use in airports, public businesses and homes. Such networks
connect multiple computers or devices in a limited area, either to the internet
through an access point or to each other as in an adhoc network. For coverage
areas smaller than WLANs, Personal Area Networks (PANs), e.g., Bluetooth
[5] and IEEE 802.15 [6], are being used. These networks can be used for a
number of applications, e.g., cable replacement as in the wireless link between
a computer and its peripherals. An emerging field is that of wireless sensor
networks that can be used in applications ranging from security surveillance
and remote health care to automated homes.

The data rates for wireless communication applications range from a few
kbits/sec or lower (for sensor networks) to in excess of a few 100 Mbits/sec, refer
Fig. 1.1. The demand for ever increasing data rates translates to a require-
ment for more bandwidth, a traditionally scarce resource in commercial wireless
communication systems. This has driven research into methods for supporting
increased data rates without disturbing frequency allocations of existing sys-
tems. One promising approach has been the exploitation of the spatial domain
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4 Thesis Introduction

Figure 1.1: Data rates versus range for various applications [10].

by using multiantenna systems at both link ends, together with requisite sig-
nal processing [7], [8], [9], so called Multiple-Input Multiple-Output (MIMO)
systems.1 While the study of MIMO systems encompasses disciplines tra-
ditionally dealing with wireless communications, e.g., signal processing, com-
munication theory, antennas etc., the investigation of the wireless propagation
channel is equally important. This is the medium between the transmitter
and receiver, and for MIMO systems, it determines the benefits that can be
achieved with MIMO techniques. In the separate context of emerging sensor
networks, investigation of the wireless channel is also of relevance because the
deployment scenarios are considerably different from well-investigated cellular
radio and other access point type scenarios.

This thesis deals with a measurement-based effort to characterize and model
wireless channels. The included papers address some channel related issues for
MIMO systems and sensor networks. The remainder of Part I is organized as
follows. Chapter 2 contains an overview of some fundamentals of MIMO and
sensor network systems, chapter 3 discusses wireless channel modeling in the
context of the included contributions whereas chapter 4 describes principles
for measuring wireless channels and the data analysis tools that are used. Fi-
nally, Chapter 5 provides a summary of the included papers and some general
conclusions.

1Systems with single antenna at each end are correspondingly termed Single-Input Single-
Output (SISO) systems.



Chapter 2

Emerging Wireless Systems

The SISO approach to transmitting with high data rates would be through an
increase in size of signal constellation and/or transmission bandwidth. How-
ever, these options are not practical; due to constraints on transmit power and
receive Signal-to-Noise Ratio (SNR) in the former case, and lack of bandwidth
in the latter [11]. If multiple antenna elements are used at both link ends,
the relative benefit with MIMO techniques is that increased data rates can be
obtained without increasing transmit power or bandwidth.

In a different application sphere, wireless sensor and adhoc networks have
great potential to realize home and office automation and related benefits. This
chapter gives a brief overview of these two systems and their respective benefits.

2.1 MIMO

The concept of using multiple antennas at both ends of the radio link to boost
throughput was first proposed by Winters [7], followed a few years later by the
widely cited theoretical work of Foschini [8] and Telatar [9]. This has lead to
tremendous research interest in MIMO over the past decade. While research
continues, MIMO techniques have begun to be incorporated into wireless com-
munication standards such as IEEE 802.11n [12] for WLAN, and 3GPP release
8 [13] for the next generation of cellular networks.

Spatial multiplexing is the enabling MIMO technique that allows potential
increases in Shannon capacity. Though it has been the major source of research
interest in MIMO, beamforming gain and spatial diversity are also provided by
MIMO systems as a means to improve transmission quality. However, the radio
channel determines which of these benefits can be exploited in a given scenario

5
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Figure 2.1: Inter-relation between a MIMO channel and the gains pro-
vided by MIMO techniques [14].

through signal processing, refer to Fig. 2.1. This is the motivation for MIMO
channel investigations. The following sections give a brief overview of these
MIMO techniques, the number of Transmit (Tx) and Receive (Rx) antenna
elements is assumed to be NT and NR, respectively.

2.1.1 Beamforming Gain

The Tx and Rx antenna patterns can be steered towards a particular angular
direction by appropriate linear combination of baseband signals at the Tx and
Rx elements, respectively. Beamforming gain is the resulting increase in av-
erage1 SNR, relative to the average SNR at the individual elements [15], [16].
The higher the correlation of antenna signals, the higher is the beamforming
gain. The maximum beamforming gain is NR when only the Rx side has chan-
nel state information (CSI), while it is E[λmax] for CSI at both link ends, where
λmax is the largest eigenvalue of the MIMO channel and E[·] denotes statistical
expectation operator.

2.1.2 Spatial Diversity

In the presence of scatterers in the environment, the signal received in a wireless
channel is composed of attenuated and phase-shifted replicas of the transmit-
ted signal arriving from different directions. The constructive or destructive

1The average is over random realizations of the wireless channel
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interference of these replicas causes fluctuations in the Rx signal, termed fad-
ing. The fact that the Tx signal replicas come from different directions allows
spatial diversity to be exploited.

Fading in a wireless channel degrades reliabilty, e.g., the average Symbol
Error Rate (SER), of the communication link. Diversity techniques combat
fading by increasing the probability that the Rx SNR remains above some
arbitrary threshold relative to the average Rx SNR. This in turn improves the
average SER relative to a system with same averge SNR but no diversity.

The diversity order2 achieved by a MIMO system depends on the channel
characteristics and the CSI available at Tx and Rx. The diversity order that
can be achieved with a MIMO system decreases as the correlation of the an-
tenna signals increases. The maximum achievable diversity order with a MIMO
system is NR ·NT provided that CSI is available at both Tx and Rx, and the
channel is uncorrelated at both link ends. Diversity techniques in MIMO sys-
tems are not limited to spatial domain, rather those can be applied separately
or jointly with diversity in, e.g., the frequency or time domain.

An in-depth analysis of diversity techniques can be found in, e.g., [17],
[18]. For a discussion on coding over space and time to achieve diversity, i.e.,
space-time codes, we refer to [15], [19], [20], and references therein.

2.1.3 Spatial Multiplexing

Spatial multiplexing aims to transmit several independent data streams in par-
allel by exploiting the spatial dimension. The transmission of these substreams,
which do not interfere at the Rx, can increase the link capacity linearly with
the number of antennas. For high-data rate applications this concept is of
immense practical importance given that Shannon’s capacity formula predicts
that capacity increases only logarithmically in SNR. Furthermore, the increased
transmission rates provided by spatial multiplexing do not incur overhead in
terms of bandwidth and transmit power.

In practice the channel influences the degree to which spatial multiplexing
can be exploited. The number of independent data streams is upper-bounded
by min {NR, NT , NS}, where NS is the number of significant scatterers. Fur-
thermore, correlation among the entries of the channel matrix also reduces the
spatial multiplexing gain relative to the un-correlated case.

For an NR × NT channel matrix, H, known at Tx and Rx the channel
capacity is given by [9],

C = max
Q:Tr{Q}=PT

log2 det
(
INR +

1
σ2

n

HQHH

)
, (2.1)

2Diversity order is the slope of the average SER versus SNR curve in the high SNR regime.
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where INR is an identity matrix of order NR, σ2
n is the noise power at each Rx

branch. Furthermore, Q = E[ssH ] is the transmit signal covariance matrix,
Tr {·} is the matrix trace operator and PT is the total transmit power. The
entries , Qii, on the main diagonal of Q indicate the transmit power allocated
to each antenna.

When elements of the transmit signal vector, s, are assumed to be inde-
pendent Zero-Mean Circularly-Symmetric Complex Gaussian (ZMCSCG) ran-
dom variables, then capacity is achieved when setting Q = VΛVH where the
non-zero entries of the diagonal matrix Λ give the power allocation to the Tx
antennas and V is a unitary matrix obtained by a singular value decomposition
(SVD) of the channel matrix, H = USVH . Here S is a diagonal matrix whose
entries Sii are the singular values of the channel.3 The number of non-zero
singular values, σk, k = 1, . . . , rank (H) determines the number of independent
data streams the channel can support for spatial multiplexing. Consequently,
the channel capacity may be expressed as,

C =
rank(H)∑

k=1

log2

(
1 +

Λkkσ
2
k

σ2
n

)
, (2.2)

where the Λkk are determined from the water-filling solution, see e.g. [21], to
achieve capacity.

When channel state information is available only at Rx, the Tx side di-
vides power equally among Tx antennas, i,e., Q = PT

NT
· INT and the capacity

expression becomes [8],

C = log2 det
(
INR +

PT

NTσ2
n

HHH

)
, (2.3)

In a random fading channel, the capacity associated with the channel is
also a random variable. The analysis in such cases makes use of statistics such
as ergodic capacity and outage capacity; both conventionally used to compare
MIMO performance. The ergodic capacity is defined as,

C = E
[
log2 det

(
INR +

ρ

NT
HHH

)]
, (2.4)

where the expectation is taken over all possible realizations of the ergodic
channel.4 Furthermore, ρ is the average SNR at each Rx antenna subject to

3By definition of the SVD, U and V are both unitary, i.e., UH = U−1 and VH =
V−1. Furthermore VH denotes (V∗)T where VT denotes transpose(V) and V∗ denotes
conjugate(V).

4Transmit code words of arbitrary long length are assumed that experience all channel
fading states.
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normalizing the channel matrix as, 1
NRNT

E
[∑NR

i=1

∑NT

j=1 |Hij |2
]

= 1, i.e., the
average SISO channel gain is unity. In paper I, the ergodic capacity is used
to compare the performance of three analytical MIMO channel models in the
outdoor-to-indoor scenario.

The p% outage capacity, Cout,p, is defined as, P (C ≤ Cout,p) = p%, i.e., it
is the information rate achievable for (100 − p)% of the channel realizations
[15].5

2.2 Sensor networks

A wireless sensor network is usually constituted of a number of low-cost, low-
power sensor nodes, which can perform sensing, simple computation, and com-
munication over short distances [22]. The nodes transmit the data to a nearby
sink either directly or via intermediate nodes. Each sensor node essentially
consists of one or more sensors, storage memory, a processor, power supply,
and a radio transceiver.

Sensor networks have been traditionally associated with military applica-
tions such as battlefield surveillance and target tracking etc. However, availabil-
ity of highly integrated wireless components at competitive prices has motivated
interest in sensor networks for home/office networking, industrial automation
and health care. In the year 2000, the ZigBee Alliance and IEEE 802 work-
ing group 15 initiated joint efforts towards development of a low-power low-cost
wireless networking standard for residential and industrial environments. Work
on the IEEE 802.15.4 standard was initiated the same year with the aim to
define the physical (PHY) and media access control (MAC) layer specifica-
tions for a Low-Rate Wireless Personal Area Network (LR-WPAN). Some key
advantages of using wireless over wired sensor networks within buildings is de-
ployment flexibility and reduction in installation costs, i.e., new wiring does
not have to be routed through conduits.

In the indoor scenario, wireless sensor networks have potential applications
like security surveillance [23], inventory management [24], smart offices [25],
and telemedicine sensors for advanced health care services [26]. Generally, sen-
sor nodes communicate in one of two hierarchical structures; in a star topology
a number of end nodes can only communicate with a master device termed the
coordinator, whereas in a peer-to-peer (also termed mesh) network, all nodes
can communicate with each other directly, see Fig. 2.2. The radio resources

5The theoretical concept of capacity requires transmission of infinitely long codewords.
With outage capacity, the assumption is that the product of data rate and coherence time
approaches infinity, so that a sufficiently long codeword can be transmitted within a coherence
time of the channel.



10 Thesis Introduction

Figure 2.2: Network topology, (a) Star, (b) Mesh.

for such networks are often constrained, i.e., bandwidth is shared among a large
number of nodes and the transmit power is usually limited. Furthermore, the
network may face diverse channel conditions among its nodes. These issues
can be alleviated through multihop relaying [6] or cooperative communication
among the nodes, see e.g., [27], [28]. The statistics of the fading channel influ-
ence the performance of such networks. Furthermore, the placement of sensor
nodes typically close to walls and floor, and plausibly, at office table/wall-socket
heights introduce some unique channel characteristics. For example, this de-
ployment scenario is different from the case of a mobile/laptop communicating
with an access-point elevated above the clutter (tables, computers etc.) that
can be found at and below 1 m height in an office environment. While a joint
spatio-temporal analysis of the fading would be required for a complete charac-
terization, it is still relevant to look at the spatial fading patterns in isolation,
as they determine the statistics of the Rx SNR when nodes are deployed densely
over a short range. This is especially relevant for deployment of sensor node
clusters in relatively static channel conditions, which is the motivation for the
investigations in paper III.

2.2.1 PHY Layer in IEEE 802.15.4

The IEEE 802.15.4 standard [29] is a widely used specification for PHY and
MAC layers of commercial LR-WPANs. Taken together, the PHY and the
MAC layer govern the transmission of bits over the wireless channel. The PHY
layer supports Direct Sequence Spread Spectrum (DSSS) communication over
two frequency bands, both located in the un-licensed Industrial/Scientific/Medical
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Table 2.1: Some Characteristics of 802.15.4 .

Frequency Band 868;915 MHz 2.4 GHz
Data rate 20 kb/s;40 kb/s 250 kb/s
Modulation BPSK O-QPSK
Range 10–20 m
Channel access CSMA-CA

(ISM) band. The use of DSSS communication reduces potential interference
to neighbouring receivers. Furthermore, the MAC layer controls access to the
wireless channel using Carrier Sense Multiple Access with Collision Avoidance
(CSMA-CA) which also helps to avoid causing interference to neighbours. The
DSSS transmission in combination with intended short transmission distance
means that the transmit power is low, typically around 1 mW. In addition,
depending on the application, some sensor nodes may conserve energy by per-
forming the sensing operation with a low duty cycle which leads to a longer
battery life-time. Some features of the PHY layer are summarized in Table 2.1
[29].

2.2.2 Higher layer protocols and applications

There are a number of network/application layer protocols that currently use
802.15.4. The most well known is ZigBee [30] which caters to applications
dealing with home and office automation, e.g., heating and lighting controls,
intrusion or motion detection etc. as well as industrial automation. Another
protocol, Wireless Hart [31], is specifically geared towards industrial wireless
sensor networks. Various commercial entities are now providing turn-key solu-
tions for wireless sensor networks.
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Chapter 3

Wireless Channel Modeling

The wireless propagation channel is the medium between the transmitter and
receiver. Since the channel modifies the transmitted signal, mathematical mod-
els are needed that capture channel characteristics relevant to performance of
wireless systems. These models may be deterministic, or based on stochastic
theory. This chapter provides an overview of basic models, relevant to a single
wireless link and to MIMO channels, in the context of the included contribu-
tions.

3.1 Single link aspects of Channel modeling

The transmitted signal generally reaches the receiver through different paths
and may experience propagation mechanisms such as transmission, reflection,
scattering, and diffraction along these paths. One of the major influences the
wireless channel has on the Rx signal is an attenuation relative to the Tx signal.
The Rx power is influenced by a deterministic attenuation factor and random
fluctuations, termed fading. More specifically, the Rx power is influenced by
a product of three factors; pathloss, large-scale fading and small-scale fading
[32]. These are briefly described below.

3.1.1 Pathloss

Pathloss is the attenuation of the average1 Rx power that increases with dis-
tance. Conventionally, pathloss is modeled as increasing with a power law in
distance [10], [33]. Alternatively, pathloss can be expressed as an average path

1The average is over the small- and large-scale fading.

13



14 Thesis Introduction

power gain, Gavg(d), that has a power law decay in distance,

Gavg (d) = G0d
−n (3.1)

where d is the Tx-Rx distance, G0 = Gavg (d) at the reference distance d0

(usually assumed 1 m) and n is called the pathloss exponent, or propagation
exponent. The environment is characterized through the parameters G0 and n.
The parameter values are estimated from measurements by a least-squares fit
of G0,dB−10nlog (d) to the dB values of measured path gains over log-distance
[34]. These parameters are characterized in paper III for a set of indoor sensor
scenarios. The estimates are found to have a Gaussian distribution and modeled
as such rather than specifying the mean values only.

3.1.2 Large-scale fading

Large-scale fading is defined as random variations of locally averaged Rx power,
as the receiver travels a distance typically on the order of a few hundred wave-
lengths while maintaining approximately the same distance to transmitter [10],
[35]. Fading is observed when Interacting Objects (IOs), such as buildings or
terrain, block the Line-Of-Sight (LOS) or other dominant multipath compo-
nents. For power samples measured along a linear trajectory of the receiver, the
large-scale fading can be interpreted as the variation of small-scale averaged Rx
power, about Gavg(d). The latter concept is used in paper III to characterize
the large-scale fading.

3.1.3 Small-scale fading

Multiple copies of the Tx signal arrive at the receiver with different attenu-
ations and time-delay of arrival.2 These copies are often termed Multi-Path
Components (MPCs), and their superposition gives the Rx signal. Small-scale
fading refers to random fluctuation of the Rx signal caused by an interference
pattern of these MPCs. The pattern may change in space due to motion of
the receiver or in time due to motion of the transmitter or scatterers. Over a
small-scale region3 the time-variant impulse response of the channel is written
as [36],

h (t, τ) =
L∑

l=1

αl (t) δ (t− τl) , (3.2)

2The different delays contribute to relative phase-shifts among the MPCs.
3Small-scale refers to the spatial extent of such a region, which is on the order of a few

carrier wavelengths, λ.



Chapter 3. Wireless Channel Modeling 15

where δ (·) is the Dirac delta function, L is the number of MPCs, and {αl (t)}
are the time-variant complex gains at the delays {τl}. The time dependence of
the delays is omitted because they change on a time-scale much larger than that
of the complex channel gains. Since the {αl (t)} can vary quite rapidly over
the interference pattern of MPCs, they are modeled as stochastic processes.

When analyzing wireless systems, the work of Bello [37] leads to two sim-
plifying assumptions4 on Eq. (3.2): (i) It is assumed that the {αl (t)} are
wide-sense stationary (WSS) [37], i.e., their first and second order moments are
independent of the origin of the time axis. This implies that the mean powers
of the {αl (t)} do not change with time. (ii) Uncorrelated scattering (US) is
assumed, i.e., the L paths originate from independent scatterers. The implica-
tion in this case is that the {αl (t)} can be treated as independent stochastic
processes. The above two assumptions are collectively termed wide-sense sta-
tionary uncorrelated scattering (WSSUS). The envelopes, {Xl (t)} = {|αl (t)|},
are of interest because they determine the Rx SNR. Different probability den-
sity functions (PDFs) are used to characterize the random fading behavior of
{Xl (t)}. The Rayleigh and Rice distributions, both based on a complex Gaus-
sian distribution of the {αl (t)}, are two of the most commonly used models.
The Rayleigh is a special case of the Ricean distribution which is written as,

fXl
(x) =

x

σ2
exp
{
−x

2 +A2

2σ2

}
I0

(
Ax

σ2

)
, (3.3)

where A is the amplitude of the dominant MPC, 2σ2 is the power of the ran-
dom components, and I0 is the modified Bessel function of the first kind and
zero order. The Ricean K-factor, K = A2

2σ2 , is an important parameter of the
Ricean distribution, as it determines the amount of fading. A value K −→ ∞
corresponds to no fading while K = 0 corresponds to a Rayleigh fading distri-
bution.5

From a system design aspect, the type of envelope fading distribution is
important because it determines the fading margin [10] required to achieve
coverage with a certain outage probability. At largeK, a Ricean fading channel
exhibits minimal fading and approximates an AWGN channel. This concept has
implications for clustering of sensor nodes in that an AWGN channel between
the nodes in a cluster is often assumed in theoretical analysis. In paper III the
assumption of an AWGN channel at gradually decreasing Tx-Rx separation is
tested, and it is observed that K-factors have a non-monotonic behavior with
decreasing distance, so that the AWGN assumption is not necessarily valid at

4Ultra-Wideband systems are an exception to this rule, and are not covered in this thesis.
5A Rayleigh envelope implies a zero-mean for the underlying complex Gaussian distribu-

tion.
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small Tx-Rx distances. A related issue, in the context of wireless transmission,
is the definition of the Ricean K factor. In paper I, a distinction is made
between the LOS power factor and the Ricean K-factor, valid for the case of
high resolution parameter estimates.

3.1.4 Narrowband and Wideband channels

In modeling wireless channels, a distinction is made between narrowband and
wideband channels that is based on the inter-relation between transmission
bandwidth and the coherence bandwidth [10] of the wireless channel. A wire-
less communication link experiences a narrowband channel if the transmission
bandwidth is less than the coherence bandwidth of the channel. In this case
the receiver will not be able to resolve the various MPCs, i.e., in the context of
Eq. (3.2), the receiver observes L = 1. For narrowband systems, the frequency
response of the channel is invariant over the transmission bandwidth, hence the
term frequency flat flading for such channels. For the converse case, i.e., trans-
mission bandwidth larger than coherence bandwidth, the channel is termed
wideband and the system is able to resolve the MPCs based on their Time-
Delay-of-Arrival (TDOA). For such communication systems, the frequency re-
sponse of the channel varies over the transmission bandwidth, hence the term
frequency-selective fading for such channels. For the measurements discussed
in this thesis, a wideband channel sounding equipment was used to record the
complex channel frequency response. When performing a narrowband analysis
of the measured data, the channel samples at different tones are considered as
random realizations of the narrowband channel, though sometimes correlated.

3.1.5 WSSUS considerations

In a statistical analysis of wireless channels, the WSSUS assumption is invari-
ably used. In practice, the spatial structure of the channel, i.e., the number,
strength, and direction of arrival of the MPCs change considerably over time
and/or space, so that stationarity intervals need to be determined. For outdoor
mobile scenarios a stationarity region on the order of 10λ has been used con-
ventionally [10], though for indoor scenarios, the size of the spatial stationarity
region can be considerably smaller.

For the indoor measurements in paper III, stationarity is estimated based
on variations of the small-scale averaged power. A fixed length of the small-
scale stationary region is defined by the consideration to maintain the running
average of Rx power below 5 dB over the chosen window length. A window
length of 5λ is determined to be a reasonable choice for the small-scale analysis.
For the outdoor fixed node measurements in paper IV, temporal stationarity
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intervals are estimated by thresholding the correlation between average power
delay profiles [38].

A survey of the open literature reveals that there are no universally accepted
criteria to determine stationarity intervals within measurements, and this is a
topic of ongoing research, see e.g., [39], [40], [38] and references therein.

3.2 Aspects of MIMO channel modeling

As discussed in chapter 2, the MIMO channel influences the type of gains
achievable by MIMO techniques. Therefore, accurate models of the MIMO
channel are needed both for network planning and for system simulation to
design and compare MIMO algorithms. While a model should capture channel
propagation effects, significantly influencing system design, channel models are
also desired to be simple to use. This inherent trade-off has been one of the
motivating factors for research in the field of MIMO channel modeling, and
a number of MIMO channel models have been proposed over the years. A
comprehensive and systematic survey of MIMO channel models can be found
in [41], [10]. This section briefly reviews these concepts with an aim to provide
context to the included contributions.

We start with the MIMO channel matrix that essentially provides an input-
output relation between the Tx and Rx signal vectors. A schematic illustration
of a MIMO system is shown in Fig. 3.1. The multiple antennas at Tx and Rx
sides require that the MIMO channel is specified for all Tx and Rx antenna
pairs. This means that for an NR × NT MIMO system, the general case of a
time-variant wideband channel is represented by an NR ×NT channel matrix,

H (t, τ) =

⎡
⎢⎢⎢⎣

h11 (t, τ) h12 (t, τ) · · · h1NT (t, τ)
h21 (t, τ) h22 (t, τ) · · · h2NT (t, τ)

· · · · · · . . . · · ·
hNR1 (t, τ) hNR2 (t, τ) · · · hNRNT (t, τ)

⎤
⎥⎥⎥⎦ , (3.4)

where hi,j (t, τ) ∈ C represents the time-variant impulse response between the
j-th Tx and i-th Rx antenna, t is the absolute time and τ is the TDOA.

Assuming that a signal sj (t) ∈ C is transmitted from the j-th Tx element,
the signal received at the i-th Rx element is written as,

ri (t) =
NT∑
j=1

hi,j (t, τ) ∗ sj (t) + ni (t) , (3.5)

where ∗ denotes the convolution operation and ni is the additive ZMCSCG
noise at the i-th Rx element. When the channel is time-invariant, the time-
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Figure 3.1: An NR × NT MIMO system showing channel gains for
individual links.

dependence can be disregarded so that H (t, τ) = H (τ). Furthermore, if the
channel is frequency-flat fading, it has only a single tap so that H (τ) = H.
Under these assumptions the MIMO system equation corresponding to Eq.
(3.5) reduces to,

r (t) = Hs (t) + n (t) , (3.6)

where r (t) = [r1 (t) . . . rNR (t)]T , s (t) = [s1 (t) . . . sNT (t)]T , and for the noise,
n (t) = [n1 (t) . . . nNR (t)]T .

The channel matrix in Eqs. (3.5) and (3.6) does not capture the propagation
effects only; other additional effects such as the influence of the Tx and Rx
antennas are also included. These considerations have lead to a fundamental
classification of MIMO channel models into two categories; physical models and
analytical models [41], [10].

3.2.1 Physical Models

Physical models are independent of antenna configuration.6 Such models are
based on characterizing the electromagnetic waves propagating between the Tx
and Rx stations. In most models the waves are assumed to have a plane wave
front, i.e., a plane wave assumption is used and the waves are represented by
rays. These rays and the MPCs described earlier have a one to one correspon-
dence, so that the two terms can be used interchangeably.

One approach to describe the propagation environment is in terms of MPC
parameters such as attenuation, phase, TDOA, direction of departure (DOD)
at the Tx, and direction of arrival (DOA) at the Rx. An alternative approach
for the propagation description, is in terms of locations of the actual physical
processes such as reflection and diffraction. The following paragraphs provide
a short overview of the different approaches.

6The antenna configuration is described, in general, by antenna pattern, number of ele-
ments, array geometry, polarization, and mutual coupling [41].
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Deterministic physical models

A deterministic way to model the propagation channel is through the channel’s
double-directional impulse response [42], [43],

h (rTx, rRx, τ, φ, ψ) =
L∑

l=1

hl (rTx, rRx, τ, φ, ψ), (3.7)

where rTx and rRx denote position of the transmitter and receiver, respec-
tively. The variables τ ,φ, and ψ represent TDOA, DOD, and DOA, respec-
tively. Furthermore L is the total number of MPCs. The hl (rTx, rRx, τ, φ, ψ)
is the contribution of the l-th wave and given by,

hl (rTx, rRx, τ, φ, ψ) = alδ (τ − τl) δ (φ− φl) δ (ψ − ψl) , (3.8)

where al,τl,φl, and ψl, denote complex amplitude, TDOA, DOD, and DOA,
respectively, of the l-th MPC. In a time variant channel, these individual MPC
parameters, as well as the number of MPCs, L may become functions of time.
For a more general description antenna polarization can also be taken in to
account [42], [43].

The double-directional modeling effort requires MIMO measurements in
representative scenarios, followed by a determination of the MPC parameters
with high-resolution algorithms, e.g., [44], [45]. The scattering geometry can
then be re-generated from signal processing methods, e.g., [46]. Finally, new
channel realizations can be generated by moving the Tx and/or Rx along tra-
jectories other than the ones used in measurements [47], [48].

Other deterministic approaches to channel modeling are Ray tracing [49]
and/or Ray launching [50]. These are especially useful for site-specific channel
modeling, e.g., when a geographical database of significant scatterers in an ur-
ban environment is available and optimum placement of a base-station antenna
is desired.

Geometry-based stochastic channel models

In a geometry-based stochastic channel model (GSCM) the location of the
scatterers is specified in a stochastic manner according to suitable probability
distributions. Subsequently ray tracing is performed to obtain the channel
impulse response. The concept of multipath clusters is used in most variants
of this approach. The GSCM approach is suitable for modeling time-variant
channels; parameters of the MPCs are adjusted automatically with movement
of terminals or scatterers so that the correct fading correlation is generated.
Furthermore, large-scale fading effects are also incorporated, see e.g. [51].
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Non-geometric stochastic channel models

These models assign values to the physical parameters of the MPCs, i.e.,
TDOA, DOD, DOA etc. using stochastic probability distribution functions.
The geometry of the physical environment is not considered, see, e.g. [52].

3.2.2 Analytical models

Analytical models mathematically describe a narrowband MIMO channel ma-
trix, without going into details of the wave propagation.7 The influence of
antennas is included in the model so that the models are applicable to the
MIMO system under consideration. The parameters of these models are usu-
ally extracted from MIMO measurements.

Analytical channel models assume that the entries of the MIMO channel
matrix are drawn from a ZMCSCG distribution with the possible addition of a
dominant (deterministic) component. For the latter case of Ricean fading, the
NR ×NT channel matrix, H, is written as [53],

H =
√
κHd +

√
1 − κHRes, (3.9)

where κ = K
1+K , K is the Ricean K-factor, Hd represents the LOS or other

dominant contributions, and HRes is the zero-mean residue (stochastic) part
of H, that the analytical models aim to represent. This is also the approach
used in paper I to test the performance of some of these analytical models in
an outdoor-to-indoor Ricean fading environment.

Analytical models can be classified as correlation-based or propagation-
based models. In the following paragraphs we describe these classifications.
Furthermore, for ease of exposition we setK = 0 in Eq. (3.9) so that H = HRes.

Correlation-based analytical models

The underlying principle of this modeling approach is that the spatial structure
of the channel can be modeled by the spatial correlation of the channel matrix
entries. MIMO channel matrices with correlated elements can be generated by
correlating Independent Identically Distributed (i.i.d.) Gaussians. When the
full correlation matrix, R, is estimated from measurements on H, the procedure

7An extension to wideband channel modeling is possible by applying the analytical model
to each tap.
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is,

h = vec {H} ,
R = E

[
hhH
]
,

Hfull-corr = un-vec
{
R1/2g

}
. (3.10)

where the operator vec {A} stacks the columns of its matrix argument, A, on
top of each other, and un-vec {·} is the inverse operation. Furthermore, A

1
2

denotes matrix square-root defined such that A
1
2

(
A

1
2

)H

= A, and g is an
NRNT × 1 random vector with elements which are i.i.d. ZMCSCG random
variables with unit variance.

The analytical model with R a scaled identity matrix is popularly termed
the i.i.d model. This corresponds to all entries of the Gaussian channel matrix,
H, being independent of each other. The physical interpretation is that MPCs
are uniformly distributed in all directions, referred to as a rich-scattering en-
vironment in the literature, and the antenna elements are spaced apart by at
least half the carrier wavelength.

For large array sizes, the manipulation of a size NRNT × NRNT full cor-
relation matrix, R, becomes cumbersome. This has lead to some correlation
based models that approximate R with certain assumptions. Here we discuss
two such models, the Kronecker and the Weichselberger model that are used
in analyzing the outdoor-to-indoor scenario in paper I.

Kronecker model
The Kronecker model [54] approximates R by a Kronecker product of the an-
tenna correlation matrices,

R = RTx ⊗ RRx, (3.11)

where RTx = E
[
HHH

]
and RRx = E

[
HHH

]
are the antenna spatial correla-

tion matrices at the Tx and Rx side, respectively, and ⊗ denotes the Kronecker
matrix product. Equivalently, the MIMO channel matrix is modeled as,

HKronecker =
1√

tr {RRx}
R

1
2
RxGR

T
2
Tx. (3.12)

Here G = un-vec {g} is a random i.i.d. Gaussian matrix. The Kronecker model
has been used extensively in published work due to its simplicity, ability to fit
some measurement scenarios, and a smaller number of required parameters
compared to the full correlation model. However, the Kronecker model makes
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the joint DOA-DOD spectrum to be an outer product of the marginal spectra,
such that an MPC with a unique combination of DOA and DOD cannot be
modeled. In other words, the Kronecker model assumes that the Rx side corre-
lation matrix is independent of which direction the Tx side sends the signal. In
[55] it was suggested that the Kronecker model, in general, underestimates the
channel capacity. In paper I this result is validated for the outdoor-to-indoor
scenario.

Weichselberger model
The Weichselberger model [55] allows for joint modeling of the Tx and Rx side
correlations, by introducing a power coupling matrix, Ω, that governs the av-
erage power coupled between the NT eigenvectors of the Tx side correlation
matrix and the NR eigenvectors of the Rx side correlation matrix. The eigen-
basis of the antenna correlation matrix at each link end remains independent of
the transmit direction from the other end.8 Realizations of the channel matrix
are generated as,

Hweichsel = URx

(
Ω̃
 G

)
UT

Tx, (3.13)

where URx and UTx are Rx and Tx side eigenbasis of respective antenna cor-
relation matrix,

RTx = UTxΛTxUT
Tx,

RRx = URxΛRxUT
Rx, (3.14)

and ΛTx and ΛRx are diagonal matrices of eigenvalues at respective link end.

Propagation based models

In this approach the channel matrix is modeled through propagation param-
eters. We discuss here only the virtual channel representation (VCR) model
introduced in [56] for uniform linear arrays at each link end.

The virtual channel representation (VCR) was introduced in [56] assuming
a Uniform Linear Array (ULA) at each link end, and allows arbitrary power
coupling between pre-determined directions at the Tx and Rx sides. The model
uses discrete Fourier transform matrices ARx and ATx at respective link ends,
to sample the spatial characteristics of the channel. Realizations of the channel
model can be generated as,

HVCR = ARx

(
Ω̃
 G

)
AT

Tx. (3.15)

8The Kronecker model is included as a special case with a rank one coupling matrix [55].
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The columns of ARx and ATxare based on the array response (steering) vectors
computed at fixed virtual directions, and the matrix Ω̃ is the element-wise
square root of the power coupling matrix Ω; the entry Ωij gives the average
power coupled between the i-th receive and j-th transmit direction.

In our measurement setup, the Rx array was not a ULA, but rather a
Uniform Circular Array (UCA) with an absorber in the center. We thus use
a generalization of Eq. (3.15) that combines the standard (virtual channel
model) at the Tx side, with a canonical representation, based on the channel
statistics, at the Rx side

HVCR = ÛRx

(
Ω̃
 G

)
AT

Tx, (3.16)

where ÛRx is an estimate of the receive eigenvector matrix obtained by eigen-
value decomposition of R̂Rx.

In addition to the above described classifications, there exist comprehensive
standardized models, e.g., the 3GPP spatial channel model (SCM) [57], and
the COST 273 model [58]. We refer to [41] for a comparative study of these
and other models.
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Chapter 4

Channel Measurements

Research in the field of channel modeling would not be possible without chan-
nel measurements. While stochastic channel models need to be parametrized
from extensive measurements, performance of deterministic models needs to be
verified by actual measurements.

The measurements reported in this thesis were performed with the RUSK
Lund channel sounder [59], for papers III and IV, and the RUSK ATM sounder
for papers I and II. A brief review of measurement principles is given below,
followed by specifications of the channel sounders that were used. This chap-
ter concludes with a brief introduction to data analysis tools, high resolution
algorithms, and a clustering procedure that were used in the included papers.

4.1 Measurement Principles

A channel sounder is an equipment that can measure the wireless channel’s
complex baseband impulse reponse or equivalent frequency transfer function,
over the system bandwidth of the sounder. A transmit signal known to the
receiver is transmitted through the channel and recorded at the equipment’s
receiver. In order to measure phase information, either a common frequency
reference is employed at Tx and Rx, or separate references, if used, are phase-
locked prior to the measurements. Wideband measurements allow a character-
ization of the delay dispersion, or equivalently the frequency selectivity, exhib-
ited by the channel. Furthermore, sampling the spatial domain with appropri-
ate antenna arrays at both link ends allows to measure the double-directional
properties of the wireless channel.

For MIMO measurements the transfer functions or impulse responses for all

25
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combinations of Tx and Rx elements need to be measured. A common hardware
configuration is the switched antenna array, i.e., a fast RF multiplexer (switch)
is used to sequentially connect antenna elements to a common RF electronics
chain at Tx and Rx side. This approach saves cost and calibration effort
inherent with multiple chains and allows flexibility to use different array sizes.
The synchronized switching of the Tx and Rx elements allows the channel
sounder to keep track of which Tx-Rx combination is measured at any given
time. The switching times are synchronized to the period of the sounding signal,
Tp. For each Rx switching, and optionally for Tx switching, a guard period
is used to avoid switching transients in the measurements. A conventional
measurement timing diagram is shown in Fig. 4.1, but other arrangements are
also possible.

Figure 4.1: MIMO measurement timing diagram. The snapshot dura-
tion is, Ts = NT (2NR + 1)Tp.

A MIMO snapshot is defined by one complete cycle of measurements of
the channel transfer functions for all Tx-Rx combinations, refer Fig. 4.1. It is
assumed that the channel does not change during the snapshot duration, Ts.
Therefore, when a time-variant wireless channel is to be measured, Ts is upper
bounded by the Nyquist sampling criteria,

Ts ≤ 1
2fD, max

, (4.1)

where fD, max is the maximum Doppler shift induced by the channel. When
this in-equality is satisfied, channel variations during a MIMO snapshot can
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Figure 4.2: Block diagram of RUSK Lund channel sounder [59].

be disregarded, i.e., a quasi-static channel is assumed. It should be noted,
however, that by re-arranging the measurement timing diagram it is possible
to measure larger Doppler shifts for a given snapshot duration [60].

4.2 RUSK Lund Channel Sounder

The RUSK Lund channel sounder is based on a sounding principle known
as frequency domain correlation processing [61]. At the Tx side, the channel
sounder excites all frequencies within its bandwidth simultaneously to allow
fast measurement speed. This is done by designing a periodic multifrequency
signal with identically powered spectral lines. The phases of these spectral
lines (sub-carriers) are fixed to optimize on a minimum peak-to-average ratio,
i.e., crest factor, of the sounding signal which allows the Tx amplifier to be
used efficiently. The time duration of the sounding signal, Tp, is set to a
value larger than the maximum excess delay, τmax, expected in the measured
channel. The time duration of the signal determines the spacing of the spectral
lines, fΔ = 1

Tp
, and hence the number of spectral lines within the measurement

bandwidth. The sounding signal is designed in the frequency domain, converted
to a time domain signal and stored in the arbitrary waveform generator from
where it is continously transmitted as a periodic signal.

A block diagram of the sounder is shown in Fig. 4.2. At the Rx side, the
signal is filtered and down-converted, demodulated and then sampled at 640
MHz. The sampled signal is Fourier transformed to the frequency domain in
the DSP block shown in Fig. 4.2. The time variant channel transfer function,
H (t, k), is then estimated from a correlation,

H (t, k) =
Y (k)X∗ (k)
X (k)X∗ (k)

=
Y (k)
X (k)

, (4.2)
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Table 4.1: Measurement parameters of RUSK Lund and RUSK ATM sounder
that were used in the campaigns.

Parameter RUSK Lund RUSK ATM
Center Frequency [GHz] 2.6 5.2

Bandwidth [MHz] 200 120
Test signal length [μs] 1.6 1.6

Tx power [dBm] 27 33

where Y (k) is the Discrete Fourier Transform (DFT) of the signal received
through the measured wireless channel, and X (k) is the DFT of the received
signal measured during the system calibration, whereby a cable connects Tx
and Rx unit.1 This compensates for the frequency response of the channel
sounder hardware from measurement data.

In papers I and II, the RUSK ATM channel sounder was used for mea-
surements. Though the working principles are the same as those described for
RUSK Lund, the salient differences relevant to the measurements are provided
in Table 4.1.

4.3 Data Analysis

4.3.1 Parameter Estimation Algorithms

For the double-directional characterization of MIMO channels, it is required to
estimate the propagation parameters, TDOA (τ), azimuth and elevation DOD
(φDOD, θDOD), azimuth and elevation DOA (φDOA, θDOA), Doppler and com-
plex path-weight of the waves impinging at the Rx. This task is performed
by various channel parameter estimation algorithms. Though sub-space based
methods such as ESPRIT [62] were originally used for this purpose, these meth-
ods require symmetric array structures and assume identical response of indi-
vidual antenna elements.

The above-mentioned restrictions have motivated research into maximum-
likelihood (ML) based methods and their subsequent use in the channel mea-
surement community. ML methods are based on the assumption that the Rx
signal is a superposition of planar wave fronts (scatterers assumed to be in far-
field of the Tx and Rx antennas). A signal model for the measured channel is
pre-assumed and is based on parameters of the MPCs that are to be estimated.
Furthermore, the signal model also incorporates the complex gain (magnitude

1The calibration is a necessary step before actual measurements.
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and phase) patterns of the antennas used for the measurements. In this way
the channel can be characterized independent of the antenna configuration that
was used for measurements.

One of the most widely used of the ML methods is the Space Alternating
Generalized Expectation maximization (SAGE) algorithm [44]. The SAGE as-
sumes a finite number, L of specular plane waves impinging at the Rx location,
and the signal model is based on parameters of the L MPCs. The ML estima-
tor of the parameter vector is found by iteratively maximizing the likelihood
function of the signal model under the assumption of i.i.d. Gaussian additive
noise. The SAGE avoids the complex multi-dimensional optimization, over all
parameters of L MPCs, by sequentially estimating parameters of individual
MPCs in each iteration. Furthermore, the parameters of the individual MPCs
are themselves estimated in subsets, sequentially, to reduce the complexity fur-
ther. For a rigorous explanation of SAGE, refer to [44]. The SAGE is used for
parameter extraction in paper I, where a signal model for the channel transfer
function is also provided.

The RIMAX algorithm [45] is another ML based algorithm, which estimates
specular components jointly with the dense multipath components (DMC) of
the channel. The DMC is an aggregate description of components, e.g., due
to diffuse reflections, that cannot be assigned to specific DOAs, DODs, or
TDOA etc. The effect of DMC can be observed, e.g., in a measured power
delay profile - it is the exponentially decaying residue that remains after the
contribution of specular components has been estimated and removed. In [45]
a parametric modeling approach for the DMC is provided with reference to
the measured power delay profile. The RIMAX additionally estimates the
reliability of parameter estimates, MPCs that fail some pre-defined reliability
threshold are dropped from consideration. This means that the number of
paths finally estimated from a MIMO snapshot can be less than the source
order (number of MPCs) assumed when beginning the estimation process for
that snapshot. In paper II the RIMAX is used for parameter extraction. A
commercial implementation of the RIMAX by MEDAV [59] is used for this
purpose.

Some related issues are well-known open research topics, e.g., using the
measured data to estimate the unknown source order is still under investiga-
tion. Additionally, the plane wave assumption is less than accurate in some
scenarios, e.g., indoors where reflecting surfaces may not be in the far-field
of the antennas. Therefore signal models may need to incorporate spherical
waves to deal with such cases. Furthermore, in a recent investigation [63], the
authors have performed tests in an anechoic chamber to study effects of incom-
plete antenna data models on parameter extraction results. A complete data
model in this context was defined as (i) the antenna response characterized in
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Figure 4.3: Influence of including elevation, on the RMS spread of
azimuth component of DOA.

both azimuth and elevation over the full sphere (2D-pattern), and (ii) each an-
tenna port response characterized for both vertical and horizontal polarization
states of the excitation field. The authors conclude that channel parameters
estimated with incomplete antenna data models result in artificially large angle
spreads.

The parameter extraction procedure in paper I makes use of only the az-
imuth antenna pattern (1D) for the UCA used at the Rx side. Extending the
antenna data to also include elevation information, however, does not provide
any conclusive relation between the DOA spreads (in azimuth only) estimated
with the two antenna data models, see Fig. 4.3.2 It should be noted though,
that there are some open issues in the presented analysis, e.g., both the 1D
and 2D patterns had been measured with verticaly polarized excitation only.
Therefore, our most recent antenna data may not be complete in the sense of
[63]. Additional plots of DOD and delay spread from the same analysis are
provided in Figs. 4.4 and 4.5, respectively.

2The parameter extraction is performed with RIMAX using a maximum source order of
100 MPCs. This value is selected to minimize any potential influence of source order effects
on the comparison.
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4.3.2 Clustering Algorithm

Traditionally MPC clusters have been visually identified from measurement
results, see e.g., [64], [65]. This method becomes cumbersome for the large
volume of multi-dimensional data generated by processing MIMO measure-
ments. Furthermore, the results of visual clustering may be subject to individ-
ual interpretation. These reasons have motivated research into automating the
clustering procedure, see e.g., [66] and references therein.

Paper II presents a statistical analysis of MPC clusters. The MPC pa-
rameters were extracted by applying the high-resolution channel parameter
estimation algorithm RIMAX [45] to MIMO measurements. Identification of
MPC clusters was carried out by an automatic clustering approach presented
in [67]. Since a general description of the clustering algorithm could not be
included in paper II due to space constraints, a brief summary based on the
descriptions in [67], [66] is provided below.

The clustering of MPCs is performed in the parameter space, i.e., TDOA
(τ), azimuth and elevation DOD (φDOD, θDOD), and azimuth and elevation
DOA (φDOA, θDOA) of the MPCs are jointly considered when identifying clus-
ters. To enable joint use of parameters with different units, the multipath
component distance (MCD) metric [68] is used as a distance measure between
two MPCs in parameter space. The MCD between the i-th and j-th MPCs for
DOD and DOA is written as,

MCDDOD/DOA,ij =
1
2

∣∣∣∣∣∣
⎛
⎝ sin (θi) cos (φi)

sin (θi) sin (φi)
cos (θi)

⎞
⎠−
⎛
⎝ sin (θj) cos (φj)

sin (θj) sin (φj)
cos (θj)

⎞
⎠
∣∣∣∣∣∣ . (4.3)

The scaling of 1
2 normalizes the maximum distance to 1. The TDOA distance

is,

MCDτ,ij = ς · |τi − τj |
Δτmax

· τstd
Δτmax

, (4.4)

where Δτmax = maxi,j {|τi − τj |}, τstd is the RMS delay spread, and ς is a
scale factor to give delays more importance. The joint distance measure then
becomes,

MCDij =
√
‖MCDDOD,ij‖2 + ‖MCDDOA,ij‖2 +MCD2

τ,ij . (4.5)

MPCs extracted from one MIMO snapshot are analyzed for clustering. The
identification of clusters is done by a modified K-means algorithm [69] which
additionally considers MPC powers in the clustering process. The modified al-
gorithm, termed KPowerMeans, identifies clusters by their centroids and these
are iteratively moved through parameter space to minimize the sum of the



Chapter 4. Channel Measurements 33

power-weighted MCD between each MPC and its associated cluster centroid
given by

D =
L∑

l=1

Pl ·MCD
(
xl, μI

(i)
l

)
, (4.6)

where L is the number of extracted MPCs, and for the l-th MPC Pl, l = 1, . . . , L
is the power and xl is the parameter vector used in the MCD. Furthermore,
μ

I
(i)
l

is the parameter vector for the cluster centroid assigned to l-th MPC in the
i-th iteration. The relation in Eq. (4.6) has been proposed by [67] as a formal
definition of a cluster, i.e., for a given number of clusters, Nc, in parameter
space, the clusters are chosen in order to minimize the global distance function,
D in Eq. (4.6). This selection also minimizes the cluster-spread in angle and
delay domains amongst the possible partitions of MPCs into Nc clusters.

For a given MIMO snapshot, the partition of MPCs into Nc clusters is
performed for Nc spanning a range of values, Nc ∈ [Ncmin , Ncmax ]. The KPow-
erMeans algorithm is executed for each value of Nc. From this set of candidate
partitions of the MPCs, only one can be chosen to represent the measured
snapshot. This task is performed by the cluster validation procedure. A com-
bined application of two criteria, the Calinski-Harabasz and Davies-Bouldin
indices, selects as an optimum partition the one that gives the most compact
clusters and separated clusters.

Since the work in [67], the authors have developed significant variants of the
initial automatic clustering approach. This includes joint cluster identification
and tracking that is applicable to time-variant channels. A comprehensive
overview of these efforts and related work can be found in [66].
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Chapter 5

Contributions and
Conclusions

This chapter summarizes the main research contributions of the included pa-
pers. Some general conclusions regarding the research area are also provided
as a separate section.

5.1 Research contributions

My work has been supervised by Prof. Andreas F. Molisch as the main advisor,
and Dr. Fredrik Tufvesson as co-advisor, both of whom are co-authors on all
papers.1 I am the main contributor to the scientific work presented in the
included papers, the contributions of my co-authors are mentioned below each
paper.

5.1.1 Paper I: “Outdoor-to-Indoor Office MIMO Mea-
surements and Analysis at 5.2 GHz”

This paper presents results from one of the first measurements for a double-
directional characterization of the outdoor-to-indoor wireless propagation chan-
nel. Such channels are of interest for both cellular and wireless LAN appli-
cations. We discuss physical aspects of building penetration, and also pro-
vide statistics of relevant channel parameters; the presented CDFs of angular
spreads gauge spatial correlations that can be encountered in such scenarios,

1Dr Tufvesson has also participated in most of the measurements.
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while similar analysis for the delay spreads gives an idea of the frequency se-
lectivity. Our analysis highlights the fact that the Ricean K-factor does not
necessarily have strict correspondence with the power of the LOS component.
For modeling LOS channels it is proposed to use the LOS power factor, rather
than the Ricean K-factor, for scaling the normalized LOS contribution. Our
analysis of the small-scale fading also reveals that antenna elements, within
some array configurations, may experience shadow fading. Therefore, the com-
mon practice of averaging the Rx signal over all array elements to remove
small-scale fading, should be preceded by ruling out presence of shadow fading.

The paper investigates the coupling between DOD and DOA for the outdoor-
to-indoor scenario, and the two spectra are found to have non-negligible depen-
dence. We test the applicability of three analytical channel models that make
different assumptions on the coupling between DODs and DOAs. Our results
indicate that analytical models, that impose fewer restrictions on the DOD to
DOA coupling, should be used preferrably over models such as the Kronecker
model that have more restrictive assumptions.

This transaction paper is based on two conference papers and additional
material. I wrote the manuscript, and performed the analysis with the excep-
tions noted as follows: for the first conference paper, the channel parameter
extraction results were from an implementation of the SAGE by Gunnar Eriks-
son, Dr Peter Almers contributed to part of the paper-writing. Dr Almers and
Dr Johan Karedal also contributed to the measurements. Prof. Andreas F.
Molisch and Dr. Fredrik Tufvesson supervised the work.

5.1.2 Paper II: “A Cluster-based Analysis of Outdoor-to-
Indoor Office MIMO Measurements at 5.2 GHz”

Numerous MIMO channel measurements show that MPCs tend to arrive at
the Rx in clusters, i.e., groups of MPCs which have similar parameters such
as TDOA, DOD, and DOA. The concept of MPC clusters is integral to many
channel models, e.g., the COST 273 model, a generic model for MIMO propa-
gation channels. This paper presents a cluster-based analysis of the outdoor-to-
indoor MIMO measurements also analyzed in Paper I. A subset of parameters
of the COST 273 channel model are characterized for the outdoor-to-indoor
scenario. The MPC parameters are extracted for 159 measurement locations
using the RIMAX algorithm, and the clusters of MPCs are identified using an
automated clustering approach. In particular, our clustering approach requires
that all MPC parameters must be similar in order for the MPCs to form a clus-
ter. For a subset of the locations, results of the automated clustering method
are also cross-checked with an independent visual clustering. A statistical anal-
ysis of the identified clusters is performed for both the intra- and inter-cluster
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properties. For the intra-cluster properties, the number of MPCs is observed
to be exponentially distributed while the angle and delay-spreads are found to
be log-normally distributed. For the intercluster properties, the distribution of
number of clusters is found to be better represented by the exponential distri-
bution rather than the Poisson distribution specified in the COST 273 model.
The cluster delays are observed to follow a log-normal distribution.

I performed the statistical analysis on the clusters and wrote the manuscript.
For MPC parameter extractions, I used a commercial implementation of RI-
MAX by MEDAV. Dr Nicolai Czink performed the automated cluster identifi-
cation on the processed MPC data. Prof. Andreas F. Molisch and Dr. Fredrik
Tufvesson supervised the work.

5.1.3 Paper III: “A Statistical Model for Indoor Office
Wireless Sensor Channels”

Sensor networks have recently attracted interest due to potential use in in-
dustrial, environmental, and safety-related applications. Though the indoor
channel for elevated access-point to mobile/laptop scenario is well investigated,
there are relatively few investigations on channels for sensor deployment sce-
narios. Such channels present some unique properties due to the nodes placed
typically in close proximity to the walls and floor. This paper analyzes the
spatial fading distribution for a range of canonical sensor deployment scenar-
ios. The presented results are relevant to communicating within, and between,
clusters of nodes.

Results indicate that the fading channel is mostly Ricean distributed for
both the same-wall and opposite-wall scenarios, though the Ricean K-factors
are often not very large. Contrary to the widely accepted assumption in pub-
lished literature that the channel is AWGN at a small-enough distance, our
measurements indicate that values of the Ricean K-factor do not, in general,
increase monotonically as the Tx-Rx distance is reduced. A probability mix-
ture model is proposed, with distance dependent parameters, to account for
the distance dependent variations of the K-factors.

A simulation model that includes small- and large-scale fading effects is pre-
sented. Acccording to the modeling approach, a sensor node placed anywhere
within the spatial extent of a small-scale region will experience the channel
statistics applicable to that region. Our model is relevant for SNR investiga-
tions and interference analysis between different links (small-scale regions) in
the indoor office scenario.

I performed the analysis and modeling and also wrote the manuscript. Amit
Singh and I did the measurements. Prof. Andreas F. Molisch and Dr. Fredrik
Tufvesson supervised the work.
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5.1.4 Paper IV: “Characterization of a Time-Variant Wire-
less Propagation Channel for Outdoor Short-Range
Sensor Networks”

Outdoor short-range sensor networks are of interest for surveillance, environ-
mental monitoring, and communications applications. The scenario most rele-
vant for practical applications has the nodes at fixed positions near the ground,
so that temporal variations occur only due to people/objects moving in the
vicinity of the sensors. This paper presents sample results to characterize such
channels.

The channel statistics of both the LOS path and the overall narrowband
signal are non-stationary. Our analysis of the simultaneously measured links
shows that the Rx signal strength is influenced significantly only when the
LOS path is blocked. This means that for surveillance applications, it may
not be sufficient to monitor the LOS path only but other small-scale parame-
ters should additionally be used. A generic approach was presented to model
temporally correlated samples of the narrowband channel. The time-variant
Doppler spectrum of the channel’s scattered components was shown to have a
distinct pattern associated with the walking person (intruder). These charac-
teristics can be valuable for early intruder detection schemes since significant
spectral peaks are visible before the LOS crossing instant.

I wrote the manuscript, performed the analysis and modeling, except for the
spectrum modeling of the channel’s residue component, to which Telmo Santos
has contributed. Amit Singh and I did the measurements. Prof. Andreas F.
Molisch and Dr. Fredrik Tufvesson supervised the work.

5.2 Conclusions and Future Work

The wireless propagation channel significantly influences the received signal, so
that it needs to be modeled effectively. Extensive measurements are required
both for investigating the validity of theoretical models and postulating models
based on measurements. Such measurements, analysis, and modeling have been
the topic of this thesis.

Channel models are required to capture essential properties of the channel,
e.g., it is well known that link-correlations in a MIMO channel will influence
the type of gain achievable by MIMO techniques. Simultaneously, a model
is also desired to be simple to use. In the context of MIMO systems, e.g.,
the Kronecker model has found widespread use in part because of its simple
implementation, a factor that cannot be overlooked. Especially now, as MIMO
systems are gradually incorporated into standards and products, the trade-
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off between complexity and feature-richness will be more in focus. While one
is proposing simple models, I believe that clearly listing both the strengths
and limitations of the model would help the intended user to make informed
choices. On the other hand, for more complex models that may require many
independent measurements to put numbers to parameters, I think it might help
prospective users if the model were presented in a modular fashion with the
possibility to have increasing feature-richness with complexity.

For double-directional analysis, different channel parameter estimation al-
gorithms are in use in the research community. For paper I, we use the SAGE
and later for paper II a commercial RIMAX implementation is used. It would
be of interest to set up reference measurement scenarios where the performance
of the two algorithms could be compared, with complete antenna data models.
In this context it would be useful to gather additional information on the effects
of incomplete data models as pointed out by Landmann et al [63].

The use of MPC clusters to describe the wireless channel has gained gradual
acceptance. All major channel models, e.g. 3GPP SCM, WINNER, COST 273
etc. are based on the concept of MPC clusters. In view of the typically large
volumes of data generated by processed MIMO measurements, I think that
automated approaches for cluster identification should be the preferred way for
doing cluster analysis. Furthermore, this approach also provides an inherent
definition of a cluster.

The WSS assumption is invariably used in the theoretical analysis of wireless
channels. Though in measured channels, stationarity intervals occur side by
side with periods of non-stationarity such that, for analysis, the extent of a
stationarity interval needs to be determined. I think this aspect should always
be given careful consideration when analyzing measurement data. Of course
one also has to consider the often competing requirement of having sufficient
independent samples for statistical analysis. In paper II a moving average of
Rx power is used to determine stationarity regions whereas in paper III the
correlation between averaged power delay profiles is used for the same purpose.
This is however an open topic of research and I think new methods will continue
to be proposed.

For sensor scenarios, it would be of interest to track in time the location
of the one or more people influencing the links during measurements. Also, I
think that investigating the link correlations in more detail would be of interest
in the context of distributed MIMO systems.
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Outdoor-to-Indoor

Office MIMO Measurements

and Analysis at 5.2 GHz

Abstract

The outdoor-to-indoor wireless propagation channel is of interest for cellular and
wireless LAN applications. This paper presents measurement results and analysis
based on our multiple-input multiple-output (MIMO) measurement campaign, which
is one of the first to characterize the outdoor-to-indoor channel. Measurements were
performed at 5.2 GHz; the receiver was placed indoors at 53 different locations in
an office building, the transmitter was placed at three ”base station” positions on a
nearby rooftop. We report on the root mean square (RMS) angular spread, building
penetration, and other statistical parameters characterizing the channel. Our analysis
is focused on three MIMO channel assumptions often used in stochastic models. (i)
It is commonly assumed that the channel matrix can be represented as a sum of a
line-of-sight (LOS) contribution and a zero-mean complex Gaussian distribution; our
investigation shows that this model does not adequately represent our measurement
data. (ii) It is often assumed that the Rician K-factor is equal to the power ratio
of the LOS component and the other multipath components (MPCs); we show that
this is not the case and we highlight the difference between the Ricean K-factor often
associated with LOS channels, and a similar power ratio for the estimated LOS MPC.
(iii) A widespread assumption is that the full correlation matrix of the channel can
be decomposed into a Kronecker product of the correlation matrices at transmit and
receive array. Our investigations show that the direction-of-arrival (DOA) spectrum
depends noticeably on the direction-of-departure (DOD), therefore the Kronecker
model is not applicable and models with less restrictive assumptions on the channel,
e.g., the Weichselberger model or the full correlation model, should be used.

c©2008 IEEE. Reprinted, with permission from
S. Wyne, A. F. Molisch, P. Almers, G. Eriksson, J. Karedal and F. Tufvesson,
“Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz,”
in IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1374–1386, May
2008.
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1 Introduction

MIMO systems can result in tremendous capacity improvements over single antenna
systems [1], [2]. However, the capacity gains depend on the propagation channel in
which the system operates. The most important requirement for any channel model is
agreement with reality, hence measurement of propagation channels and subsequent
parameterization of models based on these measurements are critically important.
There are a number of double-directional outdoor-to-outdoor and indoor-to-indoor
measurement results reported in the literature, e.g., [3], [4], [5], [6], and [7]. However,
there has been a remarkable lack of outdoor-to-indoor measurement results, though
the outdoor-to-indoor scenario has important applications for voice-data transmission
in third generation cellular systems, as well as wireless LANs. The measurement
campaign reported in this paper (first published in [8]), together with [9] and [10]
are the first published results of outdoor-to-indoor measurements characterizing the
MIMO channel.

There are two main categories of channel models for MIMO systems, both of
which will be used in this paper; the double-directional channel models [3] describe
the MIMO channel by parameters of the multipath components; DOD, DOA, delay,
and complex amplitudes. A double-directional channel characterization is highly
useful because it is independent of antenna configurations and describes the physical
propagation alone, and serves to point out the dominant propagation mechanisms.
On the other hand, analytical channel models describe the statistics of the transfer
function matrix; each entry in that matrix gives the transfer function from the i-th
transmit to the j-th receive antenna element. Almost all of the analytical channel
models, with the exception of the keyhole model [11], are based on the assumption
that the entries of the transfer function matrix are zero-mean complex Gaussian,
with the possible addition of a LOS component. Furthermore, many models describe
the correlation matrix of those entries as a Kronecker product of the correlation
matrices at the transmit and receive side. The first assumption has, to our knowledge,
generally remained unquestioned.2 The Kronecker assumption has been discussed
more extensively recently [13], [7]. While measurement data from outdoor scenarios
seem to indicate good agreement with this assumption [13], indoor data seem to
deviate more [14], and as a consequence a more general model has, e.g., been developed
by Weichselberger et al. [7].

In this paper we present the results of a double-directional MIMO channel mea-
surement campaign, for an outdoor-to-indoor office scenario, carried out at 5.2 GHz,
and evaluate the validity of the standard assumptions of analytical channel models
(first results were published in [15]). Our main contributions are:

• We analyze the DOD and DOA, and discuss the dominant propagation mech-
anisms.

• We give the distributions of RMS directional spreads and delay spreads.

2With the exception of the rare “keyhole scenario”, see [11], [12].
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• We present a statistical analysis of the measured fading and compare it with
popular models.

• We investigate the validity of the “LOS-plus-Gaussian-remainder” assumption,
and show that it does not hold for all measurement locations in our campaign.

• We explain this result by investigating in detail the difference between “LOS
power factor” and “Rician K-factor”.

• We analyze the validity of the Kronecker model, and present detailed results
on the coupling between DOAs and DODs.

The paper is organized as follows: Sec. II describes the measurement setup and
scenario, and the procedure for data evaluation, whereas in Sec. III, the physical
propagation processes are described. Furthermore, Sec. IV contains an analysis of
the dispersion in angular and delay domains, and Sec. V compares three analytical
channel models. Finally, in Sec. VI, we summarize the results.

2 Measurement Setup and Evaluation

2.1 Equipment and Scenario

For the measurements, we used the RUSK ATM [16] channel sounder to measure the
transfer function between transmit (Tx) and receive (Rx) antenna elements. This
sounder uses the multiplexing principle (subsequently connecting the Tx, and Rx,
antenna elements to the RF chains) for obtaining MIMO transfer function matri-
ces. Measurements were performed at a center frequency of 5.2 GHz and a signal
bandwidth of 120 MHz, using a transmit power of 33 dBm. The Tx antenna was
an 8-element dual polarized uniform linear array (ULA) of patch elements with ele-
ment spacing ≈ λ/2 (half-wavelength); we only considered the 8 vertically polarized
elements in our analysis. The Rx antenna was a 16-element uniform circular array
(UCA) of vertically polarized monopole elements, radius ≈ λ. Both array configura-
tions were calibrated prior to measurement so that array response data was available
for application of high resolution algorithms. The Tx signal had a period of 1.6 μs and
the sampling time for one MIMO snapshot was 819 μs, which is within the coherence
time of the channel. At each Rx location, 13 snapshots were measured with a time
spacing of 4.1 ms between successive snapshots. Our measurement results directly
give the channel transfer function matrix sampled at 193 frequency sub-channels.
For the double-directional channel characterization, we needed the parameters delay,
DOA, DOD, and complex amplitude of the MPCs. Those were obtained with the
high-resolution SAGE algorithm [17], see Sec. 2.2 for details.

The test site is the E building at LTH, Lund University, Sweden; a map of the
site is shown in Fig. 1. The transmitter was placed at 3 different positions on
the roof of a nearby building. For each Tx position, the receiver was placed at 53
measurement positions located in 8 different rooms and the corridor between the
rooms. Measurement positions in each room were placed on a 3× 3 grid spanning an
area of approximately 6 × 3 m2; the three positions in north - south direction were
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Figure 1: Site map showing locations of Tx (2nd floor) and Rx positions
(1st floor). The free space distance between the blocks is also indicated.
4-7 positions were measured in room: 2334, 2336, 2337,2339 (referred to
as north) and 2345, 2343, 2342A, 2340B (referred to as south).

denoted north, middle and south, and the three positions in east - west direction were
denoted east, middle and west. The Rx position in a room was described by a pair of
letters suffixed to the room number, to indicate north-south and east-west position,
respectively. As a sample result, Fig. 1 shows the strongest four of the estimated
MPCs for Tx position 1, and receiver placed at 2334NM.

2.2 SAGE Analysis

Signal Model

The data evaluation is based on the assumption that the received and transmitted
signals can be described as a finite number of plane waves [18]:

hm,n

(
k, i, αl, τl, φ

Rx
l , φTx

l , νl

)
= (1)

L∑
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where L is the total number of extracted MPCs, αl, τl, φ
Rx
l , φTx

l , νl are complex ampli-
tude, delay, DOA in azimuth, DOD in azimuth and Doppler frequency, respectively,
of the l−th MPC. The impact of elevation is neglected. Furthermore k, i, m, n, GRx,
GTx are frequency sub-channel index, snapshot index, Rx element number, Tx el-
ement number, Rx antenna pattern and Tx antenna pattern, respectively. Based
on this data model the SAGE algorithm can, using an iterative method, provide a
maximum-likelihood estimate of the MPC parameters from the measured transfer
functions. In our evaluations, we used 30 iterations of the algorithm.

All 13 snapshots that were taken at a given Rx position were used in data process-
ing, 40 MPCs being extracted from each measurement position. The path parameters,
DOA, DOD, and delay were cross-checked at a number of positions with the geom-
etry of the measurement site, and provided a good match. It must be stressed that
high-resolution algorithms based on the sum-of-plane-waves model cannot explain all
possible propagation processes. For example, diffuse reflections, as well as spherical
waves, are not covered by the model of Eq. (1). For this reason, the total power of
the MPCs extracted by SAGE does not necessarily equal the total power of the sig-
nals observed at the antenna elements. This can be compounded by the fact that for
some locations, more than 40 MPCs might carry significant energy. A quantitative
discussion of this is given in Sec. 2.2.

The estimated Doppler frequency for most MPCs was less than 1 Hz, though
at a few locations, Doppler frequencies of around 2-3 Hz were measured. Since the
inverse of the Doppler frequency was significantly larger than the total measurement
duration of 13 snapshots, this indicates a relatively static measurement scenario.

Relative Extracted Power

The received power estimated by SAGE is dependent on, e.g., the environment and
the number of extracted MPCs, L. The relative extracted power is computed as3

Q (L) =

∥∥∥Ĥ (L)
∥∥∥2

F

‖Hmeas‖2
F − σ̂2

n

, (2)

where Hmeas is the measured transfer matrix, Ĥ (L) is the channel matrix recon-
structed from the SAGE estimates of L = 40 MPCs inserted into the channel model
of Eq. 1. The estimate of the noise power, σ̂2

n, was calculated at each measurement

3We use the following notation throughout the paper: Â denotes estimate of A, ‖A‖F
denotes Frobenius norm of matrix A, AT denotes transpose(A) , A∗ denotes conjugate(A) ,

AH denotes (A∗)T , and A
1
2 is the matrix square-root defined in this work as A

1
2

(
A

1
2

)H
=

A. The operator vec{A} stacks the columns of A on top of each other, and un-vec{A} is
the inverse operation. Furthermore, tr{A} is trace(A) , Aij is the entry in i-th row and
j-th column of A, and A � B is the element-wise product of A with matrix B. Lastly, G
is a random matrix with elements which are independent identically distributed zero-mean
circularly symmetric complex Gaussian random variables with unit variance.
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All 159 measurement positions have been used in calculating the CDF.

position as

σ̂2
n =

I−1∑
i=1

‖Hi+1 − Hi‖2
F

2 (I − 1)
(3)

where Hi is the measured channel transfer matrix for the i−th snapshot, and I is the
total number of snapshots. This noise estimation was possible because we have an
(approximately) time-invariant channel, which we confirmed from our measurements
(see above). The cumulative distribution function (CDF) of the relative extracted
power is shown for all 159 locations in Fig. 2. As seen from the figure, the extracted
power with a source order of 40, varies significantly over the measurement locations.
In the majority of measurement locations more than 85% of the power is captured,
though at some positions only about 60% of the power is captured.

Source order Effects

For different initial estimates of the source order, we have investigated the mean
square reconstruction error between measured data and the matrix reconstructed
from MPC parameters estimated by SAGE. For each initial estimate of the source
order, in the range from 1 to 100 MPCs, the mean square relative reconstruction error
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(MSRRE) was defined as

MSRRE = E

⎡
⎢⎣
∥∥∥Hmeas − Ĥreconstruct

∥∥∥2
F

‖Hmeas‖2
F

⎤
⎥⎦ , (4)

where Hmeas is the NR × NT measured channel and Ĥreconstruct is the matrix recon-
structed by Eq. (1) from MPCs estimated by SAGE. The expectation is over different
frequency sub channels in one measured time snapshot which we use as realizations
of the channel. The error from Eq. (4) is plotted in Fig. 3 for a typical LOS and
NLOS scenario. It can be observed from Fig. 3 that as we increase the source order
(collect more MPCs), the slope of the reconstruction error flattens out which can be
interpreted as an indication that we begin to estimate noise spikes (or that we begin
to estimate wave parameters that have small correlation peaks in the M-step of the
SAGE). By extracting 40 MPCs at each location, we are not in the flat part of the
reconstruction error curve which suggests that we do not estimate noise spikes as
specular components. As a further check, we have also verified for each measurement
that the difference in power between the strongest and weakest MPCs estimated by
SAGE is within the dynamic range of our channel sounder, and within the sum (in
dB) of the correlation gain provided by SAGE and the measurement SNR at the re-
spective location so as to lower the probability that we estimate noise spikes. Though
Fig. 3 may suggest that extracting 40 MPCs could lead to an under-estimated source
order, especially for the NLOS scenarios, we believe (based on sample evaluations not
presented here) that the potential difference in source order will not alter significantly
the results presented in this paper. In general, correct source order estimation is an
open research topic, and in the extreme case a source order of a few thousand has
been used [19].

3 Physical Propagation Processes

In Fig. 4 the 40 extracted MPCs are plotted for each of the 53 Rx positions corre-
sponding to Tx position 1. The line lengths represent the MPC amplitudes at each
measurement location, relative to the strongest MPC at the same location.

This figure allows us to make some important conclusions about the dominant
propagation processes:

• In the north rooms, propagation through walls and windows shows almost equal
efficiency, as one can see from the (relative) strength of the LOS components
in the different rooms. The reason lies in the strong attenuation by the win-
dows as well as the walls. The (exterior) walls consist of bricks and reinforced
concrete, whereas the windows are coated with a metallic film for energy con-
servation.4 Additional measurements of the propagation characteristics of walls

4In most countries with cold climate, such metal-coated windows are typically used in
residential and office buildings.
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and windows showed that the attenuation of the windows is actually slightly
larger than the attenuation of the walls.

• Reflection and diffraction by the window frames are efficient propagation mech-
anisms. This is evident, e.g., from the DOAs in the rooms 2334 and 2336. It
is especially noteworthy that the propagation via the frames of the windows
results in an attenuation similar to the attenuation of the brick wall, e.g., see
the delay-azimuth plots for position Tx1Rx2336NM in Fig. 5.

• Each window is split into two glass panes, by a horizontal middle section with a
metal handle and locking mechanism. There are strong MPCs coming from the
window direction, see e.g., position Tx1Rx2336NM. The delay-azimuth plot in
Fig. 5 shows a number of MPCs of similar strength and very similar delays (note
that the DOAs are around 180◦ which corresponds to the window direction).

• For some south rooms, propagation through north rooms via doors constitutes
a strong propagation mechanism. This is clearly seen, e.g., in the delay-azimuth
plot for position Tx1Rx2343SM in Fig. 5.

• There are strong reflections observed in the south rooms, coming from south.
These reflections are from structures along the south walls of the rooms, e.g.,
metal pipes of heaters mounted on the south wall; refer Fig. 5 for position
Tx1Rx2343SM.

• While the strengths of the MPCs are differing widely, the directions of the
MPCs are more uniformly distributed. Typically, only two or three MPCs
show similar DOAs, e.g., refer Fig. 4. All DODs, on the other hand, are closely
grouped together.

Similar results were observed for all three Tx positions.

4 Statistical Analysis of Angular and Delay Dis-
persion

4.1 Angular Dispersion

The angular dispersion is an important parameter for the characterization of a spatial
channel. In this paper we use direction-spread [20] as a measure for the angular
dispersion. The direction-spread parameter does not suffer from the ambiguity related
to the choice of the origin of the coordinate system. The RMS direction-spread is
calculated as5

σang =

√√√√ L∑
l=1

|ejφl − μang|2 Pang (φl), (5)

5In [20] “direction” is given by the unity vector in the spherical coordinate system. The
direction-spread is a dimensionless quantity.
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Figure 6: CDFs of the RMS DOA spread. The subplots from top to
bottom are for the north rooms, south rooms, and the corridor, respec-
tively.

where

μang =
L∑

l=1

ejφlPang (φl) . (6)

Pang (φl) is the angular power spectrum normalized as
∑

L Pang (φl) = 1. Figs. 6 and
7 present the CDF of the DOA and DOD spreads for different Tx and Rx locations.
The differences between the north and the south rooms are evident, especially at the
Rx side. In the corridor, the spread is close to that of the south offices. The mean
direction-spreads are presented in Table 1. We can see immediately that the angular
dispersion at the Rx is markedly higher than for the Tx; this result is intuitive, as the
Tx is located outdoors and radiates only towards the Rx, while the Rx sees MPCs
that can come through the windows and walls, or are reflected from walls all around
the Rx. Furthermore, it is evident that the transmit position does not affect the
mean value of the DOA spread, and there is no large difference in mean spread for
the north rooms, corridor, and the south rooms. However, there are large differences
in the DOD spread for the different transmit positions. The coupling between the
DOAs and DODs will be discussed in Sec. 5.3



Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz 65

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

C
D

F

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

σ
ang

 

 

Tx1−North
Tx2−North
Tx3−North

Tx1−South
Tx2−South
Tx3−South

Tx1−corridor
Tx2−corridor
Tx3−corridor

Figure 7: CDFs of the RMS DOD spread. The subplots from top to
bottom are for the north rooms, south rooms, and the corridor, respec-
tively.

Table 1: Mean direction spread.

DOA σ̄ang

north rooms corridor south rooms
Tx1 0.69 0.82 0.75
Tx2 0.69 0.75 0.75
Tx3 0.69 0.75 0.69
DOD σ̄ang

north rooms corridor south rooms
Tx1 0.24 0.24 0.23
Tx2 0.09 0.11 0.09
Tx3 0.10 0.18 0.13
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Figure 8: CDF of the RMS delay spread for the north and south rooms
and the corridor.

4.2 Delay Dispersion

The RMS delay spread roughly characterizes the multipath propagation in the delay
domain and is conventionally defined as [21]

στ =

√
−
τ 2 − (

−
τ )2, (7)

where the mean excess delay,
−
τ , and the non-central second moment of the average

power delay profile,
−
τ 2, are defined as [21]

−
τ =

∑
L

Pdel (τl) τl∑
L

Pdel (τl)
and

−
τ 2 =

∑
L

Pdel (τl) τ 2
l∑

L

Pdel (τl)
, (8)

where Pdel (τl) is the delay power spectrum and τl is the delay of the l−th MPC.
Fig. 8 presents the CDF for the RMS delay spread in the north and south rooms.
The delay spread has been evaluated using the MPCs as extracted from the SAGE
algorithm. This has the drawback that diffuse contributions are not reflected in the
obtained delay spreads (which therefore tend to be somewhat low). On the other
hand, delay spread values that are extracted directly from the measured power delay
profiles show much too high values, as noise contributions at large delays have a
disproportionate influence. The usual technique of thresholding the PDP (for noise
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reduction) cannot be applied in our case, since in some cases the measurement SNRs
are too low for this purpose.6 Therefore, the delay spread values obtained from the
MPC parameters were deemed more reliable.

For the measured outdoor-to-indoor scenario, a cluster analysis of the MPCs
has also been performed in the delay-DOA-DOD parameter space. The results are
reported in [22].

5 Statistical Analysis

5.1 LOS Scenario - Fading Statistics

It is widely assumed that in LOS scenarios the channel coefficients have a non-zero
mean complex Gaussian distribution, this results in a Rician distribution of the am-
plitudes. The measured channel matrix can be modeled as the weighted sum of an
estimated LOS contribution (deterministic), and a residue component drawn from a
zero-mean complex Gaussian distribution [23]

Hmodel (m) =
√

κH
(n)
LOS +

√
1 − κH(n)

res (m) (9)

=
√

κH
(n)
LOS +

√
1 − κ · un-vec

{
R1/2G

}
, (10)

where HLOS is the LOS contribution, and Hres (m) is the residue in the m-th realiza-
tion of the channel model, the superscript (n) represents the fact that the matrices are
normalized as E

[‖H‖2
F

]
= NRNT . The scalar κ = KLOS

KLOS+1
, where KLOS is the LOS

power factor defined as KLOS = power in LOS component
power in all other components

(see 5.2). The full-channel
correlation matrix, R, is estimated as

R̂ =
1

M

M∑
m=1

vec
{
Ĥ(n)

res (m)
}

vec
{
Ĥ(n)

res (m)
}H

. (11)

In this work, a measured scenario is treated as a LOS scenario if the strongest esti-
mated MPC has a DOA and DOD that correspond to the hypothetical line connecting
Tx antenna to Rx antenna. Note that due to this definition of the LOS, a specific
antenna element need not have LOS, even though the array is defined to be in an
LOS scenario. We have analyzed the validity of the modeling approach in Eq. (9)
for our LOS scenarios and found that it is not well fulfilled for all our measured
data. For example, the data in Fig. 9 have been taken from a LOS scenario;
the top figure shows that the magnitudes of the measured channel coefficients do not

6Note that the low SNR problem is mitigated when evaluating delay spread based on the
MPCs. The SAGE algorithm estimates MPC parameters including delays by maximizing a
correlation function. Due to a large correlation gain accumulated over a typical number of
space, time, and frequency samples employed in measurements, the wave parameters can
be reliably estimated from a noisy environment. The correlation gain from our measurement
parameters, 16 × 8 MIMO, 193 frequency subchannels, and 13 time snapshots is in excess of
50 dB.
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exhibit a Rician distribution, though after subtracting the estimated LOS contribu-
tion, the residue component has a Rayleigh distribution. The CDF is based on the
data from a single measurement location, such that both spatial realizations and the
193 frequency sub-channels constitute the statistical ensemble. In an attempt to fit
various theoretical distributions to the amplitude of the LOS data, we found that the
generalized Gamma distribution [24], [25] best represented our measurements. The
CDF of the distribution can be expressed as the incomplete Gamma function [26]

ProbGG (r < r0) = P

(
α,

(
r0

β

)c)
, (12)

where P (·) is the incomplete Gamma function, and α, β, and c are the distribution

parameters with β =

√
E [r2] Γ(α)

Γ( cα+2
c )

, and Γ (·) is the Gamma function [27]. For all

LOS scenarios that were analyzed, the theoretical CDF of Eq. (12) provided a good
fit to the measured data with α in the range 1.2 − 3.5 and c in the range 0.7 − 1.6.
For the residue channel as well as NLOS scenarios, the parameter values c = 2,
α = 1, corresponding to a Rayleigh fading statistic [25], provide a good match to the
measured data distribution.

The Generalized Gamma distribution has been used by [28] to represent a compos-
ite fading distribution. We investigated possible reasons why the fading distribution
in our LOS scenarios deviated from the “standard” model, and found that some Rx
elements experienced shadow fading, i.e., mean received power at the Rx elements
varied considerably over the array. The shadow fading was a consequence of the ab-
sorber7 which was part of the array construction, see Fig. 10 (a). The Fig. 10 (b)
together with Fig. 11 illustrates how the absorber attenuates the LOS contribution
received at the back elements of the array. Therefore, the fading distribution of the
channel coefficients becomes a function of which Rx elements are considered for the
ensemble. We conjecture that a similar effect would be found with a circular array of
patch antennas. Thus, as an important consequence of our investigation, we find that
the “standard” model of Eq. (9) is applicable for some specific receiver configurations,
and the definition of, e.g., a Rice factor based on the model is meaningful. However,
the model is not universally applicable, i.e., in LOS scenarios the small-scale fading
statistics may not necessarily be Rician. In our case, it is shadowing due to the array
configuration which causes a composite fading distribution over a small-scale area,
the Rx array, and the Generalized Gamma distribution rather than the Rician is in
good agreement with the measured LOS data.

7The absorber suppresses the back-lobe of the elements; this means a lower probability
of locking into false and local minima in the iterative estimation procedure and hence better
performance of the high-resolution algorithm.
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5.2 LOS Power Factor and Rician K-factor

We make a distinction between the conventional Rician K-factor, KRice and what we
term the LOS-power-factor, KLOS. We define the latter as

KLOS =

E

[∥∥∥ĤLOS

∥∥∥2
F

]

E

[∥∥∥Ĥres

∥∥∥2
F

] . (13)

It is essentially the ratio between the power in the estimated LOS component and
the power in all other components. The LOS estimate, ĤLOS, can be extracted from
a high resolution algorithm, such as SAGE, by inserting channel parameters of the
LOS path into the signal model assumed by the algorithm. Note that matrices with
un-normalized power are used in calculating KLOS.

It should be stressed that KLOS is different from KRice; the LOS power factor
relates physically to the LOS component, which is strong, but not necessarily the
only strong component present in the measured scenario. Still, it can be uniquely
identified in a MIMO scenario by its DOA, and DOD (they have to agree with the
angles that correspond to the “direct line” between Tx and Rx antennas). On the
other hand, KRice is a characteristic parameter of the Rician amplitude distribution.
It is conventionally related to the narrowband amplitude distribution; even when it
is used to describe the amplitude characteristics of the first delay bin, it does not
have a strict correspondence to the LOS component. The Rician K-factors can be
extracted, e.g., with the method-of-moments as suggested by Greenstein et al. [29].
Table 2 compares the estimated values of KRice and KLOS in some of our measured
locations. A fair comparison between the two parameters requires that the fading
distribution in question is Rician, as it would only then be meaningful to talk of
a Rician K-factor. To avoid the absorber effect discussed in Sec. 5.1, we selected a
subset of 4 consecutive Rx elements at each measurement location (column 2 in Table
2). The selected elements for each measurement position form an arc, which contains
the DOA of the respective LOS MPC. The results shown in Table 2 indicate a general
trend that the LOS power factor is different from KRice. Furthermore, we propose to
use KLOS rather than KRice in modeling LOS scenarios as in Eq. (9). The relative
performance of the two metrics in modeling a LOS scenario is discussed further in
Sec. 5.3, refer Fig. 14.

5.3 Inter-Connection Between DOAs and DODs

As a third topic of our investigation, we analyze the coupling between the DOAs
and DODs. In Fig. 12 the joint DOA-DOD spectrum is shown for one Rx position
corresponding to Tx position 1. The plot shows that the joint DOA-DOD spectrum is
not separable into the marginal angular spectra. To quantify this effect, we investigate
three analytical channel models that make different assumptions about the coupling
between DOAs and DODs. All three models share the common assumption that
the channel matrix has zero-mean complex Gaussian entries. For analyzing the LOS
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Table 2: Comparison of LOS power factor and Ricean K-factor in a Ricean
channel.

Position Rx elements KLOS KRice

Tx1 Rx2334MM 8-11 2.5 4.3
Tx1 Rx2334SM 8-11 1.6 2.4
Tx1 Rx2337NM 7-10 1.9 2.6
Tx2 Rx2337ME 9-12 2.8 3.0
Tx2 Rx2336NM 7-10 2.2 2.1

scenarios, we consider only a subset of the full LOS channel matrix, i.e., those rows
in the matrix that correspond to Rx elements which receive the LOS component free
from absorber effect. The analysis in Sec. 5.1 and 5.2 guarantees that the subset
channel has Rician fading. We then model this subset channel according to Eq. (9),
where only Hres is modeled by the zero-mean Gaussian models. For NLOS scenarios,
no such limitation exists and we can test the model validity for larger channel matrices.

Kronecker model

The Kronecker model [13] [6] approximates the full channel correlation matrix, R, by
the Kronecker product of the transmit and receive antenna correlation matrices; RTx

and RRx respectively. Equivalently, the MIMO channel matrix is modeled as

HKron=
1√

tr{R̂Rx}
R̂

1
2
RxGR̂

T
2
Tx. (14)

The Kronecker model assumes that the DOA spectrum, and hence the structure of
the Rx correlation matrix does not change for different DODs.8 In the context of Fig.
12, the Kronecker assumption when fulfilled would imply a rectangular structure, i.e.,
if one groups estimated DODs into narrow angular bins, where each bin results in
a set of DOAs and path powers according to Eq. (1), the Kronecker assumption is
considered fulfilled if the DOA power spectrum for each of the DOD bins is similar.
We have analyzed the validity of the Kronecker model both for LOS and NLOS
scenarios. Fig. 13 shows the modeled ergodic capacity plotted against the measured
one for a number of measurement locations. In the top-figure, a 2× 8 LOS setup, the
Kronecker model deviates only very little from the measured results. This nice fit is
due to the small rank of the channel matrix [30]. The bottom half of Fig. 13 is a 16×8
NLOS setup. This setup shows large deviations between the modeled and measured
capacity due to the Kronecker assumption about the joint DOA-DOD spectrum. In
[7] it is suggested that the Kronecker model, in general, underestimates the channel
capacity. This is validated for the outdoor-to-indoor scenario by our results.

8However, the total power in the spectrum, a scale factor for the correlation matrix, is
allowed to change.
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Figure 12: Joint DOA DOD plot for Rx position Tx1Rx2345SM. The
marker diameter is scaled according to the power of each MPC, relative
to the power of the strongest component [dB scale].

Note that LOS locations considered in Fig. 13 have a measured SNR in the range
of 14–20 dB. When computing ergodic capacity at those locations, evaluation SNR
in the capacity formula was always set to 10 dB below the corresponding measured
value. In previous work [12] that analyzes the impact of measurement noise on capac-
ity, it was established that even for a “keyhole” MIMO channel (in which the capacity
is very sensitive to measurement noise) the capacity is correct as long as the measure-
ment SNR is 10 dB better than the evaluation SNR. Thus our reported results are
not influenced by measurement noise. For NLOS scenarios considered in Fig. 13, the
measurement SNR was in a considerably lower range of 1-13 dB. However, we miti-
gated measurement noise at each location by coherently averaging channel matrices
over the available 13 time snapshots; this improves measurement SNR by a factor
exceeding 10 dB. For capacity evaluation we always use the noise-suppressed channel
matrices and set evaluation-SNR in the capacity formula to the unprocessed value of
measured SNR so that we have a 10 dB difference between measured and evaluation
SNR. Therefore, our NLOS capacity results also represent the true channel capacity.

Virtual Channel Representation

The virtual channel representation (VCR) was introduced in [31] for a ULA at each
link end, and allows arbitrary coupling between pre-determined directions at the Tx
and Rx sides. The model uses discrete Fourier transform matrices ARx and ATx

at respective link ends, such that the measured channel and the virtual channel are
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unitarily equivalent. The realizations of the channel model can be generated as

HVCR = ARx

(
Ω̃ �G

)
AT

Tx. (15)

The columns of ARx and ATxare based on the array response (steering) vectors com-
puted at fixed virtual directions, and the matrix Ω̃ is the element-wise square root of
the power coupling matrix Ω; the entry Ωij gives the average power coupled between
the i-th receive and j-th transmit direction. This beamforming approach thus incor-
porates the antenna array effects. However, since the directions are pre-determined
and scatterers within the spatial resolution of the array will not be resolved, it is possi-
ble that the true spatial characteristics of the channel will not be rendered accurately
for some scenarios.

In our measurement setup, the Rx array was not a ULA, but rather a UCA with
an absorber in the center. We thus use a generalization of Eq. (15) that combines the
standard (virtual channel model) at the Tx side, with a “canonical” representation,
based on the channel statistics, at the Rx side

HVCR = ÛRx

(
Ω̃ � G

)
AT

Tx,

where ÛRx is an estimate of the receive eigenvector matrix obtained by eigenvalue
decomposition of R̂Rx. In Fig. 13 the ergodic capacities computed from this model
are also shown. For the 16 × 8 NLOS setup, the capacity from this model tends to
slightly over-estimate the measured values.

Weichselberger Model

Like the Kronecker model, the Weichselberger model [7] represents the measured
channel in the eigenvector domain, though unlike the Kronecker model, it strives to
model channel correlations jointly at both link ends. This is achieved by defining a
power coupling matrix between the eigenvectors of the two link ends. The Weichsel-
berger model assumes that the eigenvector matrix at the Rx is independent of which
spatial Tx weight vector, i.e., DOD is considered. However, the corresponding eigen-
values of the spatial correlation matrix at Rx can differ for different DOD. The same
argument applies to the reverse link. The physical interpretation of the modeling
assumptions can be found in [7] wherein the channel is modeled as

Ĥweichsel = ÛRx

(
Ω̃ � G

)
ÛT

Tx, (16)

where ÛRx and ÛTx are estimates of receive and transmit eigenvector matrices, ob-
tained by eigenvalue decomposition of R̂Rx and R̂Tx respectively. The elements of
the power coupling matrix Ωij now give the average power coupled between the i-th
receive and j-th transmit eigenvector; the matrix is estimated as

Ω̂ =
1

M

M∑
m=1

[K � K∗] , (17)



Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz 75

3 3.5 4 4.5 5 5.5 6

3

4

5

6

2 X 8 MIMO (LOS)

ca
pa

ci
ty

 [b
its

/s
ec

/H
z]

 

 

10 12 14 16 18 20

10

15

20

16 X 8 MIMO (NLOS)

measured capacity [bits/sec/Hz]

ca
pa

ci
ty

 [b
its

/s
ec

/H
z]

 

 

measured
kronecker
weichselberger
VCR

measured
kronecker
weichselberger
VCR

Figure 13: Scatter plot of average modeled capacity against average
measured capacity of the channel. Top figure is for LOS 2X8 MIMO, bot-
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where K =
(
ÛH

RxH (m) Û∗
Tx

)
, and H (m) is the m−th channel realizaton. It should

be noted that the Kronecker model is a special case of the Weichselberger model. In
Fig. 13 the ergodic capacity computed from the Weichselberger model is shown for
the same measurement locations as for previous cases. Compared to the Kronecker
model, the Weichselberger model provides a better fit to the measured data. This
result is expected from Fig. 12, where the joint spectrum is not separable into the
marginal spectra. The Weichselberger models fits measured data better than the
VCR case as well. This can be explained because in the former case, the channel
statistics determine the unitary matrices at both link ends. Our results, obtained
for the outdoor-to-indoor scenario, are consistent with the observations in [7] which
considered the pure indoor and outdoor cases separately. As a follow-up to Sec. 5.2,
we use the Weichselberger model and the ergodic capacity as a metric to compare
performance of KRice and KLOS in modelling a LOS scenario according to Eq. (9).
The plots are shown in Fig. 14 for a 2 × 8 LOS setup. Though, the restriction to
use a small rank LOS channel will result in a convergence of performance of the two
metrics, from the figure the KLOS metric appears to perform better.
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6 Conclusions

In this paper we have presented the results of a double-directional measurement cam-
paign for an outdoor-to-indoor office scenario. Our characterization of the outdoor-
to-indoor scenario indicates that the angular dispersion at the outdoor link end is
rather small, the mean direction-spread is in the range 0.09 − 0.24. At the indoor
link end, MPCs of significant energy arrive from all directions and consequently the
angular dispersion is much larger, we observed mean direction-spreads in the range
0.69 − 0.82. The delay spread was measured to be in the range of 5 − 25 ns. By
considering 40 MPC at each measured position, more than 85% of the received power
could be accounted for in 60% of the 159 measurement locations.

Our statistical analysis shows that the widely used assumption in MIMO channel
modeling, that the channel can be represented as a sum of a weighted LOS component
plus a zero-mean complex Gaussian distribution may not adequately represent mea-
sured data; in general the small-scale fading in a LOS scenario may not be Rician; we
observed a composite fading distribution, caused by our antenna configuration and
found the Generalized Gamma distribution a useful tool for verifying this. Further-
more, we have highlighted the difference between the LOS power factor and the Rician
K-factor, and support this assertion with measured data from a Rician fading chan-
nel. We show that the DOA spectrum depends noticeably on the DOD. Using ergodic
channel capacity as a metric, we have compared the performance of the Kronecker,
VCR, and Weichselberger models for the outdoor-to-indoor scenario. The Kronecker
model is not applicable in our case due to the breakdown of the DOA-DOD decou-



Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz 77

pling assumptions; this holds true even for the NLOS scenarios. Compared to the
VCR model, the Weichselberger model provides a better fit to the measured capacity
for both LOS and NLOS scenarios.

Our results can serve as a basis for understanding outdoor-to-indoor MIMO chan-
nels, and have served as an input to the COST 273 MIMO channel model [32].
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A Cluster-based Analysis

of Outdoor-to-Indoor

Office MIMO Measurements

at 5.2 GHz

Abstract

In this paper, we present a cluster based analysis of an outdoor-to-indoor Multiple-
Input Multiple-Output (MIMO) measurement campaign, and extract model parame-
ters for the COST273 channel model. The measurements were performed at 5.2 GHz
for 159 measurement locations in an office building. Multipath component (MPC)
parameters have been extracted for these positions using a high-resolution algorithm.
We analyze the clustering of MPCs, i.e., grouping together of MPCs with similar
DOAs, DODs, and delays. We compare cluster identification by visual inspection
to automatic identification by the recently proposed algorithm of Czink et al. In
the paper we include results on the intercluster properties such as the distribution
of the number of clusters and the cluster powers, as well as intracluster properties
such as the angle and delay spreads within the clusters. In particular, we extract pa-
rameters for the COST 273 channel model, a standardized generic model for MIMO
propagation channels.
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1 Introduction

Multiple antennas at both receiver and transmitter can result in tremendous capacity
improvements compared to single antenna systems. Ultimately, the capacity gains
depend on the propagation channel in which the system is operating. The establish-
ment of good channel models is therefore essential both for the development of new
algorithms for signal processing, modulation and coding, and for the unified testing
of different system proposals. A number of standardized channel models have been
developed for the testing of specific systems, e.g., the 3GPP model for outdoor cellu-
lar communications [1] and the 802.11n model for indoor wireless LANs [2]. However,
those models do not cover some important scenarios, especially the case where the
base station is outdoors, and the mobile station is indoors. In recent conference con-
tributions [3] [4], we presented measurement results for the outdoor-to-indoor case
and presented some typical parameters like total rms angular spread. In the cur-
rent paper, we use those measurements to derive a subset of the COST 273 model
parameters that can be implemented for system testing.

In measured MIMO propagation channels the MPCs tend to occur in clusters,
i.e., groups of MPCs with similar parameters, delay, direction of arrival (DOA), and
direction of departure (DOD) [5], [6]. It is important that channel models correctly
reflect this clustering property [7]. For example, the results in [8], indicate that chan-
nel models disregarding clustering effects overestimate capacity. Furthermore, from
an aspect of system-level testing, it is convenient to model the propagation channel
in terms of cluster properties rather than modeling the behavior of individual MPCs.
It is for these reasons that clustering in MIMO propagation channels is actively re-
searched, e.g., [6] [9] [10], and also included in many channel models. In particular,
the European COST 273 [11] action has developed a general MIMO channel model
that describes parameters for the MPC clusters occurring in the propagation channel.
This description can be broadly categorized as intercluster and intracluster param-
eters which characterize the clusters and MPCs within clusters, respectively. The
model is general enough to allow description of many different scenarios, e.g., cellu-
lar, WLAN, fixed wireless, and peer-to-peer communications.

In this paper we establish a set of parameters, for the clustered stochastic MIMO
channel model for the outdoor-to-indoor case. The parameters are based on the
COST 273 generic channel model and fitted with the results from our measurements.
Though the COST 273 model is applicable both to time-variant and static channels, in
this paper we characterize a static environment only. For that goal, we first perform
a cluster identification; using both visual inspection and an automatic clustering
algorithm [12]. In the remainder of the paper we include detailed results on the
intercluster and intracluster properties, including cluster power distributions, and
intracluster delay spreads and angular spreads.
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2 Measurement setup

The measurement setup is described in detail in [3] and summarized here for the
convenience of the reader. Measurement data were recorded with the RUSK ATM
channel sounder. The measurements were performed at a center frequency of 5.2
GHz and a signal bandwidth of 120 MHz. The transmit antenna was an 8 element
dual polarized uniform linear patch array and the receive antenna was a 16-element
uniform circular array with vertically polarized monopole elements. The channel was
seen to be static and this was confirmed by the measurements.

We have extracted MPC parameters for the 159 measurement positions using
the high-resolution RIMAX algorithm [13]. At each measurement position we have
extracted the parameters delay, DOA, DOD, and complex path-weights for up to
50 MPCs. It must be stressed that high-resolution algorithms based on the sum-of-
plane-waves model cannot explain all possible propagation processes, especially not
in the indoor environment where the receive antenna sometimes was located close to
some scatterers. However, the RIMAX algorithm estimates the parameters for the
diffuse scattering component of the measured channel. The path parameters, DOA,
DOD, and delay were cross-checked at a number of positions with the geometry of
the measurement site, and provided a good match.

3 Comparison of Clustering Approaches

Clustering of MPCs, i.e., identification of MPCs that have similar parameters, is
conventionally performed by visual inspection, e.g., [10], [14], [15]. To utilize the
large data set from our 159 measurement locations, we have performed clustering
with an automated algorithm proposed in [12]. For selected measurement locations,
we also performed a visual cluster identification by a joint-inspection of parameter
extraction results. The delay, DOA azimuth and DOD azimuth domains were jointly
employed for clustering in both methods. Note that our cluster analysis is based on
plane waves only and disregards the diffuse contributions.

For the visual inspection, a cluster was identified as a set of MPCs with similar
delay, DOA, and DOD parameters - note that we require that all of the parame-
ters must be similar in order for the MPCs to form a cluster. We also investigated
the physical propagation mechanisms of the MPCs (e.g., reflections via specific ob-
jects), and required that MPCs belonging to a cluster should have the same physical
propagation mechanisms. To avoid a bias by the observer, the clustering by vi-
sual inspection was performed before automated clustering results were available.
For the automated cluster identification, which was performed for all measurement
locations, we defined clusters based on a power-weighted ”multipath component dis-
tance” metric as defined in [12], [16]. Since powers of the extracted MPCs exhibit a
large dynamic range, we limited our analysis to MPCs with powers within 30 dB of
the strongest component. The weaker components have negligible influence on the
calculation of statistical spreads but would introduce inaccuracies when calculating
probability density functions such as for the number of clusters and number of MPCs
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Figure 1: Clusters identified by visual inspection at location
Tx1Rx2345NM [3]. Circle diameters are scaled to relative powers of
MPCs. Clusters 1 and 5 represent energy coming through the door,
which opens into the office corridor. Clusters 4 (West wall) and 2 (East
wall) represent reflections from metal objects on wall-racks. Clusters 3
and 6 are due to reflections from metal pipes of heater/ window handles
along South wall. Clusters 5 and 6 are delayed from their earlier arriving
counterparts, due to multiple reflection between the two buildings where
Tx and Rx are placed.

per cluster.
The clustering for one measurement location is compared in Fig. 1 (visual) and

Fig. 2 (algorithm). The clusters defined by the algorithm appear in reasonable
agreement with the visually identified clusters. The algorithm defines three separate
clusters for the MPCs otherwise identified as cluster 1 by visual inspection, similarly
cluster 4 from visual identification is defined as two adjacent clusters. To compare the
two clustering approaches, for all locations where visual inspection was performed, the
respective CDFs for the intracluster spreads for delay, DOA and DOD are plotted
in Figs. 3, 4, and 5. Note that for comparing the two clustering methods only a
statistical measure, a CDF of the spreads, is employed because our final objective is
to characterize the channel with statistical parameters rather than describe physical
propagation. Based on the CDFs of the intracluster spreads, the two clustering
approaches are in good agreement. The results in the remainder of the paper are
based on automated clustering only.



88 PAPER II

−200 −150 −100 −50 0 50 100 150 200
−30

−20

−10

0

10

20

D
O

D
−

az
im

ut
h 

[d
eg

]

Tx1Rx2345NM − automated clusters =8

−200 −150 −100 −50 0 50 100 150 200
100

150

200

250

300

DOA−azimuth [deg]

de
la

y 
[n

s]

Figure 2: Clusters defined by the algorithm at location Tx1Rx2345NM.
The MPCs are color coded to indicate cluster association.
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intra-cluster delay spread.
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intra-cluster DOA spread.
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Figure 5: Algorithm vs. visual inspection, comparison of CDFs of
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4 Results

The clustering algorithm9 was applied to all 159 measurement locations and a total
of 1005 clusters were extracted. These form the statistical ensemble for the statistical
analysis reported in this section. The results have been categorized as intra- and
intercluster properties.

4.1 Intra-cluster properties

The distribution of the number of MPCs per cluster is plotted in Fig. 6. The median
number of MPCs is 3 whereas the mean is 4.02. An Exponential distribution with
the indicated mean provides a good fit to the empirical pdf. The distribution
of the intracluster delay spread is plotted in Fig. 7. The spread10 is calculated
as the conventional rms delay spread [5], of MPCs within a cluster. Note that the
apparently large occurence of spreads around 150 ns is due to the fact that isolated
occurences of the delay spread, in excess of 150 ns, have been collected into this

9A delay-scaling factor of 5 was used to assign more significance to delay during clustering.
The Cluster-pruning feature of the algorith was not used owing to the upper limit of 50 MPCs
extracted per position by RIMAX and a further 30 dB power limit on MPCs to be considered
for cluster analysis.

10The delay spread model of COST 273 is distance-dependent, i.e., the delay spread is the
product of d−0.5 times the lognormal variable, where d is the Tx-Rx distance. However, we
omit this scaling in our analysis because the distance variation in our measurements, between
nearest and farthest Rx location relative to Tx, never exceeds a factor of 2.



A Cluster-Based Analysis of Outdoor-to-Indoor Office MIMO. . . 91

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Intra−cluster delay spread [ns]

P
D

F

 

 

Theor. Lognormal [mean =3.5 ns, σ
dB

 =13.7 dB]

histogram

Figure 7: Distribution of delay spread within a cluster.

single bin. According to the COST 273 model, a Lognormal pdf has been fitted to all
intracluster spreads. For the delay spread, a mean of 3.5 ns and standard deviation
of 13.7 dB provides a reasonable fit to the histogram. The distribution of the
spreads in direction of arrival and departure, azimuth only, are plotted in Figs. 8 and
9. To avoid the ambiguity caused by the origin of the coordinate system, the Fleury
definition [17] is used to calculate the spreads11. Note that in Figs. 7, 8, and 9 the
singletone12 clusters, which by definition have zero spread, are not plotted. A total
of 200 out of the 1005 clusters were observed to be singletone clusters. For the DOA
spread, a Lognormal pdf with mean 0.08 and deviation 10.5 dB has been fitted to the
empirical PDF. For the DOD spread, a Lognormal with a mean of 0.02 and deviation
of 12.3 dB fits our empirical results.

4.2 Inter-cluster properties

The distribution of the number of clusters at each measurement location is plotted
in Fig. 10. The horizontal axis begins at 3 since at each measurement location,
this is the lower limit of the range of possible number of clusters from which the
algorithm selects the optimum cluster set. According to the COST 273 model, the
total number of clusters is NCmin +X, where NCmin is the minimum number of clusters
occuring at each position (3 in our case) and X is a random variable with Poisson

11The Fleury definition of direction spread can, for small values, be used as the angular
spread in units of radians.

12Clusters consisting of a single MPC
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Figure 8: Distribution of the DOA spread within a cluster.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

Intra−cluster DOD azi. spread

P
D

F

 

 

Theor. Lognormal [mean =0.02, σ
dB

 =12.3 dB]

histogram

Figure 9: Distribution of DOD spread within a cluster.
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Figure 10: Distribution of the number of clusters.

distribution. Though, this functional relation does not describe our measurements
well, and choosing X as Exponential distributed seems to fit better. The mean number
of clusters was found to be 6.4 while the median value was 6. The distribution
of the minimum delays of the clusters, i.e., first-arriving component of each cluster
is plotted in Fig. 11. The occurence of minimum delay values in excess of 400 ns
is due to singletone clusters ocurring at this delay. A Lognormal distribution with
mean 106 ns and deviation 4.4 dB was found to fit the empirical data. Due
to space constraints in the paper, we omit our results on the distributions of the
mean angle of arrival and departure. These results, together with the correlations
between the cluster spreads and the cluster powers, will be discussed in a follow-up
publication. In Fig. 12 the normalized cluster powers are plotted as a function of
the excess minimum delays of the clusters, i.e., cluster delays relative to minimum
delay of the first arriving cluster at the respective measurement location. The cluster
powers are normalized by the power of the same cluster. Thus we are able to compare
clusters from different measurement locations. The solid line in Fig. 12 is the linear
regression of the cluster powers in dB on the excess minimum delays of the clusters,
and indicates addittional attenuation depending on excess delays of the clusters. An
attenuation coefficient of 25 dB/μs is observed from this plot. Note that we do not
use a cut-off delay in plotting Fig. 12 because we have some late arriving clusters
with strong powers. The deviation of the cluster powers from the linear regression
is a measure of the cluster power shadow fading. In Fig. 13 an empirical PDF of
the deviation is plotted together with a Gaussian fit with zero-mean and standard
deviation of 9 dB. In Figs. 12 and 13 the first arriving clusters at each location,
which have been used for normalization, are not plotted; these clusters would have
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Figure 11: Distribution of the minimum delay of the clusters.

coordinates (0, 0) in Fig. 12 and would appear as a large peak around 0 in Fig. 13.

5 Summary

We have performed a statistical analysis of MPC clusters observed in our measure-
ments at 159 locations in an outdoor-to-indoor office scenario. We extracted a subset
of the model parameters of the COST273 channel model, valid for this scenario. For
the intracluster properties, the number of MPCs per cluster was observed to be Ex-
ponentially distributed, the intra-cluster spreads followed a Lognormal distribution.
For the intercluster properties, the distribution of number of clusters was better fit by
an Exponential rather than the Poisson distribution specified in the model. The clus-
ter delay was observed to follow a Lognormal distribution. The cluster attenuation
coefficient was measured to be 25 dB/μs.
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Abstract

Sensor networks and Ad-hoc networks, where nodes inter-communicate without fixed
infrastructure, have recently attracted interest due to potential use in industrial,
environmental, and safety-related applications. The fading statistics of the propa-
gation channels between sensor nodes are essential to determine the possible data
rate, outage, and latency of sensor networks. This paper presents (to the best of our
knowledge) the first in-depth analysis, based on measurements, of the propagation
channels between typical sensor node locations in office environments. We find that
the amplitude fading distribution can be characterized as Ricean. The Rice factor
is analyzed as a function of distance and it is determined that it is not a monotoni-
cally decreasing function. Even in pure LOS situations, Rice factors show a random
behavior and are on the order of 10 or less. We propose models for the small- and
large-scale fading correlation. A simulation model based on our analysis is also pro-
vided. Our results have relevance for the analysis of bit error rates, diversity order,
and diversity/multiplexing tradeoff in clustered sensor networks.

Accepted with minor revisions and resubmitted to IEEE Transactions on Wireless
Communications, February 2009, as
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1 Introduction
13Wireless sensor networks have been very actively researched in the last few years.
A wireless sensor network consists of a number of low-cost, low-power sensor nodes,
which can perform sensing, simple computation, and communication over short dis-
tances [2]. Such networks essentially gather information pertaining to the surrounding
environment and transmit the data to a nearby sink either directly or via intermediate
nodes. In the indoor scenario, wireless sensor networks have potential applications
ranging from security surveillance and inventory management to telemedicine sensors
for advanced health care services [3]. The radio resources for such networks are of-
ten constrained, i.e., bandwidth is shared among a large number of nodes and the
transmit power is usually limited. Furthermore, the network may face diverse channel
conditions among its nodes. These issues can be alleviated through multihop relaying
[4] or cooperative communication among the nodes [5], [6], [7], [8].

The performance of sensor networks, e.g., capacity, reliability, energy consump-
tion, and latency, under any of the above schemes depends on the statistics of the
propagation channels between the sensor nodes. For example, the fading statistics
between sensor node pairs determines the amount of cooperation required between
nodes to achieve a certain outage probability [9]. Furthermore, the popular inter-
pretation of clustered sensor networks as distributed MIMO systems critically hinges
on statistics of the propagation channels within each node cluster [10], [11]. Despite
this fundamental importance of propagation channel statistics, few measurements of
channels between sensor nodes are available. To our best knowledge there are no in-
depth experimental investigations of the fading statistics of the indoor propagation
channel for sensor network communications. This is in stark contrast to the exten-
sive measurements of indoor cellular or wireless LAN links, which exhibit different
placements and heights of the nodes, and therefore different channel characteristics,
see e.g. [12], [13] among others.

In this paper, we present the results of an extensive measurement campaign and
a model that for the first time describes the fading statistics for such indoor sen-
sor networks. The nodes are placed in an office environment, always in close prox-
imity to the walls, at heights of 20, 60, and 100 cm above the floor. Such node
placements, at typical heights of work-table/ wall power-socket, are probable in a
scenario of intercommunicating sensor nodes, e.g., in ambient intelligence networks
[14]. The measurement frequency is 2.6 GHz, which is close enough to the 2.45 GHz
ISM band to yield similar propagation characteristics, but separated enough that the
measurements did not suffer from interference from microwave ovens, wireless LANs,
etc. Based on those measurements, we derive a stochastic channel model for the
distance-dependent fading applicable to inter-sensor communication in the indoor of-
fice scenario. We find that the distribution of the narrowband fading amplitude can
be modeled as Ricean in a majority of the cases, though the values of the Ricean

13† Preliminary results from a subset of the measurements were presented at Globecom
2007 [1].
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K-factor, KRice, are generally not very large.14 Furthermore, KRice values do not
necessarily increase monotonically with decreasing separation between transmit (Tx)
and receive (Rx) nodes. Since a Ricean fading channel with large KRice approximates
an additive white Gaussian noise (AWGN) channel, our results show that the AWGN
assumption is not guaranteed at small Tx-Rx separation - a fact that can have impor-
tant consequences for cooperative communications in the investigated scenarios. Our
work also addresses the large-scale fading characteristics of the channel. A channel
model has been proposed for the correlated fading amplitudes, and is parametrized
from our measurements.

The remainder of the paper is organized as follows. In section II, we describe the
measurement setup and post processing. Section III contains the results and a model
discussion. Section IV outlines model validation and implementation steps. Finally,
conclusions are provided in section V.

2 Measurement setup and processing

2.1 Equipment

The channel transfer functions between different locations of the sensor node antennas
were recorded with the RUSK LUND wideband channel sounder that measures the
transfer function by means of a multicarrier signal [15]. The measurements were
performed at a center frequency of 2.6 GHz with a signal bandwidth of 200 MHz,
spanned by 321 subcarriers. The Tx signal was repeated with a period of 1.6 μs,
and had an output power of 27 dBm. The propagation channel was measured along
designated routes at regular spatial intervals of λ

4
. At each spatial position, a block

of ten snapshots was recorded for enhancement of the measurement signal-to-noise
ratio (SNR) through coherent averaging.

The single-element Tx and Rx antennas used in the measurements were commer-
cial Skycross (SMT-2TO6M-A) meander line antennas with linear polarization and
dimensions 2.8× 2.2× 0.3 cm3 [16]. The azimuth pattern (in the plane perpendicular
to axis of the antenna) of those antennas is approximately omnidirectional whereas
the elevation pattern exhibits pronounced radiation lobes. The antenna patterns are
provided in [1].

2.2 Scenario

The measurements were performed in the E-building at LTH, Lund, Sweden in five
office rooms15, each of dimension 6×3 m2. The channel sounder’s Tx and Rx unit were

14KRice is defined as the power ratio between the deterministic and diffuse components of
the channel.

15The rooms were selected from separate corridors of the building and had different prop-
agation environments in terms of placement of computers (desktops and/ or laptops) as well
as location of furniture that was made of metal, plastic, and wood. The room walls were
a mix of brick and light concrete, and the windows had metalized glass, which is a typical



A Statistical Model for Indoor Office Wireless Sensor Channels 105

Tx10

Tx1 Tx6

Tx5

0.20

4.32

2.7

6.0

0.20

0.12

0.06

N

Rx5

Rx1

Rx10

Rx6

Figure 1: Room 2364, window on North wall (Top) and Measurement
plan (Bottom).

always placed in the corridor outside the measured room, and antenna cables were
partially taped to the floor of the room to avoid their free movement. Furthermore,
the fixtures holding the Tx and Rx antenna were made of plastic material. These
steps were taken to ensure minimal disturbance of the measured environment. The
measurement layout is shown in Fig. 1. A (Rx) measurement run was defined as -
the Tx antenna fixed at one of the locations shown in Fig. 1 and the Rx antenna
moved slowly towards the Tx antenna, from a start position corresponding to that
Tx position. For any fixed Tx position, there exist exactly two corresponding start
positions for the Rx measurement run. For example, for Tx placed at position Tx1
in Fig. 1, a Rx measurement run could only initiate from position Rx1 or Rx6.
Similarly, for Tx5 position the corresponding Rx start positions were Rx5 or Rx10.16

The trajectory of the measurement runs was always parallel to the 6 m walls. The
channel transfer function was measured along a measurement run at regular spatial
intervals of λ

4
. During any measurement run, both Tx and Rx antenna maintained

a proximity of 6 cm to one of the 6 m walls. A measurement run where both the
Rx and Tx antenna were 6 cm from the same wall, is referred to as a same-wall
measurement, e.g., Tx at Tx1 and Rx run initiated from Rx1. When this was not the
case, e.g., Tx on Tx1 and Rx run initiated from Rx6, then such measurement runs

construction in northern Europe and in modern office buildings elsewhere.
16This arrangement was used to ensure equi-length measurement runs, i.e., around 4 m

length for any same-wall run and around 4.3 m length for an opposite-wall measurement run.
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are referred to as opposite-wall measurements in the sequel.
The measurement runs were performed at four different combinations of Rx and

nominal Tx antenna heights; in three cases equal antenna heights were employed, e.g.,
when both Tx and Rx antenna were placed at 20 cm above floor, this configuration
was referred to as Tx20Rx20. Similarly a Tx60Rx60 and a Tx100Rx100 configuration
was used. Finally, a measurement configuration with unequal antenna heights, where
Tx and Rx antenna were set at 100 cm and 20 cm, respectively, above the floor was
also used.

To increase the number of measurement runs, i.e., to increase the ensemble size for
statistical analysis, each measurement run was repeated with the Tx antenna raised
by 5 cm relative to it’s nominal height. Taking the example of Tx20Rx20 configura-
tion, this meant that measurement runs were performed with the Tx antenna at 20
and 25 cm above floor. Therefore, a total of 200 runs (5 rooms × 10 Tx positions ×
2 Tx heights × 2 Rx start positions) were measured for the Tx20Rx20 configuration.
This number includes 100 same- and 100 opposite-wall runs, respectively. The same
number of measurement runs was accumulated for the other three height configu-
rations. This set of measurement runs constituted the statistical ensemble used for
subsequent analysis of the fading.

For the same-wall measurements the antenna axes were rotated 90 degrees, in
the vertical-plane perpendicular to the wall, such that the uniform azimuth pattern
became the uniform elevation pattern in the rotated position. This was done because
a uniform elevation pattern allows an accurate characterization of the floor reflections
in the same-wall case; otherwise the strength of the floor-reflected component would
have been materially influenced by the lobes of the elevation pattern. Furthermore,
with a 6 cm separation to the nearest wall, the small angular separation between the
direct and wall-reflected components results in similar antenna gain in the direction
of the direct and wall-reflected components in the same-wall case.

2.3 Data Post Processing

In a fading channel the total power gain, G, experienced by the received signal, is
conventionally modeled as [17]

GdB(d) = PRx,dB − PTx,dB

= G0,dB − n10 log(d) + XSSF,dB + XLSF,dB, (1)

where d is the Tx to Rx distance, G0,dB is the path power gain in dBs at the reference
distance, d0 = 1 m, and n is the pathloss exponent. Furthermore, XSSF is the
small-scale fading (SSF) contribution, i.e., the random variation of signal level due to
multipath interference observed over one small-scale area17 (SSA). Finally, XLSF is
the large-scale fading (LSF) contribution, i.e., the random variation in local average
of Rx power observed over a spatial extent of multiple SSAs. In our analysis, these

17Small-scale refers to the spatial extent of such a region, which is on the order of a few
carrier wavelengths, λ.
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contributions were extracted from each measurement run through post-processing.
The parameters G0,dB and n were estimated by a least squares fit of G0,dB−n10 log(d)
to the dB values of Rx power averaged over all tones. The deterministic path gain
was then removed by multiplying the channel coefficients, in linear-scale, with an
appropriate distance dependent term. Next, the LSF at the i-th spatial sample was
estimated by averaging over the SSF contribution as,

XLSF,i =
dn

G0
· ÊSSF

[|Hij |2
]
, (2)

ÊSSF

[|Hij |2
]

=
1

20F

20∑
i=1

F∑
j=1

|Hij |2 , (3)

where, Hij is the channel coefficient measured at the i-th spatial sample and j-th

subcarrier, G0 = 10
G0,dB

10 , F is the number of subcarriers in the signaling band-
width, and finally 1

20

∑20
i=1 (·) represents a sliding-window average of the received

power along a measurement run. It is assumed here that averaging over space and
frequency are equivalent for small-scale analysis [18].18 Subsequently, the SSF contri-
bution, XSSF,ij = Hnorm

ij , to the amplitude of the measured channel coefficients can
be obtained as,

Hnorm
ij =

√
dn

G0
· 1

XLSF,i
· Hij . (4)

The SSF statistics were analyzed along the length of a measurement run using a
sliding window segment of 20 adjacent spatial samples19. Each of these 4 3

4
λ length

segments was treated as an SSA for the small-scale analysis.
For each SSA, small-scale statistics such as KRice were estimated from 6420 sam-

ples of the channel coefficients, Hnorm
ij (20 spatial samples × 321 frequency samples).

Amongst these samples, approximately 170 are considered to be statistically indepen-
dent [1]. This estimate is based on the working that within an SSA length of ≈ 5λ,
a small-scale decorrelation distance of approximately λ

2
gives 10 independent spatial

samples. Furthermore, a median coherence bandwidth estimated at 12 MHz gives 17
independent samples over 200 MHz measurement bandwidth. These 17 samples from
frequency domain are available at each of the 10 spatial samples, giving the approxi-
mate figure of 170 independent samples. We note that this number is relatively low,
and may lead to uncertainties in the estimated parameters. However, a limitation on
the number of independent samples is inherent in the analyzed scenario, and cannot
be eliminated by increasing length of the SSA or measurement bandwidth:

18The small-scale fading is caused by phase-changes of the interfering multipath compo-
nents. These phase-changes may occur due to traversing small-scale distance, or at a fixed
delay by traversing the spectral lines across the 200 MHz measurement bandwith. Therefore,
small-scale averaging can be performed equivalently over space and time for our measure-
ments.

19The number 20 comes from a trade-off between two conflicting requirements; to have
sufficient statistical samples, and the necessity, by definition of a small-scale region [17], to
have negligible variation in the mean Rx power. See also the discussion later in this section.
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(i) Increasing the length of the SSA: The SSA segment of length 4 3
4

wavelengths
is smaller than the 10 − 20 λ that are commonly used as SSA window length. This
smaller window size was selected empirically20 to satisfy the requirement that the
running average of Rx power should not exhibit appreciable change (< 5dB) within
the span of the window. Hence wide sense stationarity can be assumed to hold over
the length of an SSA segment.

(ii) Increasing the measurement bandwidth: although this approach would lead
to a larger number of independent samples; it is difficult to implement, and also
faces fundamental problems. When the measurement bandwidth exceeds 10 - 20 % of
the carrier frequency, channel statistics may differ among different sub-bands of the
measurement spectrum due to frequency selective interactions with scatterers [19].
Hence, the uncorrelated-scattering assumption of [20] is violated21.

3 Results

3.1 Small-Scale Statistics

Envelope Distribution

A number of different distributions have been proposed for the small-scale ampli-
tude fading in indoor office environments, and various justifications have been given
for them. The most prominent among them are Rayleigh and Rice distributions.
The former two are usually justified by means of the central limit theorem (CLT),
implying that a large number of multipath components, having the same statistical
properties are present. In our case, the theoretical conditions for the validity of the
CLT are not necessarily fulfilled, since - for the same-wall measurements - we can ex-
pect three strong components (direct component, floor reflection, and wall reflection)
plus a number of weaker multipath components. Still, we consider Rayleigh and Rice
distributions as appropriate functional fits to the measured fading distributions. In
addition to our work in [1], the Nakagami-m, Weibull and lognormal distributions are
also considered in this work as potential candidates to model the amplitude fading.
These distributions have been frequently used in modeling indoor scenarios, see e.g.,
[21], [22] and references therein. Several other fading distributions have been intro-
duced in the literature [23], [24], [25], but those tend to have a larger number of free
parameters. They do not appear to be in widespread use and we do not consider
them here any further.

We use Akaike’s Information Criteria (AIC)[26] to select among the candidate
distributions; Rayleigh, Rice, Nakagami-m, Weibull, and lognormal, the model that
best fits the empirical distribution of the fading amplitudes. The latter distribution

20After comparing various lengths of the averaging window for different measurement
routes.

21The wide sense stationarity condition may still be valid. Though, a violation of the
uncorrelated scattering assumption means that the channel modeling effort will be frequency
specific.
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Figure 2: Relative frequencies of AIC selecting a candidate distribution
as best fit to empirical distribution of small-scale fading amplitudes. The
ensemble of SSAs is drawn from measurement runs in all the rooms.

is also known as the operating model in this context. The application of AIC to the
problem of selecting an appropriate small-scale fading model was recently proposed
by [21]. The AIC is an asymptotically (in sample size) unbiased estimator of the rel-
ative expected Kullback-Leibler (KL) distance between the operating model and the
candidate distributions and thus allows the selection of the model with the smallest
KL distance to the measurements [27]. The AIC for the j-th candidate distribution
that has a probability density function gθj , is given by [27],

AICj = −2
N∑

n=1

loge gθ̂j (xn) + 2η, (5)

where θ̂j is the maximum likelihood estimate of the distribution’s parameter vec-
tor, θj , obtained from N independent identically distributed (IID) observations,
x = x1 . . . xN . Furthermore, η is the dimensionality of θj , and loge denotes natu-
ral logarithm. Among the candidate distributions, the best fit will have the minimum
value of AICj . Fig. 2 shows the relative frequency of AIC selecting each of the
candidate distributions as best fit. The Ricean distribution provides the best fit in a
majority of the cases. This is valid for different antenna height combinations in same-
and opposite-wall scenarios. Therefore the Ricean model is concluded to be the best
parametric fit, to distribution of the small-scale fading amplitudes. Additionally,
sample plots of the empirical cumulative distribution function (CDF) and theoretical
model fits are given in Fig. 3. These graphs provide some idea of the suitability of
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Figure 3: Sample empirical CDFs of the small-scale fading amplitudes
and their theoretical model fits. Measurements taken in Tx20Rx20 con-
figuration for a same-wall (top plot) and opposite-wall (bottom plot)
scenario. The ensemble is scaled to unit mean power, and dB units in-
dicate relation to this mean. The AIC selected Rice in the top plot and
Nakagami-m in the bottom plot. Distribution parameters for theoreti-
cal fits, e.g., Weibull(shape, scale) and Lognormal(mean, STD) are also
provided. Note that the y-axis origin in the plot above is coincident with
the (x=0, y=1) point shown on the bottom plot.

proposed theoretical models. For the measured channels, empirical distribution of
all non-zero (in linear scale) KRice observations is provided in Fig. 4. In comparison
to [12], which reports KRice values for an indoor access-point type scenario, the KRice

values observed in our sensor scenario are not too large. This fact together with the
observation of spatial variation of KRice (refer discussion in Sec. 3.1) has implications
for system design.

Ricean K-factor

Further studies of the Rice factor as a function of distance reveal several interesting
observations:

1. Rice factors are often small enough to allow description of the fading by Rayleigh
distributions. While the AIC rarely gives the Rayleigh distribution as the op-
timum distribution, in many cases the extracted KRice was small enough to be
well-approximated as 0.
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2. The Rice factor is a lognormally distributed random variable with distance-
dependent parameters. For each given distance, we obtain an ensemble of es-
timated KRice from measurement runs in all the rooms. The logarithms of
the samples in this ensemble are normally distributed22, N (μdB, σdB). In the
sequel, the distance dependent variation of KRice observed over the ensemble
of all measurement runs is described by a mixture model for the probability
density function,

pKRice (kRice) = α · N (μdB, σdB) + (1 − α) · δ (kRice) , (6)

where N denotes a lognormal distribution with mean of the logarithmic Rice
factor, μdB, and standard deviation, σdB, and α is the mixture weight. All three
parameters are considered to be functions of the Tx-Rx separation. The Dirac
impulse at zero, δ (kRice), accounts for the cases where the grid-search returns
a maximum-likelihood estimate of K̂Rice, ML = 0. The ensemble whose pdf is
considered is the measurement runs in the different rooms, and with different
Tx positions.

The parameter values in Eq. (6) generally depend on the link distance, χ,
defined as the distance between the Tx and the mid-point of the considered
SSA. We model this dependence by a polynomial fit, with the fitting parameters

22The Gaussianity of dB values was verified though plots are not shown here due to space
limitations.
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Table 1: parameters for k-factor mixture model.

μdB σdB α
P (χ) = c3χ

3 + c2χ
2 + c1χ+ c0 P (χ) = b0 P (χ) = a1χ+ a0

c3 c2 c1 c0 b0 a1 a0

Same Wall
Tx20Rx20 1.23 −9.52 20.64 −8.17 3.84 −0.05 1.05
Tx60Rx60 −0.84 5.80 −14.6 14.68 3.61 −0.06 1.04
Tx100Rx20 0.17 −1.74 4.27 −1.78 3.84 −0.07 0.99
Tx100Rx100 −0.43 3.57 −10.09 10.66 4.80 −0.04 0.98

Opposite Wall
Tx20Rx20 0.79 −6.41 12.06 1.58 3.75 −0.13 1.25
Tx60Rx60 −1.72 18.62 −67.55 81.64 4.47 −0.11 1.12
Tx100Rx20 0.16 −0.73 −2.01 6.61 3.76 −0.06 0.93
Tx100Rx100 −1.40 15.13 −54.8 66.72 4.14 −0.02 0.85

χ = Distance between Tx and mid-point of modeled SSA [m].

provided in Table 1. Note that for some antenna configurations and small Tx-
Rx separation the mixture weight, α, values modeled by the least-squares curve
may slightly exceed unity, in which case they should be truncated to one. For
system simulation with the proposed Ricean fading channel, KRice would be
drawn from Eq. (6) with values of the distribution parameters determined from
Table 1. Furthermore, the SSA under consideration is assumed to be centered at
the distance which determines values for the distribution parameters of KRice.

3. The mean Rice factor is not a monotonic function of the distance. Theo-
retical studies on communication between clusters of sensor nodes often make
simplifying assumptions about the propagation channels between the nodes.
The two most popular models are (i) Rayleigh fading between all nodes, in-
dependent of the distance between them, (ii) Rayleigh fading between nodes
belonging to different clusters and AWGN (or equivalently Ricean fading with
high KRice) for nodes communicating within a cluster, i.e., at small Tx-Rx
separation, see e.g., [10], [11] and references therein. It also seems intuitively
pleasing that the Rice factor would increase as the separation between Tx and
Rx decreases, and eventually reach very high values for small separations.

However, our measurements show quite different trends - there is no monotonic
increase in KRice with decreasing distance. This can be observed from Figs. 5
and 6, which show the mean values of KRice (in dB) as a function of Tx-Rx sep-
aration for same-wall and opposite-wall measurements, respectively. The mean
at each distance is taken over the ensemble of KRice observations obtained from
measurements in all rooms. An intuitive explanation for this behavior was given
in [1] based on the interference pattern of the dominant deterministic compo-
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Figure 5: Mean of KRice in dBs as a function of Tx-Rx separation for
same-wall measurements. The mean is taken over measurements in all
rooms. The x-coordinates of the plots correspond to the parameter χ in
Table I.

nents (direct component, wall-reflected, and the floor -reflected components).23

4. Rice factors in different SSAs are approximately decorrelated. For completeness
of this modeling approach, we investigated the autocovariance of the KRice

values along a measurement run. Our analysis, for all antenna heights, reveals
that the normalized autocovariance for KRice smoothly decays to a value around
0.5 within a distance of 0.55 m, i.e., decorrelation24 is achieved over the length
of one SSA segment. It can therefore be concluded that the model of Eq. (6)
can be used to draw KRice values for two arbitrary SSAs whose mid-points are
separated by the dimensions of one or more SSAs. The case where adjacent
SSAs overlap is not within the scope of this model25.

Correlation of small-scale fading

Another important characteristic of the small-scale fading is the spatial correlation
of the small-scale fading, since it describes achievable spatial diversity. While various

23Note that such a three-ray model is not exactly compatible with a Ricean fading distri-
bution, but is only used to make some qualitative statements about fading depth.

24Refer Sec. 3.1 for discussion.
25Modeling aspects are further discussed in Sec. 4.
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Figure 6: Mean of KRice in dBs as a function of Tx-Rx separation for
opp-wall measurements. The mean is taken over measurements in all
rooms. The x-coordinates of the plots correspond to the parameter χ in
Table I.

correlation coefficients can be defined [28], [19], we concentrate here on the auto-
covariance of the squared envelope of the received signal amplitude, since it deter-
mines the spatial selectivity of the received SNR. From measurements the normalized
autocovariance of the squared envelope process is estimated from Eq. (7), where
Δi = 0, 1, . . . , (20 − k) is the separation between samples of interest (in units of λ

4
),

and k = 10 is the fixed number of spatial samples used for averaging. Furthermore,
E(i...i+k), F [·] denotes statistical expectation over spatial samples i through i+k and
all F frequency tones. Similarly V AR(·) [·] is the statistical variance operator. The
other symbols have already been defined for Eq. (2) through (4).

In estimating the autocovariance in Eq. (7), an equal number of statistical sam-
ples, k · F , has been used to calculate each value. This means that the estimated
autocovariance sequence is equally reliable at all considered lags. An analysis in the
frequency domain showed that we had a median coherence bandwidth of 12 MHz
and so approximately 17 independent samples from the frequency domain per spatial
position. This together with the spatial averaging ensures that we use in excess of 50
independent samples in each estimate of the autocovariance.

In the investigations of decorrelation found in published literature, different thresh-
old levels have been used to define decorrelation, e.g., 0.9, 0.7, 0.5 and e−1. In this
work, decorrelation distance is defined as

dde-corr = min {Δd : ρCOV (Δi) ≤ 0.5} , (8)
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ρ̂COV (Δi) = E(i...i+k),(i+Δi...i+Δi+k), F

⎡
⎢⎢⎣
∣∣Hnorm

ij

∣∣2 − E(i...i+k), F

[∣∣Hnorm
ij

∣∣2]√
V AR(i...i+k), F

[∣∣Hnorm
ij

∣∣2] ·

∣∣Hnorm
i+Δi j

∣∣2 − E(i+Δi...i+Δi+k), F

[∣∣Hnorm
i+Δi j

∣∣2]√
V AR(i+Δi...i+Δi+k), F

[∣∣∣Hnorm
i+Δi j

∣∣∣2]
⎤
⎥⎥⎥⎥⎦ , (7)

where Δd = λ
4
· Δi. The distribution of small-scale dde-corr at different antenna

heights is shown in Fig. 7. Some of the CDF curves do not reach unity, which is
representative of the fraction of SSAs where decorrelation according to Eq. (8) is
not achieved within the observed distance. Otherwise the plots show that in 70 %
of the measured SSAs, decorrelation is achieved within one wavelength. We now
turn our attention to the autocorrelation, i.e., including the impact of the mean.
Fig. 8 shows the autocorrelation of squared envelope for three different SSAs with
corresponding KRice values. As expected, the higher KRice values result in a more
correlated channel. We model the impact of the Rice factor on the autocorrelation
function by an equation of the following functional form,

R (Δd) =

[
sinc2

(
2
Δd

λ

)
+ 2KRice · sinc

(
2
Δd

λ

)
·

cos

(
2π

Δd

λ
cos (θ0) cos (β0)

)]
·

(
Ω

1 + KRice

)2

+ Ω2, (9)

where Ω = E
[∣∣Hnorm

ij

∣∣2], and the pair of angles (θ0, β0) specify the specular compo-

nent’s azimuth and elevation, respectively. In our scenario θ0 is measured with respect
to the direction along which spatial samples are measured, and β0 is measured rela-
tive to the horizontal plane at Rx antenna height. The model in Eq. (9) represents
the autocorrelation function of Ricean fading where the diffuse component is due to
three-dimensional (3-D) uniform scattering (as obtained from [29], by inserting the
results from [30], [31]). This model is not necessarily representative of the physical
propagation scenario that may contain more than one dominant specular component.
However, as discussed in the sequel, the functional form models the autocorrelation
reasonably well and has the advantage that simulation models for Ricean fading is
a well-investigated topic in the published literature. The normalized autocorrelation
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model, ρ (Δd) = R(Δd)
R(0)

, is plotted in Fig. 8 together with the corresponding auto-
correlations estimated from measurements. We observe that the model matches very
well at large KRice, while at small KRice the model fits reasonably well at small lags
but shows a smaller correlation than the estimated values at large lags. This can
be attributed to the non-isotropic antenna pattern used in the measurements which
causes a higher correlation compared to the isotropic antennas assumed in the model.
In Fig. 8 for comparison we also show the autocorrelations arising from a channel
model where a specular component in 2-D uniform scattering is assumed [32].

3.2 Large-Scale Characteristics

path gain

The path gain averaged over LSF and SSF is conventionally modeled as a power
law decay in distance. The pathloss exponent, n, in this model is determined by
a least-squares fit to a scatter plot of Rx power in dB over log-distance. In our
analysis, the parameters n and G0,dB have been estimated by a least-squares fit of
G0,dB −n10 log(d) to dB values of the narrowband path gain averaged over all tones.
The fitting is performed individually for each of the 100 measurement runs (5 rooms×
10 Tx positions×2 Tx heights) at each nominal antenna height configuration in same-
and opposite-wall scenarios. The estimates of n and G0,dB were observed to be
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correlated Gaussian random variables26 with distribution parameters N (μn, σn) and
N (μG0,dB, σG0,dB), respectively, and were also modeled as such. The correlation
between the values of n (in linear scale) and G0,dB was characterized by the normalized
correlation coefficient, |ρnG0,dB | ≤ 1. The distribution parameters are provided in
Table 2 for the different antenna height configurations in same-wall and opposite-wall
scenarios. From the tabulated values, the pathloss exponent is close to 2 for all four
antenna heights in the same-wall scenario. The opposite-wall scenarios have higher
exponents owing to the obstructed LOS propagation. Furthermore, n and G0,dB are
weakly correlated for the same-wall scenario whereas this correlation is quite strong
for all antenna configurations in the opposite-wall scenario.

Large-Scale Fading Correlation

The LSF in this work is defined as the random variation in local average of Rx power,
observed over the spatial extent of multiple SSAs27. The Large-scale fading, XLSF,dB,
is conventionally modeled as a zero-mean Gaussian process, i.e., XLSF has a lognor-
mal distribution. In our analysis, the lognormality of XLSF,i estimated from Eq. (2)

26The Gaussian fit is not shown here due to space limitations.
27The conventional notion of shadowing by objects need not occur, as is the case with

same-wall measurements.
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Table 2: large-scale characteristics.

GdB (d) = G0,dB − n10 log (d)
μn σn μG0,dB σG0,dB ρnG0,dB σLSF,dB

Same-wall
Tx20Rx20 2.5 0.3 −50.9 2.7 0.1 1.5
Tx60Rx60 2.6 0.3 −50.6 1.8 0.0 a 1.4
Tx100Rx20 1.7 0.3 −55.8 1.9 −0.1 1.5
Tx100Rx100 2.2 0.4 −50.0 3.0 −0.3 1.7

Opposite-wall
Tx20Rx20 5.9 1.1 −30.8 6.2 0.9 2.1
Tx60Rx60 5.0 1.0 −35.8 6.6 0.9 1.7
Tx100Rx20 3.1 1.1 −48.0 6.1 1.0 1.3
Tx100Rx100 3.3 2 −41.7 10.9 1.0 1.8
a After rounding-off to one decimal place.

was verified by checking for Gaussian distribution of XLSF,dB,i. We observed that the
mean of the empirical Gaussian distribution was always in the range of 1− 2 dB and
never exactly zero. This is not un-expected since a least-squares criterion was em-
ployed in estimating the deterministic(mean) path gain per measurement run. This
however does not guarantee that the deviations with respect to the mean, XLSF,dB,i,
sum to zero over a run (assuming that the SSF is averaged out and has no effect).
In subsequent analysis of the LSF, the process mean was removed, i.e., the mean of
the XLSF,dB,i observations from a run was estimated and removed from the measured
sequence, before including observations in the statistical ensemble to characterize the
LSF. Table 2 lists the standard deviation, σLSF,dB, of the lognormal LSF component
at all antenna configurations. This is the root-mean-squared value of XLSF,dB,i ob-
servations gathered from all 100 measurement runs at each antenna configuration. It
can be observed that the estimated values of σLSF,dB are quite similar for the different
scenarios, and lie in the range of 1.4 to 2.1 dB for all antenna configurations.

The autocorrelation of the zero-mean LSF process was also investigated. To
ensure that the estimated autocorrelation does not have a contribution from the
sliding window averaging, XLSF,dB,i samples picked from each run were spaced apart
by one window-length, i.e., for the LSF correlation analysis Δd was always an integer
multiple of

(
20 · λ

4

)
. The autocorrelation of the LSF is shown in Fig. 9, and it can

be observed that decorrelation is achieved over the span of one small scale area. This
result is interesting in that it contradicts the idea of large-scale fading (i.e., it varies at
short scale). This suggests that for the measured indoor scenario, with nodes always
proximal to the wall, the small-scale and large-scale fading may no longer be clearly
distinguishable processes. The observed LSF correlation was similar for all four
antenna configurations both in the same- and opposite-wall scenarios. Therefore we
have chosen to model the mean of the curves, i.e., the solid black line in Fig. 9.
For this purpose, the conventionally used exponential decay model of [33] has been
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modified with a cosine term to account for the observed negative correlation. The
model is

ρdB (Δd) = exp

[
− loge (2) · Δd

ddecorr

]
·

⎛
⎝A cos

(
C · Δd

ddecorr

)
+ B

A + B

⎞
⎠ , (10)

where A = 7, and B = −6.9, and C = 0.1 have been determined from a least squares
fit of Eq. (10) to estimated values of the normalized correlation. From Fig. 9, the
model provides a reasonably good fit to the estimated correlation.

4 Model implementation and validation

Based on the results provided in Sec. 3, it is possible to model the radio channel by
generating a sequence of envelope values that have desired probability distribution,
and possess the necessary correlation properties for small- and large-scale fading. The
proposed model is useful for SNR investigations and interference analysis between
different links (SSAs) in the indoor office sensor scenario. An outline of the necessary
steps is provided below:

• For an SSA at given Tx-Rx separation, draw KRice from the mixture distribu-
tion.
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– Draw a number, m, from a uniform distribution, M ∼ U [0, 1].

– If m � α, draw KRice [dB] from the normal distribution, N (μdB, σdB),
otherwise KRice = 0. Take the parameters α, μdB, σdB from Table 1.

• Generate a sequence, SSSF, of correlated Ricean random variables that repre-
sents spatial samples, associated with one SSA, of the small-scale fading chan-
nel.

– This topic is well-investigated in the published literature, see e.g. [34],
[35] and the references therein. For the analysis carried out in the sequel,
an autoregressive filter of order 20 was used to shape the spectrum of the
in-phase component, rI , and quadrature component, rQ, of the sequence
of non-zero mean complex Gaussians. Corresponding to the squared en-
velope autocorrelation given by Eq. (9), the rI and rQ sequences both
have the autocorrelation

RrIrI (Δd) =

[
sinc

(
2
Δd

λ

)
+ KRice ·

cos

(
2π

Δd

λ
cos (θ0) cos (β0)

)]
·(

Ω

2 (1 + KRice)

)
. (11)

• Generate a sequence, SLSF, of correlated lognormal random variables, repre-
senting the large-scale fading of the channel samples observed over the span of
a measurement run.

– The samples of Rx power in dB, are represented by transforming an IID
standard Gaussian sequence into a correlated Gaussian sequence, Λ, with
autocorrelation given by Eq. (10). For results shown in the sequel the
sequence, Λ, was obtained by a matrix product between the matrix square
root of the desired autocovariance matrix and the IID Gaussian sequence
[36]. The lognormal amplitude sequence, SLSF, is then obtained through

the transformation, SLSF = 10
Λ·σLSF,dB

20 .

• To incorporate SSF and LSF effects simultaneously, i.e., composite fading, gen-
erate a third random sequence as the product,

S = SLSF · ŚSSF. (12)

where the sequence ŚSSF is the concatenation of six non-overlapping28 SSA
segments, SSSF, which together span the length of a measured run.

• Multiply the sequence with the (distance-dependent) path gain.

28Refer discussion in Sec. 3.1 on model limitations.
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Figure 10: Distribution of measured and modeled amplitudes for all
SSA realizations in the Tx60Rx60 same-wall scenario.

– Generate the parameters n and G0,dB as correlated Gaussian random vari-
ables. The distance-dependent path gain on dB scale is G0,dB−10nlog (d).
The total path gain, Stot, is then,

Stot = S · 10
G0,dB−10nlog(d)

20 . (13)

The model was validated by comparing amplitude distributions obtained from the
model and measurement data, respectively. For the measurement CDF, the ensemble
is 99 runs × 321 tones per run × 120 spatial channel samples per tone. The number
of generated Stot process realizations is such as to have an equal ensemble size for
amplitude CDF of the measurement and model. A sample result for the Tx60Rx60
antenna configuration is shown in Fig. 10.

For the plotted amplitude values, the distance-dependent variation along one run
length is always preserved, but for plotting purposes, the full ensemble which consists
of multiple runs has been normalized to unit average power. As observed from Fig.
10, the model is in good agreement with measurements down to very small probability
levels.

5 Summary and Conclusions

This paper has presented results from an extensive indoor office measurement cam-
paign, that characterized the wireless propagation channel for a set of canonical sensor
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deployment scenarios. Measurements have been performed at four different antenna
height configurations, in scenarios where Tx and Rx antenna were located along the
same-wall and along opposite-walls of the indoor office room. The small-scale am-
plitude fading distribution has been analyzed using the Akaike information criteria.
Results show that the fading channel is mostly Ricean both for the same-wall and
opposite-wall scenarios, though KRice values are often not very large. Our measure-
ments indicate that values of KRice do not, in general, increase monotonically as the
Tx-Rx distance is reduced, these results are contrary to the widely accepted assump-
tion in published literature that the channel is AWGN at a small-enough distance. A
probability mixture model has been presented, with distance dependent parameters
to account for the distance dependent variations of KRice. The small-scale spatial
selectivity of the channel has been investigated and it has been shown that the corre-
lation drops to 0.5 within a distance of one wavelength in 70% of the SSAs. A KRice

dependent model for the autocorrelation of the squared envelope has also been pro-
vided. Analysis of the large-scale variations of Rx power has shown that the pathloss
exponent is close to 2 for the same-wall scenarios, the pathloss exponents for opposite-
wall scenarios are larger. The large-scale fading can be modeled as lognormal with
a standard deviation around 2 dB for all antenna heights in both the same-wall and
opposite-wall scenarios. A correlation model for the large scale fading was also pro-
vided. A simulation model was presented according to which a sensor node placed
anywhere within the spatial extent of a modeled SSA, is considered to experience
the channel statistics applicable to that SSA. Our model is relevant for SNR inves-
tigations and interference analysis between different links (SSAs) in the indoor office
scenario. The presented results are relevant to communicating within, and between,
clusters of nodes and have practical significance because in realistic indoor scenarios
the sensors will often be deployed in close proximity to the wall and floor. Strong
(but not Rayleigh) fading will occur even between links that have good line-of-sight
connection. This means that communication between nodes in a cluster cannot occur
with complete reliability, and that the distribution of Rice factors has to be taken
into account, in order to arrive at realistic evaluations of the diversity/multiplexing
trade-off in ad-hoc networks.
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Characterization of a Time-Variant

Wireless Propagation Channel

for Outdoor Short-Range Sensor

Networks

Abstract

This paper presents sample measurements characterizing the radio channel for out-
door short-range sensor networks. The sensor nodes are placed on the ground in
an open area and time-variation of the channel is induced by a person walking in
the vicinity of the nodes. The channel statistics of both the line-of-sight component
and the overall narrowband signal are non-stationary. The channel (power) gains
are found to be significantly influenced by scatterer movement only when the LOS
path is blocked. We present a model for the line-of-sight blockage by a person that is
similar to that of the referenced work of Pagani and Pajusco, and parameterize and
validate it from the measurements. Additionally, we model the time-variant Doppler
spectrum of the measured channel’s residue (scattered) components. Furthermore,
the temporal correlation of small-scale averaged channel statistics, between different
links is also investigated.

Submitted to IET Journal on Communications, February 2009, as
S. Wyne, T. Santos, A. Singh, F. Tufvesson, and A. F. Molisch,
“Characterization of a Time-Variant Wireless Propagation Channel for Outdoor Short-
Range Sensor Networks.”
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1 Introduction

Wireless sensor and ad-hoc networks, where nodes communicate without fixed in-
frastructure, have been a very active research topic in recent times, see e.g., [1], [2],
[3], and references therein. Outdoor short-range (inter-node distance less than 10
m) sensor networks are of interest for surveillance, environmental monitoring, and
communications applications. The scenario most relevant for practical applications
has the nodes at fixed positions near the ground, so that temporal variations occur
only due to people/objects moving in the vicinity of the sensors.

As one of the first and most fundamental steps, the wireless propagation channel
for such networks needs to be characterized in order to determine performance limits
in terms of capacity, reliability, energy consumption, and latency. As an example, the
amount of cooperation required between nodes to achieve a certain outage probability
is determined by the fading statistics between pairs of sensor nodes [4]. The channel
characteristics, in turn, depend on the environment in which the sensor networks
are operating. For fixed node wireless links, time-variations are due to motion of
scatterers in the vicinity of the nodes. In contrast, when one of the nodes itself
is moving, changes in the spatial fading pattern are responsible for the temporal
variations of the channel.

To the best of the authors’ knowledge, fixed-sensor outdoor channels have not been
investigated in detail in the literature. While there is a rich literature on cellular-
type outdoor channels [5], cellular transmitters are high above the ground, and thus
are significantly different from the scenario we are interested in. Peer-to-peer outdoor
communications are usually characterized by the fact that at least one of the devices is
moving; furthermore, transceivers are still considerably higher above the ground than
in outdoor sensor networks. Several papers, e.g., [6], [7], and [8] measured or modeled
outdoor propagation between sensors close to the ground, but did not investigate
temporal variations due to moving scatterers, and furthermore concentrated on much
larger distances between the sensors. The scenarios in [9], [10], [11] are closest to the
ones we are interested in for this paper, in that they measured and modeled temporal
variations of the channel due to moving scatterers and in particular considered the
effect of people moving through the line-of-sight (LOS). However, those investigations
were done in indoor environments.

In this paper we present results for the time-variant narrowband fading statistics
from an outdoor measurement campaign where the nodes were static and people
were moving in the vicinity of the nodes. While the number of measurement results
is not sufficient for a statistically reliable parameterization of a model, we can gain
qualitative insights into the most important phenomena. The measurements were
performed at 2.6 GHz, which is close enough to the 2.45 GHz ISM band to yield
similar propagation results, but separated enough that the measurements did not
suffer from interference. The antennas, also referred to as nodes, were placed outdoors
on the ground in an open grassy field. The nodes were positioned on two parallel rails
and measurements were performed with different widths of the rails.

We discuss qualitative effects of a person walking between the rails, particularly
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when the LOS path29 is blocked due to this motion. A generic approach is presented
to model the temporal variations of the Rx signal strength, arising from a temporary
blockage of the LOS path. Our approach has some features common with the method
presented in [9]. However, our analysis has the following salient differences:

• We investigate the narrowband case of LOS blockage by a moving person, i.e.,
in addition to characterizing the fading of the first-arriving component, which is
extracted from measurements, the fading of the residue (scattered) components
of the measured channel is also investigated.

• The contribution of the dominant component is extracted differently.

• The measured scenario is outdoors and consequently the number of significant
stationary scatterers is substantially smaller than in a typical indoor environ-
ment.

• Multiple links are measured jointly on the rails as opposed to point to point
communication links characterized in [9].

It is important to note that the channel statistics are non-stationary, as will be
reflected in the model we derive from the measurements.

The remainder of the paper is organized as follows. Section II discusses the mea-
surement setup and post processing, section III contains the results and discussion.
Finally, the paper is concluded in section IV.

2 Measurement setup and processing

2.1 Equipment

The channel transfer functions between different sensor nodes were recorded with the
RUSK Lund wideband channel sounder that measures the transfer functions, between
multiple antenna ports, by means of a multicarrier signal [12]. The measurements
were performed at a center frequency of 2.6 GHz and a transmission bandwidth of 200
MHz, spanned by 321 subcarriers (tones). Each of these tones has the interpretation
of a separate (possibly correlated) realization of the narrowband channel characterized
in this work. The Tx signal was repeated with a period of 1.6 μs, and had an output
power of 27 dBm. The radio channel was measured for all Tx-Rx combinations at a
rate of 100 Hz, which is in excess of twice the maximum Doppler frequency due to
walking speed of a person.30 Each measurement record had a duration of 10 sec.

The Tx and Rx antennas were commercial Skycross (SMT-2TO6MB-A) meander
line antennas with linear polarization, dimensions 6 × 3 × 0.4 cm3 [13].

Post measurement analysis revealed that only 18 of the 36 SISO channels were
actually measured, the same 18 links were used for analysis of all measurement records
presented in the sequel.

29The LOS component is defined as the first-arriving component in the channel impulse
response (CIR).

30The measurement signal-to-noise ratio was improved by coherently averaging multiple
channel snapshots, measured within a span of a few μs, at the regular 10 ms intervals.
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Figure 1: Measurement layout for the rails, dr = 2, 4, and 8 m. Nodes
that form communication pairs are highlighted by circles or triangles.
The movement pattern of the single person walking between the rails is
shown by a dashed line. The placement of one of the antennas in the
grassy field is also shown.

2.2 Scenario

Channel measurements were performed outdoors in a level grassy field near the M-
building at LTH campus, Lund, Sweden. The Tx and Rx antennas were fixed at
ground level, arranged in two parallel rails, and measurements were performed with
spacing of 2, 4, and 8 m between the rails. The time variant behavior of the channel
was due to a person walking between the rails and parallel to the orientation of
the rails. The measurement configuration is sketched in Fig. 1. The 18 channels
measured in each scenario consisted of the following Tx-Rx combinations: Each of Rx
elements 1, 2, and 3 could receive the signal emanating from each of the Tx elements
1, 3, and 5 (3 × 3 = 9 channels), these nodes are shown by green triangles in Fig. 1.
Similarly, each of Rx elements 4,5, and 6 could receive the signals emanating from
each of the Tx elements 2, 4, and 6 (3 × 3 = 9 channels), and these nodes are shown
by red circles in Fig. 1. In addition to the opposite-rail channel measured by most of
the links, the unique location of Tx6 and Rx6 nodes enables relevant links to measure
the same-rail channel, i.e., the channel for which the person moving between the rails
does not block the LOS path.

2.3 Post Processing

In the analyzed measurements a consistent observation was that the received signal
strength of the channel was significantly influenced by the moving person only when
the LOS path was blocked by that person. Fig. 2 shows the simultaneous develop-
ment, over time, of the Rx signal power at various link ends as a person walks between
the rails. The Rx power shown for each link is averaged over tones. The influence
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Figure 2: Rx power fluctuation at different link ends as one person
walks between the rails. The plots are from a 2 m rail measurement.
The relative power for each link is averaged over all tones. The three
solid-line curves with markers correspond to same-rail links, whereas the
other three curves correspond to opposite-rail links.

of the walking person on Rx power is prominently visible for opposite-rail links, e.g.,
Tx1-Rx1 because the LOS path is blocked temporarily by the person. An interesting
observation is that the Rx power is not just continuously attenuated but exhibits
oscillations, so that the walking person can increase the signal strength. This can be
explained by additional signal energy reaching the receiver after being reflected by
the person as long as that person does not block the LOS. In contrast, the same-rail
links, whose LOS path is not blocked by the person’s motion, exhibit no significant
variations of the received power, e.g., refer to the Tx2-Rx6 link.

Besides the overall signal strength, we are interested in the properties of the LOS
component only, and the residual channel (scattered components) only. Since the
LOS component itself is time-varying, it cannot be retrieved by the standard method
of temporally averaging the measured complex channel gains. Rather, we use the
following approach: the measured transfer functions, Hi,j,k,l, are fourier-transformed
to the delay domain,

hi,j,τ,l =
1

K
·

K−1∑
k=0

Hi,j,k,l · exp

(
j2π

k

K
τ

)
, (1)

where i, j, k, l denote Rx and Tx antennas, frequency, and temporal snapshot indexes,
respectively, and the variable τ denotes delay bin index for the channel impulse re-
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sponse (CIR), hi,j,τ,l. Furthermore, K is the number of measured tones. To improve
the time-delay of arrival estimate for the LOS peak, the delay grid of the CIR is
interpolated with more samples in the inverse FFT than specified by K.31 The inter-
polation allows plotting the fine details of lobes of the different sinc (·) functions in
the CIR, each corresponding to a resolved MPC. The complex gain of the LOS path
is estimated as,

τ ′ =arg max
τ

(|hi,j,τ,l|2
)
,

hLOS
i,j,τ,l =hi,j,τ ′,l. (2)

The LOS path’s contribution to frequency domain, HLOS
i,j,k,l, is subsequently estimated

and removed from the measured channel, for future reference we denote as HRes
i,j,k,l

the random residue component in the measured channel.32 The successful removal
of the LOS component was verified by a null observed in the residue channel at the
location of the removed peak.

Even when averaging out the small-scale fluctuations observed in Fig. 2, we can
clearly see that the mean signal power, as well as the power of the LOS component,
vary with time. Thus, the fading statistics can be considered to be stationary only
within a time window (stationarity interval). The determination of stationarity in-
tervals in our measurements could not be carried out using the method of [14] as it
requires high-resolution channel parameter estimation; extension of this method to
the distributed physical arrays under consideration is not straightforward. Another
method proposed by [15] detects changes in the spatial structure of the channel by
thresholding the change in correlation matrix of the MIMO channel. This too could
not be applied since the spatial extent of the stationarity region that was to be de-
termined, was on the order of the spatial extent of our distributed antenna arrays.
Thus, temporal stationarity lengths for this work were investigated using the method
of [16]; a local region of stationarity (LRS) was defined by a set of temporal snapshots
where the correlation coefficient between consecutive averaged power delay profiles
(APDPs) exceeded a pre-defined threshold of 0.5. The correlation coefficient is given
by [16],

c (tl, Δt) =

∫
Ph (tl, τ ) · Ph (tl + Δt, τ )dτ

max
{

Ph (tl, τ )
2
dτ, Ph (tl + Δt, τ )

2
dτ
} , (3)

where Ph (tl, τ ) = 1
N

∑l+N−1
l |hi,j,τ,l|2 is the averaged, and Ph (tl, τ ) = |hi,j,τ,l|2 is

the instantaneous power delay profile (PDP), respectively. Furthermore, N is the
number of PDPs to be averaged.

31For the interpolated version of the CIR, adjacent delay bins are spaced apart by 0.05
ns as opposed to the 5 ns spacing achieved without interpolation. In addition, the FFT
is applied with a rectangular window function as this gives the narrowest main-lobe peaks
among the different windowing functions.

32HRes
i,j,k,l is to be distinguished from HLOS,Res

i,j,k,l . The latter is the random component

within the extracted LOS path, and causes fading of the LOS path.
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The correlation coefficient in Eq. (3) is potentially influenced by (i) Number of
significant taps in the APDPs, (ii) Averaging length, N, to remove small-scale fading,
and (iii) Measurement noise. The suitability of this metric for our measurements
was investigated through a simulation study employing stationary realizations of an
exponential PDP. Measurement noise was also added corresponding to signal-to-noise
ratios observed in our measurements. It was observed that for N ≥ 40 the correla-
tion always exceeded the threshold over an observation span corresponding to our
measurements. In other words, the LRS metric gave the desired infinite duration of
stationarity. Consequently, N = 40 was also selected for the measurements. Note
that this figure is an obvious tradeoff; a larger window size increases the number of
independent PDPs available for averaging, while the separability between small- and
large-scale effects in the measurements benefits from a small window size. The LRS
duration for different measurement scenarios is shown in Fig. 3. It can be observed
that 80 − 85% of the intervals of length 0.5 sec can be considered stationary. Conse-
quently, a 0.5 sec interval was considered as the temporal extent of a small-scale area
(SSA).

The small-scale characteristics were investigated per SISO link. Within the 0.5
sec wide-sense stationary (WSS) window, the set of Hi,j,k,l samples over the indices
k, and l were considered as a statistical ensemble. Furthermore, the window was slid
over the measurement record length of 10 sec to obtain small-scale characteristics in a
continuous fashion. As a trade-off between processing time and continuous estimates
of small-scale parameters, consecutive windows were set to have 80% overlap, i.e, the
start-point of a successive window was advanced by 11 temporal samples with respect
to the start point of a preceding window, where a window length is 51 temporal
samples.

3 Results

3.1 Qualitative Behavior of the LOS Component

The received signal, its LOS component, and its scattered components, all exhibit
small-scale and large-scale fading that is separated by appropriate signal processing
described in Sec. II. In this section, we describe the observed time-varying statistics
of these fading processes. The presence of a person moving between the rails causes
significant fluctuations, both increase and decrease, of the received signal power.
Figure 4 shows a typical example of the power contained in the LOS component, and
the signal level averaged over the small-scale fading, i.e., qualitative behavior of signal
variations is observed. From Fig. 4 we can infer some qualitative results on the
behavior of the LOS path:

1. The extracted LOS path typically exhibits temporal fading, due to the presence
of a random component. This is a consequence of finite system bandwidth.
Within the delay resolution, leading to 1.5 m spatial resolution in our case,
additional multipath components may not be distinguishable from the clean
LOS path, and are extracted with it.
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2. The LOS power is not affected unless the link is obstructed by the moving
scatterer, e.g., refer to the subplot that shows fluctuations of Rx power on the
Tx2-Rx6 (same-rail) link for the 4 m rail.

3. The LOS obstruction by a moving person lasts for less than 1 sec duration,
though associated fluctuations typically last 3 sec. This result is partly due
to (i) the orientation of the obstructing person, whose trajectory at ordinary
walking speed is parallel to the rails, and (ii) the nodes are on the ground and
are only obstructed by the leg-region of the moving person.

4. The moving average, over time, of power of the extracted LOS does not always
exhibit a significant dip, e.g., in Fig. 4 compare the two subplots in top row.
This is, at least partly, due to incomplete separation of the small-scale and the
large-scale fading.

5. At large distance (8 m) obstruction of the LOS path does not cause any notice-
able attenuation of the LOS power, e.g., refer to bottom-left subplot. This is
intuitively explained by the partial/minimal shadowing of the link when spatial
extent of the scatterer is small compared to scatterer’s distance to either link
end.

Inferring from the above observations, for a communications link application the
presence of the moving person can be neglected unless the LOS path is obstructed.
For surveillance applications, it appears that in that case, monitoring Rx power would
not be enough to detect a person in the envisioned scenarios, rather some small-scale
fading parameters, e.g., the Ricean K-factor (KRice) may have to be monitored to
detect an intruder.

3.2 Large-Scale Statistics

In order to model the shadowing fluctuations of the LOS component, we find that
the model proposed in [9] for the indoor case works well in our scenario as well. The
power of the mean component of the Ricean process, HLOS

i,j,k,l exhibits a dip due to LOS
blockage, refer to Fig. 4. On a dB-scale, the power of the Ricean mean component
can be modeled by a deterministic Gaussian-shaped function, g (t), written as [9],

g(t) = −AS ·
(

1 −
(

(t − t0) · 2

Ts

)2
)

· exp

(
−u

(
(t − t0) · 2

Ts

)2
)

. (4)

Based on the 2 and 4 m rail measurements, recommended parameter values are;
AS = 1 to 4 dB for the shadowing attenuation, Ts = 1 sec for the shadowing duration,
and the parameter u, which models power gain at the edges of the large-scale fading
pattern, has values in the range .5 to 1.33 Furthermore, t0 represents the shadowing
instant, i.e., when the person blocks the LOS, and t is the observation time in seconds.
For the 8 m rail, due to a larger link distance, the LOS blockage is minimal such that

33The positive power gain can be attributed to additional signal energy carried by reflec-
tions from the body when it is not blocking the LOS.
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the temporal average of LOS power does not exhibit a dip. Therefore, it is proposed
to model the 8 m rail scenario by setting AS = 0 in Eq. (4).34

To model the temporally varying mean power of the Rayleigh component of the
LOS contribution (i.e., the diffuse components that cannot be separated from the true
LOS component, due to finite system bandwidth), HLOS,Res

i,j,k,l , the Rayleigh power is

first characterized in relation to power of the mean of HLOS
i,j,k,l, i.e., by estimating

the temporal KRice along the recorded length of the extracted LOS, HLOS
i,j,k,l. The

temporally varying mean power of the LOS Rayleigh component can be expressed in
relation to power of the Ricean mean component by a deterministic Gaussian shaped
function, q (t), written on a dB-scale as [9],35

q(t) = Arel + AR · exp

(
−2

(
(t − t0) · 2

TR

)2
)

, (5)

where Arel is the dB power difference between the un-obstructed LOS power and the
mean power of the random component under those conditions. The values of the
parameters were determined by a least-squares fit of the model to measured values;
Arel was typically within the range, −47 to −42 dB, for both the 2 and 4 m rail
measurements. For the 8 m rail measurements, the larger link distance results in Arel

values around −30 dB.36 Furthermore, the range of values for other parameters were
AR ∈ [38, 42] dB for the 2 and 4 m rails, and AR ∈ [27, 29] dB for the 8 m rail. For
the width of the bell-shaped curve, TR is around 6 sec for the 2 and 4 m rails, and
TR ∈ [8, 10] sec for the 8 m rail. A sample curve for one of the measured links is
shown in Fig. 5. One may observe that the modeling approach for the power of
the Rayleigh component works reasonably well.

3.3 Small-Scale Statistics

Envelope Distribution

We first investigate the probability density function (PDF) of the narrowband case,
using the the Akaike information criteria (AIC) [17, 18]. The Rayleigh, Ricean,
Nakagami-m, Weibull, and lognormal distributions are considered as potential candi-
dates for modeling the distribution of fading amplitudes.37 The AIC favors the Ricean

34This was measured when the person was walking approximately in the middle between
the two rails. While the following case was not measured in our campaign, we conjecture
that a person walking very closely to either Tx or Rx would result in power fluctuations even
for the 8 m case.

35With some minor modifications to the original function
36The smaller values of Arel for the 8 m rail can be explained by the drop in the mean

power of the deterministic component compared to the power of the random component.
The latter is the less affected of the two when the link distance is increased.

37Maximum-likelihood estimates of the distribution parameters, required by AIC, were
calculated for each small-scale ensemble; using closed-form expressions for Rayleigh and
lognormal, grid-search for Ricean model, and results from [19] and [20] for the Nakagami-m
and Weibull distributions, respectively.
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Figure 5: Time varying mean power of HLOS,Res
i,j,k,l . The intruder crosses

the LOS around 6.2 sec. The plot corresponds to the Tx2-Rx5 link for
the 2 m rail measurement.

distribution in a majority of the cases covering different rail widths. Therefore the
Ricean distribution is selected as a representative model for the fading amplitude dis-
tribution of the measured channel, Hi,j,k,l. To this effect, a representative distribution
of the temporal KRice is shown for all 18 channels in Fig. 6.

For the LOS component, a reliable determination of the appropriate PDF shape is
not possible, due to the small number of available samples (note that in the narrow-
band case, the different tones increase the size of the available statistical ensemble).
But from heuristic reasoning, HLOS

i,j,k,l can also be assumed as Ricean, and its param-
eters determined from the measurements. For the latter Ricean fading process, the

mean corresponds to
√

ElSSA [|HLOS
i,j,k,l|2], where the expression ElSSA [·] represents a

windowed temporal average. The window-length is set to the temporal extent of an
SSA. The temporal behavior of the mean can be observed in various subplots of Fig.
4. Furthermore the Rayleigh component of HLOS

i,j,k,l, denoted by HLOS,Res
i,j,k,l , can be

separated as,

HLOS,Res
i,j,k,l =

HLOS
i,j,k,l√

ElSSA [|HLOS
i,j,k,l|2]

. (6)

In addition to investigating the aggregate measured channel, its random com-
ponent, HRes

i,j,k,l was also investigated for the relevant fading amplitude distribution.
Though AIC determined the Ricean model as best fit in this case as well, the K-
factors were quite small, KRice ∈ [0, 1.5] natural units. In light of these observations,
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a Rayleigh process is proposed as an appropriate model for the fading of the residue
component of the measured channel, HRes

i,j,k,l. Quantitative results for the power of
those components is discussed in connection with their average Doppler Spectrum, in
the next section.

Temporal Correlation of small-scale fading

The temporal correlation of small-scale fading, within a small-scale fading area, is a
measure of how fast the channel changes in time, and is often characterized in terms
of Doppler spectrum of the received signal [21]. The spectrum-width is conventionally
expressed in terms of the root-mean-square (RMS) Doppler-spread [21], σdopp, which
can be estimated as,

σdopp =

∑
(fl − fm)2 S (fl)∑

S (fl)
, (7)

where S (fl) is the power spectral density (PSD) at frequency shift, fl, and fm =∑
flS(fl)∑
S(fl)

is the mean Doppler shift. The time-variant Doppler power spectrum for

each link was generated by first applying a short-time Fourier transform (STFT) to
channel samples measured at each tone, subsequently, the spectra were averaged over
the tones to get a unique spectrum associated with the link. The length of the STFT
window was taken to be the 0.5 sec stationarity interval.

The Doppler PSD of HLOS,Res
i,j,k,l characterizes scattering of the extracted LOS com-
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ponent, and revealed a Laplacian shape,38

SLOS (f) =
1√

2 · σdopp

· exp

(
−

√
2

σdopp
· |f |
)

. (8)

The RMS Doppler spreads calculated according to Eq. (7) had values in the range,
σdopp ∈ [8, 12] Hz. These spreads are relatively large compared to those measured
in indoor environments, e.g., see [9]. However, the larger values of Doppler spreads
for the measured outdoor scenario are plausible when one considers that the moving
person contributes a greater fraction of the total spectrum power compared to an
indoor scenario. This reasoning was validated by performing indoor measurements
with a similar setup, where the measured spreads were on the order of 3 Hz.

The Doppler PSD of the random component, HRes
i,j,k,l, characterizes the spectral

distribution of the residual power of the channel, after the LOS component has been
removed. For the 2 and 4 m rails, the reflection off the person’s body results in some
distinct peaks in the spectrum, whereas for the 8 m rail measurements, no significant
peaks were visible in the spectrum. Hence, in the sequel we discuss the spectrum
only for the 2 and 4 m rail configurations. In order to simplify the analysis, spectra
of different links from the 2 and 4 m rail measurements were combined together in
an average spectrum for further investigations, refer to Fig. 7.39 The spectrum
was modeled as a sum of two Gaussian shaped functions. The first of these functions,
Ds(t, f), centered at 0 Hz, represents the time-static component of the channel. While
the second Gaussian curve, Di(t, f), represents the time-variant component of the
channel. The latter curve has a fixed RMS spread of 15 Hz, a time-varying mean
(that goes through zero as the person passes through the LOS), and a time-varying
strength (weak at 0, t0, and 10 sec, and strongest when the person creates reflections
around t0).

40. The functional forms of the two Gaussian shapes with their parameters
are provided in Table 1. Together, these relations can be used to model the temporal
evolution of the non-stationary spectrum of HRes

i,j,k,l. Fig. 8 shows the spectrum model
generated with the information provided in Table 1. Note that the expressions in
Table 1 model the spectrum profile only such that a scale factor needs to be specified
separately to relate the residue component’s power to the LOS power.

Within the spectrum model, the power scaling of the time-variant component,
Di(t, f), is dependent on the un-obstructed LOS power of the modeled link. Our anal-
ysis of the measured spectra revealed that the power ratio between the un-obstructed

38The Laplacian fit to the spectrum is not shown here due to space constraints.
39Prior to averaging, the link spectra were aligned relative to the time instant where the

mean Doppler shift crosses 0 Hz. These instants for the spectrogram are interpreted as the
LOS crossing instant, t0, of the person walking between the rails. Alternatively, the t0 values
were also estimated from a temporal average of the extracted LOS power of each link,i.e.,
as the location in time of the most negative peak of the temporal average curves. The two
approaches returned similar values verifying the estimated values.

40The 15 Hz spread is an average of the instantaneous RMS spreads along the measurement
record length. While the height is adjusted to match, at each time instant, the area under
the Gaussian curve to the power of the averaged spectrum.
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Figure 7: Averaged Doppler spectrum of the measured channel’s ran-
dom component HRes

i,j,k,l. The averaging is over all tones per link, and
over multiple point-to-point links. The time-axis is labeled relative to t0
which is at t = 0.

Table 1: Model for Doppler spectrum of HRes
i,j,k,l

Symbol Description Function Parameter Unit

Di(t, f) Intruder’s spectrum p(t) exp
(
− (f−fm(t))2

2F 2
i

)
Fi = 12 Hz

T1 = −0.6 sec
p(t) Gaussian peak exp

(
− (t−T1)

2

2W 2

)
+ exp

(
− (t−T2)2

2W 2

)
T2 = 0.6 sec
W = 0.32 sec

fm(t) Mean Doppler −B 2
π atan (Ct) B = 22 Hz

C = 2.5 -

Ds(t, f) Static env. spectrum exp
(
− f2

2F 2
s

)
Fs = 1.4 Hz
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Figure 8: Modeled Doppler spectrum of the measured channel’s random
component HRes

i,j,k,l. The time-axis is labeled relative to t0 which is at
t = 0.

LOS power and the peak (over time) power of the dynamic component (i.e., the in-
verse temporal narrowband Rice factor), obtained by integrating the corresponding
PSD over frequency, lies in the range between −3 to −7 dB. Furthermore, the power
of the dynamic component of the residue channel peaks at the time instants T1 and
T2. On the other hand, the power of the time-invariant residual component of the
channel, modeled by the spectrum shape Ds(t, f), is independent of the link distance,
and depends only on the site geometry such as location of nearby building structures
and trees. For our measurements, this component had a constant power (integral of
PSD over frequency), calculated to be −25 dB below the un-obstructed LOS power
when antennas were exactly two meters apart. Note the reference to a particular LOS
power is only to make the specification of the static component to be compatible with
the rest of the generic modeling approach.

3.4 Multi-Channel Characteristics

In sensor network applications, nodes may often be distributed over a spatial region in
close proximity to one another. It is of interest to observe, over time, the simultaneous
influence of a scatterer’s motion on the fading at different spatial positions. Our
measurements with nodes on parallel rails provide some useful insights on such MIMO
characteristics, i.e., correlation in the temporal evolution of various links. We use the
temporal K-factor, measured at each link, to show the simultaneous fading behavior
over multiple links, when a person walks between the rails, refer to Fig. 9. Some
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Figure 9: Evolution of temporal KRice at multiple link ends. The plots
correspond to a 4 m rail measurement, with a person walking between
the rails with the orientation shown in Fig. 1.

qualitative observations on the link correlations are now provided:

• Links that have a similar orientation, relative to the walking person, have highly
correlated fading, see e.g., the links Tx3-Rx3 and Tx4-Rx4.

• Consider two opposite-rail links, emanating from the same Tx, such as Tx1-
Rx1 and Tx1-Rx3: while KRice measured on the Tx1-Rx1 link increases in the
interval between 4 and 5 sec, KRice measured on Tx1-Rx3 link decreases during
the same period. This behavior is explained when one considers that the walk-
ing person is moving away from Rx1, during the 4 to 5 sec period, so that the
received time-variant component of the channel is gradually decreasing. Simul-
taneously, the person is getting closer to Rx3 such that the time-variant power,
received at Rx3, from scattering/diffraction off the person’s body is increasing.
Since the temporal KRice, measured for stationary Tx/Rx, corresponds to a
power ratio between the time-invariant component(s) of the channel and the
components that are scattered/diffracted by a moving scatterer, the changes in
the respective KRice follow.

• The signal received at Rx2 from two opposite-rail nodes Tx1 and Tx3, which
are spaced apart by 3 m on the same rail, are significantly correlated.

• Comparing a same-rail link, Tx2-Rx6, with an opposite-rail link, Tx6-Rx6, that
is spatially proximal and has approximately the same link distance, one observes
that the time-variant scattering component is stronger for the opposite-rail link,
resulting in a smaller KRice for the first four seconds of measurement time,
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i.e., the person passing that end of the rail. When the scattering/reflection
component received off the person’s body has diminished, the KRice values
become similar for the two links.

It is noteworthy that all of the above effects describe the temporal correlation of
the small-scale-averaged channel statistics; this is completely different from the stan-
dard MIMO correlation models, in which the correlation of instantaneous channel
realizations is modeled [22].

4 Summary and Conclusions

This paper presented a characterization of an outdoor short-range sensor network
scenario at 2.6 GHz. The terminals were stationary and placed at ground level in two
parallel rails. The time-variance of the channel was due to a person walking between
the rails. The influence of the person on Rx signal strength was most pronounced
on the links where LOS blockage occurred due to body shadowing. On other links,
specular/diffuse reflection off the person’s body influenced the Rx signal strength,
but to a lesser degree than the body-blockage case. An average stationarity interval
of 0.5 sec was established for the small-scale analysis. A narrowband characterization
of the channel was performed. The channel was observed to be Ricean fading. The
RMS Doppler spreads were measured in the range of 10 to 15 Hz; these relatively high
values compared to similar indoor measurements are due to a fewer number of signif-
icant stationary scatterers. A generic approach was presented to model temporally
correlated samples of the narrowband channel. The time-variant Doppler spectrum of
the residue channel was shown to have a distinct pattern associated with the walking
person (intruder). These characteristics can be valuable for early intruder detection
schemes since significant spectral peaks are visible before the LOS crossing instant.
Furthermore, the sign on the Doppler shifts can be used to obtain information on
the direction of movement of the intruder, a characteristic which cannot be extracted
from the analysis of the LOS component only. Sample results on link correlations
were presented that provide useful insight into evolution of joint fading behavior of
the links in the measured scenario. Future measurements will focus on a similar
characterization for multiple people crossing the link with better tracking of their lo-
cation during the measurement interval. Furthermore, a wider range of configurations
for node placements is needed for a more detailed investigation into the influence of
geometry of movement.
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