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Abstract

As the data traffic in future wireless communications will explosively grow up to 1000

folds by the deployment of 5G, several technologies are emerging to satisfy this demand, in-

cluding massive multiple-input multiple-output (MIMO), millimeter wave (mmWave) com-

munications, Non-Orthogonal Multiple Access (NOMA), etc. The combination of millime-

ter wave communication and massive MIMO is a promising solution since it can provide tens

of GHz bandwidth by fundamentally exploring higher unoccupied spectrum resources. As

the wavelength of higher frequency shrinks, it is possible to design more compact antenna

array with a very large number of antennas. However, this will cause enormous hardware

cost, energy consumption and computation complexity of decent RF (Radio Frequency)

chains. To this end, spatial sparsity is widely explored to enable hybrid mmWave massive

MIMO systems with limited RF chains to achieve high spectral and energy efficiency.

On the other hand, channel estimation problem for systems with limited RF chains

is quite challenging due to the unaffordable overhead. To be specific, the conventional

pilot-based channel estimation requires to repeatedly transmit the same pilot because only

a limited number of antennas will be activated for each time slot. Therefore, it consumes

a huge amount of temporal and spectral resources. To overcome this problem, channel

estimation for mmWave massive MIMO systems is still an on-going research area. Among

plenty of candidates, channel tracking is the most promising one. To achieve the extremely

low cost and complexity, which is also the greatest motivation of this thesis, data-aided

channel tracking method is thoroughly investigated with closed-form CRLB (Cramér-Rao

lower bound). In this thesis, data-aided channel tracking systems with different types of

antenna, including ULA (Uniform Linear Antenna array), DLA (Discrete Lens Antenna ar-
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ray) and UPA (Uniform Planar Antenna array), are comprehensively studied and proposed,

and the closed-form expressions of the corresponding CRLBs are carefully derived. The

numerical results of the simulations for each case are shown respectively, and they reveal

that the performance of the proposed data-aided channel tracking system approaches the

CRLB very well.

In addition, to further explore the data-aided channel tracking system, the multi-user

scenario is investigated in this thesis. This is motivated by the highway and high-speed

railway application, where overtaking operation happens frequently. In this case, the users

in the same beam suffer from high channel interference, thus degrading the channel es-

timation performance or even causing outage. To deal with this issue, we proposed an

estimated SER (Symbol Error Rate) metric to indicate if a scheduling operation is neces-

sary to be taken place and restart of the whole channel tracking system is required. This

metric is included as the Update phase in the proposed channel tracking method for multi-

user scenario with DLA. The theoretical SER closed-form expression is also derived for

multi-user data detection. The numerical results of the simulations verified the theoretical

SER expression, and the scheduling metric based on the estimated SER performance is

also discussed.
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Chapter 1

Introduction

1.1 Introduction

In modern wireless communication, the way of transmitting and receiving signals is based

on the EM(electromagnetic) wave in the air, and the one consisting of radio telephones

and mobile network is called cellular network. Cellular network, as an indispensable part

of wireless communication, has evolved from 1G to 5G in the past four decades, and will

enter 6G era in the near future, which shows an exponential growth in the field of wireless

communication over years.

The first generation (1G) cellular network was launched in 1980s, which is called Nordic

Mobile Telephone (NMT), only providing voice service operating at 800 - 900 MHz frequen-

cies with 30 KHz bandwidth. To further provide data service, the second generation (2G)

cellular technology was introduced in 1990s, which is based on digital system to provide

voice and data service simultaneously. The well-known GSM(Global System for Mobile)
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system is the first 2G network, and other variant of 2G technologies are GPRS (General

Packet Radio Service), which is used to access WAP/internet services to the customers, and

EDGE (Enhanced Data rate for GSM Evolution), which is also known as 2.75G to provide

maximum data rate of 384 Kbps. In 2G era, circuit switching network is used for voice and

packet transmission form source to destination, and digital encryption is also first intro-

duced in cellular networks. At the beginning of 2000s, the third generation (3G) of mobile

communication system was introduced to improve voice services, data throughput, high

QoS (Quality of Service) and information security. In 3G era, 144 Kbps data rate for mo-

bile user, 384 Kbps for pedestrian user and 2 Mbps for indoor user were satisfied. The key

technique for 3G is CDMA(Code Division Multiple Access), and packet switching is used

for voice and data communication. As for the past decade, the fourth generation (4G) was

first launched in 2010 with several significant improvements to its predecessors, such as 40

MHz capacity, 100 Mbps peak speed during handoff stages, all IP network used as switch-

ing type and internet-based core network. It is obvious that the major advancement of 4G

over 3G is its higher bandwidth and data throughout, which is typically from 100 Mbps to

1 Gbps. Even though MIMO(Multiple Input Multiple Output) is already employed in 4G,

it is further exploited as massive MIMO in fifth generation (5G) cellular network, which

has started being deployed in 2020. As one important task of 5G is to support fast and

reliable communication features, such as ultra HD video streaming, mobile full HD TV,

Augmented Reality (AR), holographic communication, etc., high data throughput is still

the biggest challenge in 5G. The 5G cellular network promptly states that the requirement

is at least 1 Gbps or more data rate to support virtual reality applications along with up

to 10 Gbps data speed to support mobile cloud service. To achieve this, massive MIMO

2



and millimeter wave techniques are both key features for 5G successful deployment with

high capacity.

As the deployment of 5G is the first step for people to approach a new world in terms

of Internet of Everything (IoE), data traffic will explosively grow up to 1000 folds in future

communications. To meet this demand, massive multiple -input -multiple -output (MIMO)

in sub -6GHz frequency was proposed in 2010 to provide great gain by using the large

antenna arrays at BS (Base Station) compared with the number of users in the same cell

[3]. Even with low -complexity algorithms, such as Minimum Mean Square Error (MMSE)

estimator for channel estimation and Matched Filter (MF) for data detection, massive

MIMO can still improve energy and spectral efficiencies to a great extent [4]. Since the

near -optimal performance of the traditional massive MIMO in sub -6GHz is getting hard

to satisfy the data demand for future communications, more attention is concentrated

on millimeter wave (mmWave) spectrum (30 - 300 GHz), which is able to provide up to

several GHz bandwidth by exploiting higher unoccupied frequency resources rather than

improving the spectrum efficiency with current scarce bandwidth [5]. However, mmWave

communication suffers from the severe signal attenuation induced by such high carrier

frequency even for Line -of -Sight (LoS) path [6]. To this end, it turns out to be a natural

marriage between massive MIMO and mmWave communication to compensate for order -

of -magnitude path loss. As the wavelength shrinks with higher frequency, a more compact

transceiver design becomes possible to benefit massive MIMO architecture, which consists

of at least hundreds of antennas, thus improving the power gain. Besides, beamforming is

another key technology in mmWave massive MIMO systems to compensate path loss with

directional transmission [7].
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In communications, beamforming is usually paired with combining, where data is sent

with different weights as coefficients and coherently combined using a counterpart receiver

to maximize the output SNR (Signal to Noise Ratio). The gain in the resulting SNR is in

terms of increasing degree of freedom, which can be classified into two parts, multiplexing

gain and diversity gain [8]. Specifically, multiplexing gain contributes to the higher achiev-

able rate and diversity gain, explicitly revealed in the improved SNR, results in the better

BER (Bit Error Rate) or SER (Symbol Error Rate) performance. This increasing degree

of freedom is in terms of beamforming gain at the transmitter side, whereas it is called as

combining gain at the receiver side.

Taking the transmitter side as an example, it is widely accepted to classify the beam-

forming as digital beamforming and analog beamforming [7]. Analog beamforming consists

of a group of phase shifters which are dealing with the phase change of the RF (Radio Fre-

quency) band signals, so the size of analog beamformer depends on the number of antennas.

The popular types include phase-shifters, switches and antenna lens, etc. On the other

hand, digital beamforming is equivalent to precoder which is dealing with both phase and

power of the digital baseband signals, thus the size of digital beamformer depends on the

number of RF chains. Since digital beamforming is a type of signal processing technique,

some mature algorithms are considered such as Zero Forcing (ZF) and MMSE. To sum up,

the general conclusion is that analog beamforming is efficient whereas digital beamforming

is more flexible [9].

However, by adapting beamforming with mmWave communication, the conventional

digital beamforming causes unaffordable power consumption and hardware cost since it

requires one decent RF chain for each antenna, where the number of antennas is quite
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large in mmWave communication. This leads to opt for hybrid beamforming operating

in both baseband and RF domains jointly, which is still an ongoing research area [9].

Besides, another motivation for hybrid beamforming is the sparsity of mmWave channels

with limited RF chains. To this end, the main idea of hybrid beamforming is that analog

beamforming is still performed at the RF end, while the size of digital precoder can be

dramatically reduced with a small number of RF chains, which also enables the systems

with limited RF chains.

As a result, hybrid beamforming has gained a lot of interest for various mmWave com-

munication systems with limited RF chains in the past decade. At the meantime, combining

at the receiver side is an exact similar counterpart following the same protocol. One of

these promising solutions for mmWave communication is Discrete Lens Antenna (DLA-

based) system, which is reported in [10] with experimental result. In [10], the authors

conducted the experimental measurements with a prototype system and demonstrated the

utility of this emerging array form. Furthermore, [2] mathematically proved that DLA

array serves as a ‘sinc’ function, or equivalently the Discrete Fourier Transform (DFT) op-

eration of the original array response of a Uniform Linear Array (ULA). In other words,

most energy is concentrated on a directional beam, leading to the fact that DLA array

acts as an analog beamformer itself via the continuous aperture lens antenna array which

is controlled by the beam selector. Specifically, most energy will be only concentrated on

two antennas [1]. By applying DLA, the cost for analog beamforming is eliminated and the

complexity will be dramatically reduced. [2] also compared DLA-based system performance

with the conventional ULA-based mmWave communication systems and showed that this

beamspace MIMO with DLA achieved similar spectral efficiency with significantly less RF
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chains and lower processing complexity. However, the drawback is that the performance of

this analog beamformer is fixed due to its optical characteristics, where dynamical adap-

tion is not allowed such as spatial rotation. Moreover, the channel estimation remains as

a challenge in mmWave massive MIMO systems with limited RF chains due to high re-

source consumption, which is the key motivation of this thesis. In the following part of this

chapter, we will briefly introduce common characteristics of the wireless channel, massive

MIMO and mmWave communication separately, and then elaborate the challenge in this

area and motivation of this thesis. The last part of this chapter is the thesis organization.

Throughout this thesis, we should note here that Doppler effect estimation is excluded by

assuming the Doppler effect is perfectly eliminated via PLL (Phase-Locked Loop) at the

RF end.

1.2 Challenges and motivation

To integrate these emerging techniques we have introduced in the previous sections, mmWave

massive MIMO systems make our highest priority since the combination of both can provide

high spectral and energy efficiency. Furthermore, mmWave massive MIMO systems with

limited RF chains heave into our sight because they can dramatically reduce the hardware

cost and computational complexity at the same time via hybrid beamforming/combining.

Specifically, DLA -based mmWave massive MIMO system with limited RF chains firstly

attracts our attention due to its promising prospect. However, real -time channel estima-

tion is quite challenging for any system with limited RF chains, especially in high mobility

scenario.
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Let us take the highway application as an example. Small BSs are distributed as

RSUs (Road Side Units), and devices on the vehicles are served as users in cellular net-

work. In this scenario, LoS path generally dominates, which is natural to be adaptive

with mmWave communication. Moreover, the severe signal attenuation will be compen-

sated by concentrating energy on a narrow beam via massive MIMO architecture with very

large number of antenna elements. To jointly reduce the cost and complexity, DLA-based

mmWave massive MIMO system is a feasible solution for this highway application, which

can be extended as general mmWave massive MIMO systems with limited RF chains. How-

ever, channel estimation problem in this case is quite challenging due to the unaffordable

channel estimation overhead. To be specific, the pilot overhead is inevitable by applying

conventional real-time pilot training schemes, where pilot-based channel estimation needs

to be conducted for every time slot. Besides, due to the constraint of limited RF chains,

only a small portion of antenna elements are activated for each time slot, thus requiring

repeated transmission of the same pilot, which consumes a huge amount of resource. To

overcome this problem, channel estimation for mmWave massive MIMO systems is still an

on -going research area. Channel tracking method, which highly depends on the temporal

correlation between adjacent time slots, is a promising candidate instead of conventional

channel estimation for each time slot. This is the greatest motivation of this thesis to

investigate data-aided channel tracking method for mmWave massive MIMO systems.

By taking multi-user scenario into account, channel tracking is also challenging due to

inter-user interference (IUI). For data aided channel tracking method, the estimation accu-

racy is highly depending on the data detection performance, which is quite vulnerable to

the IUI. However, due to the spatial resolution degradation issue in DLA -based systems,
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IUI issue is inevitable for successful channel tracking. This is the primary motivation of

the forth chapter of this thesis. Meanwhile, it is instructive to investigate different chan-

nel tracking methods with different antenna array forms, and individually evaluate their

system performance, which constitutes my major work and will be present in the following

chapters of this thesis. To enhance the background and comprehensive understanding of

the whole system, we start with data-aided channel tracking scheme for mmWave massive

MIMO system with conventional ULA, and thoroughly analyze the estimation accuracy

with Cramér Rao Lower Bound (CRLB) derivation, which is presented in the third chapter.

In addition, we further extend the data -aided channel tracking method to the mmWave

massive MIMO systems with UPA (Uniform Planar Array), which is elaborated in the fifth

chapter associated with its accuracy analysis.

1.3 Thesis organization

First of all, the basic framework of data-aided channel tracking is learned from [1], which is

applied for DLA-based mmWave communication system with limited RF chains for single

user scenario. However, the closed-form expression of CRLB is missing in [1]. Therefore,

in this thesis, we comprehensively studied channel tracking schemes with different antenna

types, gave the missing closed-form CRLB in [1], and extended the work for multi-user

scenario. The organization of the entire thesis is as follows.

In Chapter 2, the fundamentals of wireless channel characteristics, massive MIMO and

millimeter wave communications are introduced and the literature review of some existing

work is followed. In Chapter 3, the ULA-based data-aided channel tracking method for
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mmWave massive MIMO system is presented and the corresponding CRLB with respect to

spatial signature estimation and DoA estimation are both derived respectively. In Chapter

4, the DLA-based data-aided channel tracking method for mmWave massive MIMO system

is studied, and the closed-form CRLB is carefully derived. In this chapter, we replay the

results in [1] and verifies the theoretical CRLB analysis. In Chapter 5, the extensional work

for multi-user scenario is explored, which mainly deals with the co-channel issue. In this

chapter, the joint channel truncating algorithm is proposed and the predicted SER based

scheduling metric is achieved, which is supported by the theoretical results. In Chapter 6,

the UPA-based data-aided channel tracking method for mmWave massive MIMO system

is presented and the corresponding CRLB is derived, which is validated by the simulation

results. The last chapter summaries the entire thesis and talks about the possible work we

can do in the future.
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Chapter 2

Literature review

2.1 Backgrounds

2.1.1 Characteristics of wireless channel

In wireless communications, signals are transmitted through the medium as electromagnetic

waves between the transmitter and the receiver. The received signals may be quite different

from the source due to reflection, refraction, scattering and absorption. In other words,

because of the inherent characteristics in the propagation environment, the received signal

will be the superposition of shifted and squeezed replicas of the source, resulting in either

constructive or destructive interference of the channel envelop, which is also referred to as

fading effect [11]. Generally, fading can be classified as large-scale fading and small-scale

fading, which will be illustrated.

The major reasons causing fading effect include multipath propagation and mobility.

To describe these characteristics, suppose the transmitter and receiver are placed in free
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space and there is a fixed wall introducing a reflected path, as depicted in Figure 2.1, where

the direct path is indicated as orange and the reflected path is indicated as green.

Figure 2.1: Reflecting wall and fixed antenna scenario.

If a sinusoid wave is transmitted at carrier frequency fc, then the received signal via

the direct path will be r0(t) = β0 cos (2πfct − θ0), and the received replica via the reflected

path will be r1(t) = β1 cos (2πfct − θ1), where β0 and β1 are the attenuation factors, and

two shifted phases are denoted as θ0 = 2πfcd0/c, and θ1 = 2πfc(d0 + 2d1)/c, where c is the

speed of light. Therefore, the received signal is the superposition of the two

r(t) = β0 cos (2πfct − θ0) + β1 cos (2πfct − θ1)

= (β0 cos θ0 + β1 cos θ1) cos (2πfct) + (β0 sin θ0 + β1 sin θ1) sin 2πfct.

(2.1)

Let us define β̃0 = β0 cos θ0 + β1 cos θ1, β̃1 = β0 sin θ0 + β1 sin θ1 and there must be a α

satisfying cosα = β̃0/
√

β̃20 + β̃
2
1 and sinα = β̃1/

√

β̃20 + β̃
2
1 , then we have

r(t) =
√

β̃20 + β̃
2
1 cos (2πfct − α), (2.2)
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which indicates the resulting strength of the received signal A = β̃20 + β̃
2
1 will be

A = (β0 cos θ0 + β1 cos θ1)
2
+ (β0 sin θ0 + β1 sin θ1)

2

= β20 + β
2
1 + 2β0β1 cos (θ0 − θ1)

= (β0 − β1)
2
+ 4β0β1 cos

2
(2πfc

2d1
c
).

(2.3)

At this point, we can clearly see that the signal strength is a function of the frequency fc.

Specifically, the signal strength is a periodic function of fc with the period of c
2d1

, which

is actually the reciprocal of the delay spread between the direct path and reflected path.

This characteristic introduces the constructive and destructive interference pattern upon

the signal strength depending on frequency fc, thus causing frequency selective fading for

the large frequency band and flat fading for the small frequency band.

Furthermore, taking mobility into consideration, if the receiver is moving away from the

reflected wall at the speed of v and the propagation delay is constantly varying, which is

shown in Figure 2.2, then the wireless channel is no longer an LTI (Linear Time-Invariant)

system. If we still transmit a sinusoid wave at frequency fc, the received signals will still be

represented as r0(t) = β0(t) cos (2πfct − θ0) and r1(t) = β1(t) cos (2πfct − θ1), but with the

attenuation factors and phase shift become a function of time t as θ0(t) = 2πfc(d0 − vt)/c

and θ1(t) = 2πfc(d0 + 2d1 + vt)/c.

Figure 2.2: Reflecting wall and moving antenna scenario.
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Similar to the previous derivation, the received signal is also a superposition of the direct

path and the reflected path. Also define β̃0(t) = β0(t) cos θ0(t) + β1(t) cos θ1(t), β̃1(t) =

β0(t) sin θ0(t)+β1(t) sin θ1(t) and there must be a α satisfying cosα = β̃0(t)/
√

β̃20(t) + β̃
2
1(t)

and sinα = β̃1(t)/
√

β̃20(t) + β̃
2
1(t), then the total signal strength is

A = β̃20(t) + β̃
2
1(t)

= (β0(t) cos (θ0(t)) + β1(t) cos (θ1(t)))
2
+ (β0(t) sin (θ0(t)) + β1(t) sin (θ1(t)))

2

= β20(t) + β
2
1(t) + 2β0(t)β1(t) cos (θ1(t) − θ0(t))

= (β0(t) − β1(t))
2
+ 4β0(t)β1(t) cos

2
(2πfc(d1 + vt)/c).

(2.4)

From this, we can clearly see that the signal strength is not only a function of carrier

frequency fc but also a periodic function of time t with the period of λ/2v, which depends

on the velocity v. In other words, the signal strength oscillates by every T = λ/4v falling

from the peak to the valley, which means the channel is constantly varying with time at

fast speed. This is referred as Doppler spread to describe how fast the channel varies, thus

causing fast fading with high velocity and slow fading with low velocity.

To sum up, the fading effect can be classified as large-scale fading and small-scale

fading based on distance between the transmitter and the receiver. In Equation (2.4), there

are three components affecting the signal strength: β0(t), β1(t), and the cosine function

depending on the carrier frequency fc and the moving velocity v. When the receiver moves

for a short distance, β0(t) and β1(t) change non-significantly, which is called attenuation

factors. In practical scenario, there is possibility of suffering propagation blockage due to

large obstacles. This is referred to as shadowing effect, which is commonly modeled as log-

13



normal distribution. Therefore, the large-scale fading contains attenuation and shadowing

effect.

On the other hand, the cosine function in (2.4) is dominated by the carrier frequency and

the velocity, and causes constructive and destructive interference on signal envelope even

over a very short distance, which is referred to as small-scale fading. Generally, coherence

bandwidth is the concept to describe how fast the fading coefficient changes with the carrier

frequency. If the delay spread between two frequencies is larger than coherence bandwidth,

their fading coefficients differ significantly, which is referred to as frequency-selective fading.

Otherwise, it is referred to flat fading. Besides, coherence time is the concept to describe

how fast the channel changes with time. If the Doppler spread of two paths is larger

than coherence time, it suffers from fast fading, which means the channel is time-variant.

Otherwise, it is referred to slow fading, which means the wireless channel is still viewed as

a LTI system. In this thesis, these terms will be frequently appeared. In most cases, we

assume flat fading with the help of Orthogonal Frequency Division Multiplexing (OFDM)

and slow fading even in the high-mobility scenario supposing that the Doppler effect has

been compensated at the RF end by Phase -Locked Loops (PLLs).

2.1.2 Introduction to massive MIMO

In traditional wireless communication systems, researchers concentrate on exploiting the

diversity in one of three transformation domains, which are time domain, frequency do-

main and code domain. During the first decade of 21-th century, numerous works have

been proposed regarding multi-user multiple-input multiple-output (MU -MIMO) commu-

nication system by investigating the spatial degree of freedom for the trade-off between
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diversity and multiplexing [12–14]. However, Orthogonal Frequency Division Multiple Ac-

cess (OFDMA) is generally mandatory with Space Division Multiple Access (SDMA) in

traditional MU -MIMO systems to mitigate interference due to channel correlation, which

degrades the spectral efficiency. Until 2010, massive MIMO technique was proposed to

bring new hopes [3]. The key idea of massive MIMO is to increase the number of antennas

without bound to allow each user’s channel vector to be asymptotically orthogonal, where

uncorrelated noise and inter-user interference become negligible [3]. The idea of massive

MIMO addresses two fundamental issues in conventional wireless communication systems

by improving the spectral efficiency and energy efficiency simultaneously even with sim-

ple MF receiver with perfect or imperfect channel-state information (CSI) [4]. By doing

this, it is possible to increase the total capacity by an order of magnitude and fully enable

SDMA to allow users to use all the time -frequency resources at the same time. In other

words, OFDMA can be totally discarded in massive MIMO systems where SDMA is the

better choice. To illustrate this characteristic, we start with statistical channel model with

conventional point-to-point MIMO system.

Specifically, consider a narrowband time-invariant MIMO system with Nt transmit

antennas and Nr receive antennas. Then the system model can be described as

y =Hx + n, (2.5)

where H ∈ CNr×Nt is the deterministic channel matrix with each element as the complex

channel gain for Rayleigh fading channel, y and x denote the transmitted and received

channel vectors respectively, and n ∼ CN(0, σ2INr) is the CSCG (Circularly Symmetric
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Complex Gaussian) noise vector. If we assume full CSI, then the channel matrix can be

decomposed into a set of parallel, independent scalar Gaussian sub-channels. For example,

by applying singular value decomposition (SVD), the channel matrix H will be

H =UΛVH
=
nmin

∑
k=1

λkukv
H
k , (2.6)

where U ∈ CNr×Nr and V ∈ CNt×Nt are unitary matrices with uk, vk as their k-th column

respectively, Λ ∈ RNr×Nt is a rectangular diagonal matrix whose diagonal elements are

non-negative real numbers, which are the singular values of the channel matrix with the

descending order of λ1 ≥ λ2 ≥ ... ≥ λnmin , and λnmin ≤ min(Nt,Nr) denotes the number

of non-zero singular values, or equivalently the rank of H. Assume both the transmitter

and receiver have the full CSI, appropriate precoding and combining can be performed on

both sides, such as x̃ = Vx and ỹ = UHy. Then the total spectral efficiency can be easily

derived as

ηs =
mmin

∑
k=1

log2 (1 +
λ2kPk

σ2
) , (2.7)

where Pk is the power of the k-th symbol in x. Apparently, the channel capacity will in-

crease linearly while the numbers of antennas at the transmitter and receiver keep growing.

This is because that the same time-frequency resource is repeatedly used by many channels,

which is referred as to multiplexing. However, the total capacity is not only dependent on

the number of antennas, but is also related to the rank of the channel matrix H, which

means the number of independent parallel sub-channel that can be multiplexed. Therefore,

the channel correlation is always a problem to overcome in conventional MIMO system,

which limits the energy and spectral efficiency. At this point, massive MIMO mathematical
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model is proposed in [3] to allow the number of antennas growing without bound, which

enable a key channel characteristics as

lim
Nr→+∞

HHH→ INt . (2.8)

That is also to say, for large number of receive antennas, each user’s channel vector will

be asymptotically orthogonal based on Lindeberg-Lévy central limit theorem [3], thus

eliminating random noise effect and inter-user interference. Therefore, only inter-cell in-

terference remains in the massive MIMO systems, which also leads to pilot contamination.

The greatest contribution of massive MIMO is to enable all users to share the same time-

frequency resources by only employing SDMA. By doing this, energy and spectral efficiency

have been significantly improved.

Besides the exploitation in time-frequency domain of MIMO systems, spatial domain is

also commonly exploited to gain more degrees of freedom, especially when massive MIMO

and mmWave techniques are combined. In the next section, we will briefly introduce

the mmWave communication system and its high spatial sparsity with spatial channel

modeling.

2.1.3 Introduction to mmWave communication

As the demand of data traffic has been growing extremely fast over the past two decades,

the current cellular network has been moved from 2 GHz to 5 GHz frequency band to

gain more available bandwidth [11]. Unfortunately, it becomes crowded at present and

hard to satisfy the heave data traffic demand. Consequently, higher frequency band at-
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tracts researchers’ attention to exploit higher unoccupied frequency resources, which is in

terms of millimeter wave (mmWave) frequency band, ranging from 20 to 60 GHz, since

its wavelength is about several millimeters [5]. However, mmWave communication suffers

from severe path loss due to such high frequency, which prevents it to be implemented

in practice. At this point, massive MIMO is a promising solution, while being combined

with mmWave communication, to compensate the huge attenuation [15]. To be specific,

massive MIMO not only provides a large amount of power gain via beamforming, but also

makes it possible to fully employ SDMA based on its high spatial sparsity with limited

RF chains. Next we will introduce the high spatial sparsity of massive MIMO mmWave

communication system with spatial channel modeling.

To facilitate our illustration, assume Uniform Linear Antenna (ULA) array is employed

at the base station (BS) with omnidirectional antenna elements, which is separated from

each other with equal space, typically as half wavelength λ/2. Due to the severe path loss,

the Line-of-Sight (LoS) path dominates. On the other hand, the reflected path is several

times weaker than the direct signal path [5]. Assume free space without any reflector or

scatters, and only LoS path between the BS and the single user with single omnidirec-

tional antenna. For the k-th receive antenna element, the uplink continuous-time impulse

response hk(t) is given as

hk(t) = αkδ (t − dk/c) , k = 1, ...,Nr (2.9)

where ak denotes the attenuation factor, c is the speed of light, dk represents the distance

between the transmit antenna and the k-th receive antenna element, and Nr is the number
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of receive antennas. Considering d≫ Nrλ
2 , or equivalently the distance between the trans-

mitter and receiver is much larger than the physical dimension of the antenna array, all

the path loss factors between transmitter and every antenna element are almost identical.

Therefore, the equivalent baseband channel model is given as

h
(b)
k (t) ≈ αk exp(−

j2πfcdk
c

) δ (t − dk/c) , (2.10)

where d0 is the distance between the transmitter and the reference antenna element of

the ULA. To further simplify the channel model, if the angle of arrival (AoA) is ϕ, then

the first-order approximation of dk will be dk ≈ d0 +
(k−1)λ cosϕ

2 . As a result, the channel

response will be approximated as

hk ≈ α exp
⎛
⎜
⎝
−
j2πfc (d0 +

(k−1)λ cosϕ
2 )

c

⎞
⎟
⎠
= α exp(

−j2πd0
λ
) exp (−jπ(k − 1) cosϕ) . (2.11)

Let us define α̃ = α exp (−j2πd0λ ) and ω = π cosϕ, then the standard channel response is

modeled as

hk = α̃e(ωk), (2.12)

where e(ωk) denotes the steering vector of the k-th user, and ωk is commonly called spatial
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signature, which is given as

e(ωk) =
1
√
Nr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

exp(−jωk)

⋮

exp (−j(Nr − 1)ωk)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.13)

At this point, we can extend it to MIMO system model with LoS path, in terms of its angle

of departure (AoD) and AoA, where the channel matrix will be

H = βeNr(ωr)e
T
Nt(ωt), (2.14)

where β = α
√
NrNt exp(−j2πd/λ), Nt and Nr represent the number of transmit and receive

antennas respectively, and eNr(ωr) and eNt(ωt) are the steering vectors on both transmitter

side and receiver side, respectively. Here, it is natural to assume LoS path dominating in

mmWave communication system, so it results in sparsity in space domain. To see this

feature explicitly, we take single user with single antenna as an example, where the BS is

equipped with ULA with N antenna elements, the received uplink signal will be given as

y = xβe(ω) + n, (2.15)

where x is the transmitted symbol, and n represents the CSCG noise component. By

performing M -point Inverse Discrete Fourier Transform (IDFT) of the received signal to

20



obtain its spatial spectrum as following

Yω =
1
√
N

M

∑
m=1

y[m]ejmω. (2.16)

Therefore, the envelope of each sample ∣Yω[m]∣ is given as

∣Yω[m]∣ =
1

N
⋅

RRRRRRRRRRRR

sin
N(ω−nω0)

2

sin ω−nω0

2

RRRRRRRRRRRR

=
1

N
⋅ sinc(ω − nω0), (2.17)

At this point, we can clearly see that the spatial spectrum is a sinc function, where most

of the energy concentrates on the two samples in the main lobe, which is referred as to

spatial sparsity. This critical characteristics enables mmWave massive MIMO systems with

limited RF chains, and also paves the way for channel estimation and tracking with less

pilot overhead, which will be illustrated in detail in the next chapter.

2.2 Literature review

As discussed in the first chapter, acquiring the accurate CSI (channel state information)

in mmWave massive MIMO communication systems is still one of the main challenges

due to the enormous cost, in terms of the precious time-frequency resources and hardware

and energy. As the carrier frequency could rise up to Terahertz frequency, the traditional

channel estimation techniques are no longer applicable. Moreover, large training resource

is required since the cell capacity keeps increasing. Another trade-off between hardware

cost and computational complexity arises by choosing fully digital antenna array or hybrid

ones [16]. Therefore, we will review existing channel estimation methods based on these
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two antenna array structures.

The case of fully digital antenna array, each antenna element on the array requires a de-

cent RF chain to control the corresponding amplitude and phase of the transmitted signal,

which introduces enormous hardware cost and energy consumption in mmWave massive

MIMO systems. From the array signal processing perspective, beam alignment meth-

ods are typically applied to extract the channel information by scanning the entire space.

Both [17] and [18] employ the hierarchical codebook to implement the beam alignment,

whereas [18] is superior to [17] by further refining the codebook to allow the overlapped

searching beams, thus reducing the overhead. [19] proposed a grid-of-beams (GoB) based

method to obtain the angle information by selecting the best combinations of transmit and

receive beams. However, such approaches suffer from the high computational overhead

due to the exhaustive sequential search. Besides, the conventional pilot training based

channel estimation can also be performed to extract CSI by consuming large amount of

time-frequency resources and energy cost [8]. In addition, the fully digital antenna arrays

suffer from vibration and movement of beams due to varying weather conditions, which

leads to the frequent calibration overhead of the beam alignment. Therefore, the commu-

nication systems with limited RF chains becomes a growing field of interest for researchers

due to its low cost and low complexity [20–23].

To enable limited RF chains, it is based on the fact that the mmWave channel is

generally sparse in the spatial domain since the LoS path dominates due to its high signal

attenuation and absorption. Taking the narrowband ULA array response of the k-th user
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as an example, where M antennas are equally spaced by d,

hk = βe
jϕe[ωk], (2.18)

where β is the attenuation factor, ϕ is the random phase delay and the steering vector is

defined as e[ωk] = [1, e
jωk , ..., ej(M−1)ωk]

T
with ωk =

2πd cos θk
λ and θk is the DoA (Direction

of Arrival) of the incoming signal corresponding to the k-th user.

Definition 1. The linear projection of the array response onto the Fourier orthonormal

basis will be the beamspace channel response hB for ULA

hBk = Fhk, (2.19)

where F is the M -point DFT (Discrete Fourier Transformation) matrix.

Authors in [24] have demonstrated its sparsity where the most energy concentrates on

two samples in the main lobe. To be more specific, in mmWave massive MIMO system,

the received signal is given as

y =Hx. (2.20)

The dimension of y is generally large due to the large size of the antenna array, whereas

the dimension of x is much smaller than that of y based on the two facts: (1) LoS path

dominates in mmWave scenario, and (2) the number of users is much smaller than that of

antenna elements in massive MIMO scenario.

This spatial sparsity property makes it possible to exploit the efficiencies that can

be obtained through compressed sensing, as illustrated in Theorem 1 [25], which means
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the sparse representation of the original signal can be acquired from a limited number

of linear projections [26]. In other words, hk and hBk are different representations of the

same essential signal in different domains. Once the RIP (Restricted Isometry Property)

is satisfied by the measurement matrix, it is reliable to uniquely recover the original signal

from a sparse solution to solve ℓ0 norm 1 problem of an underdetermined linear system of

equations [27]. To sum up, the signal recovery and sparse approximation are dual to each

other [27]. The channel estimation can be seen as a sparse signal recovery problem from

the compressed sensing perspective, where the dimension of the received signal is much

larger than that of the transmitted signal in mmWave massive MIMO scenario.

Theorem 1. [25] Given a sensing problem v = Φs, the real-valued discrete signal s ∈ Rd

is measured as a low-dimensional measurement v ∈ RN via a measurement matrix Φ ∈

RN×d, where the measured signal is sparse, i.e. ∥s∥0 = m ≪ d. Any matrix Φ satisfies

RIP (Restricted Isometry Property) [28] of order 2m, the m-sparse signal s can be uniquely

recovered via a suitable algorithm to solve the following problem

(ℓ0) ŝ = argmin
s
∥s∥0 such that v =Φs. (2.21)

Generally, to recover the sparse signal, we need to find an algorithm to solve the un-

determined linear system of equations, and such techniques in compressed sensing can be

classified into two categories, iterative greedy pursuit and convex relaxation [26]. The

way of greedy pursuit to recover the sparse signal is to identify the nonzero indices of

the measured signal. The representative algorithm in this class is Orthogonal Matching

1Define ℓ0-norm of the vector s ∈ RN as the number of nonzero elements in s.
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Pursuit (OMP), which determines which column in the measurement matrix contribute to

the measurement vector [27]. Specifically, given a m-sparsity signal s, OMP aims to mini-

mize the ℓ2-norm
2 of the residue by selecting one column in each iteration, which is most

correlated with the current residue, then being subtracted off to obtain the new residue

for next iteration. After m iterations, the residue vanishes and the correct set of indices

can be identified for the sparse signal recovery. On the other hand, convex relaxation

techniques aims to relax the ℓ0-norm problem to a ℓ1-norm problem, whose solution is well

known as Basis Pursuit (BP) [25]. Being very different from the standard least squares (LS)

minimization procedures, Basis Pursuit is proposed as a convex alternative to the combi-

natorial norm ℓ0 [29], which synthesizes a signal as a sparse superposition of waveforms by

counting the nonzero entries of the vector [30]. However, given the measurement matrix

Φ ∈ CN×d Gaussian independent and identical distributed (i.i.d) entries, BP requires at

least O(N2d1.5) number of floating point operations [31], which prevents it from practical

implementation due to the enormous computational consumption. At this point, BP is not

suitable for large scale compressed sensing problem, i.e., massive MIMO scenario, whereas

OMP attracts more interest for researcher due to its benchmark performance of BP and fast

execution. Many variants of OMP have been proposed in recent years, e.g., order recursive

least square matching pursuit (ORLSMP) [32], stagewise OMP(StOMP) [33], regularized

OMP(ROMP) [34] and backtracking-based adaptive OMP(BAOMP) [35]. However, there

are two drawbacks of the standard OMP methods: (1) it requires the knowledge of the

sparsity m, and (2) it requires more measurements than BP. To overcome the limitation,

Extended OMP is reported in [26] as two pieces of algorithms, OMPα and OMP∞. In [26],

2Define ℓp norm of the vector s ∈ RN as (∥s∥)p = ∑Ni=1 ∣si∣p, and ∥s∥2 = ∥s∥ for simplicity.

25



OMPα method aims to reduce the number of measurements close to BP method, and to

achieve superior performance as well by going beyond m-iterations. Meanwhile, the pur-

pose of OMP∞ is in order to get rid of the prior knowledge of the sparsity m by running

OMPα until the signal residue vanishes. Besides, generalized OMP(gOMP) is proposed to

further improve the recovery performance and computational efficiency via choosing mul-

tiple indices in each iteration instead of the strongest component, but with the penalty of

additional identification steps [36].

In addition, the spatial sparsity enables the possibility of deploying the hybrid MIMO

instead of fully digital antenna arrays, and the hybrid beamforming and combining tech-

niques have been a growing field of interest for researchers [16, 37–40]. Moreover, based

on the sparsity in angle domain, the conventional channel estimation can be conducted as

estimating the angle information (i.e. DoA and DoD) and the corresponding channel gain of

each path. In [41], the authors applied the discrete Fourier transform (DFT) beamformers

to construct the hybrid precoding structure and proposed a two-stage channel estimation

strategy where the path directions were estimated via a two dimensional Multiple Signal

Classification (MUSIC), which will be elaborated in the next section, and the path gains

were estimated by the least squares method in the second stage. The DFT operation were

also utilized in [16] to implement hybrid massive MIMO structure with limited RF chains,

and further introduced an additional digital operation, namely spatial rotation, to concen-

trate all the energy on a single sample by shifting the projection of the channel response

onto the Fourier basis, thus enormously reducing the demanded RF chains. Then a channel

tracking method is proposed in [16] to show the near-optimal performance it can achieve

with the least number of RF chains, where the angle information was tracked by a modified
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unscented Kalman filter and the path gain was then estimated via a low-cost beam training

towards the tracked DoA. This spatial rotation concept was further developed to imple-

ment non-orthogonal angle division multiple access (ADMA) for multiple users in [42], and

to obtain better resolution of DoA estimation in [43] and [44].

Throughout this thesis, our focus is the hybrid massive MIMO structure with limited

RF chains. As discussed in the previous chapter, channel tracking is demanding in hybrid

massive MIMO, especially in high-mobility scenarios. The benefit coming with the systems

with limited RF chains is the lower pilot overhead or even eliminating the pilot overhead by

channel tracking or prediction. The purpose of channel tracking (or prediction) methods is

to estimate the future CSI via the prior knowledge of current and past CSI fundamentally

based on the principle of analyzing and forecasting the channel characteristics. To achieve

this goal, there should be at least a set of parametric characteristics to be slowly varying

in a specific domain, and can be represented in a model. The channel tracking procedure

will be proposed based on such a model. To the best of our knowledge, the existing

methods can be generally classified into: (a) Parametric Radio Channel model (PRC) (b)

AutoRegressive (AR) model, (c) Basis-Expansion Model (BEM), which will be discussed in

this section.

2.2.1 Parametric radio channel model (PRC)

Intuitively, if the channel model is deterministic by a set of parameters, it is natural to

propose PRC methods to reconstruct the channel by estimating the deterministic param-

eters. The underlying principal of PRC methods is that the parameters vary much slower

than the actual channel in a specific domain. Once these parameters are tracked, then
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the channel response can be extrapolated for the future. As the mmWave massive MIMO

communication evolves from the conventional Single-Input-Single-Output (SISO) point-to-

point communication systems, the channel prediction has been exhaustively investigated

in [45–48] based on the limited techniques about two decades ago. [46] and [47] model

the fast fading SISO channel as a combination of multiple complex exponential functions

with individual amplitudes, Doppler shifts and random phases, which is in terms of Jake’s

model. Then the channel response can be viewed as two parts: the amplitude and the com-

plex exponential function. Thanks to the mature techniques in the array signal processing

area, there are classical approaches to solve the frequency estimation problem, e.g. the

Multiple Signal Classification (MUSIC) and the Estimation of Signal Parameters via Ro-

tational Invariance Techniques (ESPRIT) [46,49–51], which will be elaborated in the next

section. In [46], the authors modified a variant of conventional MUSIC method, namely

ROOT-MUSIC, to obtain the super-high resolution frequency estimation, and followed by

a least squares fit to estimate the corresponding amplitude. In [47], the amplitudes are also

estimated via a least squares solution, whereas the channel poles are jointly estimated by

ESPRIT at different frequencies due to the wideband effect. However, channel prediction

methods, especially for SISO channel are generally short-term tracking, and calibration is

frequently demanded.

Before massive MIMO is formally proposed by Dr.Marzetta in 2010 [3], large-scale

MIMO had already attracted great interest for researchers [52–55]. The channel prediction

approaches for SISO were adapted to serve MIMO channel [56] and multi-user MIMO

channel [57] by further utilizing the spatial structure of MIMO. As for mmWave massive

MIMO communication, where the angle domain is much more sparse due to the severe
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path loss, the channel can be described by the angle information and the complex gain.

The angle information varies much slower than the channel gain, which implies the highly

temporal and spatial channel correlation. In [58], the ULA (Uniform Linear Array) channel

response is decomposed into angular information and beam gain. The angular information

was obtained by aligning the beam towards the direction of signals, but suffering from the

huge computational overhead, and then the beam gain was acquired by the linear Kalman

Filter (KF) algorithm. [16] used similar methods but applied them in the opposite way,

where a modified unscented KF was used to track the DoAs and a low-cost beam training

estimated corresponding path gain. To greatly reduce the computational complexity of

tracking methods, [59] was proposed to track the DoAs based on a physical movement

model, following much smaller pilot training for path gain estimation. However, it turned

out that the estimation accuracy it achieved can not support successfully uplink data

detection or downlink data transmission. In comparison, [1] provides a sophisticated data-

aided approach from system-level perspective. In [1], a data-aided channel tracking method

was proposed to track the current channel based on the data detection results after channel

decoding, where the angular information and the path gain were updated via a least squares

solution, i.e. Newton’s method. Since the channel tracking process highly replies on the

data detection results, it is crucial to make data detection trustable. To this end, even

with powerful channel coding theory, Inter-user Interference (IUI) is still a big issue to deal

with. The problem is that [1] only investigated single-user scenario, and the closed-form

expression of the CRLB was missing. As a result, we will extend the study to multi-user

scenario in Chapter 4 in this thesis, and also give the closed-form CRLB of the single-user

scenario.
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2.2.2 Autoregressive model (AR)

AR model is another category of popular channel tracking schemes in the past two decades,

which is based on the fact that the future behavior of the channel can be modeled as a

weighted linear combination of the past channel estimates [60–64]. The underlying princi-

ple to determine the weights is to minimize the Mean Square Error (MSE), which requires

the prior knowledge of the channel autocorrelation functions [65]. For SISO channels, to

get the AR coefficients, the Burg method is applied in [62,66], whereas [63,67] investigated

covariance and modified covariance approaches. However, even worse than the PRC meth-

ods, these simple schemes can hardly support short-term fast fading channel tracking due

to the sensitivity to the noise and error propagation issue [67].

With the emergence of MIMO, temporal correlation was firstly investigated by as-

suming the MIMO channel as parallel SISO channels and utilizing individual MMSE pre-

dictors to track each SISO channel [68]. Then [69] further explored the spatial corre-

lation between multiple sub-channels based on a vector AR model. However, this kind

of multi-channel AR scheme suffers from the extremely high computational complexity,

which hinders it from practical implementation. Inspired by the object localization and

tracking solutions, the classical autoregressive methods, i.e. Kalman Filtering (KF) and

Particle Filtering (PF), including their variants, have been a growing field of interest for

researchers [70–75]. In [70–72], the space-time coding schemes were applied to model the

MIMO channel as an autoregressive process and the KF was applied to track the channel

information to enable space-time decoding successfully. But this kind of space-time cod-

ing schemes is only applicable for small-scale MIMO systems. As for large-scale MIMO
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in [73], the authors propose a data-aided channel tracking algorithm for MIMO systems

with VB (Variational Bayes) receivers, where a VB soft-input KF is applied to track the

time-varying channel. However, the detected soft symbols may be unreliable to introduce

outliers. This issue degrades the tracking performance, and requires additional training to

improve the robustness.

However, AR channel tracking algorithms also have shortcomings, such as high esti-

mation variance and error propagation. Since the underlying principle of AR model is to

predict the future channel based on the knowledge of the past feature, error propagation

problem is inevitable and the tracking results may not be reliable for the scenario of the

fast fading channel with time-multiplexed training. The reason is that, in this scenario,

we can only use the channel estimation results from the previous training session instead

of the previous data detection session, thus leading to high estimation variance [76]. To

solve this problem, various of data-aided approaches have been proposed to explore the

KF by treating the data detection result as the measurement vector, and channel tracking

and data detection can be jointly implemented by the extended KF [16, 77–81]. To fur-

ther take spatial sparsity into account, [77] and [78] propose a standard KF-based channel

tracking scheme to predict and modify the path gain of the LoS sub-channels according to

the MMSE principle. By extensively exploring the spatial sparsity, many variants of the

standard KF scheme are proposed to track partial channel information. For example, [79]

applies an Extended Kalman Filtering (EKF) to track the DoA, whereas [16] and [80] both

utilize a Unscented Kalman Filtering (UKF) to track the spatial angular information. Al-

though the KF-based channel tracking method is well established in TDD (Time Division

Duplex), [81] tackles this challenge in the FDD (Frequency Division Duplex) to further
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reduce the training burden. As we can see, AR methods are commonly incorporated with

PRC to output optimal or near-optimal performance by minimizing the MSE, and it is

also recently combined with BEM methods, which will be discussed as following.

2.2.3 Basis Expansion Model (BEM)

As discussed previously, it is challenging to capture the features of fast-varying channels

with PRC or AR models. To this end, BEM has been explored to describe the fast-varying

channel taps as a superposition of series of time-varying basis functions to specifically model

the Doppler effect, where the weights (or coefficients) are time-invariant [82]. To the best

of our knowledge, there are several candidate basis functions, such as (Fourier) complex ex-

ponential (CE-BEM) [76,80,83], polynomial (P-BEM) [84,85], wavelet (W-BEM) [86], and

Slepian basis, i.e. Discrete Prolate Spheroidal Sequences (DPSS-BEM) [87, 88]. Different

from the fast-varying channel taps, the coefficients of the BEM methods vary much slower

that the channel taps, which makes itself possible to be tracked over each block time to

predict the evolution of the fast-fading channel [76].

Among these, CE-BEM is the most popular one since the orthogonal Fourier basis is

nature to describe the Doppler shift. In [83], a doubly-selective (i.e. frequency- and time-

selective) fading SIMO(Single-Input-Multiple-Output) channel was modeled by CE-BEM

with the coefficients tracked by KF, and a decision-directed channel tracking scheme was

proposed using the estimated BEM coefficients. Since [89] has shown that the Fourier

basis associated with rectangular windows suffered from the spectral leakage problem,

another decision-directed channel tracking scheme was proposed in [84], based on a P-

BEM decomposition, where the coefficients were tracked by Recursive Least Squares (RLS)
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method within a sliding window for every block. Besides, to avoid the above frequency

leakage problem, [86] and [87] exploited the orthonormal wavelets and DPSS respectively

to represent the unknown channel time variations to compensate the multipath effects in

CDMA(Code Division Multiple Access) systems, which is already outdated and out of our

scope.

Regarding BEM-based channel prediction of MIMO channels, spatial and temporal cor-

relation is still the most important property to enable the reduced-dimensional subspace

channel tracking methods. [85] proposed a sparse channel tracking method for OFDM sys-

tems, where the path gain was tracked using P-BEM based on the fact that the angle and

delay of each path changes slowly over a few adjacent OFDM symbols. In [80], the trans-

mitted blocks were overlapped and the sub-block wise updating of the CE-BEM coefficients

were perform through two scenarios: UKF for one-order AR model of basis coefficients, and

RLS for basis coefficients without any assumed model. [88] also applied overlapped frames,

but used DPSS-BEM to exploit the channel variation inside each sub-frame and an AR

model was also proposed in [88] to tackled the scenario without considering any overlapping

frames.

2.3 Methodologies

2.3.1 Receiver architectures

At the receiver side, the capacity can be achieved by joint Maximum Likelihood (ML)

decoding of the data streams, but the complexity grows exponentially with the number of

data streams. In this section, we introduce the fundamentals of linear receiver architectures,
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which use linear operations to convert the problem of joint decoding all data streams into

each separate decoding of individual data stream. These architectures extract the spatial

degree of freedom gains, which has been introduced in the first chapter. In conjunction

with an appropriate non-linear operation (successive cancellation of data streams), we can

achieve the capacity of the fast fading massive MIMO channel.

Consider a MIMO channel model with Nt transmit antennas and Nr receive antennas,

where Nt ≤ Nr, and the transmitted data streams are independent. Then the received

signal is

y =Hx +w =
Nt

∑
k=1

hkxk +w, (2.22)

where hk denotes the k-th column of the channel matrix H ∈ CNr×Nt , while xk is the k-th

symbol in data stream x and w is the CSCG noise. Apparently, different symbols are

modulated on different columns of the channel matrix. Suppose that we can find a vector

h̃1 such that

h̃H1 h1 = 1, (2.23)

h̃H1 hk = 0, k = 2,3,⋯,Nt. (2.24)

Therefore, x1 can be estimated as

x̂1 = h̃
H
1 y =

Nt

∑
k=1

h̃H1 hkxk + h̃
H
1 w = x1 + h̃

H
1 w. (2.25)

As we can see, by projecting the received signal on h̃1, the interference from other antennas
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can be eliminated. Similarly, we can find h̃k for k = 2,⋯,Nt such that

h̃Hk h1 = 1, (2.26)

h̃Hk hk′ = 0, k ≠ k
′. (2.27)

Then xk can be detected as

x̂k = h̃
H
k y =

Nt

∑
k′=1

h̃Hk hk′xk′ + h̃
H
k w = xk + h̃

H
k w. (2.28)

It is promising that the inter-symbol interference is totally eliminated. If we construct

a matrix H† = [h̃1, h̃2,⋯, h̃Nt]
H
, we have H†H = INt . After that, the transmitted data

sequence can be detected as

x̂ = H̃y = x + H̃w. (2.29)

This kind of detector is referred to as the linear decorrelator or zero-forcing (ZF) detector

since it can completely eliminate the interference among different data streams. To this

end, we can obtain the linear decorrelation matrix as

H†
= (HHH)

−1
HH . (2.30)

This is based on the assumption of perfect CSI, which is not available in practice.

Besides, it has poor performance in low SNR regime. The noise vector is w̃ = H†w, and

its covariance matrix is given by

E {w̃w̃H} = (HHH)
−1

HHE {wwH}H (HHH)
−1
= N0 (H

HH)
−1
, (2.31)
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where N0 is the variance of the CSCG noise.

Apart from ZF detector, the Matched Filter (MF) is also commonly used to maximize

the output SNR. In this case, for the k-th user, we first project the received signal on hHk

as

x̃k = h
H
k y = ∥hk∥

2xk + ∑
k′≠k

hHhk′xk′ + h
H
k w. (2.32)

Then xk can be estimated by normalizing x̃k by a factor of ∥hk∥
2 as

x̂k =
x̃k
∥hk∥2

= xk + ∑
k′≠k

hHk hk′

∥hk∥2
xk′ +

hHk w

∥hk∥2
. (2.33)

In the matrix form, we have the estimate of x as

x̂ = (diag{HHH})
−1

HHy. (2.34)

As we can see, the linear decorrelator aims to eliminate interference, while the matched

filter targets to suppress noise. However, an optimal detector should be able to jointly

minimize the total influence of the noise and interference. To be specific, we should find a

matrix A to estimate data sequence x as

x̂ =Ay, (2.35)

so that

ak = argmin
ak

Ew {∥a
H
k y − x∥

2} . (2.36)
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The MMSE (Minimum Mean Square Error) receiver of the k-th user is given by

ak = (∑
k′≠k

Pk′hk′h
H
k′ +N0INt)

−1
hk. (2.37)

The comparison among matched filter, linear decorrelator and MMSE detector is shown

in Figure 2.3. Theoretically, MMSE receive always outperforms the other two linear re-

ceivers. In low SNR regime, the MF receiver outperforms the decorrelator, and is compa-

rable to the MMSE receiver. The reason is that the interference is negligible in this case,

and noise dominates. On the other hand, in high SNR regime, the decorrelator outper-

forms the MF receiver, and is comparable to the MMSE receiver. The reason is that noise

negligible in this case and interference dominates. As we can see in Figure 2.3, it seems

to be different from the ideal case because we only simulate one single user in the cell. In

our simulation case, QPSK (Quatrature Phase Shift Keying) is conducted as modulation

method, and there is one user with single antenna and one BS with single antenna as well.

Single tap channel is assumed and SNR range is [−10,20] dB. All the solid lines indicate

the simulation results, and all dots indicate the theoretical results, which are well matched.

The yellow color represents the theoretical and simulation results with AWGN(Additive

White Guassian Noise) channel, which is obviously the best performance we can approach

while dealing with the fading channel. The green and blue ones represent the BER (Bit

Error Rate) performance with MF and ZF detectors respectively, which are also overlapped

with each other. The reason is that there is only one user without inter-user interference

where ZF is equivalent to MF detection. Last but not the least, the red one indicates that

MMSE receiver always outperforms the others.
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Figure 2.3: Comparison of BER performance.

2.3.2 DoA estimation

Throughout this thesis, our focus is only on the first category of the channel tracking classi-

fication, PRC model. Therefore, some mature DoA estimation methods will be introduced

in this section, such as MUSIC (Multiple Signal Classification) and ESPRIT (Estimation

of Signal Parameters via Rotational Invariance Techniques). Aforementioned codebook

scheme for beam alignment and compressive sensing family achieve the similar goal. Given

the spatial information, complex gain can be obtained with much smaller pilot training,

which dramatically reduces the overall system overhead. We should note here that the

Doppler effect estimation is excluded in this thesis by assuming the Doppler effect is per-

fectly eliminated via PLLs at the RF end, which is not our interest. Besides, this thesis

focus on the LoS path scenario due to the characteristics of mmWave communication. As
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for multipath scenario, there are some subspace dimension estimation methods, such as

AIC (Akaike Information Criterion) and MDL (Minimum Description Length), to estimate

the number of path in multiple resolvable path scenario, which is out of scope of this

thesis [90,91].

To introduce MUSIC algorithm, firstly let us assume a point-to-point MIMO system

with ULA antenna arrays consisting of K and M antenna elements at the transmitter and

receiver respectively. Then the received signal is given as

y =Hx + z, (2.38)

where H ∈ CM×K denotes the complex channel matrix, and z is the CSCG noise with

variance σ2 following N(0, σ2I). Here we assume H is with full column rank of K, and

each column is given as hk = βka(θk), where βk denotes the complex gain and θk is the

DoA of the signal from the k-th transmit antenna. The autocorrelation of the far-field

received signal is given by

Ryy = E [yy
H] =HRxxH

H
+Rzz, (2.39)

where Rxx represents the autocorrelation of the transmitting signal and Rzz = σ
2I denotes

the noise autocorrelation. At this point, Eigenvalue Decomposition can be conducted as

Ryy =
M

∑
i=1
λieie

H
i , (2.40)

where λi are eigenvalues of the autocorrelation of the received signal such that λ1 ≥ λ2 ≥
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⋅ ⋅ ⋅ ≥ λK ≥ σ
2. At this end, (2.40) can be rewritten as

Ryy = [ Ex En ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λs

Λn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

EHs

EHn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= EsΛsE
H
s +EnΛnE

H
n , (2.41)

where Es and En denote eigenvectors of the signal space and noise space respectively, the

diagonal elements in Λs =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1

⋱

λK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Λn = σ
2It where It ∈ R

(M−K)×(M−K) denote

the eigenvalues of the signal space and noise space respectively. The key idea of the MUSIC

algorithm is that the signal subspace and the noise subspace are orthogonal to each other

EHn a(θi) = 0, i = 1, . . . ,K (2.42)

Therefore, the orthogonality of the signal subspace and noise subspace results in the fact

that the array steering vector a(θi) in the direction of a source is orthogonal to the noise

eigenvectors as shown in Equation (2.42). This results in peaks in the plot of the MUSIC

pseudo-spectrum, which is given by

PMUSIC(θ) =
1

aH(θ)EnEHn a(θ)
. (2.43)

The DoA θ estimates are obtained either by manually locating the peaks of Equation (2.43)

or using a search algorithm to identify the peaks

θi = argmin
θ

aH(θ)EnE
H
n a(θ). (2.44)
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To sum up, the process of the DoA estimation based on MUSIC algorithm is as follows

• Suppose Q observations have been received, and the estimated covariance matrix is

given by

R̂yy =
1

Q

Q

∑
q=1

yqy
H
q , (2.45)

• Conduct EVD on the estimated covariance matrix R̂yy =UΣUH ,

• According to the descending order of the eigenvalues in Σ, find the last M − K

eigenvalues as the noise subspace eigenvalues and the corresponding eigenvectors in

U to construct En which is given by Equation (2.40).

• Based on Equation (2.43), use a searching algorithm with respect to θ to find the

peaks of the MUSIC pseudo-spectrum to identify the DoA estimate.

The performance of the MUSIC algorithm and its suitability for practical applications

is limited by the brute-force searching dimension. Since the spacing of θ to locate the peak

is critical to the estimation accuracy, the searching step is required to be as fine as possible.

However, this will cause extremely high computational complexity which prevents MUSIC

for the practical applications. To overcome this limitation, Root-MUSIC was proposed as

a modified version of MUSIC based on polynomial root finding. Root-MUSIC has been

shown to increase the resolution and decrease the computational complexity of MUSIC

algorithm. Root-MUSIC is also a model based algorithm which directly estimates the DoA

parameter by explicitly using a model of the array steering vector and the received data.

The ESPRIT algorithm is another mature subspace method to estimate DoA and possi-

bly the most popular in channel prediction studies. Compared with MUSIC, it offers more
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robustness against array imperfections and since it does not require brute-force search,

it has significantly lower computational complexity and storage requirement. The main

idea of ESPRIT is the shift invariance structure of the array obtained by creating two

overlapping sub-arrays from the original array with a constant translation distance.

Suppose the same scenario as aforementioned MUSIC example, the Vandermonde struc-

tured array steering matrix A ∈ CM×K is defined as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1

ejω1 ejω2 ⋯ ejωK

⋮ ⋮ ⋱ ⋮

ej(M−2)ω1 ej(M−2)ω2 ⋯ ej(M−2)ωK

ej(M−1)ω1 ej(M−1)ω2 ⋯ ej(M−1)ωK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.46)

where the steering vector e[ω] is conventionally defined as e[ωi] = [1, e
jωi , ..., ej(M−1)ωi]

T

with ω=
2πd cos θ

λ . Here d is the distance between any adjacent antenna elements and θ

denotes the Direction of Arrival (DoA) of the incoming signal. After that, based on the

shift invariance structure, A can be split into two submatrices A1 ∈ C(M−1)×K and A2 ∈

C(M−1)×K as

A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1

ejω1 ejω2 ⋯ ejωK

⋮ ⋮ ⋱ ⋮

ej(M−2)ω1 ej(M−2)ω2 ⋯ ej(M−2)ωK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.47)
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A2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ejω1 ejω2 ⋯ ejωK

⋮ ⋮ ⋱ ⋮

ej(M−2)ω1 ej(M−2)ω2 ⋯ ej(M−2)ωK

ej(M−1)ω1 ej(M−1)ω2 ⋯ ej(M−1)ωK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.48)

Apparently, we can see that there is a relationship between two submatrices A2 = A1Φ,

where Φ is termed the rotational operator as defined as

Φ = diag{ejω1 , ejω2 ,⋯, ejωK} . (2.49)

Intuitively, all the DoA information can be determined once we know the rotational oper-

ator Φ. Therefore, the goal of ESPRIT method is to determine Φ by explicitly applying

the spatial array response and its shift invariance structure. Firstly, we split the received

signal Y = βAx + n as

Y1 = βA1x1 + n1, (2.50)

Y2 = βA2x2 + n2, (2.51)

where β is the complex gain, x1 = [x1, x2,⋯, xK−1] and x2 = [x2, x3,⋯, xK] are the subse-

quences of the original transmitted data sequence, and n1 ∈ C(M−1)×1 and n2 ∈ C(M−1)×1

denote the CSCG noise vectors. Since we only focus on DoA estimation, we simplify the

notation by getting rid of the complex gain β which can be estimated by a small pilot over-

head once we estimate DoA accurately. At this point, we can construct a new structure of
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the received signal Z ∈ C2(M−1)×1

Z =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1

Y2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1x1 + n1

A2x2 + n2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Ãx +N, (2.52)

where Ã =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

A1Φ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and N =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n1

n2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Similar to MUSIC method, based on the concept of

subspace, the autocorrelation of the new structure of the received signal is given by

RZZ = E [ZZ
H] = ÃRxxÃ

H
+ σ2I, (2.53)

where Rxx represents the autocorrelation of the transmitting signal and σ denotes the

variance of the noise. Then the EVD of the autocorrelation can be also written as the

similar form as Equation (2.41), with respect to the signal subspace and noise subspace

RZZ =
M

∑
i=1
λieie

H
i = EsΛsE

H
s +EnΛnE

H
n . (2.54)

There must exist a unique nonsingular matrix T satisfying

Es = ÃT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E1

E2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1T

A1ΦT

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.55)

Intuitively, E1 is related to E2 from Equation (2.55)

E2 = E1T
−1ΦT = E1Ψ, (2.56)
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where Ψ = T−1ΦT. Apparently, diagonal elements in Φ are the eigenvalues of the matrix

Ψ. That is equivalent to say, once we obtain Ψ, we can estimate all the DoA information

via EVD of Ψ to further obtain Φ.

To sum up, the process of the DoA estimation based on ESPRIT algorithm is as follows

• For each observation Y, construct the new received signal Z based on Equation (2.52)

• Suppose Q observations have been received, and the estimated covariance matrix is

given by

R̂ZZ =
1

Q

Q

∑
q=1

ZqZ
H
q , (2.57)

• Conduct EVD of R̂ZZ to obtain the signal subspace matrix Es,

• Apply Least Square algorithm to obtain estimated Ψ̂ based on Equation (2.56),

• Conduct EVD of Ψ̂ to obtain Φ̂ to identify DoA information which are the eigenvalues

of Ψ̂ or equivalently the diagonal elements of Φ̂.

2.4 Summary

In this chapter, we firstly introduced the fundamentals of wireless channel characteristics,

massive MIMO and millimeter wave communications. Specifically, kinds of fading due to

multi-path and Doppler effects are elaborated, degree of freedom in massive MIMO and

spatial sparsity in mmWave communication are also carefully discussed. After that, some

existing work in acquiring the CSI in mmWave massive MIMO communication systems

are reviewed, where we showed the limitations and deficiencies of the conventional channel

estimation and tracking methods. In the remaining chapters of this thesis, we will present
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the adaptive data-aided channel tracking methods for hybrid mmWave massiveMIMO sys-

tems with different antenna types, and multi-user scenario is also taken into account for

DLA case.
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Chapter 3

ULA-based data-aided channel

tracking framework

As the first main chapter of this thesis, in order to explore different aspects of a data-aided

channel tracking system, we will start with the simple case which is based on Uniform Linear

Array (ULA) for single user scenario. In this chapter, to analyze the different influences

of various parameters on channel tracking accuracy, it is necessary to ignore the inter-user

interference by only considering single user scenario. In the next chapter, multi-user case

will be explored.

3.1 ULA-based channel response

As for ULA-based communication system, the angle space is equally spaced by 2π/M where

M is the number of antennas. Here we assume massive MIMO is applied to compensate

the huge pass loss of mmWave communication, where M is generally large (e.g. at least

47



hundreds of antennas). In addition, TDD is employed to exploit the channel reciprocity,

and only uplink channel estimation will be conducted. To be specific, as shown in Figure

3.1, the BS is equipped with ULA with M antennas and there is only one user in the

cell with single antenna. Assume that the ULA antenna elements are equally spaced by

distance d = 2π/M , the indices is defined as Im ∈ {0, ...,M − 1}, and the 0 -th antenna is set

to be the reference point, as indicated in Figure 3.1. Assume the Direction of Arrival (DoA)

θ of the uplink received signal is defined with respect to the left hand side, and the channel

vector of the user with slow fading is given as

h = βejϕe[ω], (3.1)

where β is the attenuation factor which is inversely proportional to the distance between

the user and the BS, ϕ denotes the random phase delay and the steering vector e[ω] is

conventionally defined as e[ω] = [1, ejω, ..., ej(M−1)ω]
T

with ω = 2πd cos θ
λ . Therefore, the

channel response on the m-th antenna element is given by

h[m] = βej(mω+ϕ). (3.2)

It should be noted here that β is a real number, which differs from the equivalent complex

gain which will be introduced in the second part of this chapter with DLA array.
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Figure 3.1: ULA architecture.
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3.2 Data-aided channel tracking system model

To evaluate the performance, we follow the conventional data-aided channel tracking proto-

col, which is illustrated in Figure 3.3 [1]. At the beginning of the 0 -th time slot, pilot-based

channel estimation is required by sending the orthogonal pilot sequence p via uplink chan-

nel

Y0 = h0p
T
+N0, (3.3)

where h0 denotes the channel vector at the 0 -th time slot and each element of N0 is a

CSCG variable with variance σ2. Then in every following time slots, there are typically

three phases to conduct, namely processing, downlink data transmission and uplink data

detection. In the first processing phase at the 1-st time slot, initial channel estimation is

conducted

ĥ0 =Y0p
∗
/∥p∥2 = h0 +W0, (3.4)

where W0 =N0/∥p∥
2 is still a CSCG matrix with variance σ2. It is clear that the estimate

is only contaminated by the noise by conducting the orthogonal pilot sequence. Then this

initial estimate will be used for downlink data beamforming and uplink data detection

within this 1-st time slot. By the end of the 1-st time slot, the decoded data stream will

be used for updating the channel estimation in the next processing phase. This step is

called data-aided channel tracking. As shown in Figure 3.3, as long as this process iterates

successfully, the overhead of the conventional channel estimation via sending pilots for

every time slot is eliminated. To be specific, both downlink and uplink data processing at

any (n+1) -th time slot utilize the channel estimate from the previous time slot. Figure 3.4
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shows a detailed block diagram for a conventional data-aided channel tracking system [1].

At any (n + 1) -th time slot, the received uplink signal Yn+1 ∈ CM×N is

Yn+1 = hn+1x
T
n+1 +Nn+1, (3.5)

where hn+1 ∈ CM×1 denotes the channel vector at the (n + 1) -th time slot, xn+1 ∈ CN×1

is the transmitted data vector with length of N , and Nn+1 is additive Gaussian noise, in

which each element is i.i.d. CSCG random variables with variance σ2.

Figure 3.3: The data flow of the data-aided channel tracking system.

Based on the fact that the channel is highly correlated between adjacent time slots,

i.e. hn+1 ≈ hn, the uplink data stream can be detected by the matched filter based on the

channel estimate from the previous time slot

x̃n+1 =Y
T
n+1ĥ

∗
n/∥ĥn∥

2. (3.6)

After the powerful channel decoder, an accurate estimate of the data stream x̂n+1 can
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Figure 3.4: The system diagram of the data-aided channel tracking system [1].

be obtained without most of the errors, which will be further used to perform data-aided

channel tracking

ĥn+1 =Yn+1x̂
∗
n+1/∥x̂n+1∥

2. (3.7)

This tracking result will be updated as the current estimate ĥn to be used for the next

time slot. As long as this tracking process iterates fast enough, we will reduce significant

overhead coming from the pilot-based channel estimation for every time slot.

3.3 CRLB analysis

3.3.1 CRLB analysis with spatial signature estimation

In this section, we will discuss the CRLB of the estimation error to evaluate the perfor-

mance. Due to the fact of spatial sparsity, to estimate the ĥ is equivalent to estimate ω, ϕ
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and β in this case. The probability density function (PDF) of channel estimate ĥ is

f(ĥ∣ω,ϕ, β) = (πσ2)−M exp{−
∥ĥ − h∥2

σ2e
} , (3.8)

where σ2e is the variance of estimation error, following zero-mean Gaussian distribution as

E{(ĥ − h)(ĥ − h)H} = σ2eIM . (3.9)

Then the log-likelihood function will be given as

l(ĥ∣ω,ϕ, β) = ln f = −M ln (πσ2e) −
∥ĥ − h∥2

σ2e
. (3.10)

The partial derivatives of l with respect to the estimated parameters are given as

∂l

∂ω
=

2

σ2e
[(ĥr − hr)

T ∂hr
∂ω
+ (ĥi − hi)

T ∂hi
∂ω
] ,

∂l

∂ϕ
=

2

σ2e
[(ĥr − hr)

T ∂hr
∂ϕ
+ (ĥi − hi)

T ∂hi
∂ϕ
] ,

∂l

∂β
=

2

σ2e
[(ĥr − hr)

T ∂hr
∂β
+ (ĥi − hi)

T ∂hi
∂β
] , ,

(3.11)

where h is a combination of the real part and the imaginary part as h = hr + hi. In this

case, the Fisher information matrix is simply given as

F = E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∂l
∂ω
)
2 ∂l

∂ω
∂l
∂ϕ

∂l
∂ω

∂l
∂β

∂l
∂ϕ

∂l
∂ω ( ∂l∂ϕ)

2
∂l
∂ϕ

∂l
∂β

∂l
∂β

∂l
∂ω

∂l
∂β

∂l
∂ϕ ( ∂l∂β)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.12)
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and the expectations of these quadratic terms are given by

E {(
∂l

∂ω
)

2

} =
2

σ2e
(∣
∂hr
∂ω
∣

2

+ ∣
∂hi
∂ω
∣

2

) ,

E {(
∂l

∂ϕ
)

2

} =
2

σ2e
(∣
∂hr
∂ϕ
∣

2

+ ∣
∂hi
∂ϕ
∣

2

) ,

E {(
∂l

∂β
)

2

} =
2

σ2e
(∣
∂hr
∂β
∣

2

+ ∣
∂hi
∂β
∣

2

) ,

E {
∂l

∂ω

∂l

∂ϕ
} =

2

σ2e
(
∂hTr
∂ω

∂hr
∂ϕ
+
∂hTi
∂ω

∂hi
∂ϕ
) ,

E {
∂l

∂ω

∂l

∂β
} =

2

σ2e
(
∂hTr
∂ω

∂hr
∂β
+
∂hTi
∂ω

∂hi
∂β
) ,

E {
∂l

∂ϕ

∂l

∂β
} =

2

σ2e
(
∂hTr
∂ϕ

∂hr
∂β
+
∂hTi
∂ϕ

∂hi
∂β
) .

(3.13)

Here, let Φ = [ω,ϕ, β]T . The Fisher information matrix can be rewritten as

F =
2

σ2
GTG, (3.14)

where the Jacobi matrix G is given as

G = [
∂hTr
∂Φ

,
∂hTi
∂Φ
]

T

. (3.15)

Moreover, for the m-th antenna element, the partial derivatives are given as

∂hr[m]

∂ω
= −mβ sin (mω + ϕ),

∂hi[m]

∂ω
=mβ cos (mω + ϕ),

∂hr[m]

∂ϕ
= −β sin (mω + ϕ),

∂hi[m]

∂ϕ
= β cos (mω + ϕ),

∂hr[m]

∂β
= cos (mω + ϕ),

∂hi[m]

∂β
= sin (mω + ϕ).

(3.16)
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By substituting the above partial derivatives (3.16) into equation (3.12), the Fisher matrix

becomes

F =
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β2∑M−1m=0 m
2 β2∑M−1m=0 m 0

β2∑M−1m=0 m β2M 0

0 0 M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.17)

To derive the inverse of the Fisher matrix, we denote A = β2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
M−1
m=0 m

2
∑
M−1
m=0 m

∑
M−1
m=0 m M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =CT = [0,0]T and D = [M] to facilitate Block Matrix Inversion theorem, which is given

as

F−1 =
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

C D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

=
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(A −BD−1C)
−1

− (A −BD−1C)
−1

BD−1

−D−1C (A −BD−1C)
−1

D−1 +D−1C (A −BD−1C)
−1

BD−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.18)

Then we can get the CRLB with respect to ω

F−1[1,1] =
σ2

2β2
(
M−1
∑
m=0

m2
−
M−1
∑
m=0

m
1

M

M−1
∑
m=0

m)

−1

=
σ2

2β2
(
(M − 1)M(2M − 1)

6
−
M(M − 1)2

4
)

−1

=
σ2

2β2
(
M3 + 5M

12
)

−1
.

(3.19)

The CRLB with respect to ϕ can be derived as

F−1[2,2] =
σ2

2β2
⎛

⎝

1

M
−

1

M

M−1
∑
m=0

m(
M3 + 5M

12
)

−1M−1
∑
m=0

m
1

M

⎞

⎠

=
σ2

2β2
(

2M2

M3 + 6M2 + 3M
) .

(3.20)
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Last, the CRLB with respect to β will be

F−1[3,3] =
σ2

2β2M
. (3.21)

Based on the fact that M is sufficiently large, we can conclude

∣∆ω∣2 ≥ F−1[1,1] ∼
6σ2

β2M3
, (3.22)

∣∆ϕ∣2 ≥ F−1[2,2] ∼
σ2

β2M
, (3.23)

∣∆β∣2 ≥ F−1[3,3] =
σ2

2β2M
. (3.24)

We can see that the lower bounds of the tracking errors associated with ω, ϕ and β are all

proportional to the variance of the noise σ2, which is equivalent to say that it is inversely

proportional to the length of the data sequence N . Therefore, it can improve the channel

tracking accuracy by increasing the data block size. From equations (3.22), (3.23) and

(3.24), we can also see that all lower bounds of the parameters leading channel tracking

error are inversely proportional to the attenuation factor β, which is intuitive due to the fact

that the stronger the LoS path is, the better data detection performance that is achieved,

thus leading to better channel tracking accuracy. Last but not the least, we can conclude

that ω, ϕ and β are all inversely proportional to the total number of the antennasM , which

means larger antenna arrays help reduce the estimation error, especially with respect to

the estimation error of the spatial signature ω.
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3.3.2 CRLB analysis with DoA estimation

Furthermore, based on the relationship between the spatial signature ω and the DoA θ,

it seems to be equivalent to estimate the DoA directly. Next, we will show the CRLB

with respect to the θ itself. In this case, we assume the base station is still equipped with

massive ULA, where M antennas are critically spaced by d = λ/2. The channel vector of

the single user under slow fading in this scenario is given as

h = βejϕe[θ], (3.25)

where the steering vector is with respect to θ directly as e = [1, ejπ cos θ, ..., ej(M−1)π cos θ]
T
.

Therefore, the channel response on the m-th antenna element is given by

h[m] = βej(mπ cos θ+ϕ). (3.26)

By applying the aforementioned channel tracking method to get ĥ, the probability den-

sity function f (ĥ∣θ) and the corresponding likelihood function l (ĥ∣θ) are very similar to

equations (3.8) and (3.10) with different parameters

f(ĥ∣θ, ϕ, β) = (πσ2)−M exp{−
∥ĥ − h∥2

σ2e
} , (3.27)

l(ĥ∣θ, ϕ, β) = ln f = −M ln (πσ2e) −
∥ĥ − h∥2

σ2e
. (3.28)
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Following a similar derivation as in the previous section, the Fisher information matrix will

be very similar to (3.12) only by substituting ∂l
∂ω with ∂l

∂θ

F = E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∂l
∂θ
)
2 ∂l

∂θ
∂l
∂ϕ

∂l
∂θ

∂l
∂β

∂l
∂ϕ

∂l
∂θ ( ∂l∂ϕ)

2
∂l
∂ϕ

∂l
∂β

∂l
∂β

∂l
∂θ

∂l
∂β

∂l
∂ϕ ( ∂l∂β)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.29)

The partial derivative of l with respect to θ is given as

∂l

∂θ
=

2

σ2
[(ĥr − hr)

T ∂hr
∂θ
+ (ĥi − hi)

T ∂hi
∂θ
] , (3.30)

where h = hr + hi. At this point, for the m-th antenna element, the partial derivative

becomes

∂hr[m]

∂θ
= βmπ sin θ sin (mπ cos θ + ϕ),

∂hi[m]

∂θ
= −βmπ sin θ cos (mπ cos θ + ϕ),

∂hr[m]

∂ϕ
= −β sin (mπ cos θ + ϕ),

∂hi[m]

∂ϕ
= β cos (mπ cos θ + ϕ),

∂hr[m]

∂β
= cos (mπ cos θ + ϕ),

∂hi[m]

∂β
= sin (mπ cos θ + ϕ).

(3.31)

Similar to the previous case, the Fisher information matrix is simply given as

F =
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β2π2 sin2 θ∑M−1m=0 m
2 β2π sin θ∑M−1m=0 m 0

β2π sin θ∑M−1m=0 m β2M 0

0 0 M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.32)

Based on the Block Matrix Inversion theorem in (3.18), the inversion of the Fisher matrix
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can be derived. Therefore, the CRLB with respect to the DoA θ is

F−1 [1,1] =
σ2M

2β2
⎛

⎝
π2 sin2 θM

M−1
∑
m=0

m2
− π2 sin2 θ (

M−1
∑
m=0

m)

2
⎞

⎠

−1

=
σ2

2β2
⎛

⎝

(M − 1)M(2M − 1)

6
−

1

M
(
M(M − 1)

2
)

2
⎞

⎠

−1

=
σ2

6β2π2 sin2 θ(M3 −M)
.

(3.33)

Then the CRLB with respect to ϕ is derived as

F−1 [2,2] =
σ2π2 sin2 θ

2β2
⎛

⎝
M

M−1
∑
m=0

m2
− (

M−1
∑
m=0

m)

2
⎞

⎠

−1

π2 sin2 θ
M−1
∑
m=0

m2

=
σ2

2β2
⎛

⎝
M −

(∑
M−1
m=0 m)

2

∑
M−1
m=0 m

2

⎞

⎠

−1

=
σ2(2M − 1)

β2(−M2 + 2M)
.

(3.34)

After that, the CRLB with respect to β is derived as

F−1 [3,3] =
σ2

2β2M
. (3.35)

Since M is generally sufficiently large in mMIMO communication, it is concluded that

∣∆θ∣2 ≥ F−1[1,1] ∼
σ2

6M3β2π2 sin2 θ
, (3.36)

∣∆ϕ∣2 ≥ F−1[2,2] ∼
σ2

β2M
, (3.37)

∣∆β∣2 ≥ F−1[3,3] =
σ2

2β2M
. (3.38)
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As we can see from equations above (3.37) and (3.38), the impact on the estimation

error associated with ϕ and β is exactly the same with those in the previous case when we

estimate the spatial signature instead of DoA, which are illustrated by equations (3.23) and

(3.24). They are both inversely proportional to the length of data sequence N , attenuation

factor β and the number of antennas M of the ULA. This also means that we can improve

the estimation accuracy by increasing the data block size and / or increase massive MIMO

scale. However, different from estimating the spatial signature as a whole, the lower bound

directly with respect to the DoA depends on the function ‘sin θ’ in equation (3.36), which is

a nonlinear function. Intuitively, the estimation accuracy will be better when the incoming

signal arrives at the position around the center beam while the estimation accuracy will

be worse when it falls into the side beams. Since the estimation accuracy is not stable,

tracking the spatial signature is a better choice rather than the DoA itself by applying

traditional array signal processing techniques.

3.4 Simulation results and outcome analysis

For the proposed data aided channel tracking system with ULA, there are some important

parameters, the data block length N , the number of antennas at the BS/RSU (Road Side

Unit) and SNR. Based on the above theoretical analysis, in this section, we will conduct

simulations to evaluate the impacts of these parameters on channel tracking performance

with spatial signature estimation.

To set up the whole system, we assume TDD(Time Division Duplex) to explore channel

reciprocity, and single user scenario. Therefore, we only need to conduct uplink channel
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estimation, and downlink data transmission is able to apply the same estimate via feedback

channel with negligible delay. Be consistent with the aforementioned setup environment,

the BS/RSU is deployed with large ULA withM antenna elements, and only one user with

single antenna is moving within the cell with speed of 360 km per hour, or equivalently

100meter per second, which is the typical speed for the Chinese high-speed railway system.

Throughout the simulation, assume the modulation scheme is defaulted to be QPSK, the

block length of data transmission is N and the symbol duration is 1 ms. The length of

the training pilot is set to be 100 to get decent initial channel estimation, and the path

loss exponent is chosen to be 2 due to the LoS path only. First of all, Figure 3.5 shows
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Figure 3.5: ULA-based channel tracking error with spatial signature estimation.

the preliminary results of the system performance at the 100-th time slot, in terms of

the NMSE (Normalized Mean Square Error) of the channel tracking estimates. The SNR

range is [0,15] dB and the number of antenna elements varies as [16,64,128]. As we can
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Figure 3.6: Power gain for different numbers of antenna elements.

see from Figure 3.5, the simulation results match the corresponding CRLBs very well.

The reason is that the CRLB is derived without the data detection error, even though

both data detection error and noise contribute to the channel estimation error. However,

throughout the thesis, the detected data sequence is assumed to be trustable via channel

coding scheme. In our simulation, multiple antennas at the receiver side provide some

degrees of freedom, all of which are used to enhance the diversity gain due to the single

user scenario. Figure 3.6 illustrates the performance enhancement on SER with the power

gain of M . By applying MF detector, the achieved SNR is boosted by a factor of M (i.e.,

the receiving antenna number), thus improving the SER performance of data detection.

In Figure 3.6, the SER is still satisfactory for down to −20 dB. Therefore, for SNR range

of [0,15] dB, the data detection error is negligible in our simulation, which is the reason

why numerical results match CRLBs such well. We can conclude that the tracking error is
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dominated by the noise and the data detection error contributes little to channel tracking

inaccuracy in this case.

Next we will demonstrate the other impacts on the accuracy performance associated

with parameters M , in terms of the number of antennas. As we can see from Figures 3.5

and 3.7, where the numbers of antennas are varying from 16 ∗ [1,4,8] and 64 ∗ [1,4,8]

respectively, the NMSE trends are nearly identical. As we increase M four times, the

accuracy can be enhanced by at least one order of magnitude. The close-form CRLBs of

ULA-based channel tracking errors in equations (3.22) to (3.24) are all inversely propor-

tional to M , which is verified by our simulation results. This is quite intuitive that more

antennas at receiver side provide more power gain to improve the data detection accu-

racy, thus boosting the channel tracking performance. However, the spatial beams will be

narrower due to a large antenna array, which leads to more challenging to estimate of DoA.
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Figure 3.7: Impact of antenna number M on channel tracking error.
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Last but not the least, we will see the impact of the block length N on the channel

tracking performance in Figure 3.8. Also recall from the close-form CRLBs in equations

(3.22) to (3.24) that CRLBs are proportional to the noise variance σ2, while the longer

data sequence helps to suppress the noise. Every time we double the block length N , the

NMSE increases by a factor of two. On the other hand, we are not able to use a very

large block length N since we need to use the previous channel estimates to approximate

the current CSI to facilitate data-aided channel tracking process. As a result, the channel

states of adjacent time slots have to be highly correlated, which requires a reasonable block

length.
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Figure 3.8: Impact of block length N on channel tracking error.

To sum up, based on the aforementioned theoretical analysis and simulation outcomes,

our closed-form CRLB expressions have been verified. The tracking error decreases with
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more antenna elements. Moreover, the accuracy performance is also boosted with larger

block lengths. However, the block length also needs to be carefully chosen based on the

time correlation assumption. The last point is that estimating spatial signature is always

better than tracking the DoA for channel tracking systems.

3.5 Summary

In this chapter, a ULA-based data-aided channel tracking framework is presented for

mmWave massive MIMO system. The critical assumption is that users are well separated

in space and Doppler effect is complementary at the RF end. The conventional data-aided

channel tracking method is proposed with Newton iteration algorithm. To evaluate the

accuracy performance, thorough CRLB analysis is achieved by deriving the closed-form

expression of CRLBs. This CRLB analysis also proves that spatial signature estimation

we applied is the better choice than the traditional DoA estimation for channel prediction

solutions. From the simulation results, we can see that the proposed data-aided channel

tracking accuracy closely approaches the CRLB. To reduce the cost and complexity, we

will investigate DLA-based system model with limited RF chains.
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Chapter 4

DLA-based data-aided channel

tracking framework

In this chapter, the channel tracking method for DLA-based mmWave massive MIMO

system is adopted from [1] where the close form expression of the CRLB is missing. In

this thesis, the closed-form expression of the CRLB is derived and the multi-user scenario

is further explored in the next chapter.

4.1 DLA-based channel response

Generally, a DLA consists of an electromagnetic lens and an antenna array whose elements

are located on the focal arc of the lens in the azimuth plane. As shown in Figure 4.1, the

EM lens is of size Dy ×Dz with negligible thickness, the radius F is defined as the focal

length, θm ∈ [−π/2, π/2] is the angle of the m-th antenna element relative to the x-axis,

within the range of −(M − 1)/2 ≤m ≤ (M − 1)/2 when M is odd, ϕp is the physical arrival
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angle of one specific signal path, which is denoted as the angle between incident wave and

x-axis, and the normalized dimension of the lens D is predefined as D ≜ Dy/λ, where λ is

the carrier wavelength. Among these, the number of antennas on the focal arcM is related

with D via M = 1 + 2⌊D⌋. Without loss of generality, M antennas are critically spaced on

the focal arc, or equivalently θ̃m ≜ sin θm are equally spaced in the interval [−1,1]. Different

from ULAs, the antenna elements are placed much denser around the center of the DLA

than those at the two ends of the focal arc as shown in Figure 4.1. For the remaining of

this thesis, we call the beams at the center and at the two ends of the focal arc as central

beams and side beams respectively, and call the antenna elements around the 0 -th antenna

element and around the ± (M−12
)-th antenna element as central antennas and side antennas

as well.

Figure 4.1: DLA architecture [2].

Based on the optical characteristics of the EM lens, the waveform of the incoming
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signal is collected by the lens, and then concentrated onto a single point of the continuous

focal arc. However, as only limited antenna elements are placed on the focal arc, DLA

can collect discrete samples of the received waveform. The authors in [2] proved that

the array response of a DLA approximates the DFT of the array response of a Uniform

Linear Array (ULA), thus following ‘sinc’ function in angle domain by exploring the spatial

sparsity.

Theorem 2. [2] For a DLA with critically spaced antenna elements, assuming the DoA of

the incoming signal is ϕ, the array response a(ϕ) follows ’sinc’ function via approximating

DFT operation on the array response of a ULA, and can be expressed as

a(ϕ) = sinc (m −D(1 + cosϕ)) , ∀m ∈ [0,M − 1]. (4.1)

Proof: Provided in Appendix A.

4.2 Truncated channel vector

Considering the similar property in spatial spectrum, it can be easily seen that the received

signal will be distributed onto the entire antenna array following the ‘sinc’ waveform. This

fact means that the energy on the two antenna elements in the main lobe is strong while

the others is much weaker. In [24], it is shown that over 80% energy concentrates on the

two samples in the main lobe, which enables the truncated channel vector with limited RF

chains. Instead of activating all the antenna elements with enormous energy consumption,

only a small number of antennas are required to be powered on to serve each user. Assume

that V antenna elements are associated to be active to collect signal from a single user,
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then denote ht,k as the truncated channel vector of the k-th user

ht,k = hk[vk ∶ vk + V − 1], (4.2)

which means V consecutive antenna indices are chosen around the peak sample of the

original channel vector. Algorithm 1 shows the method to find consecutive indices based

on the peak index with the strongest energy. It has been proved that the energy loss

ratio is less than 20% with only two active antennas for each user [1]. This shows that it is

greatly promising to employ DLA with limited RF chains for V2I mmWave communication

systems to dramatically reduce the cost and complexity.

Algorithm 1 Single-user channel truncating algorithm.

1: Find the peak index mp,k by the entire channel vector hk by

mp,k = argmax
m

∣hk[m]∣; (4.3)

2: Find the starting index vk
3: if V is odd then
4: let l = (V − 1)/2
5: if mp,k − l ≤min (m), ∀m ∈ [0,M − 1] then
6: vk =min (m)
7: else if mp,k + l ≥max (m), ∀m ∈ [0,M − 1] then
8: vk =max (m) − 2l
9: else

10: vk =mp,k − l
11: end if
12: else if V is even then

13: let l = {
V /2 − 1, mp,k ≤ αk
V /2, mp,k > αk

14: Repeat commands 5 − 11
15: end if
16: return Ik = [vk ∶ vk + V − 1] and hk,t = hk[Ik];
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4.3 System model

Assume in a mmWave massive MIMO system, DLA is equipped at the BS withM antenna

elements via limited RF chains, which means only V antenna elements are activated for

each user at each time slot, and the number of single-antenna users is one for single user

scenario. Similar with [1], the channel vector is given as

h = βa (ϕ) , (4.4)

where β is the complex gain, ϕ is the DoA of the incoming signal, and a (ϕ) is the array

response with the m-th element given by

a (ϕ) [m] = sinc(m − α), (4.5)

where α = D (1 + cosϕ) and D is the normalized lens dimension satisfying M = 1 + 2⌊D⌋.

By adapting truncated channel vector concept with V number of active antenna elements,

substituting the truncated channel vector into aforementioned equations (3.3) to (3.7), and

applying Least-square iterative channel tracking method in [1], we will get the estimated

truncated channel vector ĥd with three estimation parameters α, βr and βi, where β =

βr + βi. It should be noted that though the procedure is quite similar to the previous one

with ULA, truncated channel vector concept is adopted here to save cost and complexity.

After that, we will follow the similar analysis in [1] to derive the closed-form CRLB of the

tracking error. However, in [1], the authors did not give the closed-form expression of the

CRLB. We will give the detailed derivation of closed-form CRLB expression, which is one
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of the major contribution of this thesis.

4.4 CRLB analysis

4.4.1 CRLB analysis with spatial signature estimation

Firstly, we rewrite ĥd as ĝ to get rid of the subscript, where ĝ = ĝr + ĝi and g = gr + gi.

The probability density function of ĝ is given as

f(ĝ∣α,β) = (πσ2e)
−V exp{−

∥ĝ − g∥2

σ2e
} , (4.6)

where σ2e is the variance of estimation error, following zero-mean Gaussian distribution as

E{(ĝ − g)(ĝ − g)H} = σ2eIV . (4.7)

Then the log-likelihood function will be given as

l(ĝ∣α,β) = ln f = −V ln (πσ2e) −
∥ĝ − g∥2

σ2e
= −V ln (πσ2e) −

∥ĝr − gr∥
2

σ2e
−
∥ĝi − gi∥

2

σ2e
. (4.8)

According to the Fisher information matrix

F = E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∂l
∂α
)
2 ∂l

∂α
∂l
∂βr

∂l
∂α

∂l
∂βi

∂l
∂βr

∂l
∂α ( ∂l

∂βr
)
2

∂l
∂βr

∂l
∂βi

∂l
∂βi

∂l
∂α

∂l
∂βi

∂l
∂βr

( ∂l∂βi
)
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.9)
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we derive the first-order partial derivatives as following

∂l

∂α
=

2

σ2e
[(ĝr − gr)

T ∂gr
∂α
+ (ĝi − gi)

T ∂gi
∂α
] ,

∂l

∂βr
=

2

σ2e
(ĝr − gr)

T ∂gr
∂βr

,

∂l

∂βi
=

2

σ2e
(ĝi − gi)

T ∂gi
∂βi

,

(4.10)

with the partial derivative of each antenna element with respect to the estimation param-

eters given by
∂gr[v]

∂α
= βr [

−π cos (π(v − α))

π(v − α)
+
π sin (π(v − α))

(π(v − α))2
]

= βr
sinc(v − α) − cos (π(v − α))

v − α
,

∂gi[v]

∂α
= βi

sinc(v − α) − cos (π(v − α))

v − α
,

∂gr[v]

∂βr
=
∂gi[v]

∂βi

= sinc(v − α),

∂gr[v]

∂βi
=
∂gi[v]

∂βr

= 0,

(4.11)

where v ∈ IV , IV is the index set of active antennas. Furthermore we also derive the
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expectations of the corresponding quadratic terms as shown

E {(
∂l

∂α
)

2

} =
2

σ2e
(∣
∂gr
∂α
∣

2

+ ∣
∂gi
∂α
∣

2

) ,

E {(
∂l

∂βr
)

2

} =
2

σ2e
(∣
∂gr
∂βr
∣

2

) ,

E {(
∂l

∂βi
)

2

} =
2

σ2e
(∣
∂gi
∂βi
∣

2

) ,

E {
∂l

∂α

∂l

∂βr
} =

2

σ2e
(
∂gTr
∂α

∂gr
∂βr
) ,

E {
∂l

∂α

∂l

∂βi
} =

2

σ2e
(
∂gTi
∂α

∂gi
∂βi
) ,

E {
∂l

∂βr

∂l

∂βi
} =

2

σ2e
(
∂gTr
∂βr

∂gr
∂βi
) .

(4.12)

Here, let Ψ = [α,βr, βi]
T , the Fisher information matrix can be rewritten as

F =
2

σ2e
GTG, (4.13)

where the Jacobi matrix G is given as

G = [
∂gTr
∂Ψ

,
∂gTi
∂Ψ
]

T

. (4.14)

To be specific, the rewritten Fisher information matrix is given as

F =
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥β∥2Φ βrΩ βiΩ

βrΩ Σ 0

βiΩ 0 Σ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.15)
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where Φ =
v0+V −1
∑
v=v0

(
sinc(v−α)−cos (π(v−α))

v−α )
2
, Ω =

v0+V −1
∑
v=v0

sinc2(v−α)−sinc(v−α) cos (π(v−α))
v−α , and Σ =

v0+V −1
∑
v=v0

sinc2(v − α). To explore the CRLB of the estimation error of each parameter, we

need to derive the inverse of Fisher information matrix based on the block matrix inversion

theorem, which is given as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

C D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(A −BD−1C)
−1

− (A −BD−1C)
−1

BD−1

−D−1C (A −BD−1C)
−1

D−1 +D−1C (A −BD−1C)
−1

BD−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.16)

Here we substitute A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥β∥2Φ βrΩ

βrΩ Σ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B = [βiΩ,0]
T , C = BT , and D = Σ. Then we can

derive the diagonal elements of the inverse of the Fisher information matrix are given as

F−1[1,1] =
σ2

2∥β∥2 (Φ − Ω2

Σ )
, (4.17)

F−1[2,2] =
σ2 (∥β∥2ΦΣ − β2i Ω

2)

2Σ (∥β∥2ΦΣ − ∥β∥2Ω2)
, (4.18)

F−1[3,3] =
σ2 (∥β∥2ΦΣ − β2rΩ

2)

Σ (∥β∥2ΦΣ − ∥β∥2Ω2)
. (4.19)

Unfortunately, because of these complex summations Σ, Φ and Ω, it is hard to see the

relations between tracking error and associated parameters. Therefore, the difficult task

to deriving the closed-form CRLB of estimation errors on DLA is to derive the closed-form

expressions of complex summations.

It is shown in Appendix B, based on two facts that the number of antenna elements is

relatively large and the truncated channel vector preserves more than 80% of total energy,
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we can approximate Φ, Ω and Σ based on above DFT properties as follows

Φ ≈
π2 (M3)

3
, (4.20)

Ω ≈ 0, (4.21)

Σ ≈M. (4.22)

Thus we can rewrite Equation (4.15) as

F =
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥β∥2 π
2M3

3 0 0

0 M 0

0 0 M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.23)

Based on this beautiful Fisher information matrix, the CRLBs of estimation errors of each

parameter, i.e., equations (4.17) to (4.19), will be rewritten as

∣∆α∣2 ≥ F−1[1,1] ∼
3σ2e

2π2M3∥β∥2
, (4.24)

∣∆βr ∣
2
≥ F−1[2,2] ∼

σ2e
2M

, (4.25)

∣∆βi∣
2
≥ F−1[3,3] ∼

σ2e
2M

. (4.26)

Compared to (3.22) to (3.24) in the previous section with ULA, we can see the relationships

are very similar. Clearly, the lower bounds of the parameters leading channel tracking errors

are all proportional to the variance of the noise σ2, which is equivalent to say that they

are inversely proportional to the length of the data sequence N . Therefore, it can improve

the channel tracking accuracy by increasing the data block size. Secondly, the lower bound
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of the parameter α is inversely proportional to the attenuation factor β, which is intuitive

due to the fact that the stronger the LoS path is, the better data detection performance

is achieved, thus leading to better channel tracking accuracy. Last but not the least,

we can conclude that α and β are both inversely proportional to the total number of

the antennas M , which means larger antenna arrays help reduce the estimation error,

especially with respect to the estimation error of the spatial signature α. Equivalently, for

the communication systems with limited RF chains, larger V active antennas for each user

should help to reduce the estimation error.

4.4.2 CRLB analysis with DoA estimation

The second half of the section is similar to the counterpart of ULA. We will show the CRLB

with respect to ϕ itself instead of estimating α. In this case, the aforementioned process is

the same but only substituting α with ϕ. However, the corresponding partial derivatives
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of each antenna element will be definitely different

∂gr[v]

∂ϕ
= βrD sinϕ

sinc (v −D(1 + cosϕ)) − cos (π (v −D(1 + cosϕ)))

v −D(1 + cosϕ)

= βrD sinϕ
∂gr[v]

∂α
,

∂gi[v]

∂ϕ
= βiD sinϕ

sinc (v −D(1 + cosϕ)) − cos (π (v −D(1 + cosϕ)))

v −D(1 + cosϕ)

= βiD sinϕ
∂gi[v]

∂α
,

∂gr[v]

∂βr
=
∂gi[v]

∂βi

= sinc (v −D(1 + cosϕ)) ,

∂gr[v]

∂βi
=
∂gi[v]

∂βr

= 0.

(4.27)

Therefore, the corresponding Fisher information matrix will be

F =
2

σ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥β∥2D2(sin2 ϕ)Φ βrD(sinϕ)Ω βiD(sinϕ)Ω

βrD(sinϕ)Ω Σ 0

βiD(sinϕ)Ω 0 Σ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.28)

Based on the block matrix inversion theorem, we can get the diagonal elements of F−1 as

F−1[1,1] =
σ2

2∥β∥2D2(sin2 ϕ)(Φ − Ω2

Σ )
, (4.29)

F−1[2,2] =
σ2 (∥β∥2ΦΣ − β2i Ω

2)

2Σ (∥β∥2ΦΣ − ∥β∥2Ω2)
, (4.30)

F−1[3,3] =
σ2 (∥β∥2ΦΣ − β2rΩ

2)

Σ (∥β∥2ΦΣ − ∥β∥2Ω2)
, (4.31)
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where the last two terms are the same as in the previous case of estimating spatial signature.

We can also see the CRLB varies with the nonlinear function ‘sinϕ’, which is similar

to the result of ULA scenario. Intuitively, the estimation accuracy will be better when

the incoming signal arrives at the position around the center beam while the estimation

accuracy will be worse when it falls into the side beams. Same as in the ULA case, since the

estimation accuracy is not stable, tracking the spatial signature is a better choice rather

than the DoA itself by applying traditional array signal processing techniques.

4.5 Simulation results and outcome analysis

In this section, the numerical results for this single-user data-aided channel tracking system

is presented from different perspectives, which is also the replayed results of [1] to verify the

basis of this data-aided channel tracking system. The main motivation of this chapter is

to give the closed-form expression of the CRLBs which are missing in [1], and next chapter

is an extensional work of [1] with multi-user scenario. Therefore, the reproduction is very

important to validate our understanding on the basis of this thesis.

The setup of this replay is consistent with the parameters defaulted in [1]. Here we still

assume that the symbol duration is 10−6 second and the path loss factor is chosen to be 2

due to LoS only scenario. In our simulation, we assume the speed of the vehicle is 360 km

per hour, which is typical for the very-high-speed railway system, and the radius of the cell

is 500 meters. For initial channel estimation, if the length of training pilot is chosen to be

100. As for the parameters of the DLA, it really depends on how we choose the physical size

of the EM lens. For example, the focal length is chosen to be 1 m, the number of antenna
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elements is limited to be M = 41, and the number of active antenna elements of the user is

V = 3. That is to say, the same orthogonal pilot has to be repeatedly transmitted 34 times

to perform only once initial channel estimation. This will consume enormous resources

when the cell radius is small, or equivalently handover is frequently happened, where the

initial channel training is required right after the handover operation. In an attempt to

reproduce the results in Figure 8 in [1], we start with M = 128, N = 1000, and V = 3 in our

simulation, and the simulation result is shown in Figure 4.2. On the other hand, Figure

4.3 is taken from the [1] to show the original result. As we can see from our simulation

result, the MSE of the tracking error approaches the theoretical CRLB. Compared with

the red line in Figure 4.3, also with M = 128, the magnitudes of MSE are almost the same

with our numerical results. At this point, we are confident with the data-aided channel

tracking process.
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Figure 4.2: Replayed result of Figure 8 in [1]
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Figure 4.3: Preliminary channel tracking error results [1]

Next, we will elaborate the impacts on the channel tracking performance from different

aspects, e.g., the number of antennas M , the number of active antennas for truncated

channel V and the block length N . First of all, the impact of the number of antennas

on NMSE is presented in Figure 4.4, where M ∈ {64,128,192,256}. Apparently, more

antennas help to concentrate the beam and thus improve the energy efficiency. However,

due to the truncated channel vector model, we lost nearly 20% energy while doing data

detection, which degrades the SER performance. As a result, we can see that there is a

gap between the simulation result and CRLB at low SNR regime when power gain is not

enough to compensate the truncated channel energy loss. This phenomenon is much more

severe for small -scale MIMO system, which can be seen in Figure 4.5. At low SNR regime,

where M ∈ {16,32,48,64}, the gap between the evaluations and the theoretical CRLBs is

large. As the number of antennas increases, the power gain rises, thus achieving better
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channel tracking accuracy.

However, it should be noted that this conclusion is based on the simulation results by

taking beamforming gain into account. As we have discussed in the previous chapter, the

DLA performs as an analog beamformer due to its optical characteristics. As a result, the

SNR in this chapter is defined as the output SNR after taking the beamforming gain into

account, thus adding much higher noise than the counterpart of ULA case. If we make it

as the input SNR before beamforming, the performance is exactly the same with Figure

3.5. The reason is that DLA is the only approximation of DFT operation of the channel

response of ULA, without adding any new feature, which results in the same channel

tracking performance.
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Figure 4.4: NMSE and CRLB of tracking error for large values of M.
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Figure 4.5: NMSE and CRLB of tracking error for small values of M.

In addition, we will show the impact of the number of active antennas on the system

performance. As for V , we need to carefully choose. On one side, it can not be large

because the purpose to introduce truncated channel vector is to save cost. If V ×K ≥M ,

this concept losses its significance. On the other side, it can not be too small neither to

make transition process happen [1]. As proven in [1], at least three antennas should be

activated to achieve comparable performance with respect to that withM active antennas.

As we have seen in Figure 3.2, the two antennas in the main lobe contain more than 80% of

energy. That is to say, once we increase the number of active antenna number, the amount

of energy we can collect increases, thus upgrading the system performance. With respect

to DoA with 0.4π, Figure 4.6 shows the channel tracking results at the 100 -th time slot

with V varying in {3,6,9}, where the simulation results approach the theoretical CRLBs

for all cases as expected. However, the accuracy improvement is almost negligible every
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time we double the active antennas number V .
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Figure 4.6: NMSE and CRLB of tracking error with different V.

Moreover, this impact will be most negligible when there is only one antenna element in

the main lobe which contains all the energy while the others happen to be at the samples

with 0 value of the sinc function, which is shown in Figure 4.8. Therefore, with respect to

DoA with 1/3π, Figure 4.7 shows the channel tracking performance at the 100 -th time slot

with V varying in {3,6,9}, where the simulation results are approaching the theoretical

CRLBs as well. And the accuracy improvement is even more negligible than the previous

case. To sum up, the impact of the number of active antennas V on the system performance

is negligible since most energy is collected in the main lobe.

Figure 4.9 presents the impact of the block length N on the system accuracy perfor-

mance. Every time we double the simulated values of N , the NMSE of channel estimation

will be reduced by a factor of two, which is consistent with the CRLB analysis in the
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Figure 4.7: NMSE and CRLB of tracking error with different N.

previous section. However, choosing an appropriate block length N is a trade-off. On

the positive side, longer data block can help to enhance the channel tracking accuracy by

suppress noise. On the negative side, we are using the channel estimates from the previous

time slot for the data detection of the current block, since a high temporal correlation is

assumed. Therefore, longer data blocks may lead to larger channel variations and data

detection errors, which may propagate and deteriorate the whole system performance.
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4.6 Summary

In this chapter, a DLA-based data-aided channel tracking framework is presented for

mmWave massive MIMO system with limited RF chains. Firstly the DLA array response

has been comprehensively studied and then the data-aided channel tracking method is

adopted from [1]. The contribution is that we give the closed-form expression of CRLBs

with respect to spatial signature estimation and conventional DoA estimation respectively.

This CRLB analysis also proves that spatial signature estimation is the better choice than

DoA estimation for channel prediction solutions. From the simulation results, we can

clearly see that the Newton method based data-aided channel tracking mechanism closely

approaches the CRLB. In the next chapter, we will extend this work with multi-user sce-

nario by dealing with co-channel issues.
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Chapter 5

Multi-user data-aided channel

tracking framework

The Discrete Lens Antenna (DLA-based) communication system, proposed in [10] with im-

pressive experimental result, becomes one promising solution for mmWave communication

to compensate for the huge attenuation with limited RF chains. According to the optical

characteristics of the electromagnetic (EM) lens, DLA performs as a analog beamformer

by approximating a DFT operation to transform the signal to spatial domain, thus explor-

ing the spatial sparsity in mmWave communication. Specifically, since most energy will

be only concentrated on a small number of antenna elements, it is reasonable to reduce

cost and complexity by using limited RF chains. To this end, channel tracking method

is promising instead of traditional channel estimation, which consumes a large amount of

resources by repeatedly transmitting the same pilot. The authors in [1] explored a similar

DLA-based channel tracking process for single-user scenario, while this chapter illustrates
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the additional problems and solutions in multi-user scenario.

In this Chapter, the far-field DLA-based channel model is firstly explored, and the

truncated counterpart is then introduced. Based on that, spatial resolution issue with

DLA is discussed to make inter-user interference (ISI) more serious when multiple users

are within the same wide beam. To overcome this ISI issue, we propose an advanced data-

aided channel tracking method to keep estimating and updating the individual channel

vector when multiple users are not well separated. Since we demonstrate that the SER

performance in data detection is much more vulnerable than channel estimation error, we

proposed an estimated SER metric for scheduling decision to deal with ISI in multi-user

scenario.

5.1 DLA-based system model

5.1.1 Channel model

Without loss of generality, we assume that, in each cell, the base station (BS) with DLA

serves up to K mobile users simultaneously, each fitted with one antenna. As each EM lens

is with normalized dimension of D, the number of antenna elements on the focal arc will

beM = 1+2⌊D⌋. Furthermore, in V2I (vehicle-to-infrastructure) mmWave communication,

LoS path dominates due to the high signal propagation loss. Another critical assumption

here is that the Doppler effect due to the high mobility is eliminated on the RF end via

Phase-locked Loops (PLLs) 1. Therefore, by adopting the far-field flat channel model, the

1The Doppler effect is out of the scope of this entire thesis.
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beamspace channel vector hk ∈ CM×1 of the k-th user is given as

hk = βka (ϕk) , (5.1)

hk[m] = βksinc(m − αk),∀m ∈ [0,M − 1], (5.2)

where a(ϕk) is the array response as shown in Theorem 2 with αk =D(1+cosϕk), βk is the

equivalent complex gain, and ϕk is the DoA of the received signal coming from the k-th

mobile terminal.

5.2 Problem statement

5.2.1 Motivation

It has been claimed that DLA-based mmWave communication system with limited RF

chains can reduce cost and complexity to a great extend. However, the common problem

with any limited RF chains system is the high overhead of channel estimation. Recall

that V antennas are activated for each user, the total number of RF chains is thus KV ,

or equivalently only KV antenna elements need to be scanned during any single time

slot. As a result, to scan the entire channel vector, each orthogonal pilot sequence is

required to be repeatedly transmitted for ⌈M/(KV )⌉ time slots, which consumes enormous

amount of resources. To this end, channel tracking becomes a better choice (e.g. data-

aided channel tracking [1] and fast tracking with low pilot overhead [59]). As we discussed

previously, [59] gives reasonable estimation error performance without considering data

detection part, whose phase error is not acceptable for uplink data detection or downlink
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data transmission. In comparison, [1] provides a sophisticated data-aided approach from

system-level perspective. In [1], since channel tracking process highly replies on the data

detection results, it is crucial to make data detection trustable. To this end, even with

powerful channel coding theory, IUI is still an inevitable issue to deal with in multi-user

scenario. To avoid this issue, [1] assumes that all the users are well separated in angle

domain by some sophisticated scheduling method, thus exploring the single-user scenario,

where we can disclose the parametric impact on the channel tracking accuracy clearly.

However, to make this scheduling decision is still an on-going research topic. As a result,

in this chapter, we will investigate the multi-user scenario by illustrating IUI effect in

DLA-based communication system, proposing the counterpart channel tracking method

for multi-user scenario and establishing a new metric for scheduling approach.

5.2.2 Spatial resolution

For conventional ULAs, antenna elements are spaced with a pitch of half wavelength where

the angle domain is equally divided by the number of antennas M . However, for DLA

arrays, the so-called critical spacing means that the antenna elements are located on the

focal arc, based on the fact that θ̃m ≜ sin θm, in the interval [−1,1]. In other words, only

the projection of the antenna array is equally spaced since sin function is nonlinear, which

leads to the fact that the placements of the central antennas are dense while those of the

side antennas are sparse. This fact also results in great spatial resolution degradation

for the side beams because the beam width is much wider than that of central beams.

Furthermore, the key reason for spatial resolution degradation is the critical assumption

F ≫ Dy,Dz in [2], which is also in the derivation of the DLA response in Appendix A. In
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that case, the size of EM lens highly affects the normalized dimension D, which therefore

limits the total number of antenna elements M .

Intuitively, the spatial frequency resolution of DLA is defined inversely proportional to

the quantity of D, which means that two users with DoAs of ϕi and ϕj (∀i ≠ j) can be

sufficiently separated only when ∣cosϕi − cosϕj ∣ ≥ 1/D is satisfied [2]. However, D is not

possible to be large. For the comparable sizes of ULA and DLA arrays, the number of

antenna elements of the latter one can only be as large as 20% of that of ULA array. For

example, assume the physical size of both ULA and DLA is 1 m, and the wavelength is 1 cm

which is typical for 30GHz, then the ULA could consist of 100 antennas. However, for the

DLA, the focal length determines the physical size of the DLA and the critical assumption,

F ≫ Dy,Dz, limits the size of the EM to be 10 cm. Therefore, the counterpart number

of the DLA could only be 21 based on the fact that M = 1 + 2⌊D⌋. This results in a

significant degradation of the spatial resolution of DLA array, especially for the two widest

side beams.

5.2.3 Multi-user co-channel issue

In multi-user scenario, IUI has to be inevitably treated as a significant issue especially

for the side beams, where main lobes of different users will be overlapped for a long time

period. Figure 5.1 illustrates a practical scenario of two users with speeds of 150 km/h

and 280 km/h respectively, in which case user 2 chases and passes user 1. In this setup,

M = 41 and thus the normalized dimension of EM lens D = 20, which are reasonable.

Figure 5.2 shows how their DoAs vary along the time indices, and it is obvious that they

intersect while overtaking. According to the definition of spatial resolution of DLA, as
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shown in Figure 5.3, the angle variations can be represented in their trigonometric form,

and red line indicates the time indices when two users are unresolvable in spatial domain,

or equivalently ∣ cosϕ1 − cosϕ2∣ ≤ 0.05. Figure 5.4 shows the channel correlation between

user 1 and user 2, and the main lobe indicates the duration of the main lobes of their

channel responses being overlapped. This co-channel issue can last up to hundreds of time

slots, as shown in Figure 5.3, and is even worse for the wider beams around the two ends,

which will cause inevitable channel tracking error and enormous detection error for the

whole system. Therefore, this extensional work of [1] focuses on the co-channel multi-user

scenario.
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Figure 5.1: Trajectory setup for overtaking scenario with two users.

92



0 100 200 300 400 500 600 700 800

Time slot index

0

D
o

A
 (

D
ir
e

c
ti
o

n
 o

f 
A

rr
iv

a
l)

user 1

user 2

Figure 5.2: Linear DoAs (ϕk) variation versus time indices.

0 100 200 300 400 500 600 700 800

Time slot index

-0.4

-0.2

0

0.2

0.4

0.6

C
o

s
 f

u
n

c
ti
o

n
 o

f 
D

o
A

s

unresolvable range index

Figure 5.3: Nonlinear spatial resolution(cosϕk) variation versus time indices. Red points
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Figure 5.4: Interference also resembling ‘sinc’ waveform.

5.3 Data-aided channel tracking for multi-user scenario

As data-aided channel tracking methods save a great amount of resources and provide

trustable estimation result for both uplink and downlink, we will follow the similar method

via data-aided channel tracking with various multiple access strategies to deal with co-

channel multi-user channel tracking issue. Without loss of generality, we assume time-

division duplex (TDD) to explore the channel reciprocity, and only uplink channel esti-

mation is employed. In the conventional mmWave systems with channel estimation, the

three standard phases in each time slot include processing, downlink beamforming and

uplink data detection. Pilot training is typically done during the processing phase, and

this estimated CSI will be used for further downlink beamforming and uplink detection

in the same time slot. As we have discussed, with limited RF chains, to estimate the en-
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tire channel vector requires the same pilot to be repeatedly transmitted ⌈M/(KV )⌉ times,

which consumes a large amount of resources. Therefore, this work will follow the similar

data-aided channel tracking method as in [1], where the data-aided channel estimates in

the current time slot is used for downlink beamforming and uplink data detection in the

next time slot. The authors in [1] focus on single user scenario based on the assumption

that all users are well separated in angle domain, which is not always the case without

well-performed scheduling methods. However, the metric of the scheduling approach may

depend on the estimation performance. To this end, this work will focus on multi-user

scenario with co-channel issue. Through this chapter, to simplify the notations, we assume

there are two users in the single cell with DoAs of ϕ1 and ϕ2.

5.3.1 Initial channel estimation

In the initial channel estimation phase, conventional pilot training process is conducted

with orthogonal pilot sequences, thus ignoring inter-user interference. However, due to

the limited RF chains, it has to take at least ⌈M/(KV )⌉ time slots to scan the entire

antenna array since only V antenna elements can be activated during each time slot. After

repeatedly transmitting the orthogonal pilots from all users, the uplink received signal by

BS at 0 -th time slot Y0 ∈ CM×τ is given as

Y0 =
K

∑
k=1

hk,0p
T
k +N0, ∀K = 2, (5.3)

where pk ∈ Cτ×1 denotes the orthogonal pilot sequence of the k -th user with length of τ ,

hk,0 ∈ CM×1 means the channel vector of the k -th user at 0 -th time slot, and N0 ∈ CM×τ
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is additive Gaussian noise, in which each element is i.i.d. zero -mean circularly symmetric

complex Gaussian (CSCG) random variables with variance σ2n. By applying simple least

square estimator, the estimate of the k-th user will be

ĥk,0 =
Y0p

∗
k

∣∣pk∣∣2
=
hkp

T
k p
∗
k

∣∣pk∣∣2
+ ∑
k′≠k

hk′p
T
k′p
∗
k

∣∣pk∣∣2
+
N0p

∗
k

∣∣pk∣∣2
. (5.4)

With the help of orthogonal pilots p1 ∈ Cτ×1 and p2 ∈ Cτ×1, the channel estimates of two

users ĥ1,0 ∈ CM×1 and ĥ2,0 ∈ CM×1 are given as

ĥ1,0 = h1 +
N0p

∗
1

∣∣p1∣∣
2
, ĥ2,0 = h2 +

N0p
∗
2

∣∣p2∣∣
2
. (5.5)

According to the aforementioned fact, most energy concentrates on V antenna elements,

thus enabling jointly truncated channel vector with length of KV . Algorithm 2 elaborates

the method to find the indices vector of active antenna element In ∈ RKV ×1 and the resulting

jointly truncated channel vector with multiple users at the n -th time slot. By Algorithm

2, the jointly truncated channel vector for each user can be obtained as

ĥ1,t,0 = ĥ1,0[I0], ĥ2,t,0 = ĥ2,0[I0]. (5.6)

It should be noted that these active antennas will be used for DL transmission and UL

reception in the next time slot. Therefore, these initial estimates will be updated as the

estimates of the n -th time slot, which will be used in the (n + 1) -th time slot to activate

channel tracking process.
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Algorithm 2 Multi-user jointly channel truncating algorithm.

1: Identify I1,n = [v1,n ∶ v1,n + V − 1] and I2,n = [v2,n ∶ v2,n + V − 1] via Algorithm 1,
and define corresponding indices sets as I1,n = {I1,n[a]∣a = 0,1, ..., V − 1} and I2,n =
{I2,n[b]∣b = 0,1, ..., V − 1}

2: Jointly find the entire indices of active antennas In
3: if ∣I1,n ∩ I2,n∣ = 0 then
4: In being a contamination of two consecutive index segments as In =

[min (v1,n, v2,n) ∶min (v1,n, v2,n) + V − 1,max (v1,n, v2,n) ∶max (v1,n, v2,n) + V − 1]
5: else if ∣I1,n ∩ I2,n∣ = i ≠ 0 then
6: In being a consecutive index segment with number of 2V − i active antennas
7: let I′ = [min (v1,n, v2,n) ∶min (v1,n, v2,n) + 2V − 1 − i] be the ordinal indices
8: if i is even then
9: symmetrically pick i/2 indices away from both ends of I′, and check whether the

new ends reach the starting and ending index ofm ∈ [0,M−1], similar to Algorithm
1 to get starting index vn of the jointly truncated channel vector

10: else if i is odd then
11: symmetrically pick (i−1)/2 indices away from both ends of I′, and pick additional

one sample from either side with stronger energy;
12: check whether the new ends reach the starting and ending index of m ∈ [0,M −1],

similar to Algorithm 1 to get starting index vn
13: end if
14: end if
15: return In = [vn ∶ vn+2V −1] and truncated channel vector of each user as ĥ1,t,n = ĥ1[In]

and ĥ2,t,n = ĥ2,t[In];

5.3.2 Data-aided channel estimation

Assume In = [vn ∶ vn + 2V − 1], ĥ1,t,n and ĥ2,t,n obtained from the n-th time slot. At the

(n+ 1)-th time slot, the uplink received signal Yn+1 ∈ C2V ×L is the superposition of all the

users

Yn+1 =
K

∑
k=0

hk,d,n+1xk,n+1 + +Nn+1 = h1,d,n+1x
T
1,n+1 + h2,d,n+1x

T
2,n+1 +Nn+1, (5.7)
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where hk,d,n+1 = hk,n+1[In] denotes the truncated true channel vector of the k-th user

at the (n + 1) -th time slot with the active antenna indices updated from the last time

slot, Nn+1 ∈ C2V ×L is additive Gaussian noise, in which each element is i.i.d. zero-mean

circularly symmetric complex Gaussian (CSCG) random variables with variance σ2n, and L

is the length of the transmitted uplink data xk,n+1 during a single time slot. It is widely

accepted that beamspace channel vectors between any two adjacent time slots are high

correlated since multipath effect in mmWave communications is not severe. This allows us

to utilize the channel estimates ĥk,t,n from the previous time slot as the approximates of

hk,d,n+1 to do data detection in the (n + 1) -th time slot. In the following phases, we will

take user 1 as an example, and similar process can be directly adapted to user 2. Therefore,

the recovered signal x̃n+1 ∈ CL×1 via MF detector is given by

x̃1,n+1 =
YT
n+1ĥ

∗
1,t,n

∥ĥ1,t,n∥
2
. (5.8)

Since data detection is only processed within each (n + 1) -th time slot, and ĥk,d,n+1 will

be updated as ĥk,t,n at the end of each time slot, it allows us to ignore the subscript of n

and n + 1 here to achieve notational simplicity. Then equation (5.8) can be rewritten as

x̃1 =
YT ĥ∗1,t

∣∣ĥ1,t∣∣
2
=
x1h

T
1,dĥ

∗
1,t

∣∣ĥ1,t∣∣
2
+
x2h

T
2,dĥ

∗
1,t

∣∣ĥ1,t∣∣
2
+w1, (5.9)

where w1 =
NT ĥ∗1,t
∣∣ĥ1,t∣∣2

, and x̃ is subject to detection error resulting from estimation error,

inter-user interference and noise. By employing powerful channel coding methods (e.g.

Turbo codes and LDPC) with moderate interference, we are able to obtain a trustworthy

98



estimate x̂1 of the original data vector x1. At this point, the data-aided channel estimates

will be given by

ĥ1,d =
Y x̂∗1
∣∣x̂1∣∣

2
=
(h1,dx1 + h2,dx2 +N) x̂

∗
1

∣∣x̂1∣∣
2

≈ ĥ1,d +
h2,dx2x̂

∗
1

∣∣x̂1∣∣
2
+

Nx̂∗1
∣∣x̂1∣∣

2
. (5.10)

As long as the length of data sequence L is large, the second term is negligible due to

asymptotical orthogonality. Therefore, it should be noted that the estimation accuracy is

limited by the detection error, or Symbol Error Rate (SER) performance, which will be

discussed in the later part. Based on the estimation of the truncated beamspace channel

vector ĥ1,d of user 1, we need to recover the entire channel vector ĥ1 via Newton method

to facilitate the transition process which will be illustrated in the following section.

5.3.3 Transition phase

In this section, we will present a Newton method solution for this channel tracking problem,

which will be utilized by each user independently to obtain the complex gains β̂1, β̂2

and corresponding spatial signatures α̂1, α̂2. Since the indices vector In in the current

time slot will be used to obtain the truncated channel vector in the next time slot to

perform downlink transmission and uplink detection, it is critical to adaptively change the

active antenna indices to guarantee acceptable performance [1]. To this end, we need to

approximately reconstruct the estimates of the entire channel vectors of each user at the

n -th time slot as

ĥ1,n[m] = β̂1sinc(m − α̂1),

ĥ2,n[m] = β̂2sinc(m − α̂2), ∀m ∈ [0,M − 1].

(5.11)

99



To obtain a close approximation of this optimal solution, we will apply a low complexity

LS estimation via iterative Newton algorithm. First of all, it is clear that there are two

parameters to be estimated θ ≜ [αk,n+1, βk,n+1]
T
. To simplify the notations, we define the

following without subscript of user index

hr = R {hd,n+1} ,hi =F {hd,n+1} , (5.12)

ĥr = R {ĥd,n+1} , ĥi =F {ĥd,n+1} , (5.13)

βr = R {βn+1} , βi =F {βn+1} , (5.14)

β̂r = R {β̂n+1} , β̂i =F {β̂n+1} . (5.15)

To this end, we have the MLE of θ as

θ̂ = argmin
θ
∥ĥr − hr∥

2
+ ∥ĥi − hi∥

2
= argmin

θ
∥ĥs − hs∥

2, (5.16)

where ĥs and hs are defined as

ĥs = [ĥ
T
r , ĥ

T
i ]
T
,hs = [h

T
r ,h

T
i ]
T
. (5.17)

By using Newton method, we can get the estimate of θ at the (j + 1) -th iteration, namely

θ̂(j+1), based on the previous estimate at the j -th iteration θ̂(j) as

θ̂(j+1) = (SHS)
−1

SH (ĥs − s (θ̂
(j)
)) + θ̂(j), (5.18)
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where s(θ) = [sTr , s
T
i ]
T
is given as

sr(θ)[v] = βrsinc (v0,n + v − αn+1) , (5.19)

si(θ)[v] = βisinc (v0,n + v − αn+1) , ∀v ∈ [0,2V − 1], (5.20)

and S ∈ R2V ×3 is the Jacobi matrix at θ = θ̂(j):

S = [
∂hTr
∂θ

,
∂hTi
∂θ
]

T RRRRRRRRRRRRθ=θ̂(j)
. (5.21)

By doing this, the final estimate of θ̂ = [α̂n+1, β̂r, β̂i] can be obtained. Then it is clear to

backtrack the MLE of βn+1 with its real and imaginary parts as β̂n+1 = β̂r + iβ̂i. To this

end, based on the estimated α̂n+1 and β̂n+1, it is straightforward to reconstruct the entire

channel vector via channel model in section 5.1

ĥn+1[m] = β̂n+1sinc (m − α̂n+1) . (5.22)

This least square solution follows standard Newton method, which requires a carefully

chosen initial point to guarantee its fast convergence. In this design, the estimate at the

current time slot is chosen as the initial estimate in the Newton method based on the fact

of high channel correlation between any two adjacent time slots, or equivalently αn+1 ≈ αn

and βn+1 ≈ βn. Therefore, the initial estimate for the first iteration in the (n + 1)-th time

slot is chosen based on the n-th time slot channel estimation

θ̂(0) = [α̂n,R {β̂n} ,F {β̂n}] . (5.23)
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After a small number of iterations, the complete channel vector can be derived based on

the final result of θ̂. At this point, it is necessary to re-select the antenna indices to be

activated for the next time slot based on the new channel estimation result. The reason is

that the DLA array response is sliding along the entire antenna array on the focal arc as

the spatial signature changes, or equivalently as user moves inside the cell. However, with

limited RF chains, not all the antenna elements are activated. If the activated antenna

elements are not adaptively changed over time, it is impossible to receive the main lobe of

the sinc function when the main lobe of the user is moving, thus disabling the truncated

channel vector. Therefore, re-selection of the active antenna indices, based on the strongest

channel response, is critical to guarantee the validation of the truncated channel vector

with limited RF chains. Using Algorithm 2, the new active antenna indices of the current

time slot can be obtained as In+1 = [v0,n+1 ∶ v0,n+1 + 2V − 1]. As a result, the new jointly

truncated channel vector will be

ĥk,t,n+1 = ĥk,n+1[In+1]. (5.24)

For single-user scenario, this truncated channel estimation can be used for data transmis-

sion and detection in the next time slot based on the high correlation between two adjacent

time slots, i.e., ĥk,t,n ≈ ĥk,d,n+1. However, it might be a different story in multi-user sce-

nario. Due to the inter-user interference, the data detection result in the current time slot

may not be trustable enough to recover the complete channel estimation, thus causing se-

vere channel estimation error, which will be propagated into the next time slot. Therefore,

in this chapter, a new phase called Update is introduced, in which the SER performance
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would be estimated based on the truncated channel estimation in the current time slot

to determine if it could be updated for the next time slot to facilitate the whole tracking

process. The details of the Update phase will be introduced in the following part.

5.3.4 Update phase

In this section, we will introduce the Update phase and the corresponding scheduling ap-

proach based on estimated SER metric. As we can see from the main body of this data-

aided tracking process via equations (5.9) and (5.10), the majority of the channel tracking

error comes from uplink detection error, which results from estimation error at the previ-

ous time slot, inter-user interference and noise at the current time slot. As shown in [1],

in single-user scenario, noise dominates in channel tracking error, which guarantees the

accuracy of the estimates as long as the tracking process is executed frequently enough.

However, in multi-user scenario, inter-user interference can dominates in detection error

when channel vectors of multiple users are spatially unresolvable. When users are well sep-

arated, inter-user interference is at noise level, which will not degrade tracking performance

severely. However, when mobile users become too close to each other to be distinguished in

angle domain, or equivalently the main lobes of these co-channel users are overlapped, as

shown in Figure 5.4, IUI becomes severe in uplink data detection. Once the SER becomes

worse beyond a threshold ε, the system will experience outage, thus the channel tracking

process is crushed. Therefore, the next question is how to predict the SER at next time

slot based on the channel estimates in current time slot. Back to our assumption, this

is equivalent predicting the SER P̂s,n+2 at the (n + 2) -th time slot, based on the channel

estimation at (n + 1)-th time slot (i.e. ĥ1,t,n+1, ĥ2,t,n+1).
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Figure 5.5: Overlapped constellation

Assume equally likely transmitted QPSK symbols for both users. Figure 5.5 shows that

user 1’s signal constellation is in presence of the other user’s QPSK signal constellation as

IUI. Here denote each constellation point is represented by four bits (i1, i2, i3, i4), where

(i1, i2) is the QPSK symbol of user 1 and (i3, i4) denotes the one of user 2. In this case,

as user 1 has stronger energy, it implies that user 1 is closer to BS, user 2 moves towards

user 1 and becomes closer to the BS. Recall equation (5.9)

x̃1,n+2 =
YT
n+2ĥ

∗
1,t,n+1

∥ĥ1,t,n+1∥2
=
x1,n+2hT1,d,n+2ĥ

∗
1,t,n+1

∥ĥ1,t,n+1∥2
+
x2,n+2hT2,d,n+2ĥ

∗
1,t,n+1

∥ĥ1,t,n+1∥2
+w1 = g1x1+g2x2+w1,

(5.25)

where g1 =
hT1,d,n+2ĥ

∗
1,t,n+1

∥ĥ1,t,n+1∥2
and g2 =

hT2,d,n+2ĥ
∗
1,t,n+1

∥ĥ1,t,n+1∥2
. Therefore, we can see that d1 =

√
g21/2,

d2 =
√
g22/2, and w1 is additive noise with each element w as CSCG random variables with

variance σ2. It is clear that g1 represents the energy of user 1 and g2 represents the normal-

ized interference between user 1 and user 2 since we still apply MF detector here without

taking IUI issue into account. Intuitively, ZF detector is generally applied to suppress
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the IUI in multi-user scenario. To this end, denote the whole estimated channel matrix

between the BS and both users at the (n + 1) -th time slot as Ĥt,n+1 = [ĥT1,t,n+1, ĥ
T
2,t,n+1]

T
,

then the equation (5.9) for user 1 in the data detection phase is rewritten as

x̃1,n+2 = (Ĥ
H
t,n+1Ĥt,n+1)

−1
(1,∶) Ĥ

H
t,n+1 (h1,d,n+2x

T
1,n+2 + h2,d,n+2x

T
2,n+2) +w1,n+2, (5.26)

where w1,n+2 = (ĤH
t,n+1Ĥt,n+1)

−1
(1,∶) Ĥ

H
t,n+1n1,n+2 whose elements is still CSCG random vari-

ables with variance σ2. In this ZF case, it is clear to rewrite the user 1’s strength g1 and

the interference residue g2 as

g1 = (Ĥ
H
t,n+1Ĥt,n+1)

−1
(1,∶) Ĥ

H
t,n+1h1,d,n+2, g2 = (Ĥ

H
t,n+1Ĥt,n+1)

−1
(1,∶) Ĥ

H
t,n+1h2,d,n+2. (5.27)

For both detectors, g1 denotes the desired signal strength, g2 denotes the interference (or

interference residual) and w1 is the equivalent noise vector which follows the same distribu-

tion. As shown in Figure 5.5, for user 1, the blue dots are desired symbols. However, each

blue dot could be one of the four red dots surrounding it due to the interference residue.

Taking the additive CSCG noise into account, as long as the random noise does not take

the constellation points across the I or Q axis, the symbols are able to be detected correctly.

Based on this method, to obtain the closed-form expression of BER, we need to consider

the worst case where the phase shift of the whole constellation of user 2 approaches π
2 as
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shown in Figure . The BER Pi1 is given by

Pb = Pi1 = Pi2 =
1

4
(Pr (d1 −

√
2d2 < ∣w∣) + Pr (d1 +

√
2d2 < ∣w∣))

=
1

2
(Pr (

√
2

σ
wR >

√
2

σ
(d1 −

√
2d2)) + Pr (

√
2

σ
wR >

√
2

σ
(d1 +

√
2d2)))

=
1

2
(Q(

√
2d1 − 2d2
σ

) +Q(

√
2d1 + 2d2
σ

)) ,

(5.28)

where wR represents the real part of the complex random variable w, and Q function is

generally defined as Q(x) = 1√
2π ∫

∞
x exp(−u2/2)du. Then it is straightforward to calculate

SER Ps for QPSK modulation, based on the assumption P 2
b ≪ Pb

Ps = 1 − (1 − Pb)(1 − Pb)

= 2Pb − P
2
b

= Q(

√
2d1 − 2d2
σ

) +Q(

√
2d1 + 2d2
σ

) .

(5.29)

To predict the SER at the (n + 2) -th time slot, we assume h1,d,n+2 ≈ ĥ1,t,n+1 based on

the high spatial correlation between adjacent time slots. Therefore, associating parameters

with the current time slot, we get

ĝ1 = 1, ĝ2 =
ĥT2,tĥ

∗
1,t

∣ĥ1,t∣
2
, d̂1 =

√
1

2
, d̂2 =

√
ĝ∗2 ĝ2
2

. (5.30)

The resulting estimated SER for (n+2) -th time slot will be obtained based on the (n+1) -th

time slot estimates

P̂s = Q(

√
2d̂1 − 2d̂2
σ

) +Q(

√
2d̂1 + 2d̂2
σ

) . (5.31)
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All the above process can be adapted to user 2 directly. Recall the ignored subscripts,

in the previous section, we already have estimate candidates ĥ1,t,n+1 and ĥ2,t,n+1 at the

(n + 1) -th time slot. In this update phase, we need to predict the SER in next time slot

through equation (5.31). If the predicted SER does not exceed a threshold ε, which means

the detected data stream is still trustable, ĥ1,t,n+1 and ĥ2,t,n+1 will be updated as ĥ1,t,n and

ĥ2,t,n. This whole tracking process iterates as long as the SER threshold is not satisfied.

The whole proposed data-aided channel tracking algorithm for multi-user scenario is

summarized in Algorithm 3.
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Algorithm 3 Multi-user Data-aided Channel Tracking Algorithm.

Input:
Truncated channel estimates of each user at the n-th time slot, ĥk,t,n
Uplink received signal at the BS at the (n + 1)-th time slot, Yn+1
Output:
Truncated channel estimates of each user at the (n + 1)-th time slot, ĥk,t,n+1;
or scheduling method invoked and initial pilot-based channel estimation per-
formed

1: Data detection phase to obtain x̃k,n+1 through (5.8) via MF detector or through (5.26)
via ZF detector;

2: Channel decoding phase to obtain x̂k,n+1;

3: Data-aided channel estimation phase to obtain ĥk,d,n+1 through (5.10);

4: Transition phase to obtain the estimates of parameters α̂n+1 and β̂n+1 through (5.18)
via the Newtons iterative method;

5: Reconstruct the entire channel estimate at the (n+1)-th time slot ĥk,n+1 through (5.22)
based on the results from step 4;

6: Find the active antenna indices through Algorithm 2 and obtain the corresponding
individual truncated channel estimate at the (n + 1)-th time slot ĥk,t,n+1;

7: Estimate the SER performance at the (n + 2)-the time slot through (5.31), and check
the threshold ϵ

8: if P̂s ≤ ϵ then
9: Update phase processed

10: else
11: Scheduling method invoked and initial pilot-based channel estimation performed,

then back to step 1
12: end if
13: return ĥk,t,n+1;

5.4 Simulation results and outcome analysis

In this section, the numerical results for the proposed multi-user data-aided channel track-

ing system is present from different perspectives.

Assume two users in the same cell with the speeds of 150 km per hour and 360 km per

hour respectively to simulate the overtaking scenario. The reason of choosing large speed
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difference is to avoid handover operation between different cells, where user 1 is fast enough

to to chase and pass user 2 before any of the two moves out of the range of the current

cell. On the other hand, these speeds are typical for high-speed railway applications. The

radius of the cell in mmWave communications is still 250 m, the number of the antennas on

DLA at the BS is M = 128, and the number of active antenna for each user is V = 3, thus

KV antennas in total at each time slot. Here we also assume that the symbol duration is

10−6 second and the typical block length is 1000, which means that for every time slot, the

duration of the data block is 1 ms. As for mmWave communications with LoS path, the

typical path loss exponent from the experiments is within the range of [1.7,2.7], where 2

is chosen for this simulation. We set a reasonable value of the SNR as 5 since none of the

sophisticated channel coding methods is conducted in the simulation. The number of the

simulated time slots is 4000 to prevent the vehicle from moving out of the cell. According

to this setup, the trajectory of this overtaking scenario is shown in Figure 5.6, where user

1 overtakes user 2. The details of this co-channel issue analysis has been already discussed

in Section 5.2.3, which is shown in Figure 5.7, following the sinc function shape. As we

can see, the co-channel issue becomes severe, in terms of high channel correlation, around

the 2000-th time slot, which means two users are getting closer and distinguishable during

this time period.
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Figure 5.6: Trajectory setup for two-user scenario.
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Figure 5.7: Co-channel issue evaluated by the channel correlation.

There are two important metrics to evaluate the overall performance of the system.

One is the SER performance of data detection, and the other is the MSE (Mean Square

Error) of the channel estimation, which are correlated with each other. The MSE of the

channel tracking for both users is shown in Figure 5.9, while the SER performance for
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both users is shown in Figure 5.8. At the beginning of the simulation, the two users

are well separated with negligible interference, so noise dominates the channel tracking

error. This is the equivalent situation with single-user scenario in the previous chapter.

As the channel correlation becomes larger, the data detection result firstly gets worse.

This portion of error is propagated and cause a mismatching via jointly finding the active

antenna indices for the next time slot. As we can see from Figure 5.8, around 2000-th time

slot when IUI (Inter-User Interference) dominates, the SER performance sharply degrades,

thus causing large estimation error in Figure 5.9. Once the MSE of the channel estimation

becomes untrustworthy, the error propagation issue, especially the mismatching between

estimated and true active antenna indices, can not be solved until we perform another pilot-

based channel training to extract the accurate channel estimation to restart the channel

tracking system.

0 500 1000 1500 2000 2500 3000 3500 4000

Time slots index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

Simulated SER of User 1

Theoretical SER of User 1

0 500 1000 1500 2000 2500 3000 3500 4000

Time slots index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

Simulated SER of User 2

Theoretical SER of User 2

Figure 5.8: SER performance for both users
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Figure 5.9: MSE of tracking error for both users

As the proposed Algorithm 3 shows, the Update phase is used to estimate the SER

performance for the next time slot to equivalently see the channel correlation between

both user. Firstly, to verify the proposed theoretical SER performance, Figure 5.8 also

presents the theoretical SER at every time slot. As we can clearly see, the simulation

result fluctuates but follows the theoretical result very well.

Next, we will show if the estimated SER is valid to be the scheduling metric, or equiv-

alently to say how accurate by using estimated SER to approximate the true SER. This

is related to the channel tracking error. If the MSE gets larger, it is not proper to use

estimated channel vector to approximate the true channel vector in the next time slot,

thus causing inaccurate SER estimation. Figure 5.10 illustrates this accuracy with differ-

ent percentage of channel correlation under the proposed channel tracking systems with

ZF detector. As shown in Figure 5.10, all the blue lines indicate the simulation results,

red dots show the theoretical SER based on the true channel vector, while all the black

lines indicate the estimated SER based on the truncated channel estimates of the (n+1)-th
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time slot. Here, we compare the results in the cases based on different channel correlation

percentage. As we can see, as the channel correlation goes higher, the simulation results

always match the theoretical SER, which also verifies our derivation of the SER analysis

in Update phase. As the co-channel issue becomes severe, the estimated SER suffers from

larger offset from the true SER performance.

0 1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

20%

40%

60%

80%

Figure 5.10: Estimated SER performance with different channel correlation.

5.5 Summary

In this chapter, we extend the previous work with multi-user scenario by considering inter-

user interference. Firstly the spatial resolution problem is elaborated which is the greatest

motivation for the research reported in this chapter. Secondly, we propose and advanced

data-aided channel tracking system with scheduling decision based on SER prediction.
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To achieve the SER prediction, the theoretical SER performance is derived for two-user

scenario and has been verified by the simulation results. Lastly, the scheduling decision can

be made based on the analysis of the estimated SER offset from the true SER performance.

To thoroughly investigate channel tracking systems in different applications, we will present

UPA-based data-aided channel tracking algorithm to explore better resolution in the 3D

real life.
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Chapter 6

UPA-based data-aided channel

tracking framework

In the previous chapters, we have already proposed data-aided channel tracking algorithms

for mmWave massive MIMO systems with ULA and DLA respectively. In the modern

cellular network, ULA is the most popular antenna type and has been widely investigated

in various of methods to acquire the CSI. Furthermore, DLA-based systems have attracted

interest in recent years due to the low cost and complexity. However, they can only

distinguish users along the horizontal direction. As the pico-cell becomes even smaller in

5G cellular network, the resolution in the vertical direction is necessary especially in urban

area. For example, BS should be able to distinguish and schedule different users on the 3rd

and 5th floor. Therefore, mmWave massive MIMO systems with UPA is being considered

in this chapter.
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6.1 UPA-based channel response

In this section, we consider a massive MIMO system with a UPA equipped at the BS and

K single-antenna users in a single cell. At the BS, we assume a 3D coordinate, as shown

in Figure 6.1, where the UPA is placed in the xz-plane and the reference antenna element

(0,0) is placed at the origin. The number of antennas on the UPA is Mupa = Mx ×Mz,

which are equally spaced on both vertical and horizontal directions with distance d. Instead

of defining the conventional polar and azimuth angles, we define θ and ψ as the vertical

angle and the angle between received signal and x-axis. To this end, the k-th user with

arbitrary DoA can be represented as a coordinate of (dk, θk, ψk), where dk denotes the

distance between the user and BS.

Figure 6.1: UPA configuration
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As shown in Figure 6.1, we investigate the user with arbitrary DoA (θ,ψ). The prop-

agation delay at the reference antenna element is defined as (τx,0, τz,0). Along x-axis, the

delay of the antennas located at mx-th column, where mx ∈ {0,1, ...,Mx − 1}, is denoted as

τx,m = τ(x,0) −
mxd cosψ

c . Therefore the horizontal steering vector is given by

vx =
1
√
Mx

[1, e
j2πmxd cosψ

λ , ..., e
j2π(Mx−1)d cosψ

λ ]
T

. (6.1)

Similarly, along the z-axis, the delay of the antennas located at the mz-th row, where

mz ∈ {0,1, ...,Mz − 1}, is denoted as τz,m = τ(z,0) −
mzd cos θ

c . Thus the vertical steering

vector is given by

vz =
1
√
Mz

[1, e
j2πmzd cosθ

λ , ..., e
j2π(Mz−1)d cosθ

λ ]
T

. (6.2)

As a result, the channel matrix between the user and BS H ∈ CMx×Mz under slow fading is

given by

H = βejϕA = βejϕ (vz ⊗ vTx ) , (6.3)

where β is the attenuation scale factor, ejϕ denotes the random phase, and A ∈ CMx×Mz is

the steering matrix with each element given as A(mx,mz) = e
j2πd(mx cosψ+mz cosθ)

λ .

6.2 Data-aided channel tracking system

6.2.1 Initial channel estimation

At the 0 -th time slot, we still apply the uplink pilot-based channel training to get the initial

channel estimate, where TDD is assumed to explore the channel reciprocity. Suppose that
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the initial channel training is conducted using orthogonal pilot sequence for the k-th user

pk ∈ CQ×1, with length of Q and q ∈ {0,1, ...,Q − 1}. Then the uplink received signal at

q-th symbol duration Y0,q ∈ CMx×Mz is given by

Y0,q =
K

∑
k=1

H0,kpk,q +N0,q, (6.4)

where H0,k denotes the channel matrix at 0-th time slot, pk,q denotes the q-th symbol and

N0,q is CSCG noise with variance σ2n. By conducting least square estimator, the channel

estimate of the k-th user is given as

Ĥ0,k =

Q−1
∑
q=0

Y0,qp
∗
k,q

Q−1
∑
q=0
∣pk,q ∣2

=

H0,k

Q−1
∑
q=0

pk,qp
∗
k,q

∥pk∥2
+

∑
k′≠k

H0,k′
Q−1
∑
q=0

pk′,qp
∗
k,q

∥pk∥2
+

Q−1
∑
q=0

N0,qp
∗
k,q

∥pk∥2

=H0,k +N0,k,

(6.5)

where N0,k =

Q−1
∑
q=0

N0,qp
∗
k,q

∥pk∥2 is still CSCG noise. This initial channel estimate Ĥ0,k is further

used for the following data detection and channel tracking process corresponding to the

next time slot. In the following process, we assume single user scenario to explore track-

ing properties, thus getting rid of the subscript denoting user index to have Ĥ0 for data

detection in the next time slot.

6.2.2 Data-aided channel estimation

At the (n+1)-th time slot, suppose the uplink data stream xn+1 ∈ CL×1 has a block length of

L, and l ∈ {0,1, ..., L − 1}, then the received signal at l-th symbol duration Yn+1,l ∈ CMx×Mz
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is given by

Yn+1,l =Hn+1xn+1,l +Wn+1,l, (6.6)

where Hn+1 denotes the true channel matrix at (n+1)-th time slot, xn+1,l is the l -th symbol

and Wn+1,l means CSCG noise with variance σ2n. To this end, we have the entire received

data matrix during the (n+ 1)-th time slot Yn+1 ∈ CMxMz×L with the help of vectorization

on Equation (6.6)

Yn+1 = [vect{Yn+1,0} , ...,vect{Yn+1,L−1}] . (6.7)

Since the motion is normally linear and the channels are highly correlated between the

adjacent time slots, we are able to recover the transmitted signal at (n+1)-th time slot by

the assumption that Ĥn ≈Hn+1. There is also a need to do the vectorization on Ĥn to get

ĥn,v ∈ CMxMz×1 as

ĥn,v = vect(Ĥn). (6.8)

Then ZF detector is applied to recover the transmitted signal

x̃n+1 = (ĥ
H
n,vĥn,v)

−1
ĥHn,vYn+1. (6.9)

After the sophisticated channel decoder, we will have the trustable data estimate x̂n+1.

After that, the data-aided channel estimation can be conducted

ĥn+1 =
Yn+1x̂∗n+1
∥x̂n+1∥2

, (6.10)
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where ĥn+1 is the vectorization of the channel matrix estimate at (n+1)-th time slot, which

is defined as Ĥn+1 = devect (ĥn+1).

6.2.3 Transition phase

In mmWave communications, where the LoS path is predominant, spatial sparsity is widely

accepted to be exploited. Furthermore, with reasonable SNRs, the noise level could be

generally stronger the NLoS paths due to extremely high attenuation and absorption.

Therefore, the channel estimation issue is equivalent to estimate both the complex gain

and spatial signature. Recall the channel model in Equation (6.3), we can rewrite it as

H[mx,mz] = βce
mxωx+mzωz , (6.11)

where βc is the equivalent complex gain, ωx =
2πd cosψ

λ and ωz =
2πd cos θ

λ . At this point,

our target is to estimate four parameters as defined Ψ = [βr, βi, ωx, ωz]
T , where βr and

βi denote the real and imaginary part of the complex gain β respectively. Assume that

the estimation error of the vectorization form of the channel matrix at (n + 1)-th time

slot, ĥn+1, follows zero-mean Gaussian distribution, then we have the probability density

function as follows

f(ĥn+1∣βn+1, ωx,n+1, ωz,n+1) = (πσ
2
)
−MxMz exp{−

∥ĥn+1 − hn+1∥2

σ2
} , (6.12)
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where σ2 is the variance of ĥn+1[u] with u ∈ {0,1, ...,MxMz − 1}, following zero-mean

Gaussian distribution as

E {(ĥn+1 − hn+1) (ĥn+1 − hn+1)
H
} = σ2I, (6.13)

where I is a MxMz ×MxMz identity matrix. As a result, the maximum likelihood estimate

of Ψ is given as

[β̂
(ml)
n+1 , ω̂

(ml)
x,n+1, ω̂

(ml)
z,n+1] = argmax

Ψ
f(ĥn+1∣βn+1, ωx,n+1, ωz,n+1) = argmin

Ψ
∥ĥn+1 − hn+1∥

2.

(6.14)

To obtain a close approximation to this optimal solution, we will apply a low complexity

LS estimation via iterative Newton algorithm. To this end, we have the MLE of Ψ as

Ψ̂(ml) = argmin
Ψ

∥ĥr − hr∥
2
+ ∥ĥi − hi∥

2
= argmin

Ψ
∥ĥs − hs∥

2, (6.15)

where ĥs and hs are defined as

ĥs = [ĥ
T
r , ĥ

T
i ]
T
,hs = [h

T
r ,h

T
i ]
T
. (6.16)

By using Newton method, we can get the estimate of Ψ in the (j + 1)-th iteration, Ψ̂(j+1),

based on the previous estimate in the j-th iteration Ψ̂(j) as

Ψ̂(j+1) = (SHS)
−1

SH (ĥs − s (Ψ̂
(j)
)) + Ψ̂(j), (6.17)
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where s(Ψ) = [sTr , s
T
i ]
T
is given as

sr(Ψ)[u] = βre
mxωx+mzωz , (6.18)

si(Ψ)[u] = βie
mxωx+mzωz , (6.19)

and S ∈ R2MxMz×4 is the Jacobi matrix at Ψ = Ψ̂(j):

S = [
∂hTr
∂Ψ

,
∂hTi
∂Ψ
]

T RRRRRRRRRRRRΨ=Ψ̂(j)
(6.20)

This updated channel estimate is used for the data detection in the next time slot, and

then the data-aided channel estimation and iterative tracking process are used to update

the result based on current time slot. This track method is iterated to avoid resource-

consuming pilot-based channel training.

To extract the initial estimate for the iterative method, we apply 2D DFT of the data-

aided channel estimate Ĥn+1 as follows

Ĥω = FMzĤn+1F
T
Mx
≈ βcFMzvzv

T
xF

T
Mx
, (6.21)

where the DFTs are defined as

Xωx[k] ≜
Mx−1
∑
mx=0

x[mx]e
−jmxkωx,0 , (6.22)

Xωz[k] ≜
Mz−1
∑
mz=0

x[mz]e
−jmzkωz,0 , (6.23)

where ωx,0 =
2π
Mx

and ωz,0 =
2π
Mz

. Since there must be integer part and imaginary part
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satisfying ωx = (lx+αx)ωx,0 and ωz = (lz +αz)ωz,0 respectively, where lx ∈ {0,1, ...,Mx − 1},

lz ∈ {0,1, ...,Mz − 1}, αx ∈ [0,1), and αz ∈ [0,1). The two strongest samples in each

dimension, such as vω,x[lx] and vω,x[lx + 1], vω,z[lz] and vω,z[lz + 1], contain more than

80% of the total energy. Therefore, to roughly extract an initial estimate for the Newton

iteration, we can simply choose the peak indices mx,p and mz,p to construct ω̂x =mx,pωx,0

and ω̂z =mz,pωz,0 respectively.

6.3 CRLB Analysis

In this section, we will analyze the CRLB of the channel estimation error in UPA scenario

based on the Fisher matrix derivation. Here, to simplify the final CRLB expression, we

redefine the targeting estimated parameters as Ψ = [β,ϕ,ωx, ωz] by adopting the original

channel model in Equation (6.3). Following the process described in the previous chap-

ters, by getting rid of the time index subscripts, the probability density function of the

vectorization form of the channel matrix ĥ is given by

f(ĥ∣β,ϕ,ωx, ωz) = (πσ
2
)
−MxMz exp{−

∥ĥ − h∥2

σ2
} , (6.24)

where σ2 is the variance of ĥ[u] with u ∈ {0,1, ...,MxMz − 1}, following zero-mean Gaussian

distribution as

E {(ĥ − h) (ĥ − h)
H
} = σ2I, (6.25)

where I is a MxMz ×MxMz identity matrix.
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Then the log-likelihood function is given as

l(ĥ∣β,ϕ,ωx, ωz) = ln f

= −MxMz ln (πσ
2) −

∥ĥ − h∥2

σ2

= −MxMz ln (πσ
2) −

∥ĥr − hr∥
2

σ2
−
∥ĥi − hi∥

2

σ2
,

(6.26)

which is based on the fact that ∥ĥ − h∥2 = ∥ĥr − hr∥
2 + ∥ĥi − hi∥

2.

According to the Fisher information matrix

F = E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ∂l∂β)
2

∂l
∂β

∂l
∂ϕ

∂l
∂β

∂l
∂ωx

∂l
∂β

∂l
∂ωz

∂l
∂ϕ

∂l
∂β ( ∂l∂ϕ)

2
∂l
∂ϕ

∂l
∂ωx

∂l
∂ϕ

∂l
∂ωz

∂l
∂ωx

∂l
∂β

∂l
∂ωx

∂l
∂ϕ ( ∂l

∂ωx
)
2

∂l
∂ωx

∂l
∂ωz

∂l
∂ωz

∂l
∂β

∂l
∂ωz

∂l
∂ϕ

∂l
∂ωz

∂l
∂ωx

( ∂l
∂ωz
)
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6.27)

we need to derive the first-order partial derivatives as following

∂l

∂β
=

2

σ2
[(ĥr − hr)

T ∂hr
∂β
+ (ĥi − hi)

T ∂hi
∂β
] ,

∂l

∂ϕ
=

2

σ2
[(ĥr − hr)

T ∂hr
∂ϕ
+ (ĥi − hi)

T ∂hi
∂ϕ
] ,

∂l

∂ωx
=

2

σ2
[(ĥr − hr)

T ∂hr
∂ωx
+ (ĥi − hi)

T ∂hi
∂ωx
] ,

∂l

∂ωz
=

2

σ2
[(ĥr − hr)

T ∂hr
∂ωz
+ (ĥi − hi)

T ∂hi
∂ωz
] ,

(6.28)

with the partial derivative of each antenna element with respect to the estimation param-
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eters given by

∂hr[u]

∂β
= cos (mxωx +mzωz + ϕ),

∂hi[u]

∂β
= sin (mxωx +mzωz + ϕ),

∂hr[u]

∂ϕ
= −β sin (mxωx +mzωz + ϕ),

∂hi[u]

∂ϕ
= β cos (mxωx +mzωz + ϕ),

∂hr[u]

∂ωx
= −βmx sin (mxωx +mzωz + ϕ),

∂hi[u]

∂ωx
= βmx cos (mxωx +mzωz + ϕ),

∂hr[u]

∂ωz
= −βmz sin (mxωx +mzωz + ϕ),

∂hi[u]

∂ωz
= βmz cos (mxωx +mzωz + ϕ).

(6.29)

Furthermore we also need to derive the expectations of the corresponding quadratic terms

as shown

E {(
∂l

∂β
)

2

} =
2

σ2
(∣
∂hr
∂β
∣

2

+ ∣
∂hi
∂β
∣

2

) ,

E {(
∂l

∂ϕ
)

2

} =
2

σ2
(∣
∂hr
∂ϕ
∣

2

+ ∣
∂hi
∂ϕ
∣

2

)

E {(
∂l

∂ωx
)

2

} =
2

σ2
(∣
∂hr
∂ωx
∣

2

+ ∣
∂hi
∂ωx
∣

2

) ,

E {(
∂l

∂ωz
)

2

} =
2

σ2
(∣
∂hr
∂ωz
∣

2

+ ∣
∂hi
∂ωz
∣

2

) ,

E {
∂l

∂β

∂l

∂ϕ
} =

2

σ2
(
∂hTr
∂β

∂hr
∂ϕ
+
∂hTi
∂β

∂hTi
∂ϕ
) ,

E {
∂l

∂β

∂l

∂ωx
} =

2

σ2
(
∂hTr
∂β

∂hr
∂ωx
+
∂hTi
∂β

∂hTi
∂ωx
) ,

E {
∂l

∂β

∂l

∂ωz
} =

2

σ2
(
∂hTr
∂β

∂hr
∂ωz
+
∂hTi
∂β

∂hTi
∂ωz
) ,

E {
∂l

∂ϕ

∂l

∂ωx
} =

2

σ2
(
∂hTr
∂ϕ

∂hr
∂ωx
+
∂hTi
∂ϕ

∂hTi
∂ωx
) ,

E {
∂l

∂ϕ

∂l

∂ωz
} =

2

σ2
(
∂hTr
∂ϕ

∂hr
∂ωz
+
∂hTi
∂ϕ

∂hTi
∂ωz
) ,

E {
∂l

∂ωx

∂l

∂ωz
} =

2

σ2
(
∂hTr
∂ωx

∂hr
∂ωz
+
∂hTi
∂ωx

∂hTi
∂ωz
) ,

(6.30)

125



At this point, recall Ψ = [β,ϕ,ωx, ωz]
T , the Fisher information matrix can be rewritten as

F =
2

σ2
HTH, (6.31)

where the Jacobi matrix H is given as

H = [
∂hTr
∂Ψ

,
∂hTi
∂Ψ
]

T

. (6.32)

To be specific, the rewritten Fisher information matrix is given as

F =
2

σ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MxMz 0 0 0

0 β2MxMz β2Mz∑mxmx β2Mx∑mzmz

0 β2Mz∑mxmx β2Mz∑mxm
2
x β2∑mx,mzmxmz

0 β2Mx∑mzmz β2∑mx,mzmxmz β2Mx∑mzm
2
z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.33)
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with the symmetrical elements

F[1,1] =∑
u

cos2∆ + sin2∆ =MxMz,

F[2,2] =∑
u

β2 sin2∆ + β2 cos2∆ = β2MxMz,

F[3,3] =Mz∑
mx

β2m2
x sin

2∆ + β2m2
x cos

2∆ = β2Mz∑
mx

m2
x ≈ β

2Mz
M3
x

3
,

F[4,4] =Mx∑
mz

β2m2
z sin

2∆ + β2m2
z cos

2∆ = β2Mx∑
mz

m2
z ≈ β

2Mx
M3
z

3
,

F[1,2] = F[1,3] = F[1,4] = 0,

F[2,3] =Mz∑
mx

β2mx sin
2∆ + β2mx cos

2∆ = β2Mz∑
mx

mx = β
2Mz

Mx(Mx − 1)

2
,

F[2,4] =Mx∑
mz

β2mz sin
2∆ + β2mz cos

2∆ = β2Mx∑
mz

mz = β
2Mx

Mz(Mz − 1)

2
,

F[3,4] =∑
u

β2mxmz sin
2∆ + β2mxmz cos

2∆ = β2 ∑
mx,mz

mxmz = β
2Mz

MxMz(Mx − 1)(Mz − 1)

4
,

(6.34)

where ∆ = mxωx +mzωz + ϕ and the approximation is based on the fact that ∑N−1n=0 n
2 =

(N−1)N(2N−1)
6 ≈ N3

3 when N is large. To further explore the estimation error of each

parameter in Ψ, we need to derive the inverse of the Fisher information matrix based on

the block matrix inversion theorem, which is given as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

C D

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(A −BD−1C)
−1

− (A −BD−1C)
−1

BD−1

−D−1C (A −BD−1C)
−1

D−1 +D−1C (A −BD−1C)
−1

BD−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.35)
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Here we assume A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

MxMz 0

0 β2MxMz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B = CT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

β2Mz∑mxmx β2Mx∑mzmz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and D = β2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mz∑mxm
2
x ∑mx,mzmxmz

∑mx,mzmxmz Mx∑mzm
2
z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Then we are able to derive the diagonal

elements of the inverse of the Fisher information matrix given as

F−1[1,1] =
σ2

2β2M2
xM

2
z

(MxMz −
3Mx(Mx − 1)

Mx + 1
−
3Mz(Mz − 1)

Mz + 1
) ∼

σ2

2β2MxMz
, (6.36)

F−1[2,2] =
σ2

2β2MxMz
, (6.37)

F−1[3,3] =
6σ2

β2Mz (M3
x −Mx)

∼
6σ2

β2MzM3
x

, (6.38)

F−1[4,4] =
6σ2

β2Mx (M3
z −Mz)

∼
6σ2

β2MxM3
z

. (6.39)

As we can see that a larger UPA, along both vertical and horizontal directions, helps to

increase the accuracy of the channel tracking. We can also see that the lower bounds of

tracking error are all proportional to the variance of the noise σ2, which also means to be

inversely proportional to the length of the data sequence N . Therefore, it can improve the

channel tracking accuracy by increasing the data block size.

6.3.1 Simulation results and outcome analysis

For the proposed data aided channel tracking system with UPA, there are some important

parameters, the data block length N , the number of antennas at the BS/RSU (Road Side

Unit) and SNR. Based on the above theoretical analysis, in this section, we will conduct

simulations to evaluate the impacts of these parameters on channel tracking performance
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with spatial signature estimation for both vertical and horizontal directions.

To set up the whole system, we still assume TDD to explore channel reciprocity, and

single user scenario. Therefore, we only need to conduct uplink channel estimation, and

downlink data transmission is able to apply the same estimate via feedback channel with

negligible delay. Be consistent with the aforementioned setup environment, the BS/RSU

is deployed with large UPA with Mx × Mz antenna elements, and only one user with

single antenna is moving within the cell with speed of 360 km per hour, or equivalently

100meter per second, which is the typical speed for the Chinese high-speed railway system.

Throughout the simulation, the modulation scheme is QPSK, the block length of data

transmission is N and the symbol duration is 1 ms. The length of the training pilot is set

to be 100 to get decent initial channel estimation, and the path loss exponent is chosen to

be 2 due to the LoS path only.

Next we will demonstrate the impacts on the accuracy performance associated with

parameters Mx and Mz, in terms of the physical size of UPA array. As we can see from

Figures 6.2, the numbers of antennas are varying with 25 × 25, 50 × 50 and 75 × 75. As we

increase M , the accuracy can be enhanced by an order of magnitude. Recall the closed-

form CRLBs of UPA-based channel tracking errors from equations (6.36) to (6.39), they

are all inversely proportional to Mx and Mz, which is verified by our simulation results.

Intuitively, more antennas at receiver side provide a higher power gain which improves the

data detection accuracy, thus boosting the channel tracking performance. Especially for

the accuracy of spatial signature estimation along both directions, the sparsity is more

obvious as we increase the number of antennas in the corresponding direction as shown in

Equations (6.38) and (6.39).
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Figure 6.2: NMSE and CRLB of tracking error with different M.

Last but not the least, we will see the impact of the block length N on the channel

tracking performance in Figure 6.3. Also recall the close-form CRLBs from equations (6.36)

to (6.39), all of them are proportional to the noise variance σ2, which means longer data

sequence helps to suppress the noise. Every time we double the block length N , the NMSE

increases by a factor of two. On the other hand, we are not able to use very large block

length N since we need to use the previous channel estimates to approximate the current

CSI to facilitate data-aided channel tracking process. As a result, the channel states of

adjacent time slots have to be highly correlated, which requires a reasonable block length.
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Figure 6.3: NMSE and CRLB of tracking error with different N.

6.4 Summary

In this chapter, a UPA-based data-aided channel tracking framework is presented for

mmWave massive MIMO system with limited RF chains. Firstly the UPA array response

has been carefully derived. Different from ULA case, 2D DFT is applied to extract spatial

signatures on both vertical and horizontal directions. Based on this, Newton-method based

channel tracking algorithm is also proposed, and the corresponding CRLB is derived with

closed-form expressions. From the numerical results, we can clearly see that our proposed

data-aided channel tracking system approaches the CRLB very well.
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Chapter 7

Conclusions and future work

This thesis has presented the channel modeling, algorithm design and performance analysis

on data-aided channel tracking for hybrid massive MIMO systems in millimeter wave com-

munications. Thorough simulations have been conducted to verify the theoretical deriva-

tions.

7.1 Summary of contributions

• ULA-based data-aided channel tracking

The ULA-based data-aided channel tracking method for mmWave massive MIMO

system is presented. The basic idea of data-aided channel tracking is the high corre-

lation between channels between the adjacent time slots. This makes it possible to

employ the channel estimate from the previous time slot to detect the data stream

in the current time slot. The theoretical close-form CRLBs with respect to spatial

signature estimation and conventional DoA estimation are both derived, and verified
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by the simulation results.

• DLA-based data-aided channel tracking

The DLA-based data-aided channel tracking method for mmWave massive MIMO

system is presented, which is a reproduction of a reference paper [1]. However,

the closed-form CRLB is missing in this paper. Therefore, we carefully gave the

detailed derivation of the closed-form expression for CRLB by solving the complicated

summations with DFT properties. We also showed that DLA is not suitable for

massive MIMO systems due to the overhead of the very large focal arc requirement.

Even though it achieves dramatically low cost and complexity, the physical size of

DLA is the biggest limitation for practical deployment.

• DLA-based multi-user channel tracking

The DLA-based channel tracking method is extended for the multi-user case. The

motivation of this work is the high channel correlation between users in the same

beam where the BS is not able to distinguish them. To solve this problem, we need

a metric to tell BS when to schedule user into different groups to avoid unacceptable

channel tracking performance. The key idea is to estimate the SER performance in

the next time slot via the channel estimate in the current time slot. The theoretical

SER expression for two-user scenario is derived, and verified by the simulation results.

Based on the estimated SER performance, simple group scheduling can avoid channel

tracking degradation.

• UPA-based data-aided channel tracking

A UPA-based data-aided channel tracking method for mmWave massive MIMO sys-
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tem is proposed. The motivation of exploiting UPA antenna type is to adapt our

channel tracking system to urban cellular network, where the BS need to distinguish

different signal sources on the vertical direction. Followed by deriving the UPA array

response, we found the 2D spatial sparsity and proposed 2D DFT to extract the

spatial signatures on both vertical and horizontal directions. To reduce the complex-

ity overhead, a truncated channel matrix is also employed. At last, the theoretical

closed-form expression of CRLB is also derived and verified by the simulation results.

To summarize, the complexity comparison of three different antenna types is shown

in Figure 7.1, where the complexities for inversion operation and FFT operation are pre-

sented with respect to entire channel representation and truncated channel representation

respectively. The reason is that these two operations compose the majority of the overall

complexity in data-aided channel tracking system we proposed.

Figure 7.1: Complexity comparison of three different antenna types.

From Figure 7.1, we can see DLA-based system obviously is with the lowest consump-

tion and complexity. However, as we have discussed in Chapter 4, the optical characteristics

of DLA results in very large physical size by adapting massive MIMO, thus preventing it
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from practical deployment. Therefore, we can conclude that ULA and UPA are still the

commonly used antenna types in real life. To be specific, the combination of ULA and

UPA is popular for urban area that benefits from the 2D resolution of UPA, whereas ULA

only is a more economical choice for rural area.

7.2 Future work

In this thesis, the channel tracking systems with various antenna types have been investi-

gated, and the multi-user scenario is also analyzed. As future work, the following issues

could be considered.

• Doppler compensation

Throughout the entire thesis, one of the critical assumptions is that Doppler ef-

fect has been compensated at the RF end by PLLs. However, this part would be

quite challenging and requires complicated hardware design. A better solution is to

compensate Doppler shift on the baseband signal. In the future, the joint spatial-

signature-Doppler estimation is possible by considering the temporal sparsity as well

in mmWave communications. The idea in [92] could be referred to, where 2D DFT

is performed to do joint angle-Doppler estimation.

• Sophisticated user scheduling

In this thesis, we proposed an estimated SER based scheduling metric, but did not

propose any sophisticated user scheduling method. This related work could be done in

the future by further taking achievable rate into account to guarantee the fairness and

QoS. This is also an alive research area about exploiting beamforming, user scheduling
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and resource allocation, especially for hybrid analog-digital communication systems

with limited RF chains.

• Downlink channel estimation

Throughout the thesis, another critical assumption is that only uplink channel track-

ing (estimation) is considered. For downlink data transmission, we assume a reliable

feedback channel to feedback the estimated CSI to users without delay to perform

data detection. In the future, the downlink channel estimation could also be investi-

gated.
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[38] J. Rodŕıguez-Fernández, N. González-Prelcic, K. Venugopal, and R. W. Heath.

Frequency-domain compressive channel estimation for frequency-selective hybrid

millimeter wave mimo systems. IEEE Transactions on Wireless Communications,

17(5):2946–2960, May 2018.

141



[39] M. N. Kulkarni, A. Ghosh, and J. G. Andrews. A comparison of mimo techniques in

downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans-

actions on Communications, 64(5):1952–1967, 2016.

[40] A. Morsali, A. Haghighat, and B. Champagne. Generalized framework for hybrid

analog/digital signal processing in massive and ultra-massive-mimo systems. IEEE

Access, 8:100262–100279, 2020.

[41] Z. Guo, X. Wang, and W. Heng. Millimeter-wave channel estimation based on 2-

D beamspace MUSIC method. IEEE Transactions on Wireless Communications,

16(8):5384–5394, Aug. 2017.

[42] H. Lin, F. Gao, S. Jin, and G. Y. Li. A new view of multi-user hybrid massive MIMO:

Non-orthogonal angle division multiple access. IEEE Journal on Selected Areas in

Communications, 35(10):2268–2280, Oct. 2017.

[43] D. Fan, F. Gao, Y. Liu, Y. Deng, G. Wang, Z. Zhong, and A. Nallanathan. Angle

domain channel estimation in hybrid millimeter wave massive mimo systems. IEEE

Transactions on Wireless Communications, 17(12):8165–8179, 2018.

[44] D. Fan, F. Gao, G. Wang, Z. Zhong, and A. Nallanathan. Channel estimation and

transmission strategy for hybrid mmwave noma systems. IEEE Journal of Selected

Topics in Signal Processing, 13(3):584–596, 2019.

[45] J.B. Andersen, J. Jensen, S.H. Jensen, and F. Frederiksen. Prediction of future

fading based on past measurements. In Gateway to 21st Century Communications

Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat.

No.99CH36324), volume 1, pages 151–155 vol.1, 1999.

[46] J. K. Hwang and J.H. Winters. Sinusoidal modeling and prediction of fast fading

142



processes. In IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), volume 2, pages

892–897 vol.2, 1998.

[47] L. Dong, G. Xu, and H. Ling. Prediction of fast fading mobile radio channels in wide-

band communication systems. In GLOBECOM’01. IEEE Global Telecommunications

Conference (Cat. No.01CH37270), volume 6, pages 3287–3291 vol.6, 2001.

[48] R. Vaughan, P. Teal, and R. Raich. Short-term mobile channel prediction using

discrete scatterer propagation model and subspace signal processing algorithms. In

Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehic-

ular Technology Conference (Cat. No.00CH37152), volume 2, pages 751–758 vol.2,

2000.

[49] J. Maurer, T. Fugen, and W. Wiesbeck. Narrow-band measurement and analy-

sis of the inter-vehicle transmission channel at 5.2 ghz. In Vehicular Technology

Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat.

No.02CH37367), volume 3, pages 1274–1278 vol.3, 2002.

[50] R. Roy and T. Kailath. Esprit-estimation of signal parameters via rotational invari-

ance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,

37(7):984–995, 1989.

[51] R. O. Adeogun, P. D. Teal, and P. A. Dmochowski. Extrapolation of mimo mobile-

to-mobile wireless channels using parametric-model-based prediction. IEEE Trans-

actions on Vehicular Technology, 64(10):4487–4498, 2015.

[52] M. Sharif and B. Hassibi. On the capacity of mimo broadcast channels with partial

side information. IEEE Transactions on Information Theory, 51(2):506–522, 2005.

[53] M. Sharif and B. Hassibi. A comparison of time-sharing, dpc, and beamforming for

143



mimo broadcast channels with many users. IEEE Transactions on Communications,

55(1):11–15, 2007.

[54] D. Aktas, M.N. Bacha, J.S. Evans, and S.V. Hanly. Scaling results on the sum

capacity of cellular networks with mimo links. IEEE Transactions on Information

Theory, 52(7):3264–3274, 2006.

[55] T. L. Marzetta. How much training is required for multiuser mimo? In 2006 Fortieth

Asilomar Conference on Signals, Systems and Computers, pages 359–363, 2006.

[56] J. Vanderpypen and L. Schumacher. Mimo channel prediction using esprit based

techniques. In 2007 IEEE 18th International Symposium on Personal, Indoor and

Mobile Radio Communications, pages 1–5, 2007.

[57] H. Shirani-Mehr, D. N. Liu, and G. Caire. Channel state prediction, feedback and

scheduling for a multiuser mimo-ofdm downlink. In 2008 42nd Asilomar Conference

on Signals, Systems and Computers, pages 136–140, 2008.

[58] Z. Shen, K. Xu, Y. Wang, and W. Xie. Angle-domain channel tracking for high

speed railway communications with massive ula. In 2018 IEEE 18th International

Conference on Communication Technology (ICCT), pages 159–165, 2018.

[59] X. Gao, L. Dai, Y. Zhang, T. Xie, X. Dai, and Z. Wang. Fast channel tracking

for terahertz beamspace massive mimo systems. IEEE Transactions on Vehicular

Technology, 66(7):5689–5696, 2017.

[60] S.M. Kay and S.L. Marple. Spectrum analysis—a modern perspective. Proceedings

of the IEEE, 69(11):1380–1419, 1981.

[61] A. Duel-Hallen, Hu. S., and H. Hallen. Long-range prediction of fading signals. IEEE

Signal Processing Magazine, 17(3):62–75, 2000.

144



[62] K.E. Baddour and N.C. Beaulieu. Autoregressive modeling for fading channel simu-

lation. IEEE Transactions on Wireless Communications, 4(4):1650–1662, 2005.

[63] P. Stoica, R. L. Moses, et al. Spectral analysis of signals. 2005.

[64] A. Duel-Hallen. Fading channel prediction for mobile radio adaptive transmission

systems. Proceedings of the IEEE, 95(12):2299–2313, 2007.

[65] J. G. Proakis. Digital Communications 5th Edition. McGraw Hill, 2007.

[66] D. Schafhuber and G. Matz. Mmse and adaptive prediction of time-varying channels

for ofdm systems. IEEE Transactions on Wireless Communications, 4(2):593–602,

2005.

[67] S. Semmelrodt and R. Kattenbach. Investigation of different fading forecast schemes

for flat fading radio channels. In 2003 IEEE 58th Vehicular Technology Conference.

VTC 2003-Fall (IEEE Cat. No.03CH37484), volume 1, pages 149–153 Vol.1, 2003.

[68] C.Y. Fung and S.C. Chan. Estimation of fast fading channel in impulse noise environ-

ment. In 2002 IEEE International Symposium on Circuits and Systems. Proceedings

(Cat. No.02CH37353), volume 4, pages IV–IV, 2002.

[69] K. E. Baddour, C. C. Squires, and T. J. Willink. Mobile channel prediction with

application to transmitter antenna selection for alamouti systems. In IEEE Vehicular

Technology Conference, pages 1–6, 2006.

[70] Z. Liu, X. Ma, and G.B. Giannakis. Space-time coding and kalman filtering for time-

selective fading channels. IEEE Transactions on Communications, 50(2):183–186,

2002.

[71] B. Balakumar, S. Shahbazpanahi, and T. Kirubarajan. Joint mimo channel tracking

and symbol decoding using kalman filtering. IEEE Transactions on Signal Processing,

145



55(12):5873–5879, 2007.

[72] H. Li, Y. Wang, M. Jiang, and D. Yuan. Doubly selective fading channel tracking

based on particle filter in mimo-ofdm systems. In 2007 International Symposium on

Microwave, Antenna, Propagation and EMC Technologies for Wireless Communica-

tions, pages 1084–1087, 2007.

[73] X. Zhang, P. Xiao, D. Ma, and J. Wei. Variational-bayes-assisted joint signal detec-

tion, noise covariance estimation, and channel tracking in mimo-ofdm systems. IEEE

Transactions on Vehicular Technology, 63(9):4436–4449, 2014.

[74] Y. Wang, Y. Wang, S. Zhang, and H. Cen. Channel tracking and transmission design

in 5g large-scale mimo system. IEEE Access, 7:62032–62041, 2019.

[75] R. Chopra and C. R. Murthy. Data aided mse-optimal time varying channel tracking

in massive mimo systems. IEEE Transactions on Signal Processing, 69:4219–4233,

2021.

[76] J. K. Tugnait, S. He, and H. Kim. Doubly selective channel estimation using expo-

nential basis models and subblock tracking. IEEE Transactions on Signal Processing,

58(3):1275–1289, 2010.

[77] C. Zhang, J. Zhang, Y. Huang, and L. Yang. Location-aided channel tracking and

downlink transmission for hst massive mimo systems. IET Commun., 11:2082–2088,

2017.

[78] K. Xu, Z. Shen, Y. Wang, and X. Xia. Location-aided mmimo channel tracking

and hybrid beamforming for high-speed railway communications: An angle-domain

approach. IEEE Systems Journal, 14(1):93–104, 2020.

[79] P. Kela, M. Costa, J. Turkka, M. Koivisto, J. Werner, A. Hakkarainen, M. Valkama,

146



R. Jantti, and K. Leppanen. Location based beamforming in 5g ultra-dense networks.

In 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pages 1–7, 2016.

[80] J. Zhao, H. Xie, F. Gao, W. Jia, S. Jin, and H. Lin. Time varying channel tracking

with spatial and temporal bem for massive mimo systems. IEEE Transactions on

Wireless Communications, 17(8):5653–5666, 2018.

[81] I. M. Baby, K. Appaiah, and R. Chopra. Optimal channel tracking and power allo-

cation for time varying fdd massive mimo systems. IEEE Transactions on Commu-

nications, 70(2):1229–1244, 2022.

[82] G.B. Giannakis and C. Tepedelenlioglu. Basis expansion models and diversity tech-

niques for blind identification and equalization of time-varying channels. Proceedings

of the IEEE, 86(10):1969–1986, 1998.

[83] S. He and J. K. Tugnait. Decision-directed tracking of doubly-selective channels using

exponential basis models. In 2008 IEEE International Conference on Communica-

tions, pages 5098–5102, 2008.

[84] D.K. Borah and B.T. Hart. Frequency-selective fading channel estimation with a

polynomial time-varying channel model. IEEE Transactions on Communications,

47(6):862–873, 1999.

[85] D. Hu, X. Wang, and L. He. A new sparse channel estimation and tracking method for

time-varying ofdm systems. IEEE Transactions on Vehicular Technology, 62(9):4648–

4653, 2013.

[86] M. Martone. Wavelet-based separating kernels for array processing of cellular

ds/cdma signals in fast fading. IEEE Transactions on Communications, 48(6):979–

995, 2000.

147



[87] T. Zemen and C.F. Mecklenbrauker. Time-variant channel estimation using discrete

prolate spheroidal sequences. IEEE Transactions on Signal Processing, 53(9):3597–

3607, 2005.

[88] F. Talaei, J. Zhan, and X. Dong. Low complexity mimo channel prediction for fast

time-variant vehicular communications channels based on discrete prolate spheroidal

sequences. IEEE Access, 9:23398–23408, 2021.

[89] A.M. Sayeed, A. Sendonaris, and B. Aazhang. Multiuser detection in fast-fading

multipath environments. IEEE Journal on Selected Areas in Communications,

16(9):1691–1701, 1998.

[90] M. Wax and T. Kailath. Detection of signals by information theoretic criteria. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 33(2):387–392, 1985.

[91] E. Fishler, M. Grosmann, and H. Messer. Detection of signals by information theo-

retic criteria: general asymptotic performance analysis. IEEE Transactions on Signal

Processing, 50(5):1027–1036, 2002.

[92] Zijun Gong, Cheng Li, Fan Jiang, and Moe Z. Win. Data-aided doppler compensation

for high-speed railway communications over mmwave bands. IEEE Transactions on

Wireless Communications, 20(1):520–534, 2021.

[93] M. A. Al-Joumayly and N. Behdad. Wideband planar microwave lenses using sub-

wavelength spatial phase shifters. IEEE Transactions on Antennas and Propagation,

59(12):4542–4552, 2011.

148



Appendix A

DLA-based array response

According to [2], the DLA-based array response follows ‘sinc’ function which explores

the spatial sparsity. Next, we will follow the similar methodology in [2] to derive the

array response mathematically. As shown in Figure 1.1, we denote ϕp as the physical

angle of the uniform plane wave, x0(ϕp) as the impinging signal at the center of the lens

aperture, rm(ϕp) as the resulting signal received by the m-th antenna on the focal arc,

and a(ϕp) ∈ CM×1 as the array response whose elements are defined by the ratio am(ϕp) ≜

rm(ϕp)/x0(ϕp). The methodology to derive the array response follows the properties of the

EM lens. Let’s set B0 as the reference point, and denote the phase shift profile as Φ(y, x)

to represent the phase delay relative to B0 by the optical characteristics of the lens at any

point (0, y, z) on the aperture. Therefore, the goal is to achieve constructive superposition

of the corresponding phase of all rays at reference point B0 [93]. With B0(F,0,0) and any

x(0, y, z) on the lens, the distance between them can be calculated as d(y, z,B0), then we
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Figure 1.1: DLA response derivation [2].

have

Φ(y, z) = Φ0 − k0d(y, z,B0) = Φ0 − k0
√
F 2 + y2 + z2, (A.1)

k0 = 2π/λ, (A.2)

∀(y, z) ∈ [−
Dy

2
,
Dy

2
] × [−

Dz

2
,
Dz

2
] . (A.3)

Based on the phase shift profile on the reference pointB0, for an arbitrary pointB(F cos θ,−F sin θ,0)

on the focal arc as shown in Figure 1.1, the resulting phase delay ψ(y, z,B) is given by:

ψ(y, z,B) = Φ(y, z) + k0d(y, z,B)

= Φ(y, z) + k0

√

(F cos θ)2 + (−F sin θ − y)2 + z2

= Φ(y, z) + k0
√
F 2 (cos θ2 + sin θ2) + y2 + z2 + 2yF sin theta

= Φ0 − k0
√
F 2 + y2 + z2 + k0

√
F 2 (cos θ2 + sin θ2) + y2 + z2 + 2yF sin θ.

(A.4)
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If we take Taylor expansion on the third term, the original function of F is given by

f(F ) =
√

(F + y sin θ)2 + y2 + z2 − y2 sin2 θ. (A.5)

Let F = F + y sin θ, then

f(F ) =
√

F 2 + y2 + z2 − y2 sin2 θ, (A.6)

which will be expanded on the point F0 = F with the first-order derivative of the original

function is given by
∂f(F )

∂F
=
1

2

1
√
F 2 + y2 + z2 − y2 sin2 θ

2F

=
F

√
F 2 + y2 + z2 − y2 sin2 θ

.

(A.7)

Based on the assumption F ≫ Dy,Dz, higher-order terms are negligible, so it can be

approximated as the first-order Taylor expansion as

f(F ) ≈ f(F ) +
∂f(F )

∂F
(F − F0)

=

√

F 2 + y2 + z2 − y2 sin2 θ +
F

√
F 2 + y2 + z2 − y2 sin2 θ

y sin θ

≈
√
F 2 + y2 + z2 +

F
√
F 2 + y2 + z2

y sin θ1

≈
√
F 2 + y2 + z2 + y sin θ2.

(A.8)

To this end, the resulting phase delay on point B of (A.4) can be rewritten as

ψ(y, z,B) ≈ Φ0 − k0
√
F 2 + y2 + z2 + k0

√
F 2 + y2 + z2 + k0y sin θ

= Φ0 + k0y sin θ.

(A.9)
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Next, we will take this phase delay into account to see the resulting received signal.

Let s(y, z) denote the input signal on the EM lens coming from the direction of ϕp. For

uniform incident plane waves, it is widely accepted that s(y, z) = s(y) as elevation AoA is

ignored. Recall that x0(ϕp) is the impinging signal at the center of the lens aperture, then

we have

s(y) =
1

λ
√
DyDz

x0(ϕp)e
j 2π
λ
y sinϕp . (A.10)

Then the received signal on the focal arc will be

rm(ϕp) = ∫
Dz/2

−Dz/2
∫

Dy/2

−Dy/2
s(y, z)e−jψ(y,z,θm)dydz

≈Dz ∫

Dy/2

−Dy/2
s(y)e−j(Φ0+ 2π

λ
y sin θm)dy

=Dze
−jΦ0
∫

Dy/2

−Dy/2
s(y)e−j

2π
λ
y sin θmdy.

(A.11)

To facilitate our derivation, we denote D =Dy/λ, ỹ = y/λ, θ̃m = sin θm, ϕ̃p = sinϕp, and the

linear scaling of the s(y) as s̃(ỹ) = λs(λỹ). Then the equation (A.11) will be rewritten as

rm(ϕp) =Dze
−jΦ0
∫

D/2

−D/2
λ

1

λ
√
DyDz

x0(ϕp)e
j 2π
λ
λỹϕ̃pe−j2πỹθ̃mdỹ

=

¿
Á
ÁÀDz

Dy
x0(ϕp)e

−jΦ0
∫

D/2

−D/2
e−j2πỹ(θ̃m−ϕ̃p)dỹ

=

¿
Á
ÁÀDz

Dy
x0(ϕp)e

−jΦ0
∫

D/2

−D/2
cos (2π(θ̃m − ϕ̃p)ỹ) − i sin (2π(θ̃m − ϕ̃p)ỹ)dỹ

=

¿
Á
ÁÀDz

Dy
x0(ϕp)e

−jΦ0 [
1

2π(θ̃m − ϕ̃p)
sin (2π(θ̃m − ϕ̃p)ỹ) +

i

2π(θ̃m − ϕ̃p)
cos (2π(θ̃m − ϕ̃p)ỹ)]∣

D/2

−D/2

=

¿
Á
ÁÀDz

Dy
x0(ϕp)e

−jΦ0D
sin (πD(θ̃m − ϕ̃p))

πD(θ̃m − ϕ̃p)
.

(A.12)
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With A ≜
DyDz
λ2

, θ̃m ≜ sin θm = m/D as θ̃m is equally spaced in the interval [−1,1], and

recall D =Dy/λ, sinc(x) =
sinπx
πx , the equation (A.12) can be further rewritten as

rm(ϕp) =
√
Ax0(ϕp)e

−jΦ0sinc (D(θ̃m − ϕ̃p) (A.13)

As a result, the array response for incident plane wave with physical angle ϕp on the m-th

antenna element will be

a(ϕp)[m] =
rm(ϕp)

x0(ϕp)
=
√
Ae−jΦ0sinc (D(θ̃m − ϕ̃p)

=
√
Ae−jΦ0sinc(D ⋅

m

D
−D sinϕp)

=
√
Ae−jΦ0sinc(m −D sinϕp), ∀m ∈ [−

M − 1

2
,
M − 1

2
].

(A.14)

In the end, to keep the consistency with linear arrays, the DLA-based array response can

also be represented via ordinal index m ∈ [0,M − 1] and Direction of Arrival (DoA) ϕ as

a(ϕ)[m] =
√
Ae−jΦ0sinc(m − ⌊D⌋ −D ⋅ sin(

π

2
− ϕ))

≈
√
Ae−jΦ0sinc (m −D −D ⋅ cosϕ)

=
√
Ae−jΦ0sinc (m −D(1 + cosϕ)) , ∀m ∈ [0,M − 1].

(A.15)

To this end, it is clear that DLA array serves as DFT operation to convert the received

signal onto beamspace, which follows a ‘sinc’ function. The same characteristics is also

shown in the spatial spectrum of received signal via ULA array [24], which emphasizes the

similar properties between beamspace representation and spatial spectrum.
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Appendix B

CRLB approximation in

DLA-based channel tracking

system

Here, we can easily see that Σ is the strength of channel response without the effect of

β, while the channel response of DLA approximates the DFT of the channel response of

ULA. It is thus inspired to apply DFT properties to deal with these complex summations

to explore the close-form of CRLB. To be specific, we assume a steering vector of ULA

e[ω] = [1, ej2πω, ..., ej2π(M−1)ω]
T
, (B.1)
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where ω = d cos θ
λ and M is the total number of antennas. Then the M -th point DFT of

e[ω] will be

Eω[k] =
M−1
∑
m=0

ej2πmωe−jmk
2π
M

=
1 − ej2πM(ω−

k
M
)

1 − ej2π(ω−
k
M
)

=
ejπM(ω−

k
M
) (−2j sin (Mπ(ω − k

M )))

ejπ(ω−
k
M
) (−2j sin (π(ω − k

M )))

≈ ejπ(M−1)(ω−
k
M
)sinc(ω −

k

M
) ,

(B.2)

where DFT is defined as Xω[k] ≜
M−1
∑
m=0

x[m]e−jmk
2π
M . Recall the fact that ∥e∥2 = ∥Eω∥

2 based

on Parseval’s theorem, the summation of a sequence of which each element is a square form

of a sinc function can be derived as

M−1
∑
k=0

sinc2 (ω −
k

M
) =M. (B.3)

Since the derivative of the sinc function appears in the other two summations in Equation

(4.15), the partial derivative of Eω[k] attracts our attention

∂Eω[k]

∂ω
=
M−1
∑
m=0

j2πmej2πmωe−jmk
2π
M

= jπ(M − 1)ejπ(M−1)(ω−
k
M
)sinc(ω −

k

M
) + ejπ(M−1)(ω−

k
M
)∂(sinc (ω −

k
M
))

∂ω
.

(B.4)

Intuitively, Equation (B.4) is the DFT of another vector f which can be defined as

f = [0, j2πej2πω, ..., j2π(M − 1)ej2π(M−1)ω]
T
. (B.5)
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Now, we have e, Eω =DFT {e}, f and Fω =DFT {f} where Fω =
∂Eω[k]
∂ω . According to the

Plancherel theorem, denoting eHf = EHω Fω, we have

eHf =
M−1
∑
m=0

j2πm = jπM(M − 1), (B.6)

EHω Fω = jπ(M − 1)
M−1
∑
k=0

sinc2 (ω −
k

M
) +

M−1
∑
k=0

sinc(ω −
k

M
)
∂(sinc (ω − k

M
))

∂ω
. (B.7)

By substitution with Equation (B.3), we can get

M−1
∑
k=0

sinc(ω −
k

M
)
∂(sinc (ω − k

M
))

∂ω
= 0 (B.8)

Last, we recall the Parseval’s theorem again on f , then we have ∥f∥2 = ∥Fω∥
2 as follows

∥f∥2 = 4π2
M−1
∑
m=0

m2
=
2π2(M − 1)M(2M − 1)

3
, (B.9)

∥Fω∥
2
= π2(M − 1)2

M−1
∑
k=0

sinc2 (ω −
k

M
) +

M−1
∑
k=0

⎛

⎝

∂(sinc (ω − k
M
))

∂ω

⎞

⎠

2

+ 0. (B.10)

To this end, it is straight forward to derive the summation of a sequence of which each

element is a square of the partial derivative of the sinc function

M−1
∑
k=0

⎛

⎝

∂(sinc (ω − k
M
))

∂ω

⎞

⎠

2

=
2π2(M − 1)M(2M − 1)

3
− π2M(M − 1)2

=
π2 (M3 −M)

3
.

(B.11)

To sum up, based on two facts that the number of antenna elements is relatively large and

the truncated channel vector preserves more than 80% of total energy, we can approximate
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Φ, Ω and Σ based on above DFT properties as follows

Φ ≈
π2 (M3)

3
, (B.12)

Ω ≈ 0, (B.13)

Σ ≈M. (B.14)

Therefore, we can rewrite Equation (4.15) as

F =
2

σ2e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥β∥2 π
2M3

3 0 0

0 M 0

0 0 M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.15)
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