12 research outputs found

    Spatial Admittance Selection Conditions for Frictionless Force-guided Assembly of Polyhedral Parts in Single Principal Contact

    Get PDF
    By judiciously selecting the admittance of a manipulator, the forces of contact that occur during assembly can be used to guide the parts to proper positioning. This paper identifies conditions for selecting the appropriate spatial admittance to achieve reliable force-guided assembly of polyhedral parts for cases in which a single feature (vertex, edge, or face) of one part contacts a single feature of the other, i.e., all single principal contact cases. These conditions ensure that the motion that results from frictionless contact always instantaneously reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reducing conditions at a finite number of contact configurations, then the admittance will also satisfy the conditions at all intermediate configurations

    Admittance Selection for Force-guided Assembly of Polyhedral Parts in Single-point Contact

    Get PDF
    The selection of the proper admittance is important in achieving force-guided assembly. This paper identifies procedures for selecting the appropriate spatial admittance to achieve reliable force-guided assembly of polyhedral parts for single-point frictionless contact cases. Sets of conditions that are imposed on the admittance matrix for different types of single-point contact are presented. These conditions ensure that the motion that results from contact reduces part misalignment in the selected contact state. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reduction conditions at a finite number of contact configurations, then the admittance also satisfy the conditions at all intermediate configurations

    Admittance Selection Conditions for Frictionless Force-Guided Assembly of Polyhedral Parts in Two Single-Point Principal Contacts

    Get PDF
    The admittance of a manipulator can be used to improve robotic assembly. If properly selected, the admittance will regulate a contact force and use it to guide the parts to proper positioning. In previous work, procedures for selecting the appropriate admittance for single principal contact (PC) cases were identified. This paper extends this research for some of the two PC cases-those for which each contact occurs at a single point. The conditions obtained ensure that the motion that results from frictionless contact always instantaneously reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the misalignment-reducing conditions at a finite number of contact configurations, then the admittance will also satisfy the conditions at all intermediate configurations

    Accomplishing task-invariant assembly strategies by means of an inherently accommodating robot arm

    Get PDF
    Despite the fact that the main advantage of robot manipulators was always meant to be their flexibility, they have not been applied widely to the assembly of industrial components in situations other than those where hard automation might be used. We identify the two main reasons for this as the 'fragility' of robot operation during tasks that involve contact, and the lack of an appropriate user interface. This thesis describes an attempt to address these problems.We survey the techniques that have been proposed to bring the performance of cur¬ rent industrial robot manipulators in line with expectations, and conclude that the main obstacle in realising a flexible assembly robot that exhibits robust and reliable behaviour is the problem of spatial uncertainty.Based on observations of the performance of position-controlled robot manipulators and what is involved during rigid-body part mating, we propose a model of assembly tasks that exploits the shape invariance of the part geometry across instances of a task. This allows us to escape from the problem of spatial uncertainty because we are 110 longer working in spatial terms. In addition, because the descriptions of assembly tasks that we derive are task-invariant, i.e. they are not dependent on part size or location, they lend themselves naturally to a task-level programming interface, thereby simplifying the process of programming an assembly robot.the process of programming an assembly robot. However, to test this approach empirically requires a manipulator that is able to control the force that it applies, as well as being sensitive to environmental constraints. The inertial properties of standard industrial manipulators preclude them from exhibiting this kind of behaviour. In order to solve this problem we designed and constructed a three degree of freedom, planar, direct-drive arm that is open-loop force-controllable (with respect to its end-point), and inherently accommodating during contact.In order to demonstrate the forgiving nature of operation of our robot arm we imple¬ mented a generic crank turning program that is independent of the geometry of the crank involved, i.e. no knowledge is required of the location or length of the crank. I11 order to demonstrate the viability of our proposed approach to assembly we pro¬ grammed our robot system to perform some representative tasks; the insertion of a peg into a hole, and the rotation of a block into a corner. These programs were tested on parts of various size and material, and in various locations in order to illustrate their invariant nature.We conclude that the problem of spatial uncertainty is in fact an artefact of the fact that current industrial manipulators are designed to be position controlled. The work described in this thesis shows that assembly robots, when appropriately designed, controlled and programmed, can be the reliable and flexible devices they were always meant to be

    Contact sensing--a sequential decision approach to sensing manipulation contact features

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (p. 179-186).by Brian Scott Eberman.Ph.D

    A mechanically-guided approach to three-dimensional functional mesostructures towards unconventional applications

    Get PDF
    Controlled formation of three-dimensional functional mesostructures (3DFMs) has broad engineering implications in biomedical devices, microelectromechanical systems (MEMS), optics, and energy storage. Most existing 3D techniques, however, not only lack compatibility with essential electronic materials (silicon, metals, ceramics) that exist in solid-state or crystalline forms, but also produce in a slow and inefficient manner. This is in stark contrast to the planar technologies widely adopted by the modern semiconductor industry. I propose to solve these challenges by a novel 3D assembly strategy based on the planar technologies, which involves precisely controlled 2D-to-3D transformations via the substrate-induced mechanical buckling. This lithography-based, mechanically-guided 3D approach is compatible with virtually any engineering thin films including semiconductors, metals, and polymers, applies to a wide range of length scales and geometries and produces in a high throughput. In this dissertation, I present strategies that combine fabrications and mechanics to achieve a set of complex 3D geometries. I also study the potentials of the 3DFMs in micro-robotics. I further demonstrate the unique applications in energy harvesting, bio-integrated systems, and nanoscale sensing. The results may enlighten the development of advanced, multi-functional 3D electronic micro-systems inaccessible to other 3D techniques

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    30th International Conference on Electrical Contacts, 7 – 11 Juni 2021, Online, Switzerland: Proceedings

    Get PDF
    corecore