324,155 research outputs found

    The combination of spatial access methods and computational geometry in geographic database systems

    Get PDF
    Geographic database systems, known as geographic information systems (GISs) particularly among non-computer scientists, are one of the most important applications of the very active research area named spatial database systems. Consequently following the database approach, a GIS hag to be seamless, i.e. store the complete area of interest (e.g. the whole world) in one database map. For exhibiting acceptable performance a seamless GIS hag to use spatial access methods. Due to the complexity of query and analysis operations on geographic objects, state-of-the-art computational geomeny concepts have to be used in implementing these operations. In this paper, we present GIS operations based on the compuational geomeny technique plane sweep. Specifically, we show how the two ingredients spatial access methods and computational geomeny concepts can be combined für improving the performance of GIS operations. The fruitfulness of this combination is based on the fact that spatial access methods efficiently provide the data at the time when computational geomeny algorithms need it für processing. Additionally, this combination avoids page faults and facilitates the parallelization of the algorithms.

    A Map-algebra-inspired Approach for Interacting With Wireless Sensor Networks, Cyber-physical Systems or Internet of Things

    Get PDF
    The typical approach for consuming data from wireless sensor networks (WSN) and Internet of Things (IoT) has been to send data back to central servers for processing and analysis. This thesis develops an alternative strategy for processing and acting on data directly in the environment referred to as Active embedded Map Algebra (AeMA). Active refers to the near real time production of data, and embedded refers to the architecture of distributed embedded sensor nodes. Network macroprogramming, a style of programming adopted for wireless sensor networks and IoT, addresses the challenges of coordinating the behavior of multiple connected devices through a high-level programming model. Several macroprogramming models have been proposed, but none to date has adopted a comprehensive spatial model. This thesis takes the unique approach of adapting the well-known Map Algebra model from Geographic Information Science to extend the functionality of WSN/IoT and the opportunities for user interaction with WSN/IoT. As an inherently spatial model, the Map Algebra-inspired metaphor supports the types of computation desired from a network of geographically dispersed WSN nodes. The AeMA data model aligns with the conceptual model of GIS layers and specific layer operations from Map Algebra. A declarative query and network tasking language, based on Map Algebra operations, provides the basis for operations and interactions. The model adds functionality to calculate and store time series and specific temporal summary-type composite objects as an extension to traditional Map Algebra. The AeMA encodes Map Algebra-inspired operations into an extensible Virtual Machine Runtime system, called MARS (Map Algebra Runtime System) that supports Map Algebra in an efficient and extensible way. Map algebra-like operations are performed in a distributed manner. Data do not leave the network but are analyzed and consumed in place. As a consequence, collected information is available in-situ to drive local actions. The conceptual model and tasking language are designed to direct nodes as active entities, able to perform some actions on their environment. This Map Algebra inspired network macroprogramming model has many potential applications for spatially deployed WSN/IoT networks. In particular the thesis notes its utility for precision agriculture applications

    Land suitability location analysis for housing development using GIS

    Get PDF
    Application and implementation of location suitability analyses are powered through the use of GIS along with spatial analysis component, which enables the creation of buffers, overlay, termination, proximity analysis, spatial unity, map algebra, reclassification of raster and other operations. In terms of land suitability, GIS helps the user to define which locations are most appropriate or inappropriate for certain developments. Consequently, GIS as a tool becomes more important to provide support for decision makers. This analysis takes into account environmental and socioeconomic factors as determinant of urban land development. This analysis requires first finding spatial, environmental and socio-economic constraints and then finding the land suitable for development of residential areas according to specified criteria’s. Hence, two preliminary results derive mainly from this analysis, such as composite (raster) map of restrictions for housing developments, and composite (raster) map of suitability housing development. Once these two composite maps are completed using specified GIS operations and functions, it is created the final map of site suitability for housing development. In creating the final map several factors had been used in total to establish the restriction model and also many criteria’s divided into five classes for establishing a map of land suitability for residential development in Prishtina city, namely in the study area

    Unexploded Ordnance (UXO), Ordnance and Explosives (OE), or Chemical Agents (CA) Functional Sub-Activity (UOFSA) Information Business Strategy

    Get PDF
    Currently, the Explosive Ordnance Disposal (EOD) and unexploded ordnance (UXO) clean-up community are supported by three locally developed and maintained systems. The Unexploded Ordnance Site Management Model (UXOSMM) is being maintained by the Naval Explosive Ordnance Disposal Technology Division (EODTECHDIV). Ordnance Technical Management System (OTMS) is maintained by United States Army Engineer Division, Huntsville (USAEDH). In a functionally similar undertaking, landmine elimination in Host Nations is provided by the Humanitarian Demining Operations Geographic Information System (HDOGIS). HDOGIS is a Special Operations Command (SOCOM) automated tool currently used by host nation forces in Eritrea and Ethiopia. It was developed by the US SOCOM Central (US SOCCENT) to assist nations in eliminating landmines and mine fields. HDOGIS was designed to record, track and manage information associated with Humanitarian Demining Operations (HDO)–e.g., minefield and mine incident locations, personnel training, availability of resources to support demining operations, and plans for conducting operations. Spatial information–e.g., mine incident and/or minefield locations–are presented in a geographic view or map

    A tesselated probabilistic representation for spatial robot perception and navigation

    Get PDF
    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations

    Spatial land-use inventory, modeling, and projection/Denver metropolitan area, with inputs from existing maps, airphotos, and LANDSAT imagery

    Get PDF
    A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively

    OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection

    Get PDF
    Line segment intersection is one of the elementary operations in computational geometry. Complex problems in Geographic Information Systems (GIS) like finding map overlays or spatial joins using polygonal data require solving segment intersections. Plane sweep paradigm is used for finding geometric intersection in an efficient manner. However, it is difficult to parallelize due to its in-order processing of spatial events. We present a new fine-grained parallel algorithm for geometric intersection and its CPU and GPU implementation using OpenMP and OpenACC. To the best of our knowledge, this is the first work demonstrating an effective parallelization of plane sweep on GPUs. We chose compiler directive based approach for implementation because of its simplicity to parallelize sequential code. Using Nvidia Tesla P100 GPU, our implementation achieves around 40X speedup for line segment intersection problem on 40K and 80K data sets compared to sequential CGAL library
    • …
    corecore