7,900 research outputs found

    Image-guided ToF depth upsampling: a survey

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of time-of-flight (ToF) depth cameras. Despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we review the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also briefly discussed. Finally, we provide an overview of performance evaluation tests presented in the related studies

    A Brief Survey of Image-Based Depth Upsampling

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of Time-of-Flight (ToF) depth cameras. However, despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we compare ToF cameras to three image-based techniques for depth recovery, discuss the upsampling problem and survey the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also mentioned

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Depth Restoration in Under-Display Time-of-Flight Imaging

    Get PDF
    Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging accuracy reduction. To address these issues, we propose a cascaded deep network to improve the quality of UD-ToF depth maps. The network comprises two subnets, with the first using a complex-valued network in raw domain to perform denoising, deblurring and raw measurements enhancement jointly, while the second refining depth maps in depth domain based on the proposed multi-scale depth enhancement block (MSDEB). To enable training, we establish a data acquisition device and construct a real UD-ToF dataset by collecting real paired ToF raw data. Besides, we also build a large-scale synthetic UD-ToF dataset through noise analysis. The quantitative and qualitative evaluation results on public datasets and ours demonstrate that the presented network outperforms state-of-the-art algorithms and can further promote full-screen devices in practical applications

    Depth Enhancement and Surface Reconstruction with RGB/D Sequence

    Get PDF
    Surface reconstruction and 3D modeling is a challenging task, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. It is fundamental to many applications such as robot navigation, animation and scene understanding, industrial control and medical diagnosis. In this dissertation, I take advantage of the consumer depth sensors for surface reconstruction. Considering its limited performance on capturing detailed surface geometry, a depth enhancement approach is proposed in the first place to recovery small and rich geometric details with captured depth and color sequence. In addition to enhancing its spatial resolution, I present a hybrid camera to improve the temporal resolution of consumer depth sensor and propose an optimization framework to capture high speed motion and generate high speed depth streams. Given the partial scans from the depth sensor, we also develop a novel fusion approach to build up complete and watertight human models with a template guided registration method. Finally, the problem of surface reconstruction for non-Lambertian objects, on which the current depth sensor fails, is addressed by exploiting multi-view images captured with a hand-held color camera and we propose a visual hull based approach to recovery the 3D model

    Estimating heart rate via depth video motion tracking

    Get PDF
    Depth sensors like Microsoft Kinect can acquire partial geometric information in a 3D scene via captured depth images, with potential application to non-contact health monitoring. However, captured depth videos typically suffer from low bit-depth representation and acquisition noise corruption, and hence using them to deduce health metrics that require tracking subtle 3D structural details is difficult. In this paper, we propose to capture depth video using Kinect 2.0 to estimate the heart rate of a human subject; as blood is pumped to circulate through the head, tiny oscillatory head motion can be detected for periodicity analysis. Specifically, we first perform a joint bit-depth enhancement / denoising procedure to improve the quality of the captured depth images, using a graph-signal smoothness prior for regularization. We then track an automatically detected nose region throughout the depth video to deduce 3D motion vectors. The deduced 3D vectors are then analyzed via principal component analysis to estimate heart rate. Experimental results show improved tracking accuracy using our proposed joint bit-depth enhancement / denoising procedure, and estimated heart rates are close to ground truth
    corecore