
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Mechanical Engineering Faculty Research and 
Publications Mechanical Engineering, Department of 

4-2006 

Spatial Admittance Selection Conditions for Frictionless Force-Spatial Admittance Selection Conditions for Frictionless Force-

guided Assembly of Polyhedral Parts in Single Principal Contact guided Assembly of Polyhedral Parts in Single Principal Contact 

Shuguang Huang 
Marquette University, shuguang.huang@marquette.edu 

Joseph M. Schimmels 
Marquette University, joseph.schimmels@marquette.edu 

Follow this and additional works at: https://epublications.marquette.edu/mechengin_fac 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Huang, Shuguang and Schimmels, Joseph M., "Spatial Admittance Selection Conditions for Frictionless 
Force-guided Assembly of Polyhedral Parts in Single Principal Contact" (2006). Mechanical Engineering 
Faculty Research and Publications. 80. 
https://epublications.marquette.edu/mechengin_fac/80 

https://epublications.marquette.edu/
https://epublications.marquette.edu/mechengin_fac
https://epublications.marquette.edu/mechengin_fac
https://epublications.marquette.edu/mechengin
https://epublications.marquette.edu/mechengin_fac?utm_source=epublications.marquette.edu%2Fmechengin_fac%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=epublications.marquette.edu%2Fmechengin_fac%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/mechengin_fac/80?utm_source=epublications.marquette.edu%2Fmechengin_fac%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Marquette University 

e-Publications@Marquette 

 

Mechanical Engineering Faculty Research and Publications/College of 

Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 

published version may be accessed by following the link in the citation below. 

 

IEEE Transactions on Robotics, Vol. 22, No. 2 (April 2006): 225-239. DOI. This article is © The Institute 

of Electrical and Electronics Engineers and permission has been granted for this version to appear in e-

Publications@Marquette. The Institute of Electrical and Electronics Engineers does not grant 

permission for this article to be further copied/distributed or hosted elsewhere without the express 

permission from The Institute of Electrical and Electronics Engineers.  
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Abstract: 
By judiciously selecting the admittance of a manipulator, the forces of contact that occur during assembly can be 

used to guide the parts to proper positioning. This paper identifies conditions for selecting the appropriate 

spatial admittance to achieve reliable force-guided assembly of polyhedral parts for cases in which a single 

feature (vertex, edge, or face) of one part contacts a single feature of the other, i.e., all single principal contact 
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cases. These conditions ensure that the motion that results from frictionless contact always instantaneously 

reduces part misalignment. We show that, for bounded misalignments, if an admittance satisfies the 

misalignment-reducing conditions at a finite number of contact configurations, then the admittance will also 

satisfy the conditions at all intermediate configurations. 

SECTION I. Introduction 
Assembly involves contact between the mating parts. For effective use in assembly, robots should regulate the 

force of contact and comply with that force in such a way to improve part relative positioning. Without force 

regulation, part positional misalignment may yield excessive contact forces. Without the ability to improve 

relative positioning, proper assembly cannot be achieved. 

A robot's force regulation and motion response behaviors are characterized by its mechanical admittance. The 

appropriate admittance for assembly is one for which a misalignment-reducing motion is generated as a direct 

result of contact. Ideally, a single admittance (a single operator mapping input forces to output motions) 

provides misalignment reduction for all misalignments that may occur during a given assembly task. As such, this 

single admittance would ensure proper assembly using contact forces alone. 

The appropriate admittance for assembly should satisfy the error-reduction conditions for all configurations in 

the range considered. However, since there are an infinite number of configurations, it is not realistic to impose 

the error-reduction conditions on the admittance at all configurations. Thus, it is necessary to develop a set of 

sufficient conditions on the admittance at a finite number of configurations to ensure error reduction for all 

configurations. Once established, the conditions can be used as testable conditions useful in the search for an 

appropriate admittance matrix. One way to accomplish this is to use optimization with the conditions used as 

constraints. Previous work for planar parts with friction [1] showed the success of this strategy. 

This paper presents conditions used to select the appropriate spatial manipulator admittance for force-guided 

assembly of two polyhedral objects when contact is frictionless and is restricted to cases in which a single 

feature (e.g., vertex, edge, or face) of one part contacts a single feature of the other. 

Here, a simple, general linear admittance control law [2] is used. For spatial applications, this type of admittance 

has the form 

𝐯 = 𝐯0 + 𝐀𝐰 

(1) 

where 𝐯0 is the nominal twist (a 6-vector), 𝐰 is the contact wrench (force and torque) measured in the body 

frame (a 6-vector), 𝐀 is the admittance matrix (a 6×6 matrix), and 𝐯 is the motion of the body. 

In this paper, a single admittance control law in the form of (1) is used for all contact states considered. 

A. Related Work 
Other researchers have addressed the design and use of admittance for force guidance. Whitney [3], [4] initially 

proposed that the linear compliance (i.e., force-deflection relationship and inverse stiffness) of a manipulator be 

structured so that contact forces lead to decreasing errors. Peshkin [5] addressed the synthesis of the linear 

accommodation (force-velocity relationship; inverse damping) of a manipulator by specifying the desired force–

motion relation at a sampled set of positional errors for a planar assembly task. An unconstrained optimization 

was then used to obtain an accommodation matrix that does not necessarily provide force guidance. 

Asada [6] used a similar unconstrained optimization procedure for the design of an accommodation neural 

network rather than an accommodation matrix. Others [7], [8] provided synthesis procedures based on spatial 



intuitive reasoning. None of the general approaches, however, provides a proof that the admittance selected 

will, in fact, be reliable for all possible configurations. 

A reliable admittance selection approach is to design the control law so that, at each possible part misalignment, 

the contact force always leads to a motion that instantaneously reduces the existing misalignment. The 

approach is referred to as force assembly. The success and robustness of the approach were initially 

demonstrated in the workpart into fixture insertion problems in which only infinitesimal misalignments were 

considered [2], [9], [10]. 

By the definition of force assembly [2], the motion resulting from contact must instantaneously reduce 

misalignment. How-ever, because the configuration space of a rigid body is non-Euclidian, there is no “natural 

metric” for finite spatial error. As such, several “body-specific metrics” have been established [11]. One of these 

metrics is based on the Euclidean distance between a single point on the body and its location when properly 

positioned. The specific point on the body corresponds to the location having the maximum distance from its 

properly mated position. This point on the body is configuration-dependent. 

In this paper, sufficient conditions for admittance selection are presented. We show that, once these conditions 

are satisfied at a finite number of configurations, error-reducing motion is ensured for all configurations and 

contact states. Thus, these conditions can be used as constraints in a constrained optimization procedure, from 

which the obtained optimal admittance will ensure successful assembly. 

B. Approach 
Similar to related work addressing planar assembly [1], [12], here we consider a measure of error based on the 

Euclidean distance between an arbitrarily chosen single (fixed) point on the held body and its location when 

properly positioned. Use of a single measure of this type does not conform with any established metric. As such, 

multiple measures each based on a single fixed reference point are used to: 1) further restrict the body motion 

and 2) conform with the established metric (if one of these points is the one that is furthest from its properly 

mated position). 

Since error reduction of the body is described by the error measure, different sets of reference points will yield 

different error-reduction requirements on the motion of the body. In general, the selection of the reference 

points is part - and task-specific. One meaningful choice would be the vertexes on the convex hull of the held 

part. If so selected, since the furthest point of a polyhedral part is one of its vertexes, at least one of the 

measures becomes the established metric. 

Using this point-based measure of misalignment, misalignment reduction can be expressed mathematically if we 

let d (a 6-vector for spatial motion) be the line vector from the selected point at its properly mated position to 

its current position. Then, for error reducing motion, the condition is 

𝐝𝑇𝐯 = 𝐝𝑇(𝐯0 + 𝐀𝐰) < 0. 

(2) 



 
Fig. 1. Configuration variables for single-point pcs. (a) face-vertex contact. (b) vertex—face contact. (c) edge-

edge cross contact. 

Since force assembly requires that misalignment is reduced at each possible misalignment, this condition must 

be satisfied for all possible misalignments. 

This paper considers polyhedral rigid-body assembly involving spatial motion constrained by frictionless contact. 

The contact states studied here are the nondegenerate principal contacts (PCs) [13] obtained for polyhedral 

parts. 

Because the line vector d depends on the rigid-body configuration and because the number of configurations is 

infinite, it is impossible to impose the error-reduction condition separately for all misalignments. In application, 

however, the misalignments of the rigid body are bounded by: 1) the extremes within a contact state or 2) the 

possible inaccuracy of the robotic manipulator. Those misalignments on the “boundary” are of particular 

interest. 

In [1] and [12], sufficient conditions for an admittance to ensure force-guided assembly for planar polygonal 

parts have been identified. In this paper, sufficient conditions for an admittance to ensure force guidance 

for spatial polyhedral parts are identified. We show that, by identifying an admittance matrix that satisfies the 

error-reduction conditions at a finite number of configurations on the boundary of each contact state, the error-

reduction requirements are also satisfied for all configurations within the bounded area. 

Polyhedral bodies in single-point contact have three types of stable principal contacts: “face—

vertex” ({𝑓 − 𝑣}) contact, “vertex-face” ({𝑣 − 𝑓}) contact, and “edge-edge cross” ({𝑒 − 𝑒}𝑐) contact. In “face-

vertex” contact, one face of the held body is in contact with one vertex of the mating fixtured part [see Fig. 1(a)]. 

In “vertex—face” contact, one vertex of the held body is in contact with one face of its mating part. Each of the 

single-point principal contacts is illustrated in Fig. 1. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8860/33915/1618528/1618528-fig-1-source-large.gif


 
Fig. 2. Configuration variables for multipoint pcs. (a) face-edge contact. (b) edge-face contact state. (c) face-face 

contact state. 

For multipoint contact, there are three PCs: face-edge ({𝑓 − 𝑣}, edge-face ({𝑒 − 𝑓}) and face-

face ({𝑓 − 𝑓}) contacts, as shown in Fig. 2. 

C. Overview 
In this paper, sufficient conditions for an admittance to ensure force-guided assembly are established for each of 

the six PCs described above. Section II identifies the coordinates used to describe the configuration variation for 

each contact state. In Section III, means of calculating the motion of a constrained body and an error-reduction 

function are derived for each type of contact state. Finally, sufficient conditions for error reduction for each PC 

are derived in Sections IV–IX. These conditions show that an admittance matrix that satisfies the error-reduction 

conditions at the boundaries of a set of contact configurations also satisfies the error-reduction conditions at all 

intermediate configurations. A discussion and a brief summary are presented in Sections X and XI. 

SECTION II. Configuration Description 
In this section, the sets of coordinates used to describe configuration variation for each contact state are 

presented. For each of the different contact states, the relative configuration of the constrained rigid bodies is 

described using a different set of generalized coordinates 𝐪. 

Each PC is characterized by two degrees of freedom (DOFs) in translation. The number of DOFs in rotation, 

however, is different for different types of PCs. Those PCs associated with single-point contact have three 

rotational DOFs; PCs associated with line contact have two rotational DOFs, and those associated with plane 

contact have one rotational DOF. 

Below, the variables used to describe the configuration variation within each PC are presented for each of these 

three classes of PC (based on DOF). 

A. Single-Point Contact States 
Single-point contact PCs include face-vertex, vertex-face, and edge-edge cross contact cases as shown in Fig. 1. 

The body can translate in the plane of contact and rotate about the contact point in any direction. As such, five 

variables describe the relative configuration of the bodies (the relative position of the contact point using two 

translational variables and the relative orientation using three rotational variables). 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8860/33915/1618528/1618528-fig-2-source-large.gif


1) Orientational Variation 
The relative orientation of the rigid body can be described by a 3 × 3 orthogonal matrix 𝐑. 

Consider two configurations 𝐶0 and 𝐶1 with the same point of contact. By Euler's theorem, there exists an axis 

such that configuration 𝐶1 can be achieved from configuration 𝐶0 by a rotation about this single axis. For any 

given 𝐶0 and 𝐶1, the direction of the axis u and rotation angle 𝜃 are unique (0 ≤ 𝜃 ≤ 𝜋). 

Consider a rotation about an arbitrary axis 𝐮 with angle 𝜃. The rotation matrix associated with this configuration 

change can be obtained by Rodrigues' formula [14] 

𝐑(u, 𝜃) = cos 𝜃𝐈 + (1 − cos 𝜃)𝐮𝐮𝑇 + sin 𝜃[𝐮 ×] 

(3) 

where 𝐈 is the 3 × 3 identity matrix and [𝐮 ×] denotes the antisymmetric matrix associated with the cross-

product operation involving u given by 

[𝐮 ×] = [

0 −𝑢3 𝑢2
𝑢3 0 −𝑢1
−𝑢2 𝑢1 0

] 

Finite variation from an initial configuration (considered later in establishing sufficient conditions) can be 

described by placing bounds on the maximum angular magnitude 0 ≤ 𝜃 ≤ 𝜃𝑀 and with no bounds on the 

direction of the rotation axis 𝐮. 

Since the orientational error is bounded by manipulator inaccuracy, only small angular variation ≤ 10∘ is 

considered. Because u is arbitrary, for a centered coordinate frame with maximum angular variation △ 𝜃, the 

bound for the angular magnitude 𝜃𝑀 = (
1

2
) △ 𝜃. For example, if the maximum angular variation considered is 

10°, then 𝜃𝑀 = 5∘. 

2) Translational Variation 
For bodies in contact at a single point, the location of the contact point can be described by two parameters 𝛿 =

(𝛿1, 𝛿2). The meaning of these variables changes for the different principal contacts. 

For face-vertex ({𝑓 − 𝑣}) contact, a two-dimensional (2-D) coordinate frame 𝑂𝑏 is established on the held body 

in the plane of the contact face. Two orthogonal coordinates 𝛿1, 𝛿2 are used to describe translational variation 

of the rigid body within this contact state, as shown in Fig. 1(a). 

For vertex-face ({𝑣 − 𝑓}. ) contact, a 2-D coordinate frame 𝑂𝑠 is established on the stationary part in the plane 

of the contact face. Again, two orthogonal coordinates 𝛿1, 𝛿2 are used to describe the translational variation of 

the rigid body within this contact state. as shown in Fig. 1(b). 

For edge-edge cross ({𝑒 − 𝑒}𝑐) contact, two translational nonorthogonal coordinates 𝛿1, 𝛿2 are chosen to 

describe translational variation along edges 𝐞1 and 𝐞2, as shown in Fig. 1(c). 

Since finite configuration variation is considered, for each contact state, the variation of each 𝛿𝑖  is bounded. By 

appropriately choosing the coordinate origin (at a central location of contact), the bounds for 𝛿𝑖  can be written 

as 

−𝛿𝑀𝑖
≤ 𝛿𝑖 ≤ 𝛿𝑀𝑖

. 

In summary, the configuration variation for each single-point contact state is given by 𝐪 = (𝛿1, 𝛿2, 𝐮, 𝜃). 



B. Line Contact 
When an edge of a body is in contact with a face of its mating part, the body has four DOFs when maintaining 

this contact: two in translation and two in rotation. PCs of this type include two cases: edge-face ({𝑒 − 𝑓}) and 

face-edge ({𝑓 − 𝑒}) contacts. 

1) Face-Edge Contact 
To describe the relative configuration variation of the bodies, a 2-D coordinate frame is established on the held 

body's contact face such that, at an initial configuration, the origin 𝑂𝑓 is on the contact edge [see Fig. 2(a)]. 

Let 𝛿1 describe the translational variation along edge e and 𝛿2 describe the translational variation along the 

direction 𝐛𝑓 in the face plane (where 𝐛𝑓 ⊥ 𝐞). Then, the relative configuration in translation of the body is 

determined by the two parameters 𝛿1, 𝛿2. 

To maintain contact, the body can only rotate about edge e and the face normal n. If we denote 𝜓1 and 𝜓2 as 

the rotation angles about e and n, respectively, then the configuration of the body can be determined by the 

four parameters (𝛿1, 𝛿2, 𝜓1, 𝜓2). 

2) Edge-Face Contact 
For this type of contact state, once a reference point 𝑂𝑒 is chosen on the contact edge of the body, the 

translational variation of the body is described by the coordinates 𝛿1, 𝛿2 indicating the location of 𝑂𝑒 relative to 

the coordinate frame 𝑂𝑠 fixed in the stationary face [see Fig. 2(b)]. 

To maintain contact, only rotational variation about the contact edge e or/and the face normal II are allowed. 

Let 𝜓1 and 𝜓2 be rotation angles about the edge e and axis n, respectively. Then, the body's configuration q can 

be determined by four parameters (𝛿1, 𝛿2, 𝜓1, 𝜓2). 

For both {𝑒 − 𝑓} and {𝑓 − 𝑒} cases, the four parameters are bounded by 

−𝛿𝑀𝑖
≤ 𝛿𝑖 ≤ 𝛿𝑀𝑖

,

−𝜓𝑀𝑖
≤ 𝜓𝑖 ≤ 𝜓𝑀𝑖

 

where the rotation axis lies in the e-n plane. 

C. Plane Contact 
When one face of the held body is in contact with a face of its mating part, the motion of the body is constrained 

to the plane of the contact face (if the contact is maintained). Thus, the body has 3 DOFs. The configuration of 

the body can be characterized by three parameters (𝛿1, 𝛿2, 𝜓), where 𝛿1, 𝛿2 describe the translational variation 

in the contact plane and 𝜓 describes the rotational variation about the axis in the direction of the plane normal. 

Since finite configuration variation is considered, the three parameters are bounded by 

−𝛿𝑀𝑖
≤ 𝛿𝑖 ≤ 𝛿𝑀𝑖

−𝜓𝑀 ≤ 𝜓 ≤ 𝜓𝑀

 

where the rotation axis is n. 

SECTION III. Error-Reducing Motion of a Constrained Rigid Body 
In this section, the motion of a partially constrained body is investigated. For each contact state, the frictionless 

contact force is first discussed and the error-reduction function is then obtained. 



A. Single-Point Contact 
For single-point contact states, the contact force is imposed at the point of contact and is along the face normal 

(for {𝑣 − 𝑓} and {𝑓 − 𝑣} contact states) or along the normal determined by the two contact edges (for {𝑒 −

𝑒}𝑐 contact). Let n be a unit three-vector indicating the direction of the normal contact force applied to the held 

body. The unit wrench associated with the normal force has the form 

𝐰𝑛 = [
𝐧

𝐫 × 𝐧
] 

(4) 

where r is the position vector from the origin of the held body coordinate frame to the point of contact 𝐶, as 

shown in Fig. 1. 

Let 𝜙 be the magnitude of the normal contact force. The contact wrench is 

𝐰 = 𝐰𝑛𝜙. 

(5) 

By the control law (1), the motion of the body is 

𝐯 = 𝐯0 + 𝐀𝐰𝑛𝜙. 

(6) 

Because the motion of the rigid body cannot penetrate the surface, the reciprocal condition [15] must be 

satisfied as follows: 

𝐰𝑛
𝑇𝐯 = 𝐰𝑛

𝑇𝐯0 +𝐰𝑛
𝑇𝐀𝐰𝑛𝜙 = 0. 

The magnitude 𝜙 is determined from 

𝜙 =
−𝐯0

𝑇𝐖𝑛

𝐰𝑛
𝑇𝐀𝐰𝑛

. 

(7) 

Substituting (7) into (6) yields 

𝐯 =
(𝐯0𝐰𝑛

𝑇 − 𝐯0
𝑇𝐰𝑛𝐈)𝐀𝐰𝑛

𝐰𝑛
𝑇𝐀𝐰𝑛

. 

(8) 

Note that, since 𝐧 and/or r can vary in the body frame for the same contact state, 𝐰𝑛 is, in general, a function of 

configuration for each of the single-point contact PCs. 

For the compliant motion to be error-reducing, condition (2) must be satisfied for a given point. 

Thus, (2) becomes 

𝐸 =
𝐝𝑇(𝐯0𝐰𝑛

𝑇 − 𝐯0
𝑇𝐰𝑛𝐈)𝐀𝐰𝑛

𝐰𝑛
𝑇𝐀𝐰𝑛

< 0 



(9) 

where 𝐀, 𝐝, and 𝐰𝑛 are expressed in the held body frame. 

Since 𝐀 is positive definite, 𝐰𝑛
𝑇𝐀𝐰𝑛 > 0, and the denominator of (9) is positive. Therefore, the error-reduction 

function can be expressed as 

𝐹1𝑝 = 𝐝𝑇(𝐯0𝐰𝑛
𝑇 − 𝐯0

𝑇𝐰𝑛𝐈)𝐀𝐰𝑛. 

(10) 

Since 𝐝 and 𝐰𝑛 are functions of configuration 𝐪, 𝐹1𝑝 is a function of 𝐪. To obtain error reduction, 𝐹1𝑝(𝐪) must 

be negative for all 𝐪 considered within the specified principal contact. 

B. Line Contact 
Next, consider edge-face contact. Let 𝐧 be a unit vector along the face normal (pointing toward the held body). 

The contact force must be in the direction of 𝐧 and must pass somewhere through the contact edge. 

Let 𝐰𝑟 be the resultant contact wrench with magnitude 𝜙 and unit wrench 𝐰𝑛 having the form 

𝐰𝑛 = [
𝐧

𝐫𝑟 × 𝐧] 

where 𝐫𝑟 is the position vector indicating the line of action (from the origin of the body frame to an 

undetermined point on the contact edge). Since the resultant force must pass through the edge, the vector 𝐫𝑟. 

can be expressed as a linear combination of any two different position vectors terminating on the edge. 

Let 𝑝𝑖(𝑖 = 1,2) be two arbitrarily chosen points on the contact edge and let 𝐫𝑖 be the position vector associated 

with 𝑝𝑖  (from the body frame origin to 𝑝𝑖). Let 𝐰𝑛𝑖 be the unit normal wrench associated with the 

corresponding 𝑝𝑖. Below, we show that the choice of these points does not influence the calculated reaction 

force. First, we prove that any wrench in direction n that passes through the edge is a linear combination of the 

two unit normal wrenches 𝐰𝑛1 and 𝐰𝑛2. To prove this, we prove that, if 𝑝0 is an arbitrary point on the edge 

and 𝐰𝑛0 is the unit normal wrench associated with 𝑝0, then 𝐰𝑛0 is a linear combination of 𝐰𝑛1 and 𝐰𝑛2. 

Let 𝐫0 be the vector from the body frame origin to 𝑝0. Since 𝑝0 is on the edge, 𝐫0 can be expressed as 

𝐫0 = 𝛼𝐫1 + 𝛽𝐫2 

where 𝛼 and 𝛽 are scalars satisfying 𝛼 + 𝛽 = 1. Thus 

𝐰𝑛0 = [
𝐧

𝐫0 × 𝐧]

= 𝛼 [
𝐧

𝐫1 × 𝐧] + 𝛽 [
𝐧

𝐫2 × 𝐧]

= 𝛼𝐰𝑛1 + 𝛽𝐰𝑛2.

 

For a wrench 𝐰0 with unit wrench 𝐰𝑛0 and magnitude (𝜙, if we denote 

𝜙1 = 𝛼𝜙,𝜙2 = 𝛽𝜙 

then 

𝐰0 = 𝜙1𝐰𝑛1 + 𝜙2𝐰𝑛2. 



Therefore, the two unit normal wrenches 𝐰𝑛1 and 𝐰𝑛2 establish a basis for all wrenches passing through the 

edge in the direction n. 

Now, consider the resultant contact wrench 𝐖𝑟 expressed in terms of the two unit normal 

wrenches 𝐰𝑛1 and 𝐰𝑛2 as follows: 

𝐰𝑟 = 𝜙1𝐰𝑛1 + 𝜙2𝐰𝑛2. 

If we denote 

𝐖 = [𝐰𝑛1, 𝐰𝑛2] × ℝ6×2

𝜙 = [𝜙1, 𝜙2]
𝑇 ∈ ℝ2  

then the total contact wrench is 

𝐰𝑟 = 𝐖𝜙. 

By the reciprocal condition [15], we have 

𝐖𝑇(𝐯0 + 𝐀𝐖𝜙) = 0. 

Solving the above equation for 𝜙 yields 

𝜙 = −[𝐖𝑇𝐀𝐖]−1𝐖𝑇𝐯0. 

Thus, the resultant contact wrench is 

𝐰𝑟 = −𝐖[𝐖𝑇𝐀𝐖]−1𝐖𝑇𝐯0. 

Note that to maintain contact, the reciprocal condition must be satisfied. In doing so, the reaction force can be 

determined without knowing beforehand the line of action of this force. 

The error-reduction function (2) can be expressed as 

𝐹er = 𝐝𝑇(𝐯0 + 𝐀𝐰𝑟)

= 𝐝𝑇(𝐯0 − 𝐀𝐖[𝐖𝑇𝐀𝐖]−1𝐖𝑇𝐯0).
 

Let [𝐖𝑇𝐀𝐖]∗ be the adjugate matrix of [𝐖𝑇𝐀𝐖] (the transpose of the cofactor matrix of [𝐖𝑇𝐀𝐖]. Then, the 

error-reduction function can be written as 

𝐹er =
(𝐝𝑇𝐯0)det(𝐖

𝑇𝐀𝐖) − 𝐝𝑇𝐀𝐖[𝐖𝑇𝐀𝐖]∗𝐖𝑇𝐯0
det(𝐖𝑇𝐀𝐖)

. 

Since det (𝐖𝑇𝐀𝐖) > 0, the error-reduction function can be characterized by the numerator of the above 

equation. 

An equivalent analysis also applies to edge-face contact. Thus, for line-contact cases, the error-reduction 

function is 

𝐹𝑙𝑐 = (𝐝𝑇𝐯0)det(𝐖
𝑇𝐀𝐖) − 𝐝𝑇𝐀𝐖[𝐖𝑇𝐀𝐖]∗𝐖𝑇𝐯0. 

(11) 



Note that the values of the error-reduction functions 𝐹𝑙𝑐 are independent of the choice of the two 

representative points along the edge. Although they can be chosen arbitrarily, since the representative 

wrenches are functions of configuration, it is convenient to choose them at two fixed locations on the held body 

or on the stationary body based on the type of contact state. For example, for face-edge contact, the two 

wrenches can be chosen at the vertices bounding the edge of the fixtured body. For edge-face contact, the two 

wrenches can be chosen at the vertices bounding the contact edge of the held body. Since the error measure 

vector d and the two selected normal wrenches 𝐖𝑛𝑖 depend on the body's configuration 𝐪, 𝐹𝑙𝑐 for either face-

edge or edge-face contact can be described by a known function of 𝐪. 

C. Plane Contact 
Consider face-face contact. If the normal of the faces is 𝐧, then the contact force at each contact point in the 

contact face is in the direction of 𝐧. Thus, the resultant contact force must be in the direction of 𝐧. 

Let w be the resultant contact wrench with magnitude 𝜙 and unit wrench 𝐰𝑛 having the form 

𝐰𝑛 = [
𝐧

𝐫 × 𝐧
] 

(12) 

where 𝐫 indicates the unknown line of action of the force. To ensure its uniqueness, we can suppose that 𝐫 is 

perpendicular to 𝐧, i.e., 

𝐫𝑇𝐧 = 0. 

(13) 

To maintain contact, the reciprocal condition must be satisfied for all contact points in the contact plane. The 

vector 𝐫 indicating the line of action and the magnitude 𝜙 of the contact force can be determined by these 

conditions. Let 𝐫𝑖(𝑖 = 1,2,3) be three arbitrarily chosen contact points on the contact face, and let 𝐰𝑛𝑖 be the 

unit wrenches associated with these three locations which have the form of (12). Then 

𝐰𝑛𝑖
𝑇 (𝐯0 + 𝐀𝐰𝑛𝜙) = 0, 𝑖 = 1,2,3. 

(14) 

Equations (13) and (14) provide four independent equations. Thus. 𝐫 and 𝜙 can be uniquely determined by 

satisfying the four equations. Again, because the reciprocal condition at any three noncollinear locations on a 

plane ensures the same condition for all contact points of the plane, the three contact locations can be chosen 

arbitrarily. 

For the compliant motion to be error-reducing, condition (2) must be satisfied for a given point. Thus 

𝐹𝑓𝑓 = 𝐝𝑇(𝐯0 + 𝐀𝐰𝑛𝜙) < 0. 

(15) 

For convenience, wrenches associated with three vertices on the contact face of the held body can be selected. 

Since the contact wrench 𝐰𝑛𝜙 is obtained by solving (13) and (14) (independent of the configuration), only 

the 𝐝 vector is a function of configuration. 

Conditions for error-reducing motion for each of the different types of contact have now been identified. Each is 

a function of configuration q. Next, we consider conditions imposed on a finite number of configurations such 



that, when satisfied, error reduction is satisfied for the entire set of possible configurations within the contact 

state. 

SECTION IV. Sufficient Conditions for Face-Vertex Contact 
As shown in Section II-A, the relative configuration of the bodies for face-vertex contact is described by the 

translation variables 𝛿1, 𝛿2 and orientational variables (𝐮, 𝜃). We prove that, if an admittance matrix 𝐀 satisfies a 

set of conditions at the “boundary” points, then the A matrix ensures error-reducing motion for all intermediate 

configurations 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

] and 𝜃 ∈ [0, 𝜃𝑀] (regardless of the direction of rotation). 

A. Error-Reduction Function 
In order to obtain the error-reduction function in terms of configuration 𝐪, we first express the contact wrench 

and the error-measure vector d as functions of (𝛿1, 𝛿2, 𝐮, 𝜃). 

For a face-vertex contact state as shown in Fig. 3(a), when the held body rotates relative to the fixtured body 

about the contact point 𝑂, the description of the contact wrench does not change in a body-based coordinate 

frame. When the held body translates relative to the fixtured body, the description of the contact wrench 

changes in a body-based coordinate frame because the contact point changes (although its direction is 

constant). Thus, the contact wrench is a function of only the translational variables 𝛿1, 𝛿2. 

 
Fig. 3. Face-vertex contact. (a) contact force in the body frame. (b) error-measure vector d in the body frame. 

For all face-vertex cases, the direction of the surface normal is constant in the body frame while the position 

vector of the contact point r varies. For arbitrary (𝛿1, 𝛿2), 𝐫 can be expressed as 

𝐫 = 𝐫0 + 𝛿1𝐛1 + 𝛿2𝐛2 

where 𝐫0 is the position vector from the body frame's origin 𝑂 to the origin of the centrally located coordinate 

frame 𝑂𝑏, and 𝐛1 and 𝐛2 are unit vectors along the two axes of coordinate frame 𝑂𝑏 (constant in body frame). 

By (4), the unit wrench corresponding to the surface normal is 

𝐰𝑛 = [
𝐧

𝐫 × 𝐧
] 

(16) 

Note that in the body frame, the direction of 𝐰𝑛 is constant while the last component (the moment term) is a 

linear function of 𝛿𝑖. 

Let 𝐵ℎ be the home position of 𝐵 (the location where the parts are properly mated) and 𝐝′ be the three-vector 

from 𝐵ℎ to 𝐵. As shown in Fig. 3(b), the line vector d associated with error reduction is also a function of 
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configuration. Let 𝐝𝑖
′ be the three-vector shown in Fig. 3(b) and di be the line vectors (six-vectors) associated 

with 𝐝𝑖
′. Namely, let 𝐝1

′ be the position vector from 𝐵ℎ to the contact point 𝐶 and 𝐝2
′ be the position vector 

from 𝐶 to 𝐵. Then, 𝐝1
′ is constant in the global frame and 𝐝2

′, can be expressed as 

𝐝2
′ = 𝐝𝑏

′ − 𝛿1𝐛1 − 𝛿2𝐛2 

where d𝑏
′ is the position vector from the frame origin 𝑂𝑏 to point 𝐵 (constant in body frame). For arbitrary 

𝛿1, 𝛿2 with 𝜃 = 0, the error-measure three-vector d′ is 

𝐝′(𝛿) = 𝐝1
′ + 𝐝𝑏

′ − 𝛿1𝐛1 − 𝛿2𝐛2, 𝛿𝑖 ∈ [−𝛿𝑀, 𝛿𝑀]. 

If we denote 

𝛿′ = 𝛿1𝐛1 + 𝛿2𝐛2 

then 𝐝′ can be expressed as 

𝐝′(𝛿) = 𝐝1
′ + 𝐝𝑏

′ − 𝛿′. 

Again, note that 𝐝1
′ is constant in the global coordinate frame while 𝐛2 and 𝐝𝑏

′ are constant in the body frame. 

Thus, for an arbitrary orientation (𝑢, 𝜃) and 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

], the error measure three-vector 𝐝′ is a function 

of 𝑢, 𝜃) and 𝛿𝑖  having the form 

𝐝′(u, 𝜃, 𝛿) = 𝐑𝐝1
′ + 𝐝𝑏

′ − 𝛿′ 

where 𝐑. is the rotation matrix having the form of (3). 

The line vector associated with 𝐝′ can be calculated as 

𝐝(𝛿, 𝜃) = [
𝐑𝐝1

′

𝐫𝐵 × 𝐑𝐝1
′] + [

𝐝𝑏
′

𝐫𝐵 × 𝐝𝑏
′] − [

𝛿′

𝐫𝐵 × 𝛿′
] 

(17) 

where 𝐫𝐵 is the position vector from the body frame origin 𝑂 to the error measure point 𝐵 (constant in body 

frame). 

Thus, for any intermediate configuration (𝛿1, 𝛿2, 𝜃), using (16) and (17), the error-reduction function 𝐹1𝑝, 

in (10) can be expressed as a function of (𝛿1, 𝛿2, 𝐮, 𝜃). 

Since only small orientational variation is considered, the angular magnitude 𝜃 is small ≤ 5o. Thus, the rotation 

matrix 𝐑 in (3) can be accurately approximated by 

𝐑(𝐮, 𝜃) = 𝐈 + sin 𝜃[𝐮 ×] . 

(18) 

In the following, for an arbitrary wrench 6-D line vector 𝐬, we denote 𝐬u as the cross-product operation 

of 𝐮 on 𝐬, i.e., if 𝐬 has the form 

𝐬 = [
𝐚

𝐫 × 𝐚
] 

then 



𝐬𝐮 = [
𝐮 × 𝐚

𝐫 × (𝐮 × 𝐚).] 

(19) 

If we denote the three-vector 

𝐝0
′ = 𝐝1

′ + 𝐝𝑏
′
 

and denote the 6-D line vectors 

𝐝0 = [
𝐝0

′

𝐫𝐵 × 𝐝0
′] , 𝛿 = [

𝛿′

𝐫𝐵 × 𝛿′
] 

then, using (18), the error-reduction function can be accurately approximated by 

𝐹1𝑝(𝛿, 𝜃) = (𝐝0 − 𝛿)𝑇(𝐯0𝐰𝑛
𝑇 − 𝐯0

𝑇𝐰𝑛𝐈)𝐀𝐰𝑛

+[𝐝1𝐮
𝑇 (𝐯0𝐰𝑛

𝑇 − 𝐯0
𝑇𝐰𝑛𝐈)𝐀𝐰𝑛] sin 𝜃

 

(20) 

where the subscript 𝐮 of a line vector indicates the cross-product operation of 𝐮 on the vector [as defined 

in (19)]. 

Now consider the matrix norm of the six-vector 𝐝1u. Since 𝟏 is a unit vector 

‖𝐝1𝐮‖ = ‖[
𝐮 × 𝐝1

′

𝐫𝐵 × (𝐮 × 𝐝1
′ )
]‖ ≤ ‖[

𝐝1
′

𝐫𝐵 × 𝐝1
′]‖ = ‖𝐝1‖. 

Thus, the second term in (20) is given as 

[𝐝1𝐮
𝑇 (𝐯0𝐰𝑛

𝑇 − 𝐯0
𝑇𝐰𝑛𝐈)𝐀𝐰𝑛] sin 𝜃

≤ ‖𝐝1‖ ⋅ ‖(𝐯0𝐰𝑛
𝑇 − 𝐯0

𝑇𝐰𝑛𝐈)𝐀𝐰𝑛‖ sin 𝜃

≤ Msin 𝜃𝑀

 

where 𝑀 = ‖𝐝1‖ ⋅ ‖(𝐯0𝐰𝑛
𝑇 − 𝐯0

𝑇𝐰𝑛𝐈)𝐀𝐰𝑛‖ and the norms used are the conventional matrix norms. Note that, 

in a specified coordinate frame, 𝑀 is constant. 

Now consider the first term in (20) 

𝑀 = ‖𝐝1‖ ⋅ ‖(𝐯0𝐰𝑛
𝑇 − 𝐯0

𝑇𝐰𝑛𝐈)𝐀𝐰𝑛‖ 

Since 𝐰𝑛 only contains linear terms in 𝛿𝑖 , 𝑓 is a third-order polynomial in 𝛿1 and 𝛿2. If we construct a new 

function 

𝐹(𝛿1, 𝛿2) = 𝑓 +Msin 𝜃𝑀  

(21) 

then 𝐹 is a third-order polynomial in 𝛿1 and 𝛿2 and, for all intermediate configurations, we have 

𝐹1𝑝 ≤ 𝐹(𝛿1, 𝛿2). 



B. Sufficient Conditions for Error Reduction 
The error-reduction condition requires that the error-reduction function in (20) must be negative in the range of 

configurations considered. In order to obtain sufficient conditions, we consider the “more positive” function 

defined in (21). The third-order polynomial can be written in the form 

𝐹(𝛿1, 𝛿2) = 𝑓1𝛿1
3 + 𝑓2𝛿1

2𝛿2 + 𝑓3𝛿1𝛿2
2 + 𝑓4𝛿2

3 + 𝑓5𝛿1
2

+𝑓6𝛿1𝛿2 + 𝑓7𝛿2
2 + 𝑓8𝛿1 + 𝑓9𝛿2 + 𝑓0.

 

(22) 

Consider a single-variable function of 𝛿2 defined by 

𝑓𝛿2 = 𝐹(0, 𝛿2) = 𝑓4𝛿2
3 + 𝑓7𝛿2

2 + 𝑓9𝛿2 + 𝑓0. 

Let 

𝑓𝑀𝛿2 = max{|𝑓4|, |𝑓7|, |𝑓9|} . 

(23) 

Then, as shown in [12], a root of 𝑓𝛿2 , 𝜉2, must satisfy 

|𝜉2| ≥
|𝑓0|

𝑓𝑀𝛿2 + |𝑓0|
. 

(24) 

Thus, if 

|𝑓0|

𝑓𝑀𝛿2 + |𝑓0|
≥ 𝛿𝑀2

 

(25) 

then 𝑓𝛿2 has no root in [−𝛿𝑀2
, 𝛿𝑀2

]. 

Denote 

𝑓𝑚 = 𝑚𝑖𝑛
|𝛿2|≤𝛿𝑀2

{|𝑓𝛿2|}

𝑐𝑀 = 𝑚𝑎𝑥
|𝛿2|≤𝛿𝑀2

{|𝑓1|, |𝑓2𝛿2 + 𝑓5|, |𝑓3𝛿2
2 + 𝑓6𝛿2 + 𝑓8|}.

 

(26)(27) 

We prove that if 

𝑓𝑚
𝑐𝑀 + 𝑓𝑚

≥ 𝛿𝑀1
 

(28) 

then 𝐹1𝑝 has no root for all 𝛿1 ∈ [−𝛿𝑀1
, 𝛿𝑀1

] and 𝛿2 ∈ [−𝛿𝑀2
, 𝛿𝑀2

]. 



To prove this, consider the function F in (22). For an arbitrary 𝛿20 ∈ [−𝛿𝑀 , 𝛿𝑀], 𝐹(𝛿1, 𝛿20) is a third-order 

polynomial in a single-variable 𝛿1 as follows: 

𝐹𝛿1 = 𝑓1𝛿1
3 + (𝑓2𝛿20 + 𝑓5)𝛿1

2 + (𝑓3𝛿20
2 + 𝑓6𝛿20 + 𝑓8)𝛿1 + 𝑓𝑚 . 

Since 𝛿20 ∈ [−𝛿𝑀2
, 𝛿𝑀2

]., for any root of 𝐹(𝛿1), 𝜉1, by (26) and (27), we have 

|𝜉1| ≥
𝑓𝑚

𝑐𝑀 + 𝑓𝑚
> 𝛿𝑀1

. 

Thus, 𝐹𝛿1 has no root in [−𝛿𝑀1
, 𝛿𝑀1

] for all 𝛿2 ∈ [−𝛿𝑀2
, 𝛿𝑀2

]. Since 𝑓𝑚 in (26) and 𝑐𝑀 in (27) are functions of the 

admittance 𝐀, (28) imposes a constraint on 𝐀. In summary, we have the following. 

Proposition 1 
For a face-vertex contact state, if: 1) at the configuration 𝛿1, 𝛿2, 𝜃) = (0,0,0), the admittance satisfies the error 

reduction condition (2) and 2) condition (28) is satisfied for the polynomial (22), then the admittance will satisfy 

the error-reduction conditions for all configurations bounded by 𝛿𝑖𝜖[−𝛿𝑀𝑖
, 𝛿𝑀𝑖

] and 𝜃 ∈ [0, 𝜃𝑀], where 𝐮 is 

arbitrary. 

Note that, since the functions in (26) and (27) are all polynomials in 𝛿2 with order no higher than three, the 

maximum and minimum values of these functions can be obtained analytically by evaluating the function at the 

boundary points ±𝛿𝑀2
 and the stationary points. Thus, to ensure that contact yields error-reducing motion for 

the body for a face-vertex contact state, only two conditions [(2) and (28)] need to be satisfied. 

SECTION V. Sufficient Conditions for Vertex-Face Contact State 
In this section, vertex-face contact is considered. As shown in Fig. 2(b), the configuration of the body can be 

determined by the orientation of the body (𝐮, 𝑏) and the location of the contact point 𝛿1, 𝛿2. 

 
Fig. 4. Vertex—face contact state. (a) orientational variation. (b) translational variation. 

Suppose that 𝜃 varies within the range of [0, 𝜃𝑀] and 𝛿𝑖  varies within the range of [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

]. We prove that, if 

an admittance matrix 𝐀 satisfies a set of conditions determined at the “boundary” configurations, then the same 

admittance will ensure that the motion is error-reducing for any intermediate configuration 𝜃 ∈ [0, 𝜃𝑀], 𝛿𝑖 ∈

[−𝛿𝑀 , 𝛿𝑀]. 

To prove the results, we first consider configuration variation in orientation and translation separately. Then, by 

combining the two cases, general results are obtained. 
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A. Configuration Variation in Orientation 
Consider only orientational variation of the contact configuration as illustrated in Fig. 4(a). In this case, the 

location of the contact vertex of the held body is constant in the face plane, and both the direction of the error-

reduction vector 𝐝 and the direction of the contact force are changed by changing the orientation. We prove 

that, for 𝜃𝑀 ≤ 5o, if 𝐀 satisfies a set of conditions at 𝜃 = 0 (defined at a central orientation), then an error-

reducing motion is ensured for all configurations obtained by rotating about an arbitrary axis u with angle 𝜃 <

𝜃𝑀. 

1) Error-Reduction Function 
Let 𝐰0 be the wrench and 𝐝0 be the error measure line vector associated with 𝜃 = 0. Suppose that, at 𝜃 = 0, an 

error-reducing motion is obtained, i.e., 

𝐝0
𝑇𝐯0 + 𝐝0

𝑇𝐀𝐰0 < 0. 

(29) 

Consider a rotation given by an angle change 𝜃 ∈ [0, 𝜃𝑀] about an axis u. If we denote 𝐧0 as the surface normal 

associated with 𝜃 = 0, then, in the body coordination frame, the surface normal associated with 

varying (𝐮, 𝜃) is 

𝐧𝜃 = 𝐑(𝜃)𝐧0 

(30) 

where 𝐑. is the rotation matrix having the form of (18). 

Since contact is frictionless, the contact force is along the surface normal at the contact point. Thus, the unit 

contact wrench is 

𝐰𝑛(𝜃) = [
𝐧𝜃

𝐫 × 𝐧𝜃
] = [

𝐑𝐧0
𝐫 × 𝐑𝐧0

] 

(31) 

where 𝐫 is the position vector from the origin of the body frame to the contact point (constant in body frame). 

Since the orientational variation considered corresponds to pure rotation about the contact point, the error-

measure three-vector d’ for an intermediate configuration can be expressed in the body frame as 

𝐝′ = 𝐑𝐝1
′ + 𝐝2

′
 

where 𝐝1
′ is the position three-vector from 𝐵ℎ to the contact point 𝐶 and 𝐝2

′ is the position three-vector 

from C to point B. Note that 𝐝1
′ is a constant in the global frame and 𝐝2

′ is constant in the body frame. Then, in 

the body frame, the line vector associated with 𝐝′ is obtained as 

𝐝(𝜃) = [
𝐝′

𝐫𝐵 × 𝐝′
] = [

𝐑𝐝1
′

𝐫𝐵 × 𝐑𝐝1
′] + [

𝐝2
′

𝐫𝐵 × 𝐝2
′] 

(32) 

where 𝐫𝐵 is the position vector from the body frame origin to point 𝐵. 

By (10), the error-reduction function can be written as 



𝐹1𝑝(𝜃) = 𝐝𝑇𝐯0(𝐰𝑛
𝑇𝐀𝐰𝑛) − 𝐝𝑇𝐀𝐰𝑛(𝐰𝑛

𝑇𝐯0). 

(33) 

From (31) and (32), it can be seen that 𝐖𝑛 and 𝑑(𝜃) involve the rotation matrix 𝐑. 

Substituting (31) and (32) into (33) and using (18), the error-reduction function can be expressed as a function 

of (𝐮, 𝜃) in the form 

𝐹1𝑝(𝜃) = 𝐹1𝑝(0) + 𝐹1 sin 𝜃 + 𝐹2 sin
2 𝜃 + 𝐹3 sin

3 𝜃 

(34) 

where 

𝐹1 = 𝐝1𝐮
𝑇 (𝐯0𝐰0

𝑇 − 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0

+𝐝0
𝑇(𝐯0𝐰0

𝑇 − 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0𝐮

+𝐝0
𝑇(𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0

𝐹2 = 𝐝1𝐮
𝑇 (𝐯0𝐰0

𝑇 − 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0𝐮

+𝐝0
𝑇(𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0𝐮

+𝐝1𝐮
𝑇 (𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0

𝐹3 = 𝐝1𝐮
𝑇 (𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0𝐮

 

where 𝐰0 and 𝐝0 are the wrench and the error measure line vector when 𝜃 = 0, respectively, and where the 

subscript u of a line vector indicates the cross-product operation of u on the vector as defined in (19). 

2) Error-Reduction Conditions 
To achieve error reduction at all other orientations considered, 𝐹1𝑝(𝜃) must be negative for 𝜃 ∈ [0, 𝜃𝑀] and an 

arbitrary rotation axis u. Since u is a unit vector, the bounds for Fi in (34) can be obtained. 

If we denote 

𝑀 = ‖𝐝0‖ ⋅ ‖(𝐯0𝐰0
𝑇 − 𝐯0

𝑇𝐰0𝐈)𝐀‖ ⋅ ‖𝐰0‖ 

where the norm used is the conventional matrix norm, then 

|𝐹1| ≤ 3𝑀, |𝐹2| ≤ 3𝑀, |𝐹3| ≤ 𝑀. 

Consider the new function constructed by 

𝐹 = 𝐹1𝑝(0) + 3𝑀 sin 𝜃𝑀 + 3𝑀 sin2 𝜃𝑀 +𝑀 sin3 𝜃𝑀 . 

Then, for 𝜃 ∈ [0, 𝜃𝑀] with an arbitrary rotation axis, we have 

𝐹1𝑝(𝐮, 𝜃) ≤ 𝐹. 

Thus, if 

𝐹 = 𝐹1𝑝(0) + 3𝑀 sin 𝜃𝑀 + 3𝑀 sin2 𝜃𝑀 +𝑀sin3 𝜃𝑀 < 0 

(35) 



then 𝐹1𝑝(𝐮, 𝜃) < 0 for all orientational variations considered. 

B. Configuration Variation in Translation 
Now consider the translational variation of the contact configuration illustrated in Fig. 4(b). In this case, only 

translation in the contact face is allowed, and the contact force does not change in the body frame. For a given 

orientation, the configuration of the body can be determined by the location (𝛿1, 𝛿2) of the vertex 𝐶. 

Suppose that, at the two configurations described by 𝑑𝛼, and 𝑑𝑏, the error-reduction conditions are satisfied as 

follows: 

𝐝𝑎
𝑇𝐯0 + 𝐝𝑎

𝑇𝐀𝐰𝑛𝑎 < 0

𝐝𝑏
𝑇𝐯0 + 𝐝𝑏

𝑇𝐀𝐰𝑛𝑏 < 0
 

(36)(37) 

where 𝐰𝑛𝑎 and 𝐰𝑛𝑏 are the contact wrenches at 𝐝𝑎 and 𝐝𝑓, respectively. Since the contact wrench 𝐖𝑛 is the 

same in the body frame for all contact configurations, 𝐰𝑛 = 𝐰𝑛𝑎 = 𝐰𝑛𝑏. Thus, for any 𝛼, 𝛽 ≥ 0, we have 

(𝛼𝐝𝑎 + 𝛽𝐝𝑏)
𝑇𝐯0 + (𝛼𝐝𝑎 + 𝛽𝐝𝑏)

𝑇𝐀𝐰𝑛 < 0. 

(38) 

Consider d𝑎(𝛿1, 𝛿2) and 𝐝𝑏(𝛿1
′, 𝛿2) at two configurations with the same 𝛿2. Let d(𝛿10 , 𝛿2) be an arbitrary line 

vector with the same 𝛿2 but different 𝛿10 ∈ [𝛿1, 𝛿1
′]. Since the ends of these three vectors must be on a straight 

line. 𝐝 is a convex combination of the vectors 𝐝𝑎 and 𝐝𝑓, i.e., 

𝐝 = 𝛼𝐝𝑎 + 𝛽𝐝𝑏  

(39) 

where 𝛼, 𝛽 ≥ 0, and 𝛼 + 𝛽 = 1. 

Substituting (39) into (38) yields 

𝐝𝑇𝐯0 + 𝐝𝑇𝐀𝐰𝑛 < 0. 

Thus, if at two configurations −𝛿𝑀1
, 𝛿2 and (𝛿𝑀1

, 𝛿2:) the error-reduction condition is satisfied, then the error-

reduction condition must be satisfied for all intermediate configurations 𝛿1, 𝛿2 with 𝛿1 ∈ [−𝛿𝑀1
, 𝛿𝑀1

]. The same 

result holds true for variation in 𝛿2 while 𝛿1 is constant. 

C. General Case 
The results presented in Sections V-A and B can be generalized to intermediate vertex-face contact 

configurations involving both translational and orientational variations from configurations at which the 

conditions were imposed. 



 
Fig. 5. Error-reduction condition for general vertex-face contact state. By satisfying the orientational variation 

conditions at four translational boundary configurations, the error-reducing motion for all intermediate 

configurations is ensured. 

In the 𝛿1 − 𝛿2 plane, consider the rectangular region defined by the four extremal points 𝑃𝑖(𝑖 = 1,… ,4) as 

shown in Fig. 5. Suppose that, at these four boundary points, condition (35) is satisfied. Then, at these four 

locations, the error-reduction condition must be satisfied for all orientations (u 𝜃) with 𝜃 ∈ [0, 𝜃𝑀]. 

Let 𝑃(𝛿1, 𝛿2, 𝐮, 𝜃) be an arbitrary configuration with 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

]. and 𝜃 ∈ [0, 𝜃𝑀]. 

Consider first, the two configurations 𝑃𝑚 and 𝑃𝑀 determined by (−𝛿𝑀1
, 𝛿2:) and (𝛿𝑀1

, 𝛿2), respectively. Since at 

configurations 𝑃1 and 𝑃2 the error-reduction condition (2) and inequality (35) are satisfied, by the results 

presented in Section V-B, the error-reduction condition must be satisfied at configuration 𝑃𝑚 for all orientations 

considered. By the same reasoning, the error-reduction condition is also satisfied at the configuration 𝑃𝑀. Then, 

because the error-reduction condition is satisfied at 𝑃𝑚 and 𝑃𝑀 “, by the results presented in Section V -B, the 

error-reduction condition must also be satisfied for any 𝛿1 ∈ [−𝛿𝑀1
, 𝛿𝑀1

]. Thus, we have the following 

proposition. 

Proposition 2 
For a vertex-face contact state with variation of orientation [0, 𝜃𝑀] and variation of translation [−𝛿𝑀𝑖

, 𝛿𝑀𝑖
], if 

inequality (35) is satisfied at the four translational boundary points (±𝛿𝑀1
, ±𝛿𝑀2

), then the admittance will 

satisfy the error-reduction condition for all configurations bounded by 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

]., and 𝜃 ∈ [0, 𝜃𝑀] in any 

rotation direction. 

Thus, for a vertex-face contact state, to ensure that the motion response due to contact is error reducing for all 

configurations considered, only four conditions need be satisfied. 

SECTION VI. Sufficient Conditions for Edge-Edge Cross Contact 
Below, for edge-edge cross contact, we identify the set of conditions that, when satisfied for a given admittance 

matrix 𝐀 at the “boundary” points, ensures error-reducing motion for all intermediate configurations 𝜃 ∈

[0, 𝜃𝑀], 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

]. 

A. Error-Reduction Function 
In order to obtain the error-reduction function, we first express the contact wrench and the error-measure 

vector d in terms of 𝛿𝑖  and 𝜃. 

For an edge-edge cross contact state as shown in Fig. 6(a), the direction of the contact force is along the 

common normal of the two edges. Let 𝐞1 and 𝐞2 be the two unit vectors along the two edges, respectively, then 

the direction of the force must be along 𝐧 = 𝐞1 × 𝐞2. Note that 𝐞1 is constant in the body frame while 𝐞2 is 
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constant in the global frame. When the held body rotates relative to the fixtured body about the contact 

point 𝑂, the vector 𝐞2 in the body frame can be expressed as 𝐑𝐞2 where 𝐑 is the rotation matrix. When the held 

body translates relative to the fixtured body along 𝐞1, as shown in Fig. 6(a), the description of the contact 

wrench changes in a body-based coordinate frame as the contact point changes (although its direction is 

constant). Thus, the contact wrench is a function involving both the translational and orientational 

variables (𝛿1, 𝛿2, 𝜃). 

 
Fig. 6. Edge-edge cross contact. (a) contact force in the body frame. (b) error-measure vector d in the body 

frame. 

For all edge-edge cross contact cases, the direction of the force depends only on the orientational variation 

while the position vector of the contact point r depends only on the translational variation along the contact 

edge of the held body 𝐞1. For arbitrary (𝛿1, 𝛿2), 𝐫 can be expressed as 

𝐫 = 𝐫0 + 𝛿1𝐞1 

where 𝐫0 is a vector from the body frame to a centrally located point on the edge 𝐞1 (constant). By (4), the unit 

wrench corresponding to the surface normal is 

𝐰𝑛 = [
𝐧

𝐫 × 𝐧
] . 

(40) 

Note that the direction of 𝐰𝑛 is determined by 𝐞1 and 𝐞2 and the last component (the moment term) is a linear 

function of 𝛿1. 

Let 𝐝1
′ and 𝐝2

′ be the two vectors from 𝐵ℎ. to 𝐶 and from 𝐶 to 𝐵 for (𝛿,  𝜃) = (0,0), respectively, then, as 

shown in Fig. 6(b), for arbitrary (𝛿1, 𝛿2) with 𝜃 = 0, the error-measure vector 𝐝′ is 

𝐝(𝛿)′ = 𝐝1
′ + 𝐝2

′ + 𝛿1𝐞1 + 𝛿2𝐞2, 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

]. 

Note that 𝐝1
′ and e2 are constant in the global coordinate frame while 𝐝2

′, and 𝐞1 are constant in the body 

frame. Thus, for an arbitrary orientation (𝐮, 𝜃) and contact location 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

], the error-measure three-

vector d’ is a function of (𝐮, 𝜃) and 𝛿𝑖  having the form 

𝐝′(𝐮, 𝜃, 𝛿) = 𝐑(𝐝1
′ + 𝛿2𝐞2) + 𝐝2

′ + 𝛿1𝐞1 

where 𝐑 is the rotation matrix. 

Let 𝐝𝑖(𝑖 = 1,2) be the line vectors associated with 𝐝𝑖
′. If we denote 
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𝛿1 = 𝛿1 [
𝐞1

𝐫𝐵 × 𝐞1
]

𝛿2 = 𝛿2 [
𝐞2

𝐫𝐵 × 𝐞2
]

and 𝐝1𝐑 = [
𝐑𝐝1

′

𝐫𝐵 × 𝐑𝐝1
′]

𝛿2𝐑 = 𝛿2 [
𝐑𝐞2

𝐫𝐵 × 𝐑𝐞2
]

 

then the error-measure function 𝐝 can be expressed as 

𝐝 = (𝐝1𝐑 + 𝛿2𝐑) + 𝐝2 + 𝛿1. 

For rotation 𝐑, the direction of the force is 

𝐧 = 𝐞1 × 𝐑𝐞2. 

The unit contact wrench can be expressed as 

𝐰𝑛 = [
e1 × 𝐑𝐞2

𝐫 × (𝐞1 × 𝐑𝐞2)
]. 

For small 𝜃, the expression of 𝐑 in (18) provides an accurate approximation. Thus, 𝐰𝑛 and 𝐝 can be expressed in 

terms of 𝐮 and sin𝜃 as 

𝐰𝑛 = 𝐰0 −𝐰0𝐮 sin 𝜃
𝐝 = 𝐝1 + 𝐝2 + 𝛿1 + 𝛿2 + (𝐝1 + 𝛿2)𝐮 sin 𝜃

 

where 𝐰0 is the wrench when 𝜃 = 0 and the subscript 𝐮 of a wrench indicates the cross-product operation 

of u on the wrench [as defined in (19)]. 

Substituting the above 𝐰𝑛 and 𝐝 into (10) and sorting the coefficients of sin 𝜃, the error-reduction function can 

be expressed as 

𝐹1𝑝(𝛿, 𝜃) = 𝐹0 + 𝐹1 sin 𝜃 + 𝐹2 sin
2 𝜃 + 𝐹3 sin

3 𝜃

where𝐹0 = (𝐝1 + 𝐝2 + 𝛿1 + 𝛿2)
𝑇(𝐯0𝐰0

𝑇 − 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0

𝐹1 = −(𝐝1 + 𝐝2 + 𝛿1 + 𝛿2)
𝑇(𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0

−(𝐝1 + 𝐝2 + 𝛿1 + 𝛿2)
𝑇(𝐯0𝐰0

𝑇 − 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0𝐮

+(𝐝1 + 𝛿2)𝐮
𝑇(𝐯0𝐰0

𝑇 − 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0

−(𝐝1 + 𝛿2)𝐮
𝑇(𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0

−(𝐝1 + 𝛿2)𝐮
𝑇(𝐯0𝐰0

𝑇 + 𝐯0
𝑇𝐰0𝐈)𝐀𝐰0𝐮

𝐹3 = (𝐝1 + 𝛿2)𝐮
𝑇(𝐯0𝐰0𝐮

𝑇 − 𝐯0
𝑇𝐰0𝐮𝐈)𝐀𝐰0𝐮.

 



 
Fig. 7. Face-edge contact state. (a) the representative wrenches are chosen on the edge. (b) the error-measure 

vector is decomposed into two components. 

Similar to the results presented in Section V-A.2, because u is a unit vector, each 𝐹𝑖 in the above equation is 

bounded. If we denote 

𝐹𝑀𝑖
= 𝑚𝑎𝑥{|𝐹𝑖|}, 𝑖 = 1,2,3 

and consider the function defined by 

𝐹𝐹 = 𝐹𝐹0 + 𝐹𝐹𝑀1
sin 𝜃𝑀 + 𝐹𝐹𝑀2

sin2 𝜃𝑀 + 𝐹𝑀3
sin3 𝜃𝑀 

(41) 

then F is a linear function in 𝛿1 and 𝛿2. Then, for all 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

] and 𝜃 ∈ [0, 𝜃𝑀] 

𝐹1𝑝 ≤ 𝐹. 

Thus, if 𝐹 is negative for 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

], then 𝐹1𝑝 must be negative for all 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

] and for all rotations 

with 𝜃 ≤ 𝜃𝑀 in any direction. Since 𝐹 is a linear function in 𝛿1 and 𝛿2, 𝐹 < 0 for all 𝛿𝑖 's in the bounded area if 

and only if, at the four extremal points (±𝛿𝑀1
, ±𝛿𝑀2

), 𝐹 < 0. Thus, we have the following proposition. 

Proposition 3 
For an edge-edge cross contact state with variation of orientation [0, 𝜃𝑀] and variation of 

translation [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

], if, at the four translational boundary points (±𝛿𝑀1
, ±𝛿𝑀2

) the function 𝐹 defined 

in (41) is negative, then the admittance will satisfy the error-reduction condition for all configurations bounded 

by 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

] and rotation in an arbitrary direction with angle 𝜃 ≤ 𝜃𝑀. 

SECTION VII. Sufficient Conditions for Face-Edge Contact 
As shown in Fig. 7, four parameters (𝛿1, 𝛿2, 𝜓1, 𝜓2) are chosen to describe the relative configuration variation of 

the bodies for face-edge contact. The parameter 𝛿1 describes translation along the edge 𝐞, 𝛿2 describes 

translation along the direction perpendicular to the edge in the face plane 𝐛𝑓, while 𝜓1 and 𝜓2 describe 

rotations about the edge e and the face normal 𝐧, respectively. 

First, we consider the case for which 𝛿1 is constant while 𝛿2 varies. For this case, the body has no translation 

along the edge e. As shown in Section III-B, the resultant contact wrench can be represented by two 

representative wrenches chosen on the edge. Here, two representative wrenches are chosen on the edge at 

fixed locations 𝑝𝑖(𝑖 = 1,2) as illustrated in Fig. 7(a). 
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Suppose that the position of 𝑝𝑖  relative to a reference point 𝑂𝑒 on the edge is 𝐫𝑒𝑖. Then, the two wrenches have 

the form 

𝐰𝑖 = [
𝐧

(𝐫0 + 𝐫𝑒𝑖) × 𝐧] 

where 𝐫0 is the position vector from the origin of the body frame to point 𝑂𝑒. Note that 𝐫𝑒𝑖 is constant in the 

global frame and a rotation about the contact edge e does not influence the expressions of 𝐫𝑒𝑖 and 𝐛𝑓 in the 

body frame. Then, for translational variation 𝛿2 and orientational variation (𝜓1, 𝜓2), the wrenches have the 

form 

𝐰𝑖 = [
𝐧

(𝐫0 + 𝐑𝐫𝑒𝑖 − 𝛿2𝐑𝐛𝑓) × 𝐧] 

where 𝐛𝑓 is the unit vector in the direction perpendicular to the edge in the contact face of the held body. 

Consider the error-measure vector 𝐝′. As illustrated in Fig. 7(b), 𝐝′ can be expressed as 

𝐝′ = 𝐝1
′ + 𝐝2

′
 

where 𝐝1
′ is the position vector from the home point 𝐵ℎ to point 𝑂𝑒 and 𝐝2

′ is the position vector from 𝑂𝑒 to 

the error-measure point 𝐵. Note that 𝐝1
′ is constant in the global frame. For translational variation 𝛿2 and 

orientational variation (𝜓1, 𝜓2) the error-reduction vector has the form 

𝐝′ = 𝐑(𝐝1
′ + 𝛿2𝐛𝑓) + 𝐝2

′. 

The line vector associated with 𝐝 is calculated as 

𝐝 = [
𝐑(𝐝1

′ + 𝛿2𝐛𝑓) + 𝐝2
′

𝐫𝐵 × [𝐑(𝐝1 + 𝛿2𝐛𝑓) + 𝐝2]
]. 

Let 𝐑𝜓 and 𝐑𝜓2
 be the rotation matrices associated with the two rotations about the edge e and the face 

normal 𝐧, respectively. For small 𝜓𝑖, 𝐑𝜓𝑖
 has the form of (18). The total rotation matrix 𝐑 is 

𝐑 = 𝐈 + sin𝜓1[𝐞 ×] + sin𝜓2[𝐧 ×] 

(42) 

where [𝐞 ×] and [𝐧 ×] are antisymmetric matrices associated with the cross-product operation of 𝐞 and 𝐧, 

respectively. 

Substituting the above 𝐰𝑖, 𝐝, and 𝐑 into the error-reduction function (11) and neglecting the second-order and 

higher order terms involving sin 𝜓1 and sin 𝜓2, we have 

𝐹𝑙𝑐 = 𝑓4𝛿2
4 +⋯+ 𝑓1𝛿2 + 𝑓0 

(43) 

where 𝑓𝑖
′s have the form 

𝑓𝑖 = 𝑎𝑖 sin𝜓1 + 𝑏𝑖 sin𝜓2 + 𝑐𝑖  

and 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are functions of the admittance 𝐀. 



 
Fig. 8. Edge-face contact state. The two representative wrenches are chosen on contact edge of the held body. 

If we denote 

𝑓𝑀 = max{|𝛼𝑖| sin𝜓𝑀1
+ |𝑏𝑖| sin𝜓𝑀2

+ |𝑐𝑖|, 𝑖 = 1,2,3,4}

𝑐𝑚 = min{|𝑎0 sin𝜓1 + 𝑏0 sin𝜓2 + 𝑐0|, |𝜓𝑖| ≤ 𝜓𝑀𝑖
}

 

then the condition 

𝑐𝑚
𝑓𝑀 + 𝑐𝑚

> 𝛿𝑀2  

(44) 

guarantees that, for all 𝜓𝑖 ∈ [−𝜓𝑀𝑖
, 𝜓𝑀𝑖

], 𝐹𝑙𝑐 has no root over [−𝛿𝑀2
, 𝛿𝑀2

]. 

Now consider the body's translation along the edge e. Note that, for any given orientation and 𝛿2, a variation 

on. 𝛿1 (a translation along the edge) does not change the contact force. Thus, the same procedure used 

in Section V-B applies. Therefore, we have the following proposition. 

Proposition 4 
For a face-edge contact state with variation of orientations [−𝜓𝑀1

, 𝜓𝑀1
] about the edge and [−𝜓𝑀2

, 𝜓𝑀2
] about 

the face normal, and variation of translation [−𝛿𝑀𝑖
𝛿𝑀𝑖

], if, at the four configurations with different contact 

boundary locations [(𝛿1, 𝛿2) = (±𝛿𝑀1
, ±𝛿𝑀2

)]: 1) the admittance satisfies the error-reduction conditions and 2) 

inequality (44) is satisfied for ±𝜓𝑀1
 and ±𝜓𝑀2

, then the admittance will satisfy the error-reduction condition for 

all configurations bounded by the configurations 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, −𝛿𝑀𝑖

] and 𝜓𝑖 ∈ [−𝜓𝑀𝑖
, 𝜓𝑀𝑖

] 
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SECTION VIII. Sufficient Conditions for Edge-Face Contact 
In this section, edge-face contact is considered. As shown in Fig. 8, a reference point 𝑂𝑒 is chosen on the held 

body edge. The translation of the body can be described by the location of 𝑂𝑒(𝛿1, 𝛿2) in the plane of the contact 

face. The orientation can be described by a rotation 𝜓1 about the edge 𝐞 and a rotation 𝜓2 about the 

axis 𝐧 along the normal of the face. Note that 𝐞 is constant in the body frame and 𝐧. is constant in the global 

frame. Since a translation does not change the contact force, the same procedure used in Section V can be 

applied to this case in which the orientational and translational variations can be analyzed separately. 

First, we consider orientational variation only. Let 𝐰1 and 𝐰2 be the two representative wrenches fixed on the 

contact edge of the held body with position 𝐫𝑖 relative to the body frame 𝑂. At a given configuration, 𝐰𝑖 has the 

form 

𝐰𝑖 = [
𝐧

𝐫𝑖 × 𝐧]. 

Let 𝐑𝜓1
 and 𝐑𝜓2

 be the rotation matrices associated with the two rotations. Since a rotation about 𝐧 does not 

influence 𝐰𝑖 in the body frame, for an arbitrary orientation variation, the wrench has the form 

𝐰𝑖 = [
𝐑𝜓1

𝐧

𝐫𝑖 × 𝐑𝜓1
𝐧
] . 

(45) 

The error-measure vector 𝐝′ can be expressed as 

𝐝′ = 𝐝1
′ + 𝐝2

′
 

where 𝐝1
′ is the position three-vector from the home point 𝐵ℎ to 𝑂𝑒 and 𝐝2

′ is the position three-vector 

from 𝑂𝑒 to 𝐵. Note that 𝐝1
′  is constant in the global frame while 𝐝2

′ is constant in the body frame. Thus, for an 

arbitrary orientation variation, 𝐝′ has the form 

𝐝′ = 𝐑𝐝1
′ + 𝐝2

′. 

(46) 

For small 𝜓1 and 𝜓2, (42) can be used for the rotation matrix 𝐑 associated with 𝜓3 and 𝜓2. Thus, (46) can be 

written as 

𝐝′ = 𝐝1
′ + sin𝜓1(𝐞 × 𝐝1

′ ) + sin𝜓2(𝐧 × 𝐝1
′ ) + 𝐝2

′. 

If we denote 

𝐝𝜓1𝜓2

′ = sin𝜓1(𝐞 × 𝐝1
′ ) + sin𝜓2(𝐧 × 𝐝1

′ ) 

then the line vector associated with 𝐝′ is 

𝐝 = [
𝐝1
′ + 𝐝2

′

𝐫𝐵 × (𝐝1
′ + 𝐝2

′)
] + [

𝐝𝜓1𝜓2

′

𝐫𝐵 × 𝐝𝜓1𝜓2

′
] . 

(47) 



By (11), the error-reduction function is 

𝐹𝑙𝑐 = det(𝐖𝑇𝐀𝐖)𝐝𝑇𝐯0 − 𝐝𝑇𝐀𝐖[𝐖𝑇𝐀𝐖]∗𝐖𝑇𝐯0. 

Since 𝜓1 and 𝜓2 are small, neglecting all second-order or higher order terms involving sin𝜓1 and sin𝜓2, we 

have 

𝐹𝑙𝑐 = 𝑓0 + 𝑓1 sin𝜓1 + 𝑓2 sin𝜓2 

(48) 

where 𝑓𝑖
′s are functions of the admittance 𝐀. 

Because sin𝜓1 and sin𝜓2 are monotonic functions for small 𝜓1 and 𝜓2 [e.g., 𝜓𝑖 ≤ (𝜋/10)], 𝐹𝑙𝑐 is negative for 

all 𝜓𝑖 ∈ [−𝜓𝑀𝑖
, 𝜓𝑀𝑖

] if and only if, at the four boundary points (±𝜓𝑀𝑖
, ±𝜓𝑀2

), 𝐹𝑙𝑐 < 0. 

 
Fig. 9. Face-face contact state. 

For a translational variation, similar to the case in Section V-B, it can be proved that, for a given orientation, if, at 

four translational locations the condition 𝐹𝑙𝑐 < 0 is satisfied, then, for any intermediate location bounded by 

these four points, the same condition must be satisfied for the given orientation. Thus, we have the following 

proposition. 

Proposition 5 
For an edge-face contact state with variation of orientations [−𝜓𝑀1

, 𝜓𝑀1
] about the edge 

and [−𝜓𝑀2
, 𝜓𝑀2

] about the normal direction and variation of translation [−𝛿𝑀𝑖
𝛿𝑀𝑖

], if, at the four translational 

boundary locations (±𝛿𝑀1
, ±𝛿𝑀2

) the function 𝐹𝑙𝑐 in (48) is negative for each ±𝜓𝑀𝑖
, then the admittance will 

satisfy the error-reduction condition for all configurations bounded by the configurations 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, −𝛿𝑀𝑖

]and 

𝜓𝑖 ∈ [−𝜓𝑀𝑖
, 𝜓𝑀𝑖

]. 

SECTION IX. Face-Face Contact State 
Consider face-face contact as shown in Fig. 9. If the contact is maintained, the motion of the body occurs in the 

plane containing the two faces. Thus, the configuration of the body can be described with three parameters 

(𝛿1, 𝛿2, 𝜓). 
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Let wn be the unit wrench associated with the resultant contact force, then, as shown in Section III-C, 𝐰𝑛 is 

constant in the body frame. In a centered configuration with (𝛿1, 𝛿2, 𝜓) being zeros, the error-measure vector 

can be expressed as 

𝐝′ = 𝐫𝐵 − 𝐫0 

where 𝐫0 is the position vector from the body frame origin at a centrally located configuration to the home point 

of 𝐵ℎ and 𝐫𝐵 is the position vector from the body frame origin to point 𝐵. For arbitrary (𝛿1, 𝛿2, 𝜓), the error-

measure vector is 

𝐝′ = 𝐫𝐵 − 𝐑(𝐫0 + 𝛿1𝐬1 + 𝛿2𝐬2) 

where 𝐬𝑖
′s are unit vectors along the two coordinate axes on the stationary face (constant in global frame) 

and 𝐑 is the rotation matrix associated with 𝜓 in the direction 𝐧. 

Let 

𝛿 = 𝛿1𝐬1 + 𝛿2s2. 

The line vector associated with 𝐝′ is 

𝐝 = [
𝐫𝐵 − 𝐑(𝐫0 + 𝛿)

𝐫𝐵 × [𝐫𝐵 − 𝐑(𝐫0 + 𝛿)]
] = [

𝐫𝐵 − 𝐑(𝐫0 + 𝛿)

−𝐫𝐵 × 𝐑(𝐫0 + 𝛿)
]. 

The error-reduction function 𝐹𝑓𝑓 (15) is 

𝐹𝑓𝑓 = 𝐝𝑇(𝐯0 + 𝐀𝐰). 

Note that, in 𝐹𝑓𝑓, only 𝐝 contains the orientation matrix 𝐑. Using (3) for 𝐑 with 𝐮 replaced by 𝐧, the error-

reduction function can be expressed in the form 

𝐹𝑓𝑓 = (𝑎1𝛿1 + 𝑎2𝛿2 + 𝑎0) + (𝑏1𝛿1 + 𝑏2𝛿2 + 𝑏0) sin𝜓

+(𝑐1𝛿1 + 𝑐2𝛿2 + 𝑐0) cos𝜓
 

(49) 

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are functions of the admittance 𝐀. 

The error-reduction condition requires that the error-reduction function in (49) must be negative in the range of 

configurations considered. In order to obtain sufficient conditions, we construct two functions 𝐹0 and 𝐹𝑀 by 

replacing the cos𝜓 terms in (49) with 1 and cos𝜓𝑀, respectively, to obtain 

𝐹0(𝛿, 𝜓) = (𝑎1𝛿1 + 𝑎2𝛿2 + 𝑎0) + (𝑏1𝛿1 + 𝑏2𝛿2 + 𝑏0) sin𝜓

+(𝑐1𝛿1 + 𝑐2𝛿2 + 𝑐0)

𝐹𝑀(𝛿, 𝜓) = (𝑎1𝛿1 + 𝑎2𝛿2 + 𝛼0) + (𝑏1𝛿1 + 𝑏2𝛿2 + 𝑏0) sin𝜓

+(𝑐1𝛿1 + 𝑐2𝛿2 + 𝑐0) cos𝜓𝑀 .

 

(50)(51) 

For small 𝜓 (e.g., 𝜓 ≤ 5o), 𝐹0 and 𝐹𝑀 are close approximations of 𝐹𝑓𝑓, and, for any (𝛿,  𝜓) in the range 

considered, we have 



min{𝐹0, 𝐹𝑀} ≤ 𝐹𝑓𝑓 ≤ max{𝐹0, 𝐹𝑀}. 

Thus, if both 𝐹0 and 𝐹𝑀 are negative over the range 𝛿 ∈ [−𝛿𝑀 , 𝛿𝑀] and 𝜓 ∈ [−𝜓𝑀, 𝜓𝑀], error-reducing motion 

is ensured. 

Now consider the function 𝐹0. Note that 𝐹0 contains only linear terms in 𝛿1 and 𝛿2 and, for small 𝜓 (e.g., 𝜓 ≤

(
𝜋

10
)), sinψ is a monotonic function in 𝜓. Thus, for |𝜓| ≤ 𝜓𝑀, if, at the four boundary points (±𝛿1, ±𝛿2), 𝐹0 is 

negative, then, for all 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀𝑖

], 𝐹0 is negative. The same reasoning applies to 𝐹𝑀. Therefore, we have the 

following proposition. 

Proposition 6 
For a face-face contact state with variation of orientation [−ψM, ψM] and variation of translation [−𝛿𝑀𝑖

, 𝛿𝑀𝑖
], if, 

at the four boundary points (±𝛿𝑀1
, ±𝛿𝑀2

), the functions 𝐹0 and 𝐹𝑀 defined in (50) and (51) are negative 

for 𝜓 = 0 and 𝜓𝑀, respectively, then the admittance will satisfy the error-reduction condition for all 

configurations bounded by 𝛿𝑖 ∈ [−𝛿𝑀𝑖
, 𝛿𝑀t

] and rotation 𝜓 ∈ [−𝜓𝑀, 𝜓𝑀]. 

SECTION X. Discussion 
In this paper, error reduction of a single point on the held body is considered when evaluating error reduction of 

the held body. If the point selected corresponds to that which is maximally displaced from its proper position, an 

established metric [11] is used as a measure of error reduction. Alternately, the results could be applied to a 

finite set of points to further restrict the description of error reduction. If, for example, 𝑛 points on a body are 

selected as the reference points, then the error-reduction conditions must be satisfied for all of the 𝑛 error 

measures. Therefore, the associated conditions (Propositions 1–6) must be applied to all of the n points. 

The polyhedral body discussed is not necessarily the entire held body. It could be any portion of the held part of 

interest. As a consequence, the set of reference points can be selected based only on the chosen subpart. 

The conditions for each PC ensure error-reducing motion only within the same contact state. In order to achieve 

reliable assembly in tasks that involve multiple PCs, conditions for each of the PCs that may occur in the 

assembly must be imposed on the admittance simultaneously. 

In robotic application, the orientational misalignment due to the manipulator's inaccuracy is small. Thus, the 

orientational variation considered is small (approximately ±5o). For this range, the simplification of the rotation 

matrix in (18) is an accurate approximation of that in (3). Also, to obtain sufficient conditions for each contact 

state, conservative bounds on functions for translational and orientational variations are used. Thus, the 

sufficient conditions obtained are conservative for all contact states. 

Once the sufficient conditions are established, an optimization procedure can be used to find a desired 

admittance. In this optimization, the sufficient conditions can be imposed on the admittance as constraints. Our 

previous work for planar assembly problems [1] showed the success of this strategy. 

In this paper, only frictionless, single PC contact is considered. In practical assembly problems, friction and multi-

PC contact must be considered. In spatial cases with friction, since the body motion and the friction are coupled 

in more complicated nonlinear equations, it is difficult to determine the direction of the contact force, which is 

needed in determining the motion of the held body. In extension of this study to frictional cases, a way to 

characterize the friction force when the motion of the body is not known is needed. 



SECTION XI. Summary 
We have presented a set of conditions for admittance selection for force-guided assembly of two polyhedral 

rigid bodies. We have shown that, for single-PC contact states, the admittance control law can be selected based 

on imposed behavior at a finite number of configurations. If the error-reduction conditions are satisfied at these 

configurations, the error-reduction conditions will be satisfied for all intermediate configurations. 

In future work, more general admittance selection problems involving multi-PC contact states and contact forces 

including friction will be investigated. 
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