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ABSTRACT

Depth sensors like Microsoft Kinect can acquire partial geo-

metric information in a 3D scene via captured depth images,

with potential application to non-contact health monitoring.

However, captured depth videos typically suffer from low

bit-depth representation and acquisition noise corruption, and

hence using them to deduce health metrics that require track-

ing subtle 3D structural details is difficult. In this paper, we

propose to capture depth video using Kinect 2.0 to estimate

the heart rate of a human subject; as blood is pumped to circu-

late through the head, tiny oscillatory head motion can be de-

tected for periodicity analysis. Specifically, we first perform a

joint bit-depth enhancement / denoising procedure to improve

the quality of the captured depth images, using a graph-signal

smoothness prior for regularization. We then track an auto-

matically detected nose region throughout the depth video to

deduce 3D motion vectors. The deduced 3D vectors are then

analyzed via principal component analysis to estimate heart

rate. Experimental results show improved tracking accuracy

using our proposed joint bit-depth enhancement / denoising

procedure, and estimated heart rates are close to ground truth.

Index Terms— health monitoring, image enhancement,

graph signal processing

1. INTRODUCTION

As the general population ages in the developed countries,

cheap and non-invasive health monitoring has become more

in demand. Among available health monitoring systems are

image-based systems with the distinct advantage of being

completely non-contact and thus non-intrusive. Of particu-

lar interest are systems based on new depth sensors like Mi-

cosoft Kinect that can acquire fairly accurate 3D geometric

data from captured depth images, and can be fully function-

al even in dark rooms—useful for applications such as sleep

monitoring. Previous depth-image-based systems [1, 2] have

demonstrated that certain human vital signs like respiratory

rate can be accurately estimated, so that medically urgen-

t events like sleep apnoea (temporary suspension of breath-

ing) can be detected. However, due to limitations of the depth

sensing technologies, captured depth videos typically suffer

from low bit-depth representation (e.g., Kinect 2.0 has bit-

depth of 13 bits for each captured depth pixel) and senso-

ry noise corruption. This means that it is difficult to design

depth-image-based systems to estimate health metrics that re-

quire tracking subtle 3D structural details in the scene.

In this paper, we strive to overcome this difficulty and pro-

pose to capture depth video of a human subject using Kinect

2.0 to estimate his/her heart rate. It has been previously shown

[3] that as blood is pumped from the heart to the head for

circulation, the head will oscillate slightly due to Newtonian

mechanics, and tracking this oscillatory movement can lead to

a heart rate estimate. Unlike previously used high-resolution

color video [3], the key challenge using depth video is to over-

come the low bit-depth representation and sensory noise in-

herent in the observed data. Towards this end, we first propose

a joint bit-depth enhancement / denoising procedure to im-

prove the quality of the captured depth images, using a graph-

signal smoothness prior for regularization [4]. We then track

an automatically detected nose region throughout the depth

video to deduce 3D motion vectors of the subject. Finally, the

deduced 3D motion vectors are analyzed via principal com-

ponent analysis (PCA) to estimate heart rate. Experimental

results show improved tracking accuracy using our joint bit-

depth enhancement / denoising procedure, and our estimated

heart rates are close to ground truth.

The outline of the paper is as follows. We first discuss

related work on Section 2. We then overview our heart rate

detection system in Section 3. We present our depth video

pre-processing algorithms in Section 4, and the heart rate es-

timation algorithm in Section 5. We present experimental re-

sults and conclude remarks in Section 6 and 7, respectively.

2. RELATED WORK

In [5], [6], [7], the human subject is recorded using a conven-

tional RGB camera, and the heart rate is extracted from the

recorded video using the subtle colour changes in the facial

skin due to blood circulation. In contrast to our approach, all

these approaches require high-resolution coloured video of

the skin. In [3], similarly to our work, the detection of sub-

tle head oscillations in videos during the cyclical movement

of blood from the heart to the head is used to measure the

pulse rate. In contrast to our work, [3] uses coloured video

to extract feature points, which are tracked throughout the

video to deduce motion. The motion of the feature points

are then analysed using PCA to estimate heart rate. Though



also motion-based, again we differ from [3] in that only depth

video is used for analysis, which is not affected by external

lighting conditions.

In [8], a thermal infrared sensor (TIRS) is used to capture

subtle temperature changes in the sub-nasal skin surface for

heart rate detection. However, a good TIRS (over $1000) is

far more expensive than a Kinect sensor. In [9], a Kinect sen-

sor is used to estimate respiratory and heart rates. However,

the system is very restrictive and impractical, requiring a sub-

ject laying supine with chest unclothed to observe the neck

and thorax areas used for motion tracking.

In [1] and [2], an MS Kinect 1.0 depth sensor is used for

detecting episodes of sleep disorder, namely apnoea and hy-

popnoea, by extracting the respiratory rate from the tracked

chest and abdomen movements. The depth video of the pa-

tient sleeping is recorded in complete darkness, temporal de-

noising is performed to mitigate effects of temporal flicker-

ing, and Support Vector Machine or graph-based signal pro-

cessing, is then used in [1] and [2], respectively, to detec-

t episodes of apnea / hypopnoea. Oscillatory head move-

ments due to heart beat are much smaller than respiratory

chest movements and much harder to detect in depth videos,

however, and hence the challenge in this paper.

3. SYSTEM OVERVIEW

We first overview our depth-video-based heart rate detection

system in Section 3.1. We then derive a simple depth image

noise model from collected observed data in Section 3.2. We

discuss the graph-signal smoothness prior we employ for joint

bit-depth enhancement / denoising in Section 3.3. Finally, we

describe our selection of target region for head tracking in

depth video in Section 3.4.

3.1. Heart Rate Estimation System

In terms of hardware, our system is composed of a Kinect 2.0

camera connected to a standalone laptop. For simplicity, we

assume that the camera is placed in front of the human subject

at a distance of roughly 75 to 80cm. Depth video is captured

at 30 frames per second (fps) at 512×424 spatial resolution.

Each captured depth image is corrupted by sensory noise, and

thus denoising is one important pre-processing task. Deriva-

tion of an appropriate noise model for Kinect 2.0 is discussed

in details in Section 3.2.

Each captured pixel is represented by 13 bits, which trans-

lates to a depth granularity of no smaller than 1mm (the gran-

ularity varies according to the physical distance between the

captured subject and the capturing camera). Because the head

movement due to heart beat is very slight (roughly 5mm ac-

cording to [3]), this granularity is coarse for our tracking algo-

rithm. Thus another key challenge is to enhance bit-depth in

the captured depth video prior to analysis for improved heart

rate detection.

Algorithmically, our method can be divided into three

parts. First, we define a target region x1 within the human

subject’s face in frame 1—one that is amenable to robust head

tracking in the captured depth video. Second, we jointly en-

hance the bit-depth and denoise each of the depth frames us-

ing our proposed pre-processing algorithm. Finally, we track

the target region throughout the depth video, so that the de-

duced 3D vectors can be analyzed via PCA to estimate heart

rate. The joint bit-depth enhancement / denoising optimiza-

tion is discussed in Section 4, while the heart rate estimation

procedure is discussed in Section 5.

3.2. Derivation of Noise Model

We first derive a suitable noise model for Kinect 2.0 captured

pixels in a depth video frame, which we will use later for our

to-be-described denoising algorithm. For model derivation,

we placed statically a flat board on a table and recorded a

depth video of T frames. Let xt
i,j be the depth pixel inten-

sity at location (i, j) of frame t. For each location (i, j), we

first compute the empirical mean µi,j as 1
T

∑T
t=1 x

t
i,j , i.e., the

average pixel intensity value at the same location over all T
frames. Given image size of M ×N pixels, we can estimate

the horizontal auto-correlation Ch(k) as:

Ch(k) =
σ−2

TM(N − k)

T∑

t=1

M∑

i=1

N−k∑

j=1

(xt
i,j −µi,j)(x

t
i,j+k−µi,j+k)

(1)

where we assume that the variance σ2 is the same for any

pixel location. One can estimate the vertical auto-correlation

Cv(k) similarly:

Cv(k) =
σ−2

T (M − k)N

T∑

t=1

M−k∑

i=1

N∑

j=1

(xt
i,j−µi,j)(x

t
i+k,j−µi+k,j)

(2)
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Fig. 1: Empirically computed Ch(k) and Cv(k) (1 ≤ k ≤ 10)

for the horizontal and vertical dimension, respectively.

Fig. 1 shows the auto-correlation plots tested on a se-

quence of T = 15000 frames computed on a flat 30×30

(M×N ) square surface at a distance 77.1cm from the camer-

a. We observe that the auto-correlation in both cases decrease

rapidly as k increases, which means that the correlation with

immediate neighboring pixels is strong but weakens consid-

erably thereafter. We can thus construct a suitable noise mod-

el as follows. Assuming a Gaussian Markov Random Field

(GMRF) noise model, which was heuristically found to model

well the measured noise, the likelihood Pr(y|x) of observing

a depth pixel patch y given the original patch is x is:

Pr(y|x) = exp

(
−
(y − x)TP(y − x)

σ2

)
(3)



where P is the precision matrix (inverse of the covariance

matrix). To model neighboring pixel correlation using GMR-

F, we set the entries in P as follows [10]:

Pi,j =





1/σ2 if i = j

−Ch(1)
σ2 if i and j are horizontal neighbors

−Cv(1)
σ2 if i and j are vertical neighbors

0 otherwise
(4)

P will be used in our denoising algorithm in a later section.

We note that, to the best of our knowledge, Kinect 2.0 ac-

quisition noise has not been studied formally. However, our

results are consistent with those of [11] for depth image noise

modelling for time-of-flight cameras.

3.3. Graph-signal Smoothness Prior

As in other inverse imaging problems, a signal prior for the

desired signal is needed for regularization. As done in [4, 2],

in this paper we also employ a graph-signal smoothness pri-

or; i.e., a depth block x is piecewise smooth if xTLx is small,

where L is the graph Laplacian for block x. Specifically, we

first construct a graph G where the nodes in the graph corre-

spond to pixels in block x. We connect each node to its hor-

izontal and vertical neighbors to yield a 4-connected graph.

The edge weight wi,j between two nodes i and j is the expo-

nential of their pixel intensity difference:

wi,j = exp

(
−
|Ii − Ij |

2

σ2
I

)
(5)

where Ii is the pixel intensity of pixel i and σ2
I is a scaling

parameter.

Having defined edge weights, one can define the adjacen-

cy matrix W where the (i, j)-th entry is Wi,j = wi,j . The

degree matrix D is a diagonal matrix where the i-th diagonal

entry is Di,i =
∑

j Wi,j . The combinatorial graph Laplacian

L is then defined as the difference between the degree matrix

D and the adjacency matrix W:

L = D−W. (6)

It can be shown that the Laplacian regularizer xTLx is

a measure of variation in the signal x modulated by weights

wi,j :
xTLx =

∑

i,j

wi,j(xi − xj)
2. (7)

Thus xTLx is small if the squared signal variations (xi −
xj)

2 are small or the modulating weights wi,j are small.

Given L is positive semi-definite, one can perform eigen-

decomposition on L to obtain non-negative eigen-values λk

and eigen-vectors φk. We can then express xTLx alternative-

ly as:
xTLx =

∑

k

λkα
2
k (8)

where eigen-value λk can be interpreted as the k-th graph fre-

quency, and αk = φT
k x is the coefficient for the k-th graph

frequency. In this interpretation, a small xTLx means that

the energy of the signal x is concentrated in the low graph

frequencies.

3.4. Target Region Selection

We discuss next how we select the target region x1. The re-

gion needs to be sensitive to head movements due to blood

circulation and easily tractable from frame to frame. For sim-

plicity, we assume that the target region is of fixed size H×H
pixels, where H is an odd number. When the subject is fac-

ing the camera, the nasal tip is typically the closest point and

contains sharp edges that can be tracked. Thus, we select the

target region to be the nasal tip surface area.

Specifically, we treat the nasal tip as a 3D object with it-

s corresponding cross section that is parallel with the image

plane as its base. The shape of this object resembles that of

a C4v-symmetry [12] square pyramid. Thus to identify the

nasal tip surface area, we find the best-matched block to the

C4v-symmetry square pyramid. A strong feature of a C4v-

symmetry square pyramid is that the gradient direction of

each apex-connected edge of the C4v-symmetry square pyra-

mid is constant. We thus formulate the following gradient

direction-based target region selection process. For each can-

didate block xc
1 within the face region denoted by X1, we

first obtain the H × H gradient direction map, ∇xc
1 , where

the element in the ith row and jth column, ∇
xc
1

i,j , is calculat-

ed counterclockwise from the direction of increasing column

coordinates and −π ≤ ∇
xc
1

i,j ≤ π, 1 ≤ i, j ≤ H . Fig. 2(a)

shows the gradient direction map of the sample nasal tip area.

It can be seen from the figure that the main diagonal and

anti-diagonal entries of ∇xc
1 , shown counterclockwise in red,

green, black, and magenta, without considering the central

one ∇
xc
1

(H+1)/2,(H+1)/2, are close to those of a C4v-symmetry

square pyramid with H ×H square base shown in Fig. 2(b).

Thus, we select the target region x1 as a region within X1

whose main diagonal and anti-diagonal entries of the gradi-

ent direction map without the central one are closest to those

of C4v-symmetry square pyramid with H ×H square base.

(a) a sample nasal tip block (b) a square pyramid

Fig. 2: Quiver plots of gradient direction maps.

Mathematically, we divide ∇xc
1 into four quadrants, de-

noted as ∇
xc
1

qi , 1 ≤ i ≤ 4, and formulate the following opti-

mization problem to select x1:

x1 = arg min
xc
1
∈X1

(H−1)/2∑

p=1

(∇
xc
1

q1,p −
π

4
)2 + (∇

xc
1

q2,p −
3π

4
)2

+(∇
xc
1

q3,p +
3π

4
)2 + (∇

xc
1

q4,p +
π

4
)2

(9)



where ∇
xc
1

qi,p , 1 ≤ p ≤ (H − 1)/2 denotes the main diagonal

or anti-diagonal entries of ∇xc
1 that are in the ith quadrant,

for even and odd i, respectively; e.g., ∇
xc
1

q1,p denotes the anti-

diagonal entries of ∇xc
1 that are in the first quadrant, shown

in red in Fig. 2(a), and ∇
xc
1

q2,p , ∇
xc
1

q3,p , and ∇
xc
1

q4,p , are shown in

Fig. 2(a), in green, black, and magenta, respectively.

4. DEPTH VIDEO PRE-PROCESSING

4.1. Joint Bit-depth Enhancement / Spatial Denoising

We first discuss the procedure to perform spatial denoising for

the first frame. Denote the observed region of depth values,

in vector form, by y. It is a quantized (low bit-depth) and

noise-corrupted version of the original vector of depth values

x:

y = round

(
x+ n

Q

)
Q (10)

where Q is the quantization parameter due to coarse depth

precision by the Kinect sensor, and n is the additive noise.

The objective is to recover the original x given y. Using

a maximum a posteriori (MAP) formulation, we can derive

the objective as follows. Let z = x + n be the noise cor-

rupted signal before quantization. Using the total probability

theorem, likelihood Pr(y|x) can be written as:

Pr(y|x) =

∫

z

Pr(z|x)Pr(y|z,x)dz (11)

Pr(y|z,x) evaluates to 1 if y = round
(

z
Q

)
Q and 0 other-

wise. Equivalently, condition y−Q/2 ≤ z < y+Q/2 must

be satisfied for Pr(y|z,x) to be non-zero. Thus, likelihood

Pr(y|x) can be simplified to

Pr(y|x) =

∫

z∈Ry

exp

[
−
(z− x)TP(z− x)

σ2

]
dz (12)

where P is the precision matrix defined in (4), σ2 is the noise

variance, and Ry = {z | yi −Q/2 ≤ zi < yi +Q/2}.

Pr(y|x) in the form (12) is still difficult to use. We thus

approximate it as:

Pr(y|x) ∝ max
y−

Q

2
≤z<y+Q

2

exp

[
−
(z− x)TP(z− x)

σ2

]

(13)

One can see that (12) and (13) have similar shapes. Pr(y|x)
in (12) must integrate z over region Ry within a Q-

neighborhood of y, where the integrating exponential func-

tion is large if z is close to x. Hence Pr(y|x) is large if y is

close to x or Q is large. This is also true for Pr(y|x) in (13).

4.1.1. Objective Function

Given likelihood in (13) and the graph-signal smoothness pri-

or, one can now derive the MAP objective by minimizing the

negative log of the likelihood and prior:

min
x,z

(z− x)TP(z− x) + µ xTLx

s.t. yi −
Q
2 ≤ zi < yi +

Q
2 , ∀i (14)

where µ is a parameter to trade off the first fidelity term and

the second signal smoothness prior term that depends on the

signal-to-noise ratio (SNR).

4.1.2. Optimization Procedure

With two inter-dependent variables x and z and a constrain-

t on z, the optimization (14) is difficult to solve directly.

We hence propose to alternately solve for one variable while

keeping the other fixed and iterate. In particular, when z is

fixed, the optimal x can be solved in closed form by taking

the derivative in (14) with respect to x and setting it to zero:

x∗ = (P+ µL)−1Pz (15)

On the other hand, when x is fixed, the optimal z to mini-

mize the fidelity term (the graph-signal smoothness term does

not involve z) while satisfying the constraint is:

z∗i =





yi +Q/2− ǫ if xi ≥ yi +Q/2
yi −Q/2 if xi < yi −Q/2
xi o.w.

(16)

where ǫ is a small positive constant. The two variables are

optimized alternately until the solution converges. Note that

the edge weights wi,j in the graph Laplacian L needs to be

updated using (5) each time a new signal x is computed.

4.2. Joint Tracking / Temporal Denoising

Y
t

Y
t
(v
t
)

X
t-1

frame tframe t-1
Fig. 3: Illustration of tracking target region Yt(v) in frame t,
given tracked region Xt−1 in previous frame t− 1.

To track a target region T over a sequence of frames, we

perform the following procedure. We first perform joint bit-

depth enhancement / spatial denoising on new frame t as de-

scribed in the previous section. We then formulate the follow-

ing optimization for joint tracking / temporal denoising. Let

Yt be the observed frame at time instant t. A motion vector

(MV) vt points to a sub-region Yt(vt) inside Yt that cor-

responds to the target region T in frame t. Let x̄t−1 be the

denoised target region T in previous frame t − 1. The op-

timization thus becomes the search for MV vt and denoised

patch xt that minimize three terms: i) a fidelity term with

respect to observation Yt(vt), ii) a graph-signal smoothness

term xT
t Lxt, and iii) a motion estimation term ‖x̄t−1 − xt‖

2
2

that measures how well the designated target regions match

in the two frames:

min
vt,zt,xt

(zt − xt)
TP(zt − xt) + µ xT

t Lxt

+γ ‖x̄t−1 − xt‖
2
2

s.t. Yt(vt)−
Q
2 ≤ zt < Yt(vt) +

Q
2 (17)



4.2.1. Optimization Procedure

To solve (17), we use a similar alternating method as follows.

We first search for the optimal vt that minimizes the motion

estimation term ‖x̄t−1−Yt(vt)‖
2
2. We then fix vt, and alter-

nately solve for zt and xt, where the optimal xt given vt and

zt is:
x∗
t = (P+ µL+ γI)−1(Pzt + γx̄t−1) (18)

where I is the identity matrix. The optimal z given fixed x is

solved using (16).

5. HEART RATE ESTIMATION

In this section, we first describe the analysis of the tracked

movement vectors via PCA, and then explain the procedure of

heart rate estimation based on the PCA decomposition result.

5.1. Principal Component Analysis

Given x̄t, the tracked and denoised target region T in frame

t, we designate the centre coordinate of x̄t as horizontal po-

sition ht and vertical position vt of x̄t, and the depth inten-

sity at centre coordinate as axial position at of x̄t. Since

ht contains most of equilibrium movement [3] that can affec-

t heart rate estimation, we remove ht, and use a 2D vector

(vt, at) to denote vertical and axial positions of x̄t. We find

that the granularity of vertical component is approximately

1.6992mm per pixel coordinate, and axial component is ap-

proximately 1.0147mm per depth intensity, at capturing dis-

tance 77.1cm. Therefore we unify the measurement of vt and

at into mm unit, denoted as ∆t = (vmm
t , amm

t )T , before we

apply PCA.

Let ∆ be the 2 × T tracked movement matrix, ∆ =
[∆1, ...,∆T ]. We calculate the 2 × 1 mean matrix ∆ and

2× 2 covariance matrix O as:

∆ =
1

T

T∑

i=1

∆i (19)

O =
1

T

T∑

i=1

(∆i −∆)(∆i −∆)T =
1

T
HHT (20)

where H = [∆1−∆, . . . ,∆T−∆]. PCA [13, 14] determines

the eigenvectors of the movement by solving the following

algebraic eigenvalue problem:

OE = EΛ (21)

where E = [e1, e2] denotes the eigenvectors of the 2D move-

ment and e1 and e2 are in descending order according to the

amplitude of their corresponding eigenvalues, and Λ denotes

a diagonal matrix of the corresponding eigenvalues λ1, λ2.

Next, similarly to [3], we project ∆ onto ei, i =
1, 2, to get time plots of the projected movement SPCA

i =
[
∥∥projei

∆1

∥∥
2
, . . . ,

∥∥projei
∆T

∥∥
2
], then assess the periodic-

ity of each SPCA
i as the percentage of the spectral power on

the frequency with maximum power and its first k harmon-

ics over the total spectral power, and finally choose the most

periodic SPCA
i .

5.2. Heart Rate Estimation

We first pass the most periodic SPCA
i through a second-order

Butterworth lowpass filter with 0.25 normalized cutoff fre-

quency, and then remove the linear trend of the filtered signal.

We denote the resulting signal as ŜPCA
i . Next, we estimate

the heart rate (HR) by first applying Fast Fourier Transfor-

m (FFT) on ŜPCA
i , to get single-sided amplitude spectrum of

ŜPCA
i . The sampling frequency is 30Hz, to be consistent with

the 30fps depth video frame accusation, and the window size

is 15secs. Then we find the frequency f∗ with the largest peak

in the single-sided amplitude spectrum of ŜPCA
i , and estimate

HR as HR = 60×f∗ beats/minute.

6. EXPERIMENTAL RESULTS

In the experiments, we test 7 subjects. Data are collected si-

multaneously using a Kinect 2.0 depth camera and a finger

pulse oximeter (ANAPULSE ANP100, Ana Wiz Ltd, UK)

which we assume provides ground truth HR reading. The

system is implemented in Matlab R2014a on a laptop running

Windows 8.1, with Core i7 2820QM 2.3GHz CPU and 16G-

B RAM. The mean computational time is 0.847s per frame.

In this section, we first present tracking results without and

with the proposed depth video pre-processing, and then com-

pare the estimated heart rate based on the tracking results with

depth video pre-processing to the ground truth.

Fig. 4(a) shows a sample result of the middle 15-second

session of the 30-second tracking without the proposed depth

video pre-processing (only tracking as described in Sec-

tion 5). The corresponding tracking result with depth video

pre-processing (joint tracking / temporal denoising), shown in

Fig. 4(b), indicates cleaner subtle head movements than only

tracking. Fig. 4(c) and (d) show the single-sided amplitude

spectra of Fig. 4(a) and (b), respectively, which further indi-

cates clearer subtle head movements by applying joint track-

ing / temporal denoising than solely tracking. Fig. 4(e) shows

estimated 15-second HR by applying FFT with 15-second

window size on the corresponding whole 30-second sample

result of Fig. 4(b) at 30Hz sampling frequency, denoted as

HRP.

Next, to compare the result with the ground truth HR
reading from the finger pulse oximeter, denoted as HRG, we

first unify the sampling frequencies of HRP and HRG to

30Hz (Fig. 4(f) shows corresponding 15-second frequency-

unified HRG), then compute mean percentage error (MPE) of

HRP wrt HRG. In this example, the mean HRP is 79.52 beat-

s/minute, the mean HRG (ground truth) is 80.61 beats/minute,

and the MPE of HRP wrt HRG is 3.02%. Looking back to the

frequencies at the largest peaks in Fig. 4(c) and (d), the esti-

mated HR of Fig. 4(a) (solely tracking), 60×1.001 = 60.06

beats/minute, is far different from the ground truth, while the

estimated HR of Fig. 4(b) (joint tracking / temporal denois-

ing), 60×1.3184 = 79.10 beats/minute, is close to ground

truth.
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Fig. 4: Illustration of the proposed depth video motion track-

ing and the corresponding heart rate estimation. (a) 15-second

solely tracking. (b) 15-second joint tracking / temporal de-

noising. (c) Single-sided amplitude spectrum of (a) using

FFT. (d) Single-sided amplitude spectrum of (b) using FFT.

(e) 15-second estimated heart rate of the corresponding whole

30-second sample result of (b). (f) Corresponding 15-second

frequency-unified ground truth heart rate reading from the fin-

ger pulse oximeter.

Table 1 shows the comparison result of mean HRP (HRP)

and mean HRG (HRG) of 1-minute sample for each subject.

Overall, the MPEs are always within 10%, showing that our

proposed system can effectively estimate heart rate based on

subtle motion tracking in depth videos.

7. CONCLUSION

In this paper, we propose a heart rate estimation system based

on motion tracking in Kinect 2.0 depth videos. It can operate

in complete darkness, thus is useful in applications such as

sleep monitoring. We pre-process captured depth videos via

joint bit-depth enhancement / denoising, and detect and track

the nasal tip area for head motion via joint tracking / temporal

denoising. The tracked motion vectors are then analyzed us-

ing PCA. Finally, we estimate heart rate via FFT. Experimen-

tal results demonstrate that our depth video pre-processing

can effectively enhance tracking accuracy, and our estimated

heart rates are close to ground truth measurements. Though

we performed experiments using a single depth camera placed

in front of a test subjects to track the nasal tip area, in practice,

multiple appropriately located depth cameras would cover the

Subject HRP HRG MPE

1 68.56 71.92 6.33%

2 84.38 91.42 9.25%

3 89.65 88.77 2.51%

4 77.92 79.63 5.97%

5 78.26 74.15 7.12%

6 82.37 85.26 4.83%

7 78.24 76.85 5.72%

Table 1: Comparison result of HRP and HRG of 1-minute

sample for each subject with MPEs.

majority of the subject’s pose to improve system robustness.
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