43 research outputs found

    Hybrid Beamforming via the Kronecker Decomposition for the Millimeter-Wave Massive MIMO Systems

    Get PDF
    Despite its promising performance gain, the realization of mmWave massive MIMO still faces several practical challenges. In particular, implementing massive MIMO in the digital domain requires hundreds of RF chains matching the number of antennas. Furthermore, designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the recent development of hybrid-beamforming where MIMO processing is divided for separate implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients, rendering the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed for enabling the proposed hybrid beamforming. The scheme estimates the AoA of data and interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and the spatial separation between paths.Comment: Submitted to IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks, minor revisio

    Performance Analysis of DoA Estimation for FDD Cell Free Systems Based on Compressive Sensing Technique

    Get PDF
    The concept of cell free (CF) massive MIMO systems is a prospective fifth generation communication technology that effort with base stations for the privilege of user-centric coverage. Most studies on the CF massive MIMO system in the past imply that systems that use time division duplexing (TDD), even despite the systems using frequency division duplex (FDD) predominate in today’s wireless communications. When the number of antennas increases in FDD systems, channel state information (CSI) collection and feedback overhead become major issues. In order to mitigate these issues, we make use of the condition that the so-called uplink and downlink multipath components are comparable. Base station takes use of the angle reciprocity may immediately obtain information on channel parameters from the uplink training signal. In this paper, for CF massive MIMO system based on FDD, we provide compressive sensing (CS) of directions of arrival (DoAs) estimation approach of access point cooperation based on the channel parameters. The suggested estimation approach outperforms the established subspace-based technique, according to simulation findings. Additionally, we showed that the results of our compressive sensing estimator against the conventional estimation method. The former demonstrates way far better outcome and performance accordingly than the latter

    Massive MIMO systems for 5G: a systematic mapping study on antenna design challenges and channel estimation open issues

    Get PDF
    The next generation of mobile networks (5G) is expected to achieve high data rates, reduce latency, as well as improve the spectral and energy efficiency of wireless communication systems. Several technologies are being explored to be used in 5G systems. One of the main promising technologies that is seen to be the enabler of 5G is massive multiple-input multiple-output (mMIMO) systems. Numerous studies have indicated the utility of mMIMO in upcoming wireless networks. However, there are several challenges that needs to be unravelled. In this paper, the latest progress of research on challenges in mMIMO systems is tracked, in the context of mutual coupling, antenna selection, pilot contamination and feedback overhead. The results of a systematic mapping study performed on 63 selected primary studies, published between the year 2017 till the second quarter of 2020, are presented. The main objective of this secondary study is to identify the challenges regarding antenna design and channel estimation, give an overview on the state-of-the-art solutions proposed in the literature, and finally, discuss emerging open research issues that need to be considered before the implementation of mMIMO systems in 5G networks

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Channel estimation techniques for next generation mobile communication systems

    Get PDF
    Mención Internacional en el título de doctorWe are witnessing a revolution in wireless technology, where the society is demanding new services, such as smart cities, autonomous vehicles, augmented reality, etc. These challenging services not only are demanding an enormous increase of data rates in the range of 1000 times higher, but also they are real-time applications with an important delay constraint. Furthermore, an unprecedented number of different machine-type devices will be also connected to the network, known as Internet of Things (IoT), where they will be transmitting real-time measurements from different sensors. In this context, the Third Generation Partnership Project (3GPP) has already developed the new Fifth Generation (5G) of mobile communication systems, which should be capable of satisfying all the requirements. Hence, 5G will provide three key aspects, such as: enhanced mobile broad-band (eMBB) services, massive machine type communications (mMTC) and ultra reliable low latency communications (URLLC). In order to accomplish all the mentioned requirements, it is important to develop new key radio technologies capable of exploiting the wireless environment with a higher efficiency. Orthogonal frequency division multiplexing (OFDM) is the most widely used waveform by the industry, however, it also exhibits high side lobes reducing considerably the spectral efficiency. Therefore, filter-bank multi-carrier combined with offset quadrature amplitude modulation (FBMC-OQAM) is a waveform candidate to replace OFDM due to the fact that it provides extremely low out-ofband emissions (OBE). The traditional spectrum frequencies range is close to saturation, thus, there is a need to exploit higher bands, such as millimeter waves (mm-Wave), making possible the deployment of ultra broad-band services. However, the high path loss in these bands increases the blockage probability of the radio-link, forcing us to use massive multiple-input multiple-output (MIMO) systems in order to increase either the diversity or capacity of the overall link. All these emergent radio technologies can make 5G a reality. However, all their benefits can be only exploited under the knowledge and availability of the channel state information (CSI) in order to compensate the effects produced by the channel. The channel estimation process is a well known procedure in the area of signal processing for communications, where it is a challenging task due to the fact that we have to obtain a good estimator, maintaining at the same time the efficiency and reduced complexity of the system and obtaining the results as fast as possible. In FBMC-OQAM, there are several proposed channel estimation techniques, however, all of them required a high number of operations in order to deal with the self-interference produced by the prototype filter, hence, increasing the complexity. The existing channel estimation and equalization techniques for massive MIMO are in general too complex due to the large number of antennas, where we must estimate the channel response of each antenna of the array and perform some prohibitive matrix inversions to obtain the equalizers. Besides, for the particular case of mm-Wave, the existing techniques either do not adapt well to the dynamic ranges of signal-to-noise ratio (SNR) scenarios or they assume some approximations which reduce the quality of the estimator. In this thesis, we focus on the channel estimation for different emerging techniques that are capable of obtaining a better performance with a lower number of operations, suitable for low complexity devices and for URLLC. Firstly, we proposed new pilot sequences for FBMC-OQAM enabling the use of a simple averaging process in order to obtain the CSI. We show that our technique outperforms the existing ones in terms of complexity and performance. Secondly, we propose an alternative low-complexity way of computing the precoding/postcoding equalizer under the scenario of massive MIMO, keeping the quality of the estimator. Finally, we propose a new channel estimation technique for massive MIMO for mm-Wave, capable of adapting to very variable scenarios in terms of SNR and outperforming the existing techniques. We provide some analysis of the mean squared error (MSE) and complexity of each proposed technique. Furthermore, some numerical results are given in order to provide a better understanding of the problem and solutions.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Antonia María Tulino.- Secretario: Máximo Morales Céspedes.- Vocal: Octavia A. Dobr

    Joint Angle and Delay Estimation for 3D Massive MIMO Systems Based on Parametric Channel Modeling

    Get PDF
    Mobile data traffic is predicted to have an exponential growth in the future. In order to meet the challenge as well as the form factor limitation on the base station, 3D massive MIMO has been proposed as one of the enabling technologies to significantly increase the spectral efficiency of a wireless system. In massive MIMO systems, a base station will rely on the uplink sounding signals from mobile stations to figure out the spatial information to perform MIMO beam-forming. Accordingly, multi-dimensional parameter estimation of a MIMO wireless channel becomes crucial for such systems to realize the predicted capacity gains. In this thesis, we study separated and joint angle and delay estimation for 3D massive MIMO systems in mobile wireless communications. To be specific, we first introduce a separated low complexity time delay and angle estimation algorithm based on unitary transformation and derive the mean square error (MSE) for delay and angle estimation in the millimeter wave massive MIMO system. Furthermore, a matrix-based ESPRIT-type algorithm is applied to jointly estimate delay and angle, the mean square error (MSE) of which is also analyzed. Finally, we found that azimuth estimation is more vulnerable compared to elevation estimation. Simulation results suggest that the dimension of the underlying antenna array at the base station plays a critical role in determining the estimation performance. These insights will be useful for designing practical massive MIMO systems in future mobile wireless communications

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Analysis of data-aided channel tracking for hybrid massive MIMO systems in millimeter wave communications

    Get PDF
    As the data traffic in future wireless communications will explosively grow up to 1000 folds by the deployment of 5G, several technologies are emerging to satisfy this demand, including massive multiple-input multiple-output (MIMO), millimeter wave(mmWave) communications, Non-Orthogonal Multiple Access (NOMA), etc. The combination of millimeter wave communication and massive MIMO is a promising solution since it can provide tens of GHz bandwidth by fundamentally exploring higher unoccupied spectrum resources. As the wavelength of higher frequency shrinks, it is possible to design more compact antenna array with a very large number of antennas. However, this will cause enormous hardware cost, energy consumption and computation complexity of decent RF(Radio Frequency) chains. To this end, spatial sparsity is widely explored to enable hybrid mmWave massive MIMO systems with limited RF chains to achieve high spectral and energy efficiency. On the other hand, channel estimation problem for systems with limited RF chains is quite challenging due to the unaffordable overhead. To be specific, the conventional pilot-based channel estimation requires to repeatedly transmit the same pilot because only a limited number of antennas will be activated for each time slot. Therefore, it consumes a huge amount of temporal and spectral resources. To overcome this problem, channel estimation for mmWave massive MIMO systems is still an on-going research area. Among plenty of candidates, channel tracking is the most promising one. To achieve the extremely low cost and complexity, which is also the greatest motivation of this thesis, data-aided channel tracking method is thoroughly investigated with closed-form CRLB(Cram´er-Rao lower bound). In this thesis, data-aided channel tracking systems with different types of antenna, including ULA(Uniform Linear Antenna array), DLA(Discrete Lens Antenna ar ray) and UPA(Uniform Planar Antenna array), are comprehensively studied and proposed, and the closed-form expressions of the corresponding CRLBs are carefully derived. The numerical results of the simulations for each case are shown respectively, and they reveal that the performance of the proposed data-aided channel tracking system approaches the CRLB very well. In addition, to further explore the data-aided channel tracking system, the multi-user scenario is investigated in this thesis. This is motivated by the highway and high-speed railway application, where overtaking operation happens frequently. In this case, the users in the same beam suffer from high channel interference, thus degrading the channel estimation performance or even causing outage. To deal with this issue, we proposed an estimated SER(Symbol Error Rate) metric to indicate if a scheduling operation is necessary to be taken place and restart of the whole channel tracking system is required. This metric is included as the Update phase in the proposed channel tracking method for multiuser scenario with DLA. The theoretical SER closed-form expression is also derived for multi-user data detection. The numerical results of the simulations verified the theoretical SER expression, and the scheduling metric based on the estimated SER performance is also discussed
    corecore