
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Computer Science Faculty Research and
Publications Computer Science, Department of

1-2019

OpenACC Based GPU Parallelization of Plane Sweep Algorithm OpenACC Based GPU Parallelization of Plane Sweep Algorithm

for Geometric Intersection for Geometric Intersection

Anmol Paudel
Marquette University

Satish Puri
Marquette University, satish.puri@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/comp_fac

Recommended Citation Recommended Citation
Paudel, Anmol and Puri, Satish, "OpenACC Based GPU Parallelization of Plane Sweep Algorithm for
Geometric Intersection" (2019). Computer Science Faculty Research and Publications. 14.
https://epublications.marquette.edu/comp_fac/14

CORE Metadata, citation and similar papers at core.ac.uk

Provided by epublications@Marquette

https://core.ac.uk/display/286544063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp_fac
https://epublications.marquette.edu/comp
https://epublications.marquette.edu/comp_fac?utm_source=epublications.marquette.edu%2Fcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/comp_fac/14?utm_source=epublications.marquette.edu%2Fcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts and
Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The
published version may be accessed by following the link in the citation below.

Lecture Notes in Computer Science, Vol. 11381 (January 2019): 114-135. DOI. This article is © Springer
and permission has been granted for this version to appear in e-Publications@Marquette. Springer
does not grant permission for this article to be further copied/distributed or hosted elsewhere without
the express permission from Springer.

OpenACC Based GPU Parallelization of Plane
Sweep Algorithm for Geometric Intersection

Anmol Paudel
Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI
Satish Puri
Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI

Abstract
Line segment intersection is one of the elementary operations in computational geometry. Complex problems in
Geographic Information Systems (GIS) like finding map overlays or spatial joins using polygonal data require
solving segment intersections. Plane sweep paradigm is used for finding geometric intersection in an efficient
manner. However, it is difficult to parallelize due to its in-order processing of spatial events. We present a new
fine-grained parallel algorithm for geometric intersection and its CPU and GPU implementation using OpenMP
and OpenACC. To the best of our knowledge, this is the first work demonstrating an effective parallelization of
plane sweep on GPUs.

We chose compiler directive based approach for implementation because of its simplicity to parallelize
sequential code. Using Nvidia Tesla P100 GPU, our implementation achieves around 40X speedup for line
segment intersection problem on 40K and 80K data sets compared to sequential CGAL library.

https://link.springer.com/chapter/10.1007%2F978-3-030-12274-4_6
http://epublications.marquette.edu/

Keywords
Plane sweep, Line segment intersection, Directive based programming, OpenMP, OpenACC

1 Introduction
Scalable spatial computation on high performance computing (HPC) environment has been a long-standing
challenge in computational geometry. Spatial analysis using two shapefiles (4 GB) takes around ten minutes to
complete using state-of-the art dekstop ArcGIS software [14]. For many time-critical applications involving
spatial computation, graphics accelerators with massive parallelism needs to be harnessed. Directive based
parallelization provides easy-to-use mechanism to develop parallel code that can potentially reduce execution
time. Many computational geometry algorithms exhibit irregular computation and memory access patterns. As
such, parallel algorithms need to be carefully designed that can effectively run on a GPU architecture.

Geometric intersection is a class of problems involving operations on shapes represented as line segments,
rectangles (MBR), and polygons. The operations can be cross, overlap, contains, union, etc. Domains like
Geographic Information Systems (GIS), VLSI CAD/CAM, spatial databases, etc use geometric intersection as
elementary operations in their data analysis toolbox. Public and private sector agencies rely on spatial data
analysis and spatial data mining to gain insights and produce actionable plan [13]. We are experimenting with
the line segment intersection problem because it is one of the most basic problem in spatial computing and all
other operations for bigger problems like polygon overlay or polygon clipping depends on results from it. The
line segment intersection problem basically asks two questions - \are the line segments intersecting or not?"
and if they are intersecting \what are the points of intersection?" The first one is called intersection detection
problem and the second one is called intersection reporting problem. In this paper, we present the latter.

Plane sweep is a fundamental technique to reduce 𝑂𝑂(𝑛𝑛2) segment to segment pair-wise computation into
𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) work, impacting a class of geometric problems akin to the effectiveness of FFT-based algorithms.
Effective parallelization of the plane-sweep algorithm will lead to a breakthrough by enabling acceleration of
computational geometry algorithms that rely on plane-sweep for efficient implementation. Examples include
trapezoidal decomposition, construction of the Voronoi diagram, Delaunay triangulation, etc.

To the best of our knowledge, this is the first work on parallelizing plane sweep algorithm for geometric
intersection problem on a GPU. The efficiency of plane sweep comes from its ability to restrict the search space
to the immediate neighborhood of the sweepline. We have abstracted the neighbor finding algorithm using the
directive based reduction operation. In sequential implementations, neighbor finding algorithm is implemented
using self-balancing binary search tree which is not suitable for GPU architecture. Our multi-core and manycore
implementation uses directive based programming approach to leverage the device specific hardware
parallelism with the help of a compiler. As such the resulting code is easy to maintain and modify. With
appropriate pragmas defined by OpenMP and OpenACC, the same source code will work for a CPU as well as a
GPU.

In short, the paper presents the following research contributions

1. Fine-grained Parallel Algorithm for Plane Sweep based intersection problem.
2. Directive based implementation with reduction based approach to _nd neighbors
in the sweeplines.
3. Performance results using OpenACC and OpenMP and OpenACC comparison with sequential CGAL
library. We report upto 27x speedup with OpenMP and 49x speedup with OpenACC for 80K line
segments.

The rest of the paper is structured as follows. Section 2 presents general technical background and related work
to this paper. Section 3 describes our parallel algorithm. Section 4 provides details on OpenMP and OpenACC
implementations. Section 5 provides experimental results. Conclusion and future work is presented in Section 6.

2 Background and Related Work
There are different approaches for finding geometric intersections. In addition to the simple brute force
method, there is a filter and refine method that uses a heuristic to avoid unnecessary intersection computations.
For a larger dataset, filter and refine strategy is preferred over brute force. Plane sweep method works best if
the dataset can fit in memory. However, the plane sweep algorithm is not amenable to parallelization due to the
in-order sequential processing of events stored in a binary tree and priority queue data structure. In the existing
literature, the focus of parallel algorithms in theoretical computational geometry has been in improving the
asymptotic time bounds. However, there has been a few attempts to parallelize plane sweep on multi-cores on
practical side. Moreover, those algorithms are not suitable to fine-grained SIMD parallelism in GPUs. This has led
to parallelization of brute force algorithms with 𝑂𝑂(𝑛𝑛2) complexity and grid partitioning algorithms on GPUs. The
brute force algorithm that involves processing all segments against each other is obviously embarrassingly
parallel and has been implemented on GPU, but its quadratic time complexity cannot compete even with the
sequential plane sweep for large data sets. The uniform grid technique does not perform well for skewed data
sets where segments span arbitrary number of grid cells. The limitations of the existing work is the motivation
behind our current work.

In the remaining subsections, we have provided background information about segment intersection problem,
different strategies used to solve the problem, existing work on the parallelization in this area and directive
based programming.

2.1 Segment Intersection Problem
Finding line intersection in computers is not as simple as solving two mathematical equations. First of all, it has
to do with how the lines are stored in the computer { not in the 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐 format, but rather as two
endpoints like (x1,y1,x2,y2). One of the reason of not storing lines in a equation format is because most of the
lines in computer applications are finite in nature and need to have a clear start and end points. Complex
geometries like triangle, quadrilateral or any n-vertices polygon are further stored as a bunch of points. For
example a quadrilateral would be stored like (x1,y1,x2,y2,x3,y3,x4,y4) and each sequential pair of points would
form the vertices of that polygon. So, whenever we do geometric operations using computers, we need to be
aware of the datatypes used to store the geometries and use algorithms that can leverage them.

For non-finite lines, any two lines that are not parallel or collinear in 2D space would eventually intersect. This is
however not the case here since all the lines we have are finite. So given two line segments we would first need
to do a series of calculation to ascertain whether they intersect or not. Since they are finite lines, we can solve
their mathematical equations to find the point of intersection only if they intersect.

In this way we can solve the segment intersection for two lines but what if we are given a collection of line
segments and are asked to find out which of these segments intersect among themselves and what are the
intersection vertices. Since most complex geometries are stored as a collection of vertices which results in a
collection of line segments, segment intersection detection and reporting the list of vertices of intersection are
some of the most commonly solved problems in many geometric operations. Geometric operations like finding
the map overlays and geometric unions all rely at their core on the results from the segment intersection
problem. Faster and more efficient approaches in segment intersection will enable us to solve a wide variety of
geometric operations faster and in a more efficient manner.

2.2 Naive Brute Force Approach
Like with any computational problem, the easiest approach is foremost the brute force approach. Algorithm 1
describes the brute force approach to find segment intersection among multiple lines.

Algorithm 1 Naive Brute Force
1: Load all lines to L
2: for each line 𝑙𝑙1 in L do

3: for each line 𝑙𝑙2 in 𝐿𝐿 do
4: Test for intersection between 𝑙𝑙1 and 𝑙𝑙2
5: if intersections exists then

6: calculate intersection point
7: store it in results

8: end if
9: end for

10: end for

The brute force approach works very well compared to other algorithms for the worst case scenario where all
segments intersect among themselves. For 𝑁𝑁 line segments, its time complexity is 𝑂𝑂(𝑁𝑁2). This is the reason we
have parallelized this algorithm here. However, if the intersections are sparse, then there are heuristics and
sophisticated algorithms available. The first method is to use filter and refine heuristic which we have employed
for joining two polygon layers where the line segments are taken from polygons in a layer. The second method is
to apply Plane Sweep method.

Filter and Refine approach:
Let us consider a geospatial operation where we have to overlay a dataset consisting of 𝑁𝑁 county boundaries
(polygons) on top of another dataset consisting of 𝑀𝑀 lakes from USA in a Geographic Information System (GIS)
to produce a third dataset consisting of all the polygons from both datasets. This operation requires 𝑂𝑂(𝑁𝑁𝑁𝑁)
pairs of polygon intersections in the worst case. However, not all county boundaries overlap with all lake
boundaries. This observation lends itself to filter and refine strategy where using spatial data structure like
Rectangle tree (R-tree) built using bounding box approximation (MBR) of the actual boundaries, we prune the
number of cross layer polygon intersections. We have employed this approach while handling real spatial data.
Figure 1 shows the workflow for joining two real-world datasets. The output consists of counties with lakes. The
compute-intensive part here is the refine phase. Our directive based parallelization is used in the refine phase
only.

Fig. 1. Polygon intersection using Filter and Refine approach

2.3 Plane Sweep Algorithm
Plane sweep is an efficient algorithmic approach used in finding geometric intersections. Its time complexity is
𝑂𝑂�(𝑁𝑁 + 𝐾𝐾) log𝑁𝑁� where 𝑁𝑁 is the number of line segments and 𝐾𝐾 is the number of intersections found. In the
worst case, 𝐾𝐾 is 𝑂𝑂(𝑁𝑁2), which makes it an 𝑂𝑂(𝑁𝑁2 log𝑁𝑁) algorithm. Parallelization of plane sweep algorithm will
impact many computational geometry algorithms that rely on plane-sweep for efficient implementation e.g.
spatial join, polygon overlay, voronoi diagram, etc. The Bentley-Ottmann algorithm is a plane sweep algorithm,
that given a collection of lines, can find out whether there are intersecting lines or not [4]. Computational
geometry libraries typically use plane sweep algorithm in their implementations.

Algorithm 2 describes plane sweep using a vertical sweepline. The procedures for 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and 𝐻𝐻 used in Algorithm 2 are given in Algorithms 4, 5, 6
respectively. For simplicity in presentation, following assumptions are made in Algorithm 2:

1. No segment is parallel to the vertical sweeplines.
2. No intersection occurs at endpoints.
3. No more than two segments intersect in the same point.
4. No overlapping segments.

The segments that do not adhere to our assumptions in our dataset are called degenerate cases.

Algorithm 2 Plane Sweep
1: Load all lines to L
2: Initialize a priority queue (PQ) for sweeplines which retrieves items based on the
y-position of the item
3: Insert all start and end points from L to PQ
4: Initialize a sweepline
5: While PQ is not empty:

If the nextItem is startevent:
The segment is added to the sweepline
HandleStartEvent(AddedSegment)

If the nextItem is endevent:
The segment is removed from the sweepline
HandleEndEvent(RemovedSegment)

If the nextItem is intersection-event:
[Note that there will be two contributing lines at intersection point.
Let these two lines be 𝑙𝑙1 and 𝑙𝑙2.]

HandleIntersectionEvent(𝑙𝑙1, 𝑙𝑙2)
Record the intersecting pairs

2.4 Existing work on parallelizing segment intersection algorithms
Methods for finding intersections can be categorized into two classes: (i) algorithms which rely on a partitioning
of the underlying space, and (ii) algorithms exploiting a spatial order defined on the segments. Plane sweep
algorithm and theoretical algorithms developed around 80's and 90's fall under the second category [6, 2, 7].
These theoretical PRAM algorithms attain near-optimal polylogarithmic time complexity [6, 2]. These algorithms
focus on improving the asymptotic time bounds and are not practical for implementation purpose. These
parallel algorithms are harder to implement because of their usage of complex tree based data structures like
parallel segment tree and hierarchical plane-sweep tree (array of trees) [3]. Moreover, tree-based algorithms
may not be suitable for memory coalescing and vectorization on a GPU.

Multi-core and many-core implementation work in literature fall under the first category where the input space
is partitioned for spatial data locality. The basic idea is to process different cells in parallel among threads. Based
on the data distribution, existing parallel implementations of geometric intersection algorithm use uniform or
adaptive grid to do domain decomposition of the input space and data [5, 3, 1]. Ideal grid dimension for optimal
run-time is hard to determine as it depends not only on spatial data distribution, but also on hardware
characteristics of the target device. Moreover, the approach of dividing the underlying space has the
unfortunate consequence of effectively increasing the size of the input dataset. For instance, if an input line
segment spans multiple grid cells, then the segment is simply replicated in each cell. Hence, the problem size
increases considerably for finer grid resolutions. In addition to redundant computations for replicated data, in
GPU with limited global memory, memory allocation for intermediate data structure to store replicated data is
not space-efficient. Plane sweep does not suffer from this problem because it is an event-based algorithm.

The brute force algorithm that involves processing all line segments against each other is obviously
embarrassingly parallel and has been implemented on GPU [10], but its quadratic time complexity cannot
compete even with the sequential plane sweep for large data sets. Our current work is motivated by the
limitations of the existing approach which cannot guarantee efficient treatment of all possible input
configurations.

Parallel algorithm developed by McKenney et al. and their OpenMP implementation is targeted towards multi-
core CPUs and it is not fine-grained to exploit the SIMT parallelism in GPUs [11, 8, 9]. Contrary to the
abovementioned parallel algorithm, our algorithm is targeted to GPU and achieves higher speedup. In the
context of massively parallel GPU platform, we have sacrificed algorithmic optimality by not using logarithmic
data structures like priority queue, self-balancing binary tree and segment tree. Our approach is geared towards
exploiting the concurrency available in the sequential plane sweep algorithm by adding a preprocessing step
that removes the dependency among successing events.

2.5 OpenMP and OpenACC
OpenMP directives are used in a shared memory system so in most cases there is no hassle of using system
pointers, copying data between the device and host or all the functions written will work and all external
libraries loaded will work seamlessly. Only thing we need to take care is of data and result dependencies
between two threads and race conditions. OpenMP provides critical sections to avoid race conditions.
Programmers need to remove any inter-thread dependencies from the program.

Parallelizing code for GPUs has significant differences because GPUs are separate physical devices with their
numerous cores and their own separate physical memory. So, we need to first copy the spatial data from CPU to
GPU to do any data processing on a GPU. Here, the CPU is regarded as the host and the GPU is regarded as the
device. After processing on GPU is finished, we need to again copy back all the results from the GPU to the CPU.
In GPU processing, this transfer of memory has overheads and these overheads can be large if we do multiple
transfers or if the amount of memory moved is large. Also, each single GPU has its own physical memory
limitations and if we have a very large dataset, then we might have to copy it to multiple GPUs or do data
processing in chunks. Furthermore, the functions written for the host may not work in the GPUs and will require
writing new routines. Any library modules loaded on the host device is not applicable on a GPU device.

The way we achieve parallelization with OpenACC is by doing loop parallelization. In this approach each iteration
of the loop will run in parallel. This can only be done if the loops have no inter-loop dependencies. Another
approach we use is called vectorization. In the implementation process, we have to remove any inter-loop
dependencies so that the loops can run in parallel without any side-effects. Side-effects are encountered if the
threads try to write-write or write-read at the same memory location resulting in race conditions.

3 Parallel Plane Sweep Algorithm
We have taken the vertical sweep version of the Bentley-Ottmann algorithm and modified it. Instead of handling
event points strictly in the increasing order as they are encountered in bottom-up vertical sweep, we process all
the startpoints first, then all the endpoints and at last we keep on processing until there are any unprocessed
intersection points left. During processing of each intersection event, multiple new intersection events can be
found. So, the last phase of processing intersection events is iterative. Hence, the sequence of event processing
is different than sequential algorithm.

Algorithm 3 describes our modified version of plane sweep using a vertical sweepline. Figure 2 shows the
startevent processing for a vertical bottom up sweep. Algorithm 3 also has the same simplifying assumptions like
Algorithm 2. Step 2, step 3 and the for-loop in step 4 of Algorithm 3 can be parallelized using directives.

Algorithm 3 Modified Plane Sweep Algorithm
1: Load all lines to L
2: For each line 𝑙𝑙1 in L:

Create a start-sweepline (SSL) at the lower point of 𝑙𝑙1
For each line 𝑙𝑙2 in L:

If 𝑙𝑙2 crosses SSL:
update left and right neighbors

HandleStartEvent(𝑙𝑙1)
3: For each line 𝑙𝑙1 in L:

Create an end-sweepline (ESL) at the upper point of 𝑙𝑙1
For each line 𝑙𝑙2 in L:

If 𝑙𝑙2 crosses ESL:
update left and right neighbors

HandleEndEvent(𝑙𝑙1)
4: While intersection events is not empty for each intersection event:

Create an intersection-sweepline (ISL) at the intersection point
For each line l in L:

If l crosses ISL:
update left and right neighbors

// let 𝑙𝑙1 and 𝑙𝑙2 are the lines at intersection event
HandleIntersectionEvent(𝑙𝑙1, 𝑙𝑙2)

5: During intersection events, we record the intersecting pairs

Algorithm 3 describes a fine-grained approach where each event point can be independently processed. Existing
work for plane sweep focuses on coarse-grained parallelization on multi-core CPUs only. Sequential Bentley-
Ottmann algorithm processes the event points as they are encountered while doing a vertical/horizontal sweep.
Our parallel plane sweep relaxes the strict increasing order of event processing. Start and End point events can
be processed in any order. As shown in step 4 of Algorithm 3, intersection event point processing happens after
start and end point events are processed. An implementation of this algorithm either needs more memory to
store line segments intersecting the sweepline or needs to compute them dynamically thereby performing more
work. However, this is a necessary overhead required to eliminate the sequential dependency inherent in the
original Bentley-Ottmann algorithm or its implementation. As we point out in the results section, our OpenMP
and OpenACC implementations perform better than the existing work.

Algorithm 4 StartEvent Processing
1: procedure HandleStartEvent(𝑙𝑙1)

Intersection is checked between

𝑙𝑙1 and its left neighbor
𝑙𝑙1 and its right neighbor

If any intersection is found
update intersection events

2: end procedure

Algorithm 5 EndEvent Processing
1: procedure HandleEndEvent(𝑙𝑙1)

Intersection is checked between
the left and right neighbors of 𝑙𝑙1

If intersection is found
update intersection events

2: end procedure

Algorithm 6 IntersectionEvent Processing
1: procedure HandleIntersectionEvent(𝑙𝑙1, 𝑙𝑙2)

Intersection is checked between
the left neighbor of the intersection point and 𝑙𝑙1
the right neighbor of the intersection point and 𝑙𝑙1
the left neighbor of the intersection point and 𝑙𝑙2
the right neighbor of the intersection point and 𝑙𝑙2

if any intersection is found
update intersection events

2: end procedure

Fig. 2. Vertical Plane Sweep

Vertical Plane Sweep showing sweeplines (dotted lines) corresponding to starting event points only. P1 to P4 are
the intersection vertices found by processing start event points only. L1, L2 and L3 are the active line segments
on the third sweepline from the bottom. Event processing of starting point of L3 requires finding its immediate
neighbor (L2) and checking doesIntersect(L2,L3) which results in finding P2 as an intersection vertex.

Degree of concurrency:
The amount of concurrency available to the algorithm is limited by Step 4 due to the fact that intersection
events produce more intersection events dynamically. Hence, it results in a dependency graph where
computation on each level generates a new level. The critical path length of the graph denoted by 𝑙𝑙 is 0 < 𝑙𝑙 <
𝑛𝑛
2

 where 𝑛𝑛 is the input size. In general, 𝑙𝑙 is less than the number of intersection points 𝑘𝑘. However, if 𝑙𝑙 is
comparable to 𝑘𝑘, then the Step 4 may not benefit from parallelization.

3.1 Algorithm Correctness
The novelty in this parallel algorithm is our observation that any order of concurrent events processing will
produce the same results as done sequentially, provided that we schedule intersection event handling in the last
phase. In a parallel implementation, this can be achieved at the expense of extra memory requirement to store
the line segments per sweepline or extra computations to dynamically find out those line segments. This
observation lends itself to directive based parallel programming because now we can add parallel for loop
pragma in Steps 2, 3 and 4 so that we can leverage multi-core CPUs and many-core GPUs. The proof that any
sweepline event needs to only consider its immediate neighbors for intersection detection is guaranteed to hold
as shown by the original algorithm.

Bentley-Ottmann algorithm executes sequentially, processing each sweepline in an increasing priority order with
an invariant that all the intersection points below the current sweepline has been found. However, since we
process each sweepline in parallel, this will no longer be the case. The invariant in our parallel algorithm is that
all line segments crossing a sweepline needs to be known apriori before doing neighborhood computation. As
we can see, this is an embarrassingly parallel step.

Finally, we can show that Algorithm 3 terminates after finding all intersections. Whenever start-events are
encountered they can add atmost two intersection events. End-events can add atmost one intersection event
and intersection events can add atmost 4 intersection events. Because of the order in which the algorithm
processes the sweeplines, all the intersection points below the current sweepline will have been found and
processed. The number of iterations for Step 3 and Step 4 can be statically determined and it is linear in the
number of inputs. However, the number of iterations in Step 4 is dynamic and can be quadratic. Intersection
events produce new intersection events. However, even in the worst cast with n/2 intersection points generated
in Step 4, the algorithm is bound to terminate.

3.2 Algorithmic Analysis
Time Complexity
For each of the N lines there will be two sweeplines, and each sweepline will have to iterate over all N lines to
check if they intersect or not. So this results in 2𝑁𝑁2 comparison steps, and then each intersection event will also
produce a sweepline and if there are K intersection points this results in K*N steps so the total is 2𝑁𝑁2 + 𝐾𝐾 ∗ 𝑁𝑁
steps. Assuming that 𝐾𝐾 << 𝑁𝑁, the time-complexity of this algorithm is 𝑂𝑂(𝑁𝑁2).

Space Complexity
Since there will be 2𝑁𝑁 sweeplines for N lines and for each K intersection events there will be K sweeplines. The
extra memory requirement will be 𝑂𝑂(𝑁𝑁 + 𝐾𝐾) and assuming 𝐾𝐾 << 𝑁𝑁, the space-complexity of the algorithm is
O(N).

4 Directive-based Implementation Details
Although the steps 2,3 and 4 of Algorithm 3 could run concurrently, we implemented it in such a way that each
of the sweeplines within each step is processed in parallel. Also, in step 4 the intersection events are handled in
batch for the ease of implementation. Furthermore, we had to make changes to the sequential code so that it
could be parallelized with directives. In the sequential algorithm, the segments overlapping with a sweepline are
usually stored in a datastructure like BST. However, when each of the sweeplines are needed to be processed in
parallel, using a datastructure like the BST is not feasible so we need to apply different techniques to achieve
this. In OpenMP we can find neighbors by sorting lines in each sweepline and processing them on individual
threads. Implementing the same sorting based approach is again not feasible in OpenACC because we cannot
use the sorting libraries that are supported in OpenMP. So we used a reduction based approach supported by

the reduction operators provided by OpenACC to achieve this in OpenACC without having to sort the lines in
each sweepline.

Listing 1.1. Data Structure for Point
struct Point {

var x, y;
Point (var x, var y);

}

Listing 1.2. Data Structure for Line
struct Line {

Point p1, p2;
var m, c;

Line (Point p1, Point p2) {

m = ((p2.y - p1.y) / (p2.x - p1.x));
c = (p1.y) – m*(p1.x);

}
} ;

Listing 1.3. Routine for Intersection Point
#pragma acc routine
Point intersectionPoint (Line l1, Line l2) {

var x = (l2.c - l1.c) / (l1.m - l2.m);
var y = l1.m*x + l1.c;
return Point (x,y);

}

The keyword var in the listing are meant to be a placeholder for any numeric datatype.

Finding neighboring line segments corresponding to each event efficiently is a key step in parallelizing plane
sweep algorithm. In general, each sweepline has a small subset of the input line segments crossing it in an
arbitrary order. The size of this subset varies across sweeplines. Finding neighbors per event would amount to
sorting these subsets that are already present in global memory individually, which is not as efficient as global
sorting of the overall input. Hence, we have devised an algorithm to solve this problem using directive based
reduction operation. A reduction is necessary to avoid race conditions.

Algorithm 7 explains how neighbors are found using OpenACC. Each horizontal sweepline has a x-location
around which the neighbors are to be found. If it is a sweepline corresponding to a startpoint or endpoint then
the x-cordinate of that point will be the x-location and for a sweepline corresponding to an intersection point
the x-cordinate of the intersection point will be the x-location. To find the neighbors for the x-location, we need
the x-cordinate of the intersection point between each of the input lines and the horizontal sweepline. Then a
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 reduction is performed on all such intersection points that are to the left of the the x-location and a
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 reduction is performed on all such intersection points that are to the right of the x-location to find the
indices of previous and next neighbors respectively. A 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 reduction finds the index of the maximum value
and a 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 reduction finds the the index of the minimum value. OpenACC doesn't directly support the
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 operators so a workaround was found and implemented.

Figure 3 shows an example for finding two neighbors for an event with x-location as 25. The numbers shown in
boxes are the x-cordinates of the intersection points of individual line segments with a sweepline. We first find
the index of the neighbors and then use the index to find the actual neighbors.

Algorithm 7 Reduction based Neighbor Finding

1: Let SL be the sweepline
2: Let x be the x-cordinate in SL around which neighbors are needed
3: L ← all lines
4: prev ← MIN , nxt ← MAX
5: for each line 𝑙𝑙 in L do-parallel reduction(maxloc:prev, minloc:nxt)

6: if intersects(𝑙𝑙,SL) then
7: h ← intersectionPt(l,SL)
8: if ℎ < 𝑥𝑥 then

9: prev = h
10: end if
11: if ℎ > 𝑥𝑥 then

12: nxt = h
13: end if

14: end if
15: end for

Polygon intersection using filter and refine approach:
As discussed earlier, joining two polygon layers to produce third layer as output requires a filter phase where we
find pairs of overlapping polygons from the two input layers. The filter phase is data-intensive in nature and it is
carried out in CPU. The next refine phase carries out pair-wise polygon intersection. Typically, on a dataset of a
few gigabytes, there can be thousands to millions of such polygon pairs where a polygon intersection routine
can be invoked to process an individual pair. First, we create a spatial index (R-tree) using minimum bounding
rectangles (MBRs) of polygons of one layer and then perform R-tree queries using MBRs of another layer to find
overlapping cross-layer polygons. We first tried a fine-grained parallelization scheme with a pair of overlapping
polygons as an OpenMP task. But this approach did not perform well due to significantly large number of tasks.
A coarse-grained approach where a task is a pair consisting of a polygon from one layer and a list of overlapping
polygons from another layer performed better. These tasks are independent and processed in parallel by
OpenMP due to typically large number of tasks to keep the multi-cores busy. We used sequential Geometry
Opensource (GEOS) library for R-tree construction, MBR querying and polygon intersection functions. Polygon
intersection uses sequential plane-sweep algorithm to find segment intersections. We tried naive all-to-all
segment intersection algorithm with OpenMP but it is slower than plane sweep based implementation. Our
OpenMP implementation is based on thread-safe C API provided by GEOS. We have used the PreparedGeometry
class which is an optimized version of Geometry class designed for filter-and-refine use cases.

Fig. 3. Reduction based Neighbor Finding

Here the dotted lines are the parallel threads and we find the left and right neighbor to the given x-cord (25) on
the sweepline and their corresponding indices. p and n are thread local variables that are initialized as MIN and
MAX respectively. As the threads execute concurrently their value gets independently updated based on
Algorithm 7.

Hybrid CPU-GPU parallelization:
Only the refine phase is suitable for GPU parallelization because it involves millions of segment intersections
tests for large datasets. Creating intersection graph to identify overlapping polygons is carried out on CPU. The
intersection graph is copied to the GPU using OpenACC data directives. The segment intersection algorithm used
in OpenACC is the brute force algorithm. We cannot simply add pragmas to GEOS code. This is due to the fact
that OpenACC is not designed to run sophisticated plane sweep algorithm efficiently. For efficiency, the code
needs to be vectorized by the PGI compiler and allow Single Instruction Multiple Thread (SIMT) parallelization.
Directive-based loop parallelism using 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 construct is used. The join computation for the
tasks generated by filter phase are carried out in three nested loops. Outermost loop iterates over all the tasks.
Two inner for loops carry out naive all-to-all edge intersection tests for a polygon pair. Point-in-polygon test is
used to check for contains relationship.

5 Experimental Results
5.1 Experimental Setup
Our code was run on the following 3 machines:

• Everest cluster at Marquette university: This machine was used to run the OpenMP codes and contained
the Intel Xeon E5 CPU v4 E5-2695 with 18 cores and 45MB cache and base frequency of 2.10GHz.

• Bridges cluster at the Pittsburgh Supercomputing Center: A single GPU node of this cluster was used
which contained the NVIDIA Tesla P100 containing 3584 cuda cores and GPU memory of 12GB.

• Our sequential GEOS and OpenMP code was run on 2.6 GHz Intel Xeon E5-2660v3 processor with 20
cores in the NCSA ROGER Supercomputer. We carried out the GPU experiments using OpenACC on
NVidia Tesla P100 GPU which has 16 GB of main memory and 3, 584 CUDA cores operating at 1480 MHz
frequency. This GPU provides 5.3 TFLOPS of double precision oating point calculations. Version 3.4.2 of
GEOS library was used 1.

Dataset Descriptions:
We have used artificially generated and real spatial datasets for performance evaluation.

Generated Dataset:
Random lines were generated for performance measurement and collecting timing information. Datasets vary in
the number of lines generated. Sparsity of data was controlled during data set generation to have about only
10% of intersections. Table 1 shows the datasets we generated and used and the number of intersections in
each dataset. The datasets are sparsely distributed and number of intersections are only about 10% of the
number of lines in the dataset. Figure 4 depicts a randomly generated set of sparse lines.

Real-world Spatial Datasets:
As real-world spatial data, we selected polygonal data from Geographic Information System (GIS) domain 2, 3
[12]. The details of the datasets are provided in Table 2.

Table 1. Dataset and corresponding number of intersections
Lines Intersections

10k 1095
20k 2068
40k 4078
80k 8062

Fig. 4. Randomly generated sparse lines

Table 2. Description of real-world datasets.
Dataset Polygons Edges Size
1 Urban areas 11K 1,153K 20M B
2 State provinces 4K 1,332K 50M B
3 Sports areas 1,783K 20,692K 590M B
4 Postal code areas 170K 65,269K 1.4G B
5 Water Bodies 463K 24,201K 520M B
6 Block Boundaries 219K 60,046K 1.3G B

5.2 Performance of Brute Force Parallel Algorithm
Using Artificially Generated Dataset:
Table 3 is comparison of CGAL, sequential brute-force (BF-Seq) and OpenACC augmented brute-force (BF-ACC)

Key takeaway from the Table 3 is that CGAL performs significantly better than our naive code for sparse set of
lines in sequential and the increase in sequential time is not linear with the increase in data size. OpenACC
however drastically beats the sequential performance especially for larger data sizes.

Table 3. CGAL, naive Sequential vs OpenACC on sparse lines
Lines CGAL BF-Seq BF-ACC
10k 3.96s 8.19s 0.6s
20k 9.64s 35.52s 1.52s
40k 17.23s 143.94s 5.02s
80k 36.45s 204.94s 6.73s

Using Real Polygonal Dataset:
Here the line segments are taken from the polygons. The polygon intersection tests are distributed among CPU
threads in static, dynamic and guided load-balancing modes supported by OpenMP. Table 4 shows the execution
time for polygon intersection operation using three real-world shapefiles. The performance of GEOS-OpenMP
depends on number of threads, chunk size and thread scheduling. We varied these parameters to get the best
performance for comparison with GEOS. For the largest data set, chunk size as 100 and dynamic loop scheduling
yielded the best speedup for 20 threads. We see better performance using real datasets as well when compared
to optimized opensource GIS library.

For polygonal data, OpenACC version is about two to five times faster than OpenMP version even though it is
running brute force algorithm for the refine phase. The timing includes data transfer time. When compared to
the sequential library, it is four to eight times faster.

Table 4. Performance comparison of polygon intersection operation using sequential and parallel methods on
real-world datasets.

Dataset Running Time (s)
 Sequential Parallel
 GEOS OpenMP OpenACC
Urban-States 5.77 2.63 1.21
USA-Blocks-Water 148.04 83.10 34.69
Sports-Postal-Areas 267.34 173.51 31.82

5.3 Performance of Parallel Plane Sweep Algorithm
Table 5 shows the scalability of parallel plane sweep algorithm using OpenMP on Intel Xeon E5. Table 6 is
comparison of CGAL and parallel plane sweep (PS-ACC).

Key takeaway from the Table 6 is that for the given size of datasets the parallel plane sweep in OpenACC
drastically beats the sequential performance of CGAL or the other sequential method tabulated in Table 3.

Table 5. Parallel plane sweep on sparse lines with OpenMP
Lines 1p 2p 4p 8p 16p 32p
10k 1.9s 1.22s 0.65s 0.37s 0.21s 0.13s
20k 5.76s 3.24s 1.78s 1.08s 0.66s 0.37s
40k 20.98s 11.01s 5.77s 3.3s 2.03s 1.14s
80k 82.96s 42.3s 21.44s 12.18s 6.91s 3.78s

Table 6. CGAL vs OpenACC Parallel Plane Sweep on sparse lines
Lines CGAL PS-ACC
10k 3.96s 0.33s
20k 9.64s 0.34s
40k 17.23s 0.41s
80k 36.45s 0.74s

Table 7. Speedup with OpenACC when compared to CGAL
 10K 20K 40K 80K
BF-ACC 6.6 6.34 3.43 5.42
PS-ACC 12 28.35 42.02 49.26

5.4 Speedup and Efficiency comparisons
Table 7 shows the speedup gained when comparing CGAL with the OpenACC implementation of the brute force
(BF- ACC) and plane sweep approaches (PSACC) on NVIDIA Tesla P100.

Figure 5 shows the time taken for computing intersection on sparse lines in comparison to OpenACC based
implementations with CGAL and sequential brute force. Table 7 shows the speedup gained for different datasets
with OpenACC. The results with directives are promising because even the brute force approach gives around a
5x speedup for 80K lines. Moreover, our parallel implementation of plane sweep gives a 49x speedup.

Figure 6 shows the speedup with varying number of threads and it validates the parallelization of the parallel
plane sweep approach. The speedup is consistent with the increase in the number of threads. Figure 7 shows
the efficiency data for the previous speedup graph. As we can see in the figure, the efficiency is higher for larger
datasets. There is diminishing return as the number of threads increases due to the decrease in the amount of
work available per thread.

Also, doing a phase-wise comparison of the OpenACC plane sweep code showed that most of the time was
consumed in the start event processing (around 90% for datasets smaller than 80K and about 70% for the 80K
dataset). Most of the remaining time was consumed by end event processing with negligible time spent on
intersection events. The variation in time is due to the fact the number of intersections found by different
events is not the same. Moreover, start event processing has to do twice the amount of work in comparison to
end event processing as mentioned in Algorithms 4 and 5. There are fewer intersection point events in
comparison to the endpoint events.

Fig. 5. Time comparison for CGAL, sequential brute-force, OpenACC augmented brute-force and plane sweep on
sparse lines

Fig. 6. Speedups for the parallel plane sweep with varying OpenMP threads on sparse lines

6 Conclusion and Future Work
In this work, we presented a fine-grained parallel algorithm targeted to GPU architecture for a non-trivial
computational geometry code. We also presented an efficient implementation using OpenACC directives that

leverages GPU parallelism. This has resulted in an order of magnitude speedup compared to the sequential
implementations. We have also shown our directive based parallelization method using real polygonal data. We
are planning to integrate the present work with our MPI-GIS software so that we can utilize multiple GPUs [15].

Fig. 7. Efficiency of the parallel plane sweep with varying OpenMP threads on sparse lines

Directives prove to be a promising avenue to explore in the future for parallelizing other spatial computations as
well. Although in this paper we have not handled the degenerate cases for plane sweep algorithm, they can be
dealt with the same way we would deal with degenerate cases in the sequential plane sweep approach.
Degenerate cases arise due to the assumptions that we had made with the plansweep algorithm. However, it
remains one of our future works to explore parallel and directive based methods to handle such cases.

Notes
1 https://trac.osgeo.org/geos/
2 http://www.naturalearthdata.com
3 http://resources.arcgis.com

Acknowledgements
This work is partly supported by the National Science Foundation CRII Grant No. 1756000. We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this
research. We also acknowledge XSEDE for providing access to NVidia Tesla P100 available in PSC Bridges cluster.

References
1. Aghajarian, D., Prasad, S.K.: A spatial join algorithm based on a non-uniform grid technique over gpgpu. In:

Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. p. 56. ACM (2017)

2. Atallah, M.J., Goodrich, M.T.: Efficient plane sweeping in parallel. In: Proceedings of the second annual
symposium on Computational geometry. pp. 216{225. ACM (1986)

3. Audet, S., Albertsson, C., Murase, M., Asahara, A.: Robust and efficient polygon overlay on parallel stream
processors. In: Proceedings of the 21st ACM SIGSPA-TIAL International Conference on Advances in
Geographic Information Systems.pp. 304{313. ACM (2013)

4. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Transactions
on computers (9), 643{647 (1979)

5. Franklin, W.R., Narayanaswami, C., Kankanhalli, M., Sun, D., Zhou, M.C., Wu, P.Y.: Uniform grids: A technique
for intersection detection on serial and parallel machines. In: Proceedings of Auto Carto. vol. 9, pp.
100{109. Citeseer (1989)

6. Goodrich, M.T.: Intersecting line segments in parallel with an output-sensitive number of processors. SIAM
Journal on Computing 20(4), 737{755 (1991)

http://www.naturalearthdata.com/
http://www.naturalearthdata.com/
http://resources.arcgis.com/

7. Goodrich, M.T., Ghouse, M.R., Bright, J.: Sweep methods for parallel computational geometry. Algorithmica
15(2), 126{153 (1996)

8. Khlopotine, A.B., Jandhyala, V., Kirkpatrick, D.: A variant of parallel plane sweep algorithm for multicore
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), 966{970
(2013)

9. McKenney, M., F.R.D.M.A.K.H.J.: Multi-core parallelism for plane sweep algorithms as a foundation for gis
operations. In: Geoinformatica. p. 151174. Springer (2017)

10. McKenney, M., De Luna, G., Hill, S., Lowell, L.: Geospatial overlay computation on the gpu. In: Proceedings of
the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
pp. 473{476. ACM (2011)

11. McKenney, M., McGuire, T.: A parallel plane sweep algorithm for multi-core systems. In: Proceedings of the
17th ACM SIGSPATIAL international conference on advances in geographic information systems. pp.
392{395. ACM (2009)

12. OSM: OpenStreet Map Data(http://spatialhadoop.cs.umn.edu/datasets.html) (2017),
http://spatialhadoop.cs.umn.edu/datasets.html

13. Prasad, S., Aghajarian, D., McDermott, M., Shah, D., Mokbel, M., Puri, S., Rey, S., Shekhar, S., Xe, Y., Vatsavai,
R.,Wang, F., Liang, Y., Vo, H.,Wang, S.: Parallel Processing Over Spatial-Temporal Datasets From Geo,
Bio, Climate And Social Science Communities: A Research Roadmap. 6th IEEE International Congress on
Big Data, Hawaii (2017)

14. Puri, S., Prasad, S.K.: A parallel algorithm for clipping polygons with improved bounds and a distributed
overlay processing system using mpi. In: 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid)(CCGRID). vol. 00, pp. 576{585 (May 2015).
https://doi.org/10.1109/CCGrid.2015.43, doi.ieeecomputersociety.org/10.1109/CCGrid.2015.43

15. Puri, S., Paudel, A., Prasad, S.K.: MPI-Vector-IO: Parallel I/O and Partitioning for Geospatial Vector Data. In:
Proceedings of the 47th International Conference on Parallel Processing. pp. 13:1{13:11. ICPP 2018,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3225058.3225105,
http://doi.acm.org/10.1145/3225058.3225105

Appendix A Artifact Description Appendix
1.A.1 Description
Check-List (Artifact Meta Information)

• Algorithm:
o All algorithms are mentioned and described in the paper itself and can be referred to in

Algorithms 1 and 3.
• Program:

o The Computational Geometry Algorithms Library (CGAL) and Geometry Engine Open Source
(GEOS) were external libraries that were used.

• Compilation:
o Compilations were done using the g++ compiler and pgc++ compilers.
o for OpenACC: pgc + + − acc − ta = tesla: cc60 − o prog prog. cpp
o for OpenMP: g + + − fopenmp − o prog prog. cpp
o for CGAL: g + + − lcgal − o prog prog. cpp
o for GEOS: g + + − lgeos − o prog prog. cpp

• Hardware:
o Description of the machines used to run code can be found in Sect. 5.1 for further information.

• Publicly available:
o CGAL, GEOS, OpenMP, OpenACC, gcc and pgcc are all publicly available.

http://spatialhadoop.cs.umn.edu/datasets.html
https://doi.org/10.1109/CCGrid.2015.43
https://doi.org/10.1145/3225058.3225105
http://doi.acm.org/10.1145/3225058.3225105
https://link.springer.com/chapter/10.1007%2F978-3-030-12274-4_6#Sec13

How Software Can Be Obtained (if Available). All of the software and code we used to build up our experiments
were freely and publicly available. However, our code implementation can be found in the
website: https://www.mscs.mu.edu/~satish/mpiaccgis.html.

Hardware Dependencies. To be able to get the most out of OpenMP, a multicore CPU would be needed. And to
be able to run OpenACC kernels a GPU would be needed.

Software Dependencies. CGAL, GEOS, OpenMP and OpenACC libraries must be installed. Compilers like gcc and
pgcc are also needed.

Datasets. Real world spatial data were used and datasets containing random lines were generated. Please refer
to Sect. 5.1 for more information. Generated datasets are also posted in the
website: https://www.mscs.mu.edu/~satish/mpiaccgis.html, however they can be generated on your own.

1.A.2 Installation
1. Configure the multicore CPUs and GPU to run on your system
2. Install the necessary libraries
3. Download or generate the necessary datasets
4. Download the code
5. Check that the datasets are in the proper directory pointed by the code, if not then fix it
6. Compile the code
7. Execute the compiled executable

https://www.mscs.mu.edu/%7Esatish/mpiaccgis.html
https://link.springer.com/chapter/10.1007%2F978-3-030-12274-4_6#Sec13
https://www.mscs.mu.edu/%7Esatish/mpiaccgis.html

	OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection
	Recommended Citation

	Abstract
	Keywords
	1 Introduction
	2 Background and Related Work
	2.1 Segment Intersection Problem
	2.2 Naive Brute Force Approach
	Filter and Refine approach:

	2.3 Plane Sweep Algorithm
	2.4 Existing work on parallelizing segment intersection algorithms
	2.5 OpenMP and OpenACC

	3 Parallel Plane Sweep Algorithm
	Degree of concurrency:
	3.1 Algorithm Correctness
	3.2 Algorithmic Analysis
	Time Complexity
	Space Complexity

	4 Directive-based Implementation Details
	Listing 1.1. Data Structure for Point
	Listing 1.2. Data Structure for Line
	Listing 1.3. Routine for Intersection Point
	Polygon intersection using filter and refine approach:
	Hybrid CPU-GPU parallelization:

	5 Experimental Results
	5.1 Experimental Setup
	Dataset Descriptions:
	Generated Dataset:
	Real-world Spatial Datasets:

	5.2 Performance of Brute Force Parallel Algorithm
	Using Artificially Generated Dataset:
	Using Real Polygonal Dataset:

	5.3 Performance of Parallel Plane Sweep Algorithm
	5.4 Speedup and Efficiency comparisons

	6 Conclusion and Future Work
	Notes
	Acknowledgements

	References
	Appendix A Artifact Description Appendix
	1.A.1 Description
	Check-List (Artifact Meta Information)

	1.A.2 Installation

