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Abstract: 
The selection of the proper admittance is important in achieving force-guided assembly. This paper 
identifies procedures for selecting the appropriate spatial admittance to achieve reliable force-guided 
assembly of polyhedral parts for single-point frictionless contact cases. Sets of conditions that are imposed 
on the admittance matrix for different types of single-point contact are presented. These conditions ensure 
that the motion that results from contact reduces part misalignment in the selected contact state. We show 
that, for bounded misalignments, if an admittance satisfies the misalignment-reduction conditions at a 
finite number of contact configurations, then the admittance also satisfy the conditions at all intermediate 
configurations. 
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SECTION I. Introduction 
In robotic assembly tasks, the manipulator admittance can provide force regulation and force guidance. An 
admittance is a mapping of forces into velocities. To achieve reliable assembly, the manipulator admittance 
must be appropriate for the particular assembly task. 

We consider a simple form of admittance, a linear admittance control law.1 For spatial applications. this 
admittance behavior has the form: 

v = v0 + 𝐀𝐀𝐀𝐀 (1) 

where v0 is the nominal twist (6-vector), w is the contact wrench (force and torque) measured in the body 
frame (a 6-vector), A is the admittance matrix (a 6 × 6 matrix), and v is the motion of the body. 

Admittance design for force-guidance has been addressed by many researchers. Whitney2,3 proposed that 
the compliance of a manipulator be structured so that contact forces lead to decreasing errors. 
Peshkin4 addressed the synthesis of an accommodation (inverse damping) matrix by specifying the desired 
force/motion relation at a sampled set of positional errors for a planar assembly task. Others5,6 provided 
synthesis procedures based on spatial intuitive reasoning. 

A reliable admittance selection approach is to design the control law so that, at each possible part 
misalignment, the contact force always leads to a motion that reduces the existing misalignment. The 
approach is referred to as force-assembly and has been successful for workpart into fixture insertion when 
errors are infinitesimal.1,7,8 

In previous work,9,10,11 sufficient conditions for an admittance to ensure force-guided assembly 
for planar polygonal parts have been identified. In this paper, sufficient conditions for an admittance to 
ensure force-guidance for spatial polyhedral parts is identified. Due to the nature of motion, the kinematic 
description of a spatial polyhedral part is significantly different than that of a planar polygonal part. 

Consistent with prior work, we consider a measure of error based on the Euclidean distance between an 
arbitrarily chosen single (fixed) point on the held body and its location when properly positioned. Because 
the selection of the reference location is arbitrary, one configuration dependent location (point of 
maximum distance) can be selected to use an established metric12 or more than one location can be 
selected to further restrict the description of what constitutes error-reduction in rigid body assembly. 

The misalignment reduction condition of force-assembly requires that, at each possible misalignment, the 
contact force yields a motion that reduces the misalignment. Using the point-based measure of 
misalignment discussed above, this condition can be expressed mathematically if we let d (a 6-vector for 
spatial motion) be the line vector from the selected point at its properly mated position to its current 
position. Then, for error reducing motion, the condition is: 



d𝑇𝑇v = d𝑇𝑇(v0 + 𝐀𝐀𝐀𝐀) < 0 (2) 

which must be satisfied for all possible misalignments. 

Because the line vector d depends on the rigid body configuration and because the number of 
configurations is infinite, it is impossible to impose the error-reduction condition for all misalignments. In 
application, however, the misalignments of the rigid body are bounded by: 1) the extremes within a contact 
state, or 2) the extremes of manipulator, inaccuracy, Those misalignments at the “extremes” are of 
particular interest. 

This paper considers polybedral rigid body assembly involving spatial motion constrained by frictionless 
contact. The contact states studied here are the non-degenerate, single-point principal contacts (or 
PCs)13 obtained for polyhedral parts. 

Polyhedral bodies in single-point contact have three types of stable principle contacts: “face-vertex” ({𝑓𝑓 −
𝑣𝑣})) contact, “vertex-face” ({𝑣𝑣 − 𝑓𝑓}) contact, and “edge-edge cross” ({𝑒𝑒 − 𝑒𝑒}𝑐𝑐) contact. Each of the 
single-point principle contacts are illustrated in Fig. 1. 
 
In this paper, sufficient conditions for an admittance to ensure force-guided assembly are established for 
each of these three PCs. 

SECTION II. Configuration Description 
In this section, the sets of coordinates used to describe configuration variation for single-point contact PCs 
are presented. 

 
Fig. 1. Configuration Variables for Single-Point Principle Contacts. (a) Face-Vertex Contact. (b) Vertex-Face Contact. (c) Edge-
Edge Cross Contact. 

As previously stated, the three contact PCs are face-vertex, vertex-face and edge-edge cross contact (as 
shown in Fig. 1). The body can translate in the plane of contact and rotate about the contact point in any 
direction. As such, five variables describe the relative configuration of the bodies (the relative position of 
the contact point using two translational variables and the relative orientation using three rotational 
variables). 



1) Orientational Variation 
The relative orientation of the rigid body can be described by a 3 × 3 orthogonal matrix 𝐑𝐑. 
 
Consider two configurations 𝐶𝐶0 and 𝐶𝐶1 with the same point of contact. By Euler theory, there exists an axis 
such that configuration 𝐶𝐶1 can be achieved from configuration 𝐶𝐶0 by a rotation about this single axis. For 
any given 𝐶𝐶0 and 𝐶𝐶1, the direction of the axis u and rotation angle 𝜃𝜃 are unique (0 ≤ 𝜃𝜃 ≤ 𝜋𝜋). 
 
Consider a rotation about an arbitrary axis u with angle 𝜃𝜃. The rotation matrix associated with this 
configuration change can be obtained by Rodrigues' formula:14 
 

𝐑𝐑(u,𝜃𝜃) = 𝐈𝐈 + (1 − cos 𝜃𝜃)uu𝑇𝑇 + sin 𝜃𝜃[u ×] (3) 

where [𝑢𝑢 𝑥𝑥] denotes the anti-symmetric matrix associated with the cross product operation involving u 
given by: 

[u ×] = �
0 −𝑢𝑢3 𝑢𝑢2
𝑢𝑢3 0 −𝑢𝑢1
−𝑢𝑢2 𝑢𝑢1 0

�. 

Finite variation from an initial configuration (considered later in establishing sufficient conditions) can be 
described by: 1) placing bounds on the maximum angular magnitude 0 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑀𝑀 and 2) providing no 
bounds on the direction of the rotation axis, u. 
 
Since the orientational error is bounded by possible manipulator inaccuracy within a specified contact 
state, only small angular variation (≤ 10o) is considered. Because u is arbitrary, for a centered coordinate 

frame with maximum angular variation ∆𝜃𝜃, the bound for the angular magnitude 𝜃𝜃𝑀𝑀 = 1
2
∆𝜃𝜃. For example, 

if the maximum angular variation considered is 10° < 0 then 𝜃𝜃𝑀𝑀 = 5o. 
 

2) Translational Variation 
For bodies in contact at a single point, the location of the contact point can be described by two 
parameters 𝛿𝛿 = (𝛿𝛿1, 𝛿𝛿2). The meaning of these variables is different for the different principle contacts. 
 
For face-vertex ({𝑓𝑓 − 𝑣𝑣}) contact, a 2-dimensional coordinate frame 𝑂𝑂𝑏𝑏  is established on the held body in 
the plane of the contact face. Two orthogonal coordinates (𝛿𝛿1, 𝛿𝛿2) are used to describe translational 
variation of the rigid body within this contact state as shown in Fig. 1a. 
 
For vertex-face ({𝑣𝑣 − 𝑓𝑓}) contact, a 2-dimensional coordinate frame 𝑂𝑂𝑠𝑠  is established on the stationary 
part in the plane of the contact face. Again, two orthogonal coordinates (𝛿𝛿1, 𝛿𝛿2) are used to describe the 
translational variation of the rigid body within this contact state as shown in Fig. 1b. 
 



For edge-edge cross ({𝑒𝑒 − 𝑒𝑒}𝑐𝑐) contact, two translational non-orthogonal coordinates (𝛿𝛿1, 𝛿𝛿2) are chosen 
to describe translational variation along edges e1 and e2 as shown in Fig. 1c. 
 
Since finite configuration variation is considered, for each contact state, the variation of each 𝛿𝛿𝑖𝑖  is 
bounded. By appropriately choosing the coordinate origin (at a central location of contact), the bounds 
for 𝛿𝛿𝑖𝑖  can be written as: 

−𝛿𝛿𝑀𝑀𝑖𝑖 ≤ 𝛿𝛿𝑖𝑖 ≤ 𝛿𝛿𝑀𝑀𝑖𝑖 . 

In summary, configuration variation for each single-point contact state is given by 𝐪𝐪 = (𝛿𝛿1, 𝛿𝛿2, u,𝜃𝜃). 

SECTION III. Error-Reducing Motion of a Constrained Rigid Body 
In this section, the motion of a partially constrained body is investigated. For single-point contact states, 
the contact force is imposed at the point of contact and is along the face normal (for ({𝑣𝑣 − 𝑒𝑒} and ({𝑒𝑒 −
𝑣𝑣} contact states) or along the normal determined by the two contact edges (for {𝑒𝑒 − 𝑒𝑒}𝑐𝑐  contact). 
 
Let n be a unit 3-vector indicating the direction of the normal contact force applied to the held body. The 
unit wrench associated with the normal force has the form: 

w𝑛𝑛 = � n
r × n� (4) 

where r is the position vector from the origin of the held body coordinate frame to the contact point, 𝐶𝐶, as 
shown in Fig. 1. 

Let 𝜙𝜙 be the magnitude of the normal contact force. By the control law (1), the motion of the body is: 
 

v = v0 + 𝐀𝐀𝐀𝐀𝑛𝑛𝜙𝜙. (5) 

Because the motion of the rigid body cannot penetrate the surface, the reciprocal condition15 must be 
satisfied: 

𝐀𝐀𝑛𝑛
𝑇𝑇𝐯𝐯 = 𝐀𝐀𝑛𝑛

𝑇𝑇v0 + 𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛𝜙𝜙 = 0. 

Solving for 𝜙𝜙 in the above equation and substituting into (5) yields 
 

𝐯𝐯 = (v0𝐀𝐀n𝑇𝑇−𝐯𝐯0T𝐀𝐀nI)𝐀𝐀𝐀𝐀𝑛𝑛
𝐀𝐀n𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛

. (6) 

For the compliant motion to be error-reducing, condition (2) must be satisfied for a given point. 
Thus, (2) becomes: 

𝐸𝐸 = 𝐝𝐝𝑇𝑇(𝐯𝐯0𝐀𝐀𝑛𝑛𝑇𝑇−𝐯𝐯0𝑇𝑇𝐀𝐀𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛
𝐀𝐀𝑛𝑛𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛

< 0 (7) 

where A, d, and 𝐀𝐀𝑛𝑛 are expressed in the held body frame. 

https://ieeexplore.ieee.org/document/#deqn1
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Fig. 2. Face-Vertex Contact. (a) Contact Force in the Body Frame. (b) Error-Measure Vector 𝐝𝐝 in the Body Frame. 

Since A is positive definite, 𝐀𝐀𝑛𝑛
𝑇𝑇𝐀𝐀𝐀𝐀𝑛𝑛 > 0, and the denominator of (7) is positive. Therefore, the error-

reduction function can be expressed as: 
 

𝐹𝐹𝑒𝑒𝑒𝑒 = d𝑇𝑇(v0w𝑛𝑛
𝑇𝑇 − v0𝑇𝑇w𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛. (8) 

Since 𝐝𝐝 and w𝑛𝑛 are functions of configuration q,𝐹𝐹𝑒𝑒𝑒𝑒 is a function of 𝑞𝑞, To obtain error reducing 
motion, 𝐹𝐹𝑒𝑒𝑒𝑒(q) must be negative for all 𝑞𝑞 considered within the specified principle contact. 

SECTION IV. Conditions for Face-Vertex Contact 
As shown in Section II, the relative configuration of the bodies for face-vertex contact is described by the 
translation variables (𝛿𝛿1, 𝛿𝛿2) and orientational variables (u, 𝜃𝜃). We prove that, if an admittance matrix A 
satisfies a set of conditions at the “boundary” points, then the A matrix ensures error-reducing motion for 
all intermediate configurations 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖] and 𝜃𝜃 ∈ [0, 𝜃𝜃𝑀𝑀] (regardless of the direction of rotation). 
 

A. Error-Reduction Function 
For a face-vertex contact state as shown in Fig. 2a, when the held body rotates relative to the fixtured body 
about the contact point, the description of the contact wrench does not change in a body-based coordinate 
frame. When the held body translates relative to the fixtured body, the description of the contact wrench 
changes in a body-based coordinate frame because the contact point changes (although its direction is 
constant). Thus, the contact wrench is a function involving only the translational variables (𝛿𝛿1,𝛿𝛿2). 
 
For all face-vertex cases, the direction of the surface normal is constant in the body frame while the 
position vector of the contact point, r, varies. For arbitrary (𝛿𝛿1, 𝛿𝛿2), 𝐫𝐫 can be expressed as: 
 

r = r0 + 𝛿𝛿1u1 + 𝛿𝛿2u2 

where r0 is the position vector from the body frame's origin O to the origin of the centrally located 
coordinate frame 𝑂𝑂𝑏𝑏, and u1 and u2 are unit vectors along the two axes of coordinate frame 𝑂𝑂𝑏𝑏  (constant 
in body frame). 

The unit wrench corresponding to the surface normal, w𝑛𝑛, can be obtained by (4). It can be seen that in the 
body frame, the direction of w𝑛𝑛 is constant while the last component (the moment term) is a linear 
function of 𝛿𝛿𝑖𝑖. 

https://ieeexplore.ieee.org/document/#deqn7
https://ieeexplore.ieee.org/document/#deqn4


 
As shown in Fig. 2b, the line vector 𝐝𝐝 associated with error reduction is also a function of configuration. For 
arbitrary (𝛿𝛿1, 𝛿𝛿2) with 𝜃𝜃 = 0, the error-measure 3-vector d′ is: 
 

d′(𝛿𝛿) = d1′ + d𝑏𝑏′ − 𝛿𝛿1𝐮𝐮1 − 𝛿𝛿2𝐮𝐮2, 𝛿𝛿𝑖𝑖 ∈ �−𝛿𝛿𝑀𝑀𝑖𝑖 , 𝛿𝛿𝑀𝑀𝑖𝑖� 

where d1′  is the position vector from 𝐵𝐵ℎ  to the contact point 𝐶𝐶 (constant in global frame) and d𝑏𝑏 is the 
position vector from the frame origin 𝑂𝑂𝑏𝑏  to point 𝐵𝐵 (constant in body frame). 

For an arbitrary orientation (u, 𝜃𝜃) and 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 , 𝛿𝛿𝑀𝑀𝑖𝑖 , the error-measure 3-vector d′ is a function 

of (u, 𝜃𝜃) and 𝛿𝛿𝑖𝑖  having the form: 

d′(u,𝜃𝜃, 𝛿𝛿) = 𝐑𝐑d1′ + d𝑏𝑏′ − 𝛿𝛿′ (9) 

where 𝐑𝐑 is the rotation matrix having the form of (3) and 𝛿𝛿′ = 𝛿𝛿1u1 + 𝛿𝛿2u2. 

The line vector associated with d′ can be calculated: 
 

d(𝛿𝛿, 𝜃𝜃) = � Rd1′
r𝐵𝐵 × Rd1′

� + �
d𝑏𝑏′

r𝐵𝐵 × d𝑏𝑏′
� − � 𝛿𝛿′

r𝐵𝐵 × 𝛿𝛿′� (10) 

where r𝐵𝐵 is the position vector from the body frame origin O to the error measure point 𝐵𝐵 (constant in 
body frame). 

Thus, for any intermediate configuration (𝛿𝛿1,𝛿𝛿2, 𝜃𝜃), using (4) and (10), the error-reduction 
function 𝐹𝐹𝑒𝑒𝑒𝑒 in (8) can be expressed as a function of (𝛿𝛿1,𝛿𝛿2, n, 𝜃𝜃). 
 
Since only small orientational variation is considered, the angular magnitude 𝜃𝜃 is small (≤ 5o). Thus the 
rotation matrix 𝐑𝐑 in (3) can be accurately approximated by: 
 

𝐑𝐑(n,𝜃𝜃) = 𝐈𝐈 + sin 𝜃𝜃[u ×]. (11) 

In the following, for an arbitrary wrench (6D line vector) w, we denote wu as the cross product operation of 
u on w. i.e., if w has the form: 

w = � a
r × a� , then wu = �

u × a
r × (u × a)� . (12) 

If we denote: d0′ = d1′ + d𝑏𝑏′ , and 

d0 = �
d0′

rB × d0′
� , 𝛿𝛿 = � d′

rB × d′�, 

then, using (8), the error-reduction function can be approximated by: 

𝐹𝐹e𝑒𝑒(𝛿𝛿,𝜃𝜃) = (d0 − 𝛿𝛿)𝑇𝑇(v0w𝑛𝑛
𝑇𝑇 − v0Tw𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛 +

[𝐝𝐝u𝑇𝑇(v0w𝑛𝑛
𝑇𝑇 − v0𝑇𝑇w𝑛𝑛𝐈𝐈)𝐀𝐀wn]sin 𝜃𝜃.

 (13) 

https://ieeexplore.ieee.org/document/#deqn3
https://ieeexplore.ieee.org/document/#deqn4
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Since u is a unit vector, 

du = || �
u × d0′

r𝐵𝐵 × (u × d0′ )� || ≤ || �
d0′

r𝐵𝐵 × d0′
� || = ||d0||. 

Thus, the second term in (13), 

[du𝑇𝑇(v0wn
𝑇𝑇 − v0𝑇𝑇w𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛]sin 𝜃𝜃 ≤ 𝑀𝑀sin 𝜃𝜃𝑀𝑀  

 
where 𝑀𝑀 = ‖d0‖‖(v0w𝑛𝑛

T − v0𝑇𝑇w𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛‖ 

Now consider the first term in (13): 

𝑓𝑓 = (d0 + 𝛿𝛿)𝑇𝑇(v0w𝑛𝑛
𝑇𝑇 − v0𝑇𝑇w𝑛𝑛𝐈𝐈)𝐀𝐀𝐀𝐀𝑛𝑛. 

It can be seen that 𝑓𝑓 is a third order polynomial in 𝛿𝛿1 and 𝛿𝛿2. Consider the function constructed by 
 

𝐹𝐹(𝛿𝛿1,𝛿𝛿2) = 𝑓𝑓 + 𝑀𝑀sin 𝜃𝜃𝑀𝑀. (14) 

Then 𝐹𝐹 is a third order polynomial in 𝛿𝛿1 and 𝛿𝛿2, and for all intermediate configurations, 𝐹𝐹𝑒𝑒𝑒𝑒 ≤ 𝐹𝐹(𝛿𝛿1,𝛿𝛿2). 
 

B. Sufficient Conditions for Error-Reduction 
The error-reduction condition requires that the error-reduction function in (13) must be negative in the 
range of configurations considered. In order to obtain sufficient conditions, we consider the “more 
positive” function defined in (14). The polynomial can be written in the form: 

𝐹𝐹(𝛿𝛿1,𝛿𝛿2) = 𝑓𝑓1𝛿𝛿13 + 𝑓𝑓2𝛿𝛿12𝛿𝛿2 + 𝑓𝑓3𝛿𝛿1𝛿𝛿22 + 𝑓𝑓4𝛿𝛿23 + 𝑓𝑓5𝛿𝛿12 +
𝑓𝑓6𝛿𝛿1𝛿𝛿2 + 𝑓𝑓7𝛿𝛿22 + 𝑓𝑓8𝛿𝛿1 + 𝑓𝑓9𝛿𝛿2 + 𝑓𝑓0.

 (15) 

If 𝐹𝐹𝑒𝑒𝑒𝑒 is negative for a configuration q0 and has no root for all 𝛿𝛿1 ∈ [−𝛿𝛿𝑀𝑀1 ,𝛿𝛿𝑀𝑀1] and 𝛿𝛿2 ∈ [−𝛿𝛿𝑀𝑀2 , 𝛿𝛿𝑀𝑀2], 
then the error-reduction condition is ensured. 
 
Denote 

𝑓𝑓𝛿𝛿2 = 𝑓𝑓4𝛿𝛿23 + 𝑓𝑓7𝛿𝛿22 + 𝑓𝑓9𝛿𝛿2 + 𝑓𝑓0,
𝑓𝑓𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚

|𝛿𝛿2|≤𝛿𝛿𝑀𝑀2
 {|𝑓𝑓𝛿𝛿2|},

𝑐𝑐𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚
|𝛿𝛿2|≤𝛿𝛿𝑀𝑀2

 {|𝑓𝑓1|, |𝑓𝑓2𝛿𝛿2 + 𝑓𝑓5|, |𝑓𝑓3𝛿𝛿22 + 𝑓𝑓6𝛿𝛿2 + 𝑓𝑓8|}.
 (16)(17)(18) 

It can be proved that if 
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𝑓𝑓𝑚𝑚
𝑐𝑐𝑀𝑀+𝑓𝑓𝑚𝑚

≥ 𝛿𝛿𝑀𝑀1 , (19) 

then, 𝐹𝐹𝑒𝑒𝑒𝑒 has no root for all 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖]. Since 𝑓𝑓𝑚𝑚  in (17) and 𝑐𝑐𝑀𝑀  in (18) are functions of the 

admittance 𝐀𝐀, (19) imposes a constraint on A. In summary, we have: 

Proposition 1 
For an face-vertex contact state, if: i) at the configuration (𝛿𝛿1, 𝛿𝛿2, 𝜃𝜃) = (0,0,0), the admittance satisfies 
the error reduction condition (2), and ii) condition (19) is satisfied for the polynomial (15), then the 
admittance will satisfy the error reduction conditions for all configurations bounded by 𝛿𝛿𝑖𝑖 ∈
[−𝛿𝛿𝑀𝑀𝑖𝑖 , 𝛿𝛿𝑀𝑀𝑖𝑖] and 𝜃𝜃 ∈ [0,𝜃𝜃𝑀𝑀] in any rotation direction. 
 
Note that, since the functions in (16)–(18) are all polynomials in 𝛿𝛿2 with order no higber than 3, the 
maximum and minimum values of these functions can be obtained analytically by evaluating the function at 
the boundary points ±𝛿𝛿𝑀𝑀2  and the stationary points. Thus, to ensure that contact yields error-reducing 
motion for the body for an face-vertex contact state, only two conditions [(2) and (19)] need be satisfied. 

SECTION V. Conditions for Vertex-Face Contact 
In this section, vertex-face contact is considered. As shown in Fig. 1b, the configuration of the body can be 
determined by the orientation of the body (u, 𝜃𝜃) and the location of the contact point (𝛿𝛿1, 𝛿𝛿2). 
 
Suppose that 𝜃𝜃 varies within the range of [0, 𝜃𝜃𝑀𝑀], and 𝛿𝛿𝑖𝑖  varies within the range of [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖]. To obtain 
the error-reduction condition, we first consider configuration variation in orientation and translation 
separately. Then, by combining the two cases, general results are obtained. 

 

Fig. 3. Vertex-Face Contact State. (a) Orientational Variation. (b) Translational Variation, 

A. Configuration Variation in Orientation 
Consider only orientational variation of the contact configuration as illustrated in Fig. 3a. In this case, the 
location of the contact vertex of the held body is constant in the face plane, and both the direction of the 
error reduction vector 𝐝𝐝 and the direction of the contact force are changed by changing the orientation, 

We prove that, for 𝜃𝜃𝑀𝑀 ≤ 𝜋𝜋
10

, if A satisfies a set of conditions at 𝜃𝜃 = 0 (defined at a central orientation), 

then an error-reducing motion is ensured for all configurations obtained by rotating about an arbitrary 
axis u with angle 𝜃𝜃 ≤ 𝜃𝜃𝑀𝑀. 
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1) Error Reduction Function 
Let 𝐀𝐀𝑛𝑛0 be the wrench, and d0 be the position vector associated with 𝜃𝜃 = 0, Consider a rotation given by 
an angle change 𝜃𝜃 ∈ [0,𝜃𝜃𝑀𝑀] about an axis 𝐮𝐮, If we denote n0 as the surface normal associated with 𝜃𝜃 =
0, then in the body coordination frame, the surface normal associated with varying (u,𝜃𝜃) is: n𝜃𝜃 =
R(𝜃𝜃)n0, where 𝐑𝐑 is the rotation matrix having the form of (11). 
 
Since contact is frictionless, the contact force is along the surface normal at the contact point. Thus, the 
unit contact wrench is: 

w𝑛𝑛(𝜃𝜃) = �
n𝜃𝜃

r × n𝜃𝜃� = � Rn0
r × Rn0

� (20) 

where r is the position vector from the origin of the body frame to the contact point (constant in body 
frame). 

Since the orientational variation considered corresponds to pure rotation about the contact point, the 
error-measure 6-vector d for an intermediate configuration can be expressed in the body frame as: 

d(𝜃𝜃) = � d′
r𝐵𝐵 × d′� = � Rd1′

r𝐵𝐵 × Rd1′
� + � d2′

r𝐵𝐵 × d2′
� (21) 

where d1′  is the position 3-vector from 𝐵𝐵ℎ  to the contact point 𝐶𝐶, d2′ , is the position 3-vector from 𝐶𝐶 to 
point 𝐵𝐵 and 𝑒𝑒𝐵𝐵 is the position vector from the body frame origin to point 𝐵𝐵. 

Substituting (20) and (21) into (8) and using (11), the error-reduction function can be expressed as a 
function of (u, 𝜃𝜃) in the form: 
 

𝐹𝐹𝑒𝑒𝑒𝑒(𝜃𝜃) = 𝐹𝐹e𝑒𝑒(0) + 𝐹𝐹1sin 𝜃𝜃 + 𝐹𝐹2sin2𝜃𝜃 + 𝐹𝐹3sin3𝜃𝜃, (22) 

where 

𝐹𝐹I = d0T(v0w0
𝑇𝑇 − v0𝑇𝑇w0𝐈𝐈)𝐀𝐀wu − d0T(v0wu

𝑇𝑇 − v0𝑇𝑇wu𝐈𝐈)𝐀𝐀w0
−du𝑇𝑇(−v0w0

𝑇𝑇 + v0𝑇𝑇w0𝐈𝐈)Aw0,
𝐹𝐹2 = d0T(v0wu

𝑇𝑇 − v0Twu𝐈𝐈)𝐀𝐀𝐀𝐀u + du𝑇𝑇(v0wu
𝑇𝑇 − v0𝑇𝑇wu𝐈𝐈)𝐀𝐀w0

+du𝑇𝑇(v0w0
𝑇𝑇 − v0𝑇𝑇w0𝐈𝐈)𝐀𝐀𝐀𝐀u,

𝐹𝐹3 = duT(−v0wu
𝑇𝑇 + v0𝑇𝑇wu𝐈𝐈)𝐀𝐀𝐀𝐀u,

, 

 

where the subscript u of a wrench indicates the cross product operation of u on the wrench [as defined 
in (12)]. 
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2) Error Reduction Conditions 
To achieve error reduction at all other configurations considered, 𝐹𝐹𝑒𝑒𝑒𝑒(𝜃𝜃) must be negative for 𝜃𝜃 ∈
[0, 𝜃𝜃𝑀𝑀] and an arbitrary rotation axis u. Since u is a unit vector, the bounds for 𝐹𝐹𝑚𝑚  in (22) can be obtained. 
 
If we denote: 𝑀𝑀 = |d0| ⋅ ‖(v0w0

𝑇𝑇 − v0𝑇𝑇w0𝐈𝐈)𝐀𝐀‖ ⋅ |w0, then, |𝐹𝐹1| ≤ 3𝑀𝑀, |𝐹𝐹2| ≤ 3𝑀𝑀, |𝐹𝐹3| ≤ 𝑀𝑀. Consider 
the new function constructed by: 
 

𝐹𝐹 = 𝐹𝐹e𝑒𝑒(0) + 3𝑀𝑀sin 𝜃𝜃𝑀𝑀 + 3𝑀𝑀sin2𝜃𝜃𝑀𝑀 + 𝑀𝑀sin3𝜃𝜃𝑀𝑀. 

Then, for 𝜃𝜃 ∈ [0, 𝜃𝜃𝑀𝑀]𝑠𝑠 with an arbitrary rotation axis, we have 𝐹𝐹𝑒𝑒𝑒𝑒(u, 𝜃𝜃) ≤ 𝐹𝐹. Thus, if 
 

𝐹𝐹e𝑒𝑒(0⟩ + 3𝑀𝑀sin 𝜃𝜃𝑀𝑀 + 3𝑀𝑀sin2𝜃𝜃𝑀𝑀 + 𝑀𝑀sin3𝜃𝜃𝑀𝑀 < 0, (23) 

then 𝐹𝐹𝑒𝑒𝑒𝑒(u, 𝜃𝜃) < 0 for all orientational variations considered. 

B. Configuration Variation in Translation 
Now consider the translational variation of the contact configuration illustrated in Fig. 3b. In this case, only 
translation of the contact point in the contact face is allowed, and the contact force does not change in the 
body frame. The procedure used in the planar vertex-face contact9 can be extended to this case. Thus, if at 
two configurations (−𝛿𝛿𝑀𝑀1 , 𝛿𝛿2) and (𝛿𝛿𝑀𝑀1 , 𝛿𝛿2) the error reduction condition is satisfied, then the error 

reduction condition must be satisfied for all intermediate configurations ((𝛿𝛿1, 𝛿𝛿2) with 𝛿𝛿1 ∈ [−𝛿𝛿𝑀𝑀1 , 𝛿𝛿𝑀𝑀1]. 

The same result holds true for variation in 𝛿𝛿2 while 𝛿𝛿1 is-constant. 
 

C. General Case 
Using the process used for the planar case, the results presented in V-A and V-B can be generalized to 
intermediate vertex-face contact configurations involving both translational and orientational variations 
from configurations at which the conditions were imposed. Thus we have: 

Proposition 2 
For a vertex-face contact state with variation of orientation 0,𝜃𝜃𝑀𝑀 and variation of translation [−𝛿𝛿𝑀𝑀𝑖𝑖𝛿𝛿𝑀𝑀𝑖𝑖], if 

inequality (23) is satisfied at the four translational boundary points (±𝛿𝛿𝑀𝑀1 , ±𝛿𝛿𝑀𝑀2), then the admittance 

will satisfy the error reduction condition for all configurations bounded by 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖], and 𝜃𝜃 ∈
[0, 𝜃𝜃𝑀𝑀] in any rotation direction. 
 
Thus, for a face-vertex contact state; to ensure that the motion response due to contact is error reducing 
for all configurations considered, only four conditions need be satisfied. 
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Fig. 4. Edge-Edge Cross Contact. (A) Contact Force in the Body Frame. (b) Error-Measure Vector d in the Body Frame. 

SECTION VI. Conditions for Edge-edge Cross Contact 
Below, for “edge-edge cross” contact, we identify the set of conditions that, when satisfied for a given 
admittance matrix A at the “boundary” points, ensures error-reducing motion for all intermediate 
configurations 𝜃𝜃 ∈ [0, 𝜃𝜃𝑀𝑀], 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 , 𝛿𝛿𝑀𝑀𝑖𝑖]. 
 

A. Error-Reduction Function 
For an edge-edge cross contact state as shown in Fig. 4a, the direction of the contact force is along the 
common normal of the two edges. Let e1 and e2 be the two unit vectors along the two edges respectively, 
then the direction of the force must be n = e1 × e2. Note that 𝑒𝑒1 is constant in the body frame while e2 is 
constant in the global frame. When the held body rotates relative to the fixtured body about the contact 
point 𝐶𝐶, the vector e2 in the body frame can be expressed as Re2 where 𝐑𝐑 is the rotation matrix. When the 
held body translates relative to the fixtured body along e1 as shown in Fig. 4a, the description of the 
contact wrench changes in a body-based coordinate frame as the contact point changes (although its 
direction is constant). Thus, the contact wrench is a function involving both the translational and 
orientational variables (𝛿𝛿1,𝛿𝛿2, 𝜃𝜃). 
 
For all edge-edge cross contact cases, the direction of the force depends only on the orientational variation 
while the position vector of the contact point, r, depends only the translational variation along the contact 
edge of the held body e1. For arbitrary (𝛿𝛿1,𝛿𝛿2), 𝐫𝐫 can be expressed as: r𝛿𝛿 = 𝐫𝐫0 + 𝛿𝛿1𝐞𝐞1, where r0 is a 
vector from the body frame to a centrally located point on the edge e1 (constant). 
 
For rotation 𝐑𝐑 the direction of the normal force is: n = e1 × Re2. By (4), the unit contact wrench can be 
expressed as: 

w𝑛𝑛 = �
e1 × Re2

r𝛿𝛿 × (e1 × Re2)�. 

Let d1′  and d2′  be the two vectors from 𝐵𝐵ℎ  to 𝐶𝐶 and from 𝐶𝐶 to 𝐵𝐵 for (𝛿𝛿,𝜃𝜃) = (0,0) respectively, and 
let d1 and d2 be the corresponding line vector associated with vector r𝐵𝐵 (as shown in Fig. 4b), then for an 
arbitrary orientation (u, 𝜃𝜃) and 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖], the error-measure line-vector d can be expressed as: 
 

d = R(d1 + 𝛿𝛿2) + d2 + 𝛿𝛿1, 
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where 

𝛿𝛿1 = 𝛿𝛿1 �
e1

r𝐵𝐵 × e1� , 𝛿𝛿2 = 𝛿𝛿2 �
e2

r𝐵𝐵 × e2�. 

For small 𝜃𝜃, the expression of 𝐑𝐑 in (11) provides an accurate approximation. Substituting the above w𝑛𝑛 and 
d into (8) and sorting the coefficients of sin 𝜃𝜃, the error-reduction function can be expressed as: 
 

𝐹𝐹𝑒𝑒𝑒𝑒(𝛿𝛿,𝜃𝜃) = 𝐹𝐹0 + 𝐹𝐹1sin 𝜃𝜃 + 𝐹𝐹2sin2𝜃𝜃 + 𝐹𝐹3sin3𝜃𝜃,, 

where: 

𝐹𝐹0 = (d1 + d2 + 𝛿𝛿1 + 𝛿𝛿2)𝑇𝑇(V0w0
𝑇𝑇 − v0Tw0𝐈𝐈)𝐀𝐀w0,

𝐹𝐹1 = −(d1 + d2 + 𝛿𝛿1 + 𝛿𝛿2)T(v0wu
T − v0Twu𝐈𝐈)Aw0

−(d1 + d2 + 𝛿𝛿1 + 𝛿𝛿2)𝑇𝑇(v0w0
𝑇𝑇 − v0Tw0𝐈𝐈)Awu

+(d1 + 𝛿𝛿2)u𝑇𝑇(v0w0
T − v0𝑇𝑇w0𝐈𝐈)Aw0

+(d2 + 𝛿𝛿1)𝑇𝑇(v0w0
𝑇𝑇 − v0𝑇𝑇w0𝐈𝐈)Awu

−(d1 + 𝛿𝛿1)𝑇𝑇(v0wu
T − v0𝑇𝑇wuI)Aw0,

𝐹𝐹2 = (d1 + 𝛿𝛿2)u𝑇𝑇(v0wu
𝑇𝑇 − v0𝑇𝑇wu𝐈𝐈 − v0wu

𝑇𝑇+v0𝑇𝑇wu𝐈𝐈)Awu
+(d1 + d2 + 𝛿𝛿1 + 𝛿𝛿2)T(v0wu

T − v0𝑇𝑇wu𝐈𝐈)Awu,
𝐹𝐹3 = (d1 + 𝛿𝛿2)uT(v0wu

𝑇𝑇 − v0𝑇𝑇wuI)Awu,

, 

where w0 is the unit wrench when 𝜃𝜃 = 0 and the subscript u of a wrench indicates the cross product 
operation of u on the wrench [as defined in (12)]. 

Similar to the results presented in V-A.2, because u is a unit vector, each 𝐹𝐹𝑖𝑖 in the above equation is 
bounded. If we denote 𝐹𝐹𝑀𝑀𝑖𝑖 = max{|𝐹𝐹𝑖𝑖|}(𝑚𝑚 = 1,2,3), and consider the function defined by: 
 

𝐹𝐹 = 𝐹𝐹0 + 𝐹𝐹𝑀𝑀1sin 𝜃𝜃𝑀𝑀 + 𝐹𝐹𝑀𝑀2sin2𝜃𝜃𝑀𝑀 + −𝐹𝐹𝑀𝑀3sin3𝜃𝜃𝑀𝑀, (24) 

then, 𝐹𝐹 is a linear function in 𝛿𝛿1 and 𝛿𝛿2, and for all 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖] and 𝜃𝜃 ∈ [0, 𝜃𝜃𝑀𝑀],𝐹𝐹𝑒𝑒𝑒𝑒 < 𝐹𝐹. 

Thus, if 𝐹𝐹 is negative for 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖], then 𝐹𝐹𝑒𝑒𝑒𝑒 must be negative for 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 , 𝛿𝛿𝑀𝑀𝑖𝑖] and for all 

rotations with 𝜃𝜃 ≤ 𝜃𝜃𝑀𝑀  in any direction. Since 𝐹𝐹 is a linear function in 𝛿𝛿1 and 𝛿𝛿2,𝐹𝐹 < 0 for all 𝛿𝛿𝑖𝑖  'S in the 
bounded area if and only if, at the four extremal points (±𝛿𝛿𝑀𝑀1 , ±𝛿𝛿𝑀𝑀2),𝐹𝐹 < 0. Thus, we have: 
 

Proposition 3 
For a edge-edge cross contact state with variation of orientation [0,𝜃𝜃𝑀𝑀] and variation of 
translation [−𝛿𝛿𝑀𝑀𝑖𝑖 , 𝛿𝛿𝑀𝑀𝑖𝑖], if at the four boundary points (±𝛿𝛿𝑀𝑀1 , ±𝛿𝛿𝑀𝑀2). the function 𝐹𝐹 defined in (24) is 
negative, then the admittance will satisfy the error reduction condition for all configurations bounded 
by 𝛿𝛿𝑖𝑖 ∈ [−𝛿𝛿𝑀𝑀𝑖𝑖 ,𝛿𝛿𝑀𝑀𝑖𝑖] and rotation in an arbitrary direction with angle 𝜃𝜃 ≤ 𝜃𝜃𝑀𝑀. 
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SECTION VII. Discussion and Summary 
In this paper, sufficient conditions for spatial error-reducing motion of a held body are identified. Finite mis-
alignment is considered when evaluating error-reduction. The bounds of errors considered are based on 
the maximum translational range of the body and the maximum magnitude of the body's Euler rotation 
(regardless of the direction). The error-reduction measure is based on a single point on the held body, If 
that point corresponds to that which is maximally displaced from its proper position, an established 
metric12 is used as a measure of error-reduction. Alternately, the results could be applied to a finite set of 
points to further restrict the description of error-reduction. 

In robotic application, the orientational misalignment due to the manipulator'S inaccuracy is small. Thus, 
the orientational variation considered is small (approximately ±5°). For this range the approximated 
rotation matrix in (11) is accurate. Also, to obtain sufficient conditions for each contact state, conservative 
bounds on functions for translational and orientational variations are used. Thus, the sufficient conditions 
obtained are conservative for all contact states. 

In summnary, we have presented an approach for admittance selection of a polyhedral rigid body for force-
guided assembly. We have shown that, for single-point contact cases, the admittance control law can be 
selected based on their behavior at a finite number of configurations. If the error reduction conditions are 
satisfied at these configurations, the error reduction conditions will be satisfied for all intermediate 
configurations. 
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