186 research outputs found

    A MODIS/ASTER Airborne Simulator (MASTER) Imagery for Urban Heat Island Research

    Get PDF
    abstract: Thermal imagery is widely used to quantify land surface temperatures to monitor the spatial extent and thermal intensity of the urban heat island (UHI) effect. Previous research has applied Landsat images, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, Moderate Resolution Imaging Spectroradiometer (MODIS) images, and other coarse- to medium-resolution remotely sensed imagery to estimate surface temperature. These data are frequently correlated with vegetation, impervious surfaces, and temperature to quantify the drivers of the UHI effect. Because of the coarse- to medium-resolution of the thermal imagery, researchers are unable to correlate these temperature data with the more generally available high-resolution land cover classification, which are derived from high-resolution multispectral imagery. The development of advanced thermal sensors with very high-resolution thermal imagery such as the MODIS/ASTER airborne simulator (MASTER) has investigators quantifying the relationship between detailed land cover and land surface temperature. While this is an obvious next step, the published literature, i.e., the MASTER data, are often used to discriminate burned areas, assess fire severity, and classify urban land cover. Considerably less attention is given to use MASTER data in the UHI research. We demonstrate here that MASTER data in combination with high-resolution multispectral data has made it possible to monitor and model the relationship between temperature and detailed land cover such as building rooftops, residential street pavements, and parcel-based landscaping. Here, we report on data sources to conduct this type of UHI research and endeavor to intrigue researchers and scientists such that high-resolution airborne thermal imagery is used to further explore the UHI effect

    A MODIS/ASTER airborne simulator (MASTER) imagery for urban heat island research

    Get PDF
    Thermal imagery is widely used to quantify land surface temperatures to monitor the spatial extent and thermal intensity of the urban heat island (UHI) effect. Previous research has applied Landsat images, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, Moderate Resolution Imaging Spectroradiometer (MODIS) images, and other coarse- to medium-resolution remotely sensed imagery to estimate surface temperature. These data are frequently correlated with vegetation, impervious surfaces, and temperature to quantify the drivers of the UHI effect. Because of the coarse- to medium-resolution of the thermal imagery, researchers are unable to correlate these temperature data with the more generally available high-resolution land cover classification, which are derived from high-resolution multispectral imagery. The development of advanced thermal sensors with very high-resolution thermal imagery such as the MODIS/ASTER airborne simulator (MASTER) has investigators quantifying the relationship between detailed land cover and land surface temperature. While this is an obvious next step, the published literature, i.e., the MASTER data, are often used to discriminate burned areas, assess fire severity, and classify urban land cover. Considerably less attention is given to use MASTER data in the UHI research. We demonstrate here that MASTER data in combination with high-resolution multispectral data has made it possible to monitor and model the relationship between temperature and detailed land cover such as building rooftops, residential street pavements, and parcel-based landscaping. Here, we report on data sources to conduct this type of UHI research and endeavor to intrigue researchers and scientists such that high-resolution airborne thermal imagery is used to further explore the UHI effect

    Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry

    Get PDF
    Three-dimensional (3D) image mapping of real-world scenarios has a great potential to provide the user with a more accurate scene understanding. This will enable, among others, unsupervised automatic sampling of meaningful material classes from the target area for adaptive semi-supervised deep learning techniques. This path is already being taken by the recent and fast-developing research in computational fields, however, some issues related to computationally expensive processes in the integration of multi-source sensing data remain. Recent studies focused on Earth observation and characterization are enhanced by the proliferation of Unmanned Aerial Vehicles (UAV) and sensors able to capture massive datasets with a high spatial resolution. In this scope, many approaches have been presented for 3D modeling, remote sensing, image processing and mapping, and multi-source data fusion. This survey aims to present a summary of previous work according to the most relevant contributions for the reconstruction and analysis of 3D models of real scenarios using multispectral, thermal and hyperspectral imagery. Surveyed applications are focused on agriculture and forestry since these fields concentrate most applications and are widely studied. Many challenges are currently being overcome by recent methods based on the reconstruction of multi-sensorial 3D scenarios. In parallel, the processing of large image datasets has recently been accelerated by General-Purpose Graphics Processing Unit (GPGPU) approaches that are also summarized in this work. Finally, as a conclusion, some open issues and future research directions are presented.European Commission 1381202-GEU PYC20-RE-005-UJA IEG-2021Junta de Andalucia 1381202-GEU PYC20-RE-005-UJA IEG-2021Instituto de Estudios GiennesesEuropean CommissionSpanish Government UIDB/04033/2020DATI-Digital Agriculture TechnologiesPortuguese Foundation for Science and Technology 1381202-GEU FPU19/0010

    DETERMINING WHERE INDIVIDUAL VEHICLES SHOULD NOT DRIVE IN SEMIARID TERRAIN IN VIRGINIA CITY, NV

    Get PDF
    This thesis explored elements involved in determining and mapping where a vehicle should not drive off-road in semiarid areas. Obstacles are anything which slows or obstructs progress (Meyer et al., 1977) or limits the space available for maneuvering (Spenko et al., 2006). This study identified the major factors relevant in determining which terrain features should be considered obstacles when off-road driving and thus should be avoided. These are elements relating to the vehicle itself and how it is driven as well as terrain factors of slope, vegetation, water, and soil. Identification of these in the terrain was done using inferential methods of Terrain Pattern Recognition (TPR), analyzing of remotely sensing data, and Digital Elevation Map (DEM) data analysis. Analysis was further refined using other reference information about the area. Other factors such as weather, driving angle, and environmental impact are discussed. This information was applied to a section of Virginia City, Nevada as a case-study. Analysis and mapping was done purposely without field work prior to mapping to determine what could be assessed using only remote means. Not all findings from the literature review could be implemented in this trafficability study. Some methods and trafficability knowledge could not be implemented and were omitted due to data being unavailable, un-acquirable, or being too coarsely mapped to be useful. Examples of these are Lidar mapping of the area, soil profiling of the terrain, and assessment of plant species present in the area for driven-over traction and tire punctures. The Virginia City section was analyzed and mapped utilizing hyperspectral remotely sensed image data, remote-sensor-derived DEM data was used in a Geographical Information Systems (GIS). Stereo-paired air photos of the study site were used in TPR. Other information on flora, historical weather, and a previous soil survey map were used in a Geographical Information System (GIS). Field validation was used to check findings.The case study's trafficability assessment demonstrated methodologies of terrain analysis which successfully classified many materials present and identified major areas where a vehicle should not drive. The methods used were: Manual TPR of the stereo-paired air photo using a stereo photo viewer to conduct drainage-tracing and slope analysis of the DEM was done using automated methods in ArcMap. The SpecTIR hyperspectral data was analyzed using the manual Environment for Visualizing Images (ENVI) software hourglass procedure. Visual analysis of the hyperspectral data and air photos along with known soil and vegetation characteristics were used to refine analyses. Processed data was georectified using SpecTIR Geographic Lookup Table (GLT) input geometry, and exported to and analyzed in ArcMap with the other data previously listed. Features were identified based on their spectral attributes, spatial properties, and through visual analysis. Inaccuracies in mapping were attributable largely to spatial resolution of Digital Elevation Maps (DEMs) which averaged out some non-drivable obstacles and parts of a drivable road, subjective human and computer decisions during the processing of the data, and grouping of spectral end-members during hyperspectral data analysis. Further refinements to the mapping process could have been made if fieldwork was done during the mapping process.Mapping and field validation found: several manmade and natural obstacles were visible from the ground, but these obstacles were too fine, thin, or small to be identified from the remote sensing data. . Examples are fences and some natural terrain surface roughness - where the terrain's surface deviated from being a smooth surface, exhibiting micro- variations in surface elevation and/or textures. Slope analysis using the 10-meter and 30-meter resolution DEMs did not accurately depict some manmade features [eg. some of the buildings, portions of roads, and fences], evident with a well-trafficked paved road showing in DEM analysis as having too steep a slope [beyond 15°] to be drivable. Some features had been spectrally grouped together during analysis, due to similar spectral properties. Spectral grouping is a process where the spectral class's pixel areas are reviewed and classes which have too few occurrences are averaged into similar classes or dropped entirely. This is done to reduce the number of spectrally unique material classes to those that are most relevant to the terrain mapped. These decisions are subjective and in one case two similar spectral material classes were combined. In later evaluation should have remained as two separate material classes. In field sample collection, some of the determined features; free-standing water and liquid tanks, were found to be inaccessible due to being on private land and/or fence secured. These had to be visually verified - photos were also taken. Further refinements to the mapping could have been made if fieldwork was done during the mapping process. Determining and mapping where a vehicle should not drive in semiarid areas is a complex task which involves many variables and reference data types. Processing, analyzing, and fusing these different references entails subjective manual and automated decisions which are subject to errors and/or inaccuracies at multiple levels that can individually or collectively skew results, causing terrain trafficability to be depicted incorrectly. That said, a usable reference map is creatable which can assist decision makers when determining their route(s)

    Urban surface temperature time series estimation at the local scale by spatial-spectral unmixing of satellite observations

    Get PDF
    The study of urban climate requires frequent and accurate monitoring of land surface temperature (LST), at the local scale. Since currently, no space-borne sensor provides frequent thermal infrared imagery at high spatial resolution, the scientific community has focused on synergistic methods for retrieving LST that can be suitable for urban studies. Synergistic methods that combine the spatial structure of visible and near-infrared observations with the more frequent, but low-resolution surface temperature patterns derived by thermal infrared imagery provide excellent means for obtaining frequent LST estimates at the local scale in cities. In this study, a new approach based on spatial-spectral unmixing techniques was developed for improving the spatial resolution of thermal infrared observations and the subsequent LST estimation. The method was applied to an urban area in Crete, Greece, for the time period of one year. The results were evaluated against independent high-resolution LST datasets and found to be very promising, with RMSE less than 2 K in all cases. The developed approach has therefore a high potential to be operationally used in the near future, exploiting the Copernicus Sentinel (2 and 3) observations, to provide high spatio-temporal resolution LST estimates in cities

    Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas

    Get PDF
    In recent decades, remote sensing technology has been incorporated in numerous mineral exploration projects in metallogenic provinces around the world. Multispectral and hyperspectral sensors play a significant role in affording unique data for mineral exploration and environmental hazard monitoring. This book covers the advances of remote sensing data processing algorithms in mineral exploration, and the technology can be used in monitoring and decision-making in relation to environmental mining hazard. This book presents state-of-the-art approaches on recent remote sensing and GIS-based mineral prospectivity modeling, offering excellent information to professional earth scientists, researchers, mineral exploration communities and mining companies

    An algorithm to retrieve Land Surface Temperature using Landsat-8 Dataset

    Get PDF
    Soil moisture, surface temperature, and vegetation are variables that play an important role in our environment which in turn increases the demand for accurate estimation of certain geophysical parameters such as weather, flooding, and land classification. However, for accurate Land Surface Temperature (LST) estimation, remotely sensed data of key environmental forms were considered and applied in this research. The goal of this study was to apply a suitable algorithm for LST estimation from the Landsat-8 dataset that gives a great accuracy when compared with in-situ observations.Spatial and temporal Landsat-8 data were acquired which provided the analytical structure for linking specific data successfully due to fine resolutions. The data were then applied to determine brightness temperatures, vegetation cover, and surface emissivity which demonstrated the effectiveness of the Split-Window Algorithm as an optimum method for LST retrieval from satellite.The results show temperature variation over a long period of time can be used in observing varying temperature values based on terrain i.e. High temperatures in fully built up areas and low temperatures in the well-vegetated regions. Finally, accurate LST estimation is important for land classification, energy budget estimations as well as agricultural production.Keywords: Emissivity, Landsat, Land Surface Temperature, Split-Window, Vegetatio

    OIL SPILLS DETECTION BY MEANS OF UAS AND INEXPENSIVE AIRBORNE THERMAL SENSORS

    Get PDF
    This thesis provides an overview of oil spill scenarios and the remote sensing methods used for detection and mapping the spills. It also discusses the different kinds of thermal sensors used in oil spills detection. As UAS is becoming an important player in the oil and gas industry for the low operating costs involved, this research involved working with a cheap thermal airborne sensor mounted on DJI Phantom 4 system. Data was collected in two scenarios, first scenario is collecting data in Michigan’s Upper Peninsula at a petroleum company location and the second scenario was an indoor experiment simulating an offshore spill. The aim of this research is to inspect the capability of Lepton LWIR inexpensive sensor to detect the areas contaminated with oil. Data processing to create classification maps involved using ArcGIS 10.5.1, ERDAS Imagine 2015 and ENVI 5.3. Depending accuracy assessment (confusion matrices) for the classified images and comparing classified images with ground truth, results shows the Lepton thermal sensor worked well in differentiating oil from water and was not a good option when there are many objects in the area of interest. Future research recommendations are presented in this document

    Oil spills detection by means of UAS and low-cost airborne thermal sensors

    Get PDF
    This paper provides an overview of oil spill scenarios and the remote sensing methods used for detection and mapping the spills. It also discusses the different kinds of thermal sensors used in oil spills detection. As UAS is becoming an important player in the oil and gas industry for the low operating costs involved, this research involved working with a cheap thermal airborne sensor mounted on DJI Phantom 4 system. Data were collected in two scenarios, first scenario is collecting data in Michigan’s Upper Peninsula at a petroleum company location and the second scenario was an indoor experiment simulating an offshore spill. The aim of this research is to inspect the capability of Lepton LWIR inexpensive sensor to detect the areas contaminated with oil. Data processing to create classification maps involved using ArcGIS 10.5.1, ERDAS Imagine 2015 and ENVI 5.3. Depending accuracy assessment (confusion matrices) for the classified images and comparing classified images with ground truth, results shows the Lepton thermal sensor worked well in differentiating oil from water and was not a good option when there are many objects in the area of interest. Future research recommendations and conclusions are presented

    Physics-constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios

    Get PDF
    Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using collected data. These deep learning-based compensation algorithms resulted in comparable detection performance to established methods while accelerating the image processing chain by 8X
    • …
    corecore