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rhis document makes u,_ of international metric units according to the

Systenle hll:ernational d'Llnites (SI). In certain ca_'s, utility requires the

rCtel)tion of other systems of units in addition to tht"Si units. The conven-
tional units .stated in parenthL',_s following the computer SI equivalents are
lhe basis of tl)e nlea_rements and cah:ulations reported.

Throughout tlzis doculnent, conventional units of in_asur¢, wllich are cus-
tonlary for land-u,_" l_lanuillg, ar¢ u_'d in the figures"and tables and tlleir
_-,iptiOllS,
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SPATIAL I.AND-USF INVENTORY, MODELING, AND PROJECTION/DENVER
METROPOLITANAREA, WITII INPUTS FROM EXISTING MAPS,

AIRPIIOTOS, AND LANDSAT IMAGERY

C. Tom_ L D. Miller°
and

J. W.O_ristenson

ABSTRACT

The research objectives were to overlay ancillary map data onto a Landsat multispectral data base, create
and t_,sz_and-usechange prediction models, and map land uses in the Denver Metropolitan Area. Linear-
discriminant analysis was used to model spatially projected land-use changes and to chssify the single-date
Landsat-I image with ancillary data inputs.

A landscape model was constructed with 34 bnd-use, physiographic, socioeconomic, and transportation !
maps. A simple Markov land-usetrend model was constructed from observed rates of change and non- t
change from photointerpreted 1963 and 1970 airphotos. Seven multivariatebnd-use projection models
predicting 1970 spatial land-usechanges achieved accuraciesfrom 42 to 57 percent. A final modeling
strategy was designed, which combines both Markovtrend and multivariatespatial projection processes.

Landsat-I image preprocessingincluded geometric rectification/resampling, spectral-band,and band/
insolation ratioing operations. Rectangulartraining-set selection gave biased and unreproducible results.
A new, systematic grid-sampledpoint training-setapproach proved to be useful when tested on the four
original MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten-
variable accuracy was raised over 15 percentage points f_om 38.4 to 53.9 percent, with the use of the 31
ancillary variables. Only three optimal ancillary variablesadded almost 12 of these 15 percentage points
of improvement. The maximum-fikelihoodratio classifier was also established to be inferior to linear-
discriminantanalysis for land-use mal_ping.

A land-useclassification map was produced with an optimal ten-channel subset of four image bands and
six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/i973 U.S.
Geolog/cal Survey (USGS) land-use n_apl_reparedwith airphotos and the same classification scheme
showed average first-, second-, and third-orderaccuraciesof 76.3, 58.4, and 33.0 percent, respectively.

The averagedirect development cost for this 24-class land-usemapping effort with the 48-variableover-
layed Landsat spectral/spatial map data was $0.0468 per hectare {$0.0189 per acre), or $704.19 per
! :24,000-scale USGS quadrangle,with tile direct production cost using only the optimal ten-cltannel
spectral/spatial data set estimated at an averageof $0.0317 per hectare ($0.0128 per acre), or $47?. 17 ....
per 7.5 minute USGS quadrangle. _,

Recommendations for further evaluation study include densification of socioeconomic data. improved
digitization of topographic elevation, input of collateral soils data, multidate land-usechange detection,
greater use of ancillary map data. and further information systems development.

*Aportionof theworkwasperformedwhileservingas aSeniorPostdoctoralResearchAsmctate,GoddardSpaceFlightCenter.
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CHAPTER I

INTROi)U(:TION

GENERAL

Planning is a process that systematically deals with the following (Reference 1 ):

• |:ormulation of objectives and standards with which to specify future co,dit_ons

• Collection and analysis of relevant data to accurately determi_le existing conditions and trends

• Development of alternative plans to achieve the desired conditions

• Selection, adoption, and implementation of an "'optimal" plan from the available alternatives

Land-use planning, the name commonly applied to tile tasks of designing a unified developm.'_ plan, must
consider the spatial arrangements of all land uses. Such land-use plans range from the loc"CJn of transpor-
tation routesto the location of public facilities such as airports, dams. open space, parks, power plants.
and schools.

"Fileincreasing size and complexity characterizing tile modern, large-scale land-planning organization has
made the historical managerial functions of planning, organiting, and controlling the future spatial distri-
bution of land use much more difficult to achieve. At the same time, the succ_,_sful application of these
functions has become increasingly es:sentiai to the orderly development and stability of today's urban and
rural communities'.

Rapid growth pressures on tile lands used for agriculture, mineral resources, open space, outdoor recreation,
water supply and storage, transportation, and wildhmds requir,.'s substantial advances in the collection, classi-
ficatiom and availability of appropriate land inventory and planning data in general.

The required inventory and planning data are not generally available to land planners at any level. When

available, these data often lack completenL_s, quality, and timeliness. The availability of timely data in the
form of a detailed, quantitative inventory and planning dala bank provides land planners with a dynamic
definition of tile tradeofl_ involvedin evaluating tlle following:

• Alternative sites fi)r tile same type of development

• Proposedalternative sitesto be earmarked for deveh)pmen!

• Reciprocal efl\'cls between developnlenl/nondevelopnlenl and activities in adjacent areas

i

.: .: . ""_ c_:i ...._' " . " ";"I["o ,_'"" ., " " . . _.,- IS • o " . .. - , • "
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PlanningProcess

Urban planning has traditionally empllasized efficient functioning of cities in a purely economic and engi-
neering sense, with particular attention devoted to land-use activities, transportation, and zoning. This
emphasis has been termed "physical" planning arid seeks to achieve a viable and sound land-use pattern
(Reference 2). A stress on "current" planning permits only a land regulation-type of urban planning in
which subdivision codes, zoning, and parcel-oriented policy-making is paramount. "Advance" planning
addresses tile longer range, but equally urgent, problems such as blight, obsolescence, suburbanization,

and sprawl and may be done both intermittently and incrementally. Physical planning works as an agent
of private development, rather than as a normative instrument for the public welfare. It does not challenge
the lqth century view of land as a speculative commodity (Reference 3), but merely imposes ground rules
under which speculation continues.

Promoted through the Housing Act and other recent federal legislation, social planning adopts a socioecono-
mic, political, and physical approach to the development and functioning of the urban community in an
effort to compensate for the past failures of physical planning and to address major issues and prol_lems
confronting the hitherto ignored human and social elements. Historically, reconciliation of the two phiios-
ophies has been unsuccessful.

Regional growth has been accomplished through near-universal phenomena of air, land, and water pollution,

undesirable economic contingencies and land-use conversions, traffic congestion, and urban blight and sprawl.
Although urban land uses command the greatest value in monetary terms, the "'value" of open, nonurban
areas remains uncontested and essential. This open space is being progressively preempted by other land uses
because of a myriad of factors inherent in the employment of current planning practices. Therefore, it is
both necessary and valuable to inventory large urban and urban fringe areas and to delimit land uses and
potentials.

it is essential to first devdop an understanding of the landscape in terms of its cultural and natural components.
These are difficult to measure because of the complex interactions among air, water, land, biomass, and
cultural resources. In addition, these landscape elements are 'always in a dynamic state of succession, how-
ever slow or fast that successional rate may be.

Needed TechnologyTransfer

Local and regional planning agencies represent a large number of potential users of the evolving remote sens-
ing technology. Remote sensing may be defined as the noncontact collection, analysis, and interpretation
of data from aerospace platforms. It should be realized that this remote sensing extends tar beyond the
realm of conventional aerial photography, which is only a small, representative t:acet of the increasingly
expanding and sophisticated whole. Spatial remote sensing data are available over large areas and can already
be cost-effectively obtained relative to traditional ground methods. Remote sensing data can be collected,

interpreted for various purposes, stored for further use, and used as a historical record. It can also be employed
more easily, consistently, and objectively, and at lower unit-area cost than most ground-based surveys.

Rem6te sensing offers considerable potential in advance planning procedur_,s in which unique advantages
arc realized in dealing with environmental issues in which policy-making must be based on both quantitative
and qualitative data. It permits for the first time the practical establishment of standardi/.ed observations o1:
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and criteria for, change. Observations at appropriate time intervals will reveal the precursors of change and
trends sufficiently earlier so that land planners can probe for basic causes and assess latent probabilities.
Continuous planning at regional scales becomes practical. Lastly, remote sensing presents a pemlanent

record of urban phenomena unbiased by the planner's experience.

These advantages of remote sensing sul_est practical applications in a different form than is currenlly prac-
ticed. The rising tide of environmental concern popularly manifested in the 1o70's is exerting great pres-
sure on "front-line" planning agencies to shed their historical burden of current administrative problems.
They must now assume greater responsibilities for the quality of lif_, environmental quality, and other Iong-
negle_.'tedurban problems. Becatlse environmental deterioration and destruction can be traced to man's
interference, there are increasing pressures to monitor, measure, and evaluate his activities. Surrogates for
environmental indicators have been prbposed, including the analysis of disparate and preemptive land us_._
(References 4 and 5), changes in land value (Reference 6), and the quality and care of residential lawns
(Reference 7). While the greatest current demand on remote sensing is to generate land-use data, the technical
capability simultaneously exists to extract quantitative and qualitative data of which land use is but a part.

Unfortunately, there has been relatively limited success as yet in incorporating remote sensing applications
irtto the routine operations of urban and regional planners and decision-makers. The mechanics for accom-
plishing such a technology transfer are simply not known. The scarci_ of such planning applications is not .....

apparently related to either the quality or utility of remote sensing techniques, nor even simple ignorance.
One major obstacle in realizing the full potential of remote sensing is that its form has been incompatible
so far with the census tracts, blocks, and parcels and other land-use inventory schemes used by pl_' _.
While remote sensing data can be interpreted to yield both spatial and statistical paraffteters, these data must
•also be aggregated and interfaced, for the time being, to the areal units that are compatible with the planners"
normal geographical definitions of the city or region.

A second aspect of the technology transfer problem is the necessity to create and maintain large geographic
data bases over extensive areas. The various available data input sources are rectified to a common geographic
base to meet social planning requirements. Basic social land-use planning concepts htwe not yet beL,n wid_'ly
researched or implet_ented. HoWever, recent developments in electronic data processing have created the
possibility that the vohtminous quantity of available social planning data may be manipulated more easily
and economically in the form of a geographic information system. Remote _nsing can provide wide. regional
coverage of inaccessible or sparsely monitored geographic data. Thus, the computer-based geographic infor-
mation system can, in turn, effectively blend regional planning and remote sensing to simplify both physical
and social planning data requirements and actions. Such data collection, retrieval, and an',dysiscapabilities
are essential for the monitoring, measurement, and evaluation of land-use changes before planners can
undertake environmental planning and thereby assume large-scale environmental management responsibilities.
Currently, remote sensing and geographic information systems remain as intermittent, piecemeal grafts on
a persistently manu',d mettiodology of operatic.9, i land-use analysis that is largely cosmetic in nature.

STUDY OBJECTIVES

The objectives of this _pecific research were to overlay ancillary map data onto a Landsat multispectral data
base, create and test various models for the prediction of land-use change, and map land uses in the Denver
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M"_ropolitan Area, Specific objectives included the following:

• Dew.'lopment of a landscape model with land-use, physiographic, socioeconomic, and trans-
portation ¢omponenfs

• Testing of a land-use trend model

• Development and testing of a spatial land-useprojection model ........................

• Overlaying of the Landsat image onto the landscape model

• Optimization of the Landsat image classification algorithm when used with landscape or
ancillary variables

• Optimal land-use mapping of the study area using Landsat and landscape variables

• Display and verification of the machine-produced maps

• Tabulation of computer, labor, and material cost/time for the land-use maps

SCOPEOF THE RESEARgH

The first Landsat, formerly Earth Resources Technolot,-y Satellite (ERTS-I), has provided unexcelled oppor-
tunities to explore the utility of aerospace remote sensing data for large-scale analyses of land ecosysfems.
This research was specifically directed toward the extraction, use, and assessment of land, use inventory and
planning data derived from such remote sensing imagery, ancillary map data, and geographic information
sys*ems. This endeavor sought to illustrate which features and characteristics of these data inputs and
systems are useful in planning processes.

The research was 'alsostructured to provide an analytical framework for modeling land-use changes and for
identifying the factors that were influential in controlling such changes. The results indicated the levels of
accuracy to be expected under operational conditions and also provided the recommended procedures,

data sources, and computational techniques.

GENERAL APPROACH

The digital landscape model organized and overlayed data from existing maps, census tables, and remote
sensing imagery into a computer framework (figure I). This assemblage provided a multivariate, multi-
temporal mathematical model that represented the landscape much as a three-dimensional model of the

physical terrain is represented by a topographic map (Reference 8}. Coupled with this composite of
data overlays was a collection of computer techniques that permitted meaningful simulations of the

spatial or map-like [_ehavior of this landscape to either natural or man-ind,tced alteration and control
(Reference q). The thrust of land-use modeling was the prediction and display in map form of the future
landscape that would result from the continuation or"current land-managenwnt practices or the lack
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i" • SOCIOECONOMIC DENSITY PLANES .......

MINIMUM-DISTANCE PLANES
DIGITAL LANDSCAPE MODEL TRANSPORTATION ACCESS PLANES

SOLAR-RADIATION PLANES
LANDSAT TRANSFORMATIONS
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i i i i-

I FUTURE LANO-USE SCENARIOS
LAND-USE MODELING SITE DEVELOPMENT PLANS

• POWER PLANT SITE COMPARISONS
ZONING ALTERNATIVES

AND MANY OTHER APPLICATIONS TO
ECONOMICS, HYDROLOGY, PLANNING,
ENERGY, ETC.

FIGURE 1. SIMPLE SCHEMATIC REPRESENTATION OF THE LANDSCAPE MODELING CONCEPT.

Spatially referenced data from a variety of sources isoverlaid in the landscape model. A symbiotic relation.

ship exists between landscape modeling and remote sensingimage analysis. Current and projected landscape

scenariosprevide new inputs to the land-use modeling end decision-maklng processes.

thereof. Success in this objective provided a basis for the proposal for the improvement of these techniques
to predict how the landscape will evolve in a spatial sense to various scenarios of anticipated alterations.

Computer analysis of remote sensing imagery provided the important current and past land-use inputs to tile
land:use modeling and was totally compatible with the modeling process. Symbiotically, the accuracy of the

computer interpretation of the remote sensing imagery was substantially improved by including landscape
variables such as topographic elevation. Thus, combining the available remote sensing imagery with map data
in the digital landscape model provided the basis for substantial improvements in both activities.



The following basicselectionswere made to provide benchmark resourcesfor testing the basichypotheses
and for satisfying the stated objectives. Detailed interpretation of the mos_recent setsof low-altitude black-
and-white airphotos provided the maps of the land use on various dates, which were used as quantitative
measures of change. Landsat four-band imagery has been continuously obtained since July 1972, and the

excellent August 15, 1973, image was sdected for analysis.* The U.S. Geological Survey (USGS) Circular
671 (Reference 10t hierarchical land-use classification scheme was adopted for uniform interpretations in

both manual and automated image analysis activities (table 1). Twenty-one second-order USGS land uses
were originally photointerpreted for landscape model construction and spatial land-use projection. However,
13 second-order and 11 third-order categories were used in the Landsat land-use classification to conform

to the cla_es used in a 1972-1973 USGS photointerpretation study of the Denver Metropolitan Area (Refer-
encel 1I. Although USGS Circular 67I was revised by Professional Paper 964 (Reference 12), revision was
not made here because a large amount of intercorrelated data (e.g., photointerpretations, etc.) had already
been completed using the Circular 671 approach.

The Circular 671 system has required modification and redefinition because of more recent changes in remote.
sensiztg technology. However, the original classification system was sufficiently inclusive to have been pro-
posed in 1972 as a standardized framework for land-use surveys by remote sensing. The original system was
tested by the USGS Geographic Applications Program (GEOGAP) in several research programs that moni-
tored land-use changes using satellite and high-altitude aerial photographic data. l_hree regional projects
that used the scheme studied the Central Atlantic Regional Ecological Test Site (CARETS) (Reference 13),
the Ozarks region, and southern Arizona (Reference 14). The Anderson land-use classification system was

tested in each of these zegions and was found to work satisfactorily, even wizen used with satellite imagery.

ANALYSIS PROCEDURES

This study made use of numerous sources of cultural and natural landscape data. These diverse sources and
quantities of input data were used in this study, but would have overburdened manual data collection and

analysis methodologies. It should be emphasized that large quantities of map and remote sensing data
can serve no practical purpose unless both a rationale and a capability exists for their rapid, objective proc-
essing. Therefore, the data •analysis plan was prepared early during the research to outline the orderly

progression of steps needed for accomplishing the study objectives (figure 21. The following subsections
describe in more detail the data resources` analysis procedures, and computer program_ning called for by

this analysis plan. Specific inputs, operations, and outputs are cross-referenced to the data analysis plafz by
the bracketed numbers (i.e., [ 1] in the text indicates.the position on the diagram indicated by [ 1] (figure 2/).

Data Resources

The data used in the conceptual desi_,a of the land-use modeling effort was acquired from the literature,
ground surveys and maps, aircraft photography, and satellite line-scanner data (Reference ! ). The initial
tasks in this area included the collection of pertinent g_aphic- and numeric-format land-use, cultur.,d, and
physiographic data. Historical black-and-white, 1:20,O00-scale panchromatic aerial photos of 1963 and
1:24,000-scale 1970 orthophotomaps ( 1] provided the multidate land-use "ground-truth" data base. High-
'altitude U-2 aircraft photos dated 1972-1973 were used by USGS to compile their published map [ I]. Other

• rhe image pro_esstng research efforts were initiated in 19720end the sdected 1973 image was the first evadable high.quality summer image
(Lan&qat scene 1388-I'/t3t) for the Denver Metropolitan Area,
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TABLE 1

HIERARCHICAL LAND-USE/LAND-COVER CLASSIFICATION SCHEME USED FOR THE DENVER METRO-

POLITAN AREA. The varlou_ levels of the USGS Circular 871 wstem are shown (Reference 10). This standardized

classlfleatlon was used for manual alrphoto interpretation and was modified by adding eleven third-order clesms for

automated Landmt image analysis. The system was revised and reissued with minor chengeeas Professional Paper 984
Reference 12).

Digital First-OrderLandUse/LandCover
Codes Second.OrderThird-Order

I Urbanandbuilt-up land (;
! t Residential
12 Commercial and services

121 Recreational
13 Industrial
14 Extractive
I_; Transportation, communications, and utilities

1$1 Utilities
t6 Institutional
17 S_tip and clustered development
18 Mixed urban
19 Open and other urban

191 Solid-waste dump

192 Cemetery
2 Agricultural land

21 Croplandarid pasture
211 Nonitrigated cropland
212 Irrigated cropland
213 Pasture

22 Orchards, groves, and other horticultural areas ..............
23 Feeding operations
24 Other agricultural land

3 Rangeland
$1 (lra_
32* _v,annas '
)] Chaparral (taken as brushland)
34* Desert shrub

4 Forestland
41 Deeiduous

411 Deciduous/intermittent crown
42 Evergreen (coniferous and otfier)

421 Coniferous/solid crown
422 Coniferous/intermittent crown

43* Mixed forese [and

$ Water
S1 Strean'tsand waterways
_2 Lakes
53 Reservoirs
54" Bays and estuaries
55 Other water

6 Nonforested wetland
61 Vegetated
62* Bare

7 Barrenland
71" Salt flats
72" Beaches
73 Sand other than beaches
74 Pare exposed rock

7#1 Hillslopes
75 Other barren land

8" Tundra
81* Tundra

9* Permanent snow and iccfields
91' Permanent sm_wand icefields

• Land-use/land-cover type not found in the Dem'er Metropolitan Area.

J
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cultural landscape data included census tract-aggregated socioeconomic data for 1970 [2] and a 197_
State Highway Department s_reet/highway classification maD with eight road categories [3].

Physiographic landscape data consisted of a USGS l:62,500-scale sufficial geology map [4], sixteen
1.24,000-scale topographic maps [$], and computer-generated slope [7], aspect [8], and insolation [10]

data planes,

Landsat imagery resources [12] included the four basic multispectral scanner (MSS) images of a single-
date 1973 scene, the six MSS image-to-image ratios, and four MSS/insolation-normalized ratios [11].

Analysis Procedures
I,

The modeling activity was structured to analyze the interactions.between land-use changes and the regulating iJ

physiographic, socioeconomic, and transportation components of the landscape. This involved the compila-
tion, rectification, and generation of spatially registered data planes for the various landscape elements.

Each landscape data plane represented a spatially distributed, single-variable map for the 39- by 39-kin*
(24- by 24-statute mile) or 1491-km 2 ($76-mi 2) study area centered on the Denver Metropolitan Area. The
majority of these dam planes were obtained by thematically sampling and computationally transforming the
available maps using a fixed 192-row by 192-column dot grid yielding 36,864 cells of 4 hectares (10 acres)
per plane. These planes, using the popular grid-cell technique, were accessed in overlaying operations that
combined single-variable data planes with conformable spatial dimensions.

lan McHarg's regional landscape analysis method is a well-known manual method of such overlaying processes
(Reference 15). This approach physically overlays colored transparent acetate-plotted variables to view
spatial correlations and juxtapositions as composite colors; however, as more variables are considered, the

display becomes confusing, and the approach becomes less useful The overlay process used in this research
was carefully designed after a thorotlgh review of the available systems (Reference 9). Implemented as a soft-
ware package for use on a digital computer, it permits the easy retrieval, manipulation, modeling, and display
of a large nudtber of landscape phenomena.

Linear discriminant analysis was selected as the computational vehicle for implementing the dual land-use

predictive modeling [14] and inventory mapping [15] capabilities. This dual use represented a new, multi-
variate statistical approach to land-use mapping. Discriminant analysis permitted each landscape cell to be
represented as a point in a multidimensional, statistical framework in which each observation was a measured
variable. The original observations of land use or change in land use were used to determine orthogonal
axes (discriminant functions) to a possible total of one less than the number of land-use variables represented.
Each new observation can be plotted and identified by means of a single discriminant score.

The mapping with Landsat MSS data or modeling future land-use patterns with ancillary map-format data
required the computation of representative _tistical signatures for each land use or b_d-,_se change of
interest. Subsequently, each unknown individual land use, land-use change element, or landscape cell was
classified according to the closest multivariate match with the nearest numeric signawre subset or class.

*l'lloushout the text, Enslisli mea_ements siren in l_enthestt an lneciu, wlu_eas theiz equivalents in the me_lc Wstem _e retmnable
approximation&
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Similarly, a landscape cell within this inventory/modeling system consisted of a seriesof spectral responses
from MSS data and/or a statistical measure of several types of ancillary data from a given area within the
Denver study area. This response was a vector of size equal to the total number of spectral bands and trans-
formations and/or ancillary map varia:bles. Both forms of data were interleaved to represent this vector on
digital tapes in propergeometric relationship, Thus, the mode of analysis could be specified by an appro-
Fiate selection of image, land.use, socioeconomic, physiographic, or transp.orta.tion.variable.s.

Discriminant analysis was performed in a stepwise fashion (i.e., by entering one _lditional variable or attri-
bute into the set of discriminating variables for each successive iteration). The variable to be added, but not
already included in a previous iteration, was selected for inclusion on the basis of greatest F-value. Thus,
the analysis operated in a "supervised" fashion on user-specifiedrepresentative training sets of known land-
use composition to. (1) evaluate t_hestatistical utility of each variable as hierarchically detern_ined by dis-
criminant a,lalysio,_til,l(2) quantify the overalland. incremental laM-use mapping/modeling acceuracies for
each _,ariableentered. These analytical capabilities were perhaps the greatest.advantages of a stepwise linear
discriminant analysis approach.

Utilizationof ComputerProgramModules

Whenpossible, availableoperationalcomputer software wasused to bypass potential "programming bottle-
necks" in handling the largequantities of imageryand map dataassociated with the study.

The TOPOMAPprogram(References 16 and 17) cl "ateda digital terrainmodel [61 with the elevation data
to compute topographic slope [7] and aspect [81 data planes. These topographic slope and aspect data
planes were input to a digital spectroirradiancemodel (program INSOL2) [9l to compute a near-instantaneous
incoming solar radiation or insolation data plane [ 10l.

ProgramTRANSF2 from the Colorado State University (CSU) Landsat mapping system (LMS) (Reference 18)
was used to create +..hesix MSS ratios and four MSS/insolation ratios [11]. Other Landsat-1 preprocessing
operations performed by the LMSpackage included data reformatting and tape merging [12].

ProgramPLANMAP(Reference 1), a geographicinformation system, compared the 1963 and 1970 land-use
data planes and produced urbanization rates for the various land-use classes to drive a Marker chain suo-
cessional trend model [13].

Automated image classification with and without ancillary data access [15] was tested with the channel
selection feature of the EXTRACT and CLASSIFY linear discriminant analysis programs in LMS. CLASSIFY
represented an adaptation of the BMDO7Mstepwise multidiseriminant analysis routine in the biomedical
design (BMD) programseries (Reference 19). This stepwise approach also permitted the selection of an
optimal subset of image and map variables for a full-image classificatior_[ 161.

The simple tabulation programs,CHECKER1 and CHECKER2,were written to facilitate a point-to-point
comparison of the classification map file to the 1972-1")73USGS land:use reference plane for the multilevel
tabulation of land-use mapping accuracy [ 171.

Finally, extended development and interrelated use of these land-use inventory and modeling programs
indicated that it was possible to develop even more sophisticated models to assess the limitations and impacts
from, or response to, various land-use scenarios [181.
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DETAILED REPORTORGANIZATION '

Chapter 1, "Introduction," describes the study and preyides generalcomments on land-useplanning, back-
ground, andrationale, objectives, scope, approach, and the analysis plan.

Chapter 2, "Landscape Model Construction," presents the map sampling and compilation methodolo D
involved in constructing the land-use, physio_aphic, transportation, and socioeconomic map data planes.

Chapter 3, "Spatial Land-Use Projection," describes the spatial land-use projection models' testing, and
results, and outlines a revised spatial-change modeling strategy that combines both the Markovtrend and
discriminant analysi_ models.

Chapter 4, "Landsat Land-UseClassification," explains the Landsat land-use classification effort. It deals
with image rectification and resampling, ancillary map data overlaying, feature extraction sampling methods
and verification, and classification algorithm selection and testing. It also gives the costs of developing the
data and optimal approach. Finally, this approach is applied to the total study area in a cost-effective format,
and displays and verifies the results achieved.

Chapter 5, "Conclusions," summarizes the basic endeavors, activities, and resultsof the study. Applications
areas are identified, and various recommendations aremade. The recommendations generally concern ancil-
lary data inputs and machine interpretation and processing.

Five appendixes support the main text:

• Appendix A, "Multiple Discriminant Analysis," presents a brief overviewof the multivariate
statistical technique of linear-discriminant analysis, used in this study for both spatial land-use
projection and Landsat land-use classification.

• Appendix B, "Landsat Mapping System" (I,MS) describes the set of programsmaking up the
Landsat Mapping System that has been implemented at Colorado State University.

• Appendix C, "Machine Classification Error-RateEstimation," tabulates omission/commission rates
for the first- and composite second- and third-order USGS land-use classes.

• Appendix D, "Maximum-Likelihood Ratio," describesthe widely used multivariate classification
algorithm tested against linear-discriminant analysis in this study.

• Appendix E, "Correlation Matricesfor Rectangular/Point-Salapled Training Sets," presents these
statistics.
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CHAPTER 2

LANDSCAPE MODEL CONSTRUCTION

INTRODUCTION

Tile evolution of land use in tile United States is one of tile most perplexing problems confronting our

,society. it involves a tangled web of biological, economic, environmental, institutional, pllysical, and poli-
tical interactions. The land conversions that result can be studied ill terms of aesthetics, aging, birth rates.
climate, crowding, economit,_, industry, legislation, mineral extraction, mortality, public services, social
amenities, technology, topography, transpo.rtation, v,_getation, water, and zoning.

It was concluded tlmt the most fruitful approach to understanding the evolution of urban land use was by
the construction and manipulation of a landscape model of the Greater Denver Metropolitan Area. This
landscape model provided a better understanding of l)enver's physical environment from a joint analysis
of tile various remote sensing images, collateral landscape maps and data (e.g., land-use, physiographic, socio-
economic, and transportation maps), and a literature survey for the historical period under study. These
collateral data stored in the landscape model provided the data base for the analysis necessary l\_r understanding

the present and recent past patterns of land-use evolution in the Denver Metropolitan Area. The analysis also
yielded insights into the biological, economic, environmental, and social driving I\_rces that have induced the
rural-to-urban land-use conversions observed. Most important, these collateral data were indispensable as both

spatial and statistical geographic inputs to tile evaluation, analysis, and pres_,ntation of a quantitative landscape
model for predicting future spatial changes in Denver.land us_:,

The cultural and natural landscape components of land use are not only undergoing a dynamic slate of suc-
cession, but are also subject to quite varied and complex driving forces. Accordingly, the landscape model-
ing el'l\_rt l\_cused its time and resources on selecting ancillary data factors that were believed to be of
broad applicability, usefulness, and general availability for the intensively urbanized areas of the United
States. Thus, in this undertaking, special emphasis was placed on validating and utilizing meaningful and

widely available data input sourccs"to the landscape modeling In allow replication by interested researchers
or phmners for other metropolitan areas. Although some data sources will not be universally available

throughout tile country, it was anticipated that very close, it"not ident;.:al, surrogates would exist in the
majority of cases'. Preference was always given to universally available data such as Department of Commerce
census data, USGS topographic and geologic maps. National Aeronautics and Space Administration INASA_

satellite imagery, and historical sequences of airphotos in contrast to equally usable but more Iocalited and
volatile data sources. Fven these more universally available data have been collected with diverse technique._

and map scales by a wide assortment of public and private organizations. The landscape model provided
a depository for interrelating such diverse information in a common l'ormat. A model variable or data

phme is one overlay of spatially registered data in a common cellular network upon all other data planes
or variables in tile hmdscape model t figure 3).
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7 LAND-USE $UBMODEL VARIABLES:
1983 Photo LmI-Use
1970 Photo I._lAlm
1972 to 1973 USGSPhoto LmI-UN
Tyro 1963 to 19"/0Land-UseChanges
Two 1963 to 1970 Nplinumerla Cmled

Lind-Use Chln_

9 PHYglOGRAPHIC 8UBMODEL VARIABLES:
TopngnsphlaElavatlan
Topu_la Slape
TolX_phla
USGSSudtaialGeology
Solar Insolationfor Lambat Imagery

, Four Landm MSS Ratios
s 4

5 TRANSPORTATION SUBMODEL VARIABLES:
CompositeMinor-RoadMD
Compes_Major-RoadMD

_, ." FreewayMD

/ FreewayInterd,inge MD
," Built-Up Udxm-Arm MD"%

17 SOCIOECONOMIC SUBMODEL VARIABLES:
Four Population/HomingDensities

< PerA(:re
Five Population/Family/Homing-

Unit Totalt
19m MoanF=mily Income
MedianI_using-Unit RmWllue
One-/Two/Three-Car FamilyTotals
Total Cenlul Trot
Avmge Numbe_of Can Per Family

10 LANI_AT IMAGE SUBMODEL VARIABLES:
MS84 (VisibleGreen)
MSS_ (VisibleRed)
MSS-6(SOIM Infrared)
M_;-7 (Solar Infrllred)

FIGURE 3. CONCEPTUAL DIAGRAM OF THE LANDSCAPE MODEL OF THE DENVER STUDY AREA.
Availablemaps, spatially referencedtabular data, and remote sensingimagerywere assembled,interpreted, reg0s-
tered, and overlaidinto a cellular landscapemodel with 48 Image/mapvariables.This landscapemodel providedthe
data basefor understandingthe presentandrecentpastpatternsof land-useevolutionandtheir causalfactors (MD =
minimumdistance)
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CONSTRUCTION OF A SPATIAL DATA PLANE

4. At the outset of the design of the landscape model, a complete inventory was prepared of all available
maps, spatially referenced tabular data, and remote sensing imagery, ranging from the early low-altitude
black-and-white airphotos of the mid-1930's to current Landsat imagery (Reference 1). The data planes
to be input to the landscape model were selected from this thorough invento_. New data were continuall)
sought and evaluated as available data were found to be incomplete, incompatible, or inadequate for the
landscape model. Caution was taken to ensure that not too much mon©y and energy were expended on
0ollectlng and organizing modeling data so that adequate resources remained for constructive analysis and
synthesis of what it all meant. A marked tendency exists among those now using some form of landscape
modeling, especially in smaller planning agencies, to think that assembling data planes in composite
mapping systems constitutes planning and analysis, whereas it is in actuality only a necessary prerequisite.
These planners and experimenters are currently enamored with sophisticated processes for inputting huge
amounts of data into some cellular overlay framework. Some 95 percent of the thought goes into the input
of the data, whereas a mere S-percent, last-minute attempt is made to determine how to analyze it. This
effort has selected the simplest means possible for overlaying each data plane onto the landscape model and
has concentrated the bulk of its attention.on analyzing the data planes.

Map Sampling Procedure

Potential landscape modeling variables were evaluated for general availability and significance. Thirty-tour
map variables were selected for inclusion in the landscape model and were divided into land-use, r,hysio-

graphic, socioeconomic, and transportation submodels (table 2).

Some explanation of the two general types of variables that were overlaid on the model is in order here.
A categorical variable denotes the presence or absence of a category or class. An observation of this type
is mutually exclusive (that is, it can fall into only one distinct preselected class or category). Thus, each

land-use data plane has 24 specific classes, whereas the surficial geology variable in the physiographic sub-

model has 13 specific classes. A numerical variable refers to a purely digital sequence or range of continu-

ously varying numbers. Observation values can be directly compared with one another in a mathematical
sense. Topographic elevation and the minimum distance to minor roads are examples of numerical variables.

The landscape model covered an area of 39 by 30 km (24 by 24 mi) or 1491 km 2 (576 mi 2 ) centered on
the city of Denver (figure 4). Most of this study site has relatively low relief except for abou_ 5 perceitt of

the area "along the southwestern edge, which includes the eastern foothills of the Rocky Mountains. The
Greater Denver Metropolitan Area is entirely contained within this area and includes Denver proper, which

is a rapidly expanding population center of approximately 1,500,000 people with future expectations lor
continued growth.

The 149 I-kin a (57b-mi 2 ) study area was divided into 192 north-south rows and 192 east-west coh, mns for
a total of 3(),864 4-hectare 2 (IO-acre 2) nmpping cells. This cellularization permitted any spatially distributed

two- or tllree-dimensional landscape variable to be rectified, sampled, encoded, stored, retrieved, and dis-

played by its implicit position in this predetermined computer-compatible grid network. Adopting this

landscape modeling approach made it practical and feasible to construct and overlay geographical data
planes of multiple landscape attributes for subsequent computer analysis, modeling, and land-use change

predictions.
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TABLE 2

LIST OF SPATIAL LANDSCAPE MODELING VARIABLES. The 24- by 24-mile Denver Metropolitan Area

was modeled bY 38 collateral nonlmage data planeswith a lO-acre square<ell element. These lists of ancil-

lary variables are arranged tn/o four functional submodels. A "categorical variable*' is a data plane that re-
presents map classesor categories with no implicit numerical relationship within the numbers or characters

selected to represent them. A "numerical varlabld' represents a data plane that varies continuously in a

mathematical sense (i.e.. an elevation of 400fi4eat is two times at/elevation of 2000 feet).

Landscape Variable
Submodel Landscape Variable Source of Data Type

n i

Land use 1963 photo land use 1:20.000-scale B/W photos Categorical

1c)70 photo land use 1:24,000-scale orthophotos t_
1972-1973 US(;S photo land-use I : 100,000-scale USGS map
1963 to 1970 land-use changes (from) 1963 to 1970 land-use data ! i

planes
1963 to 1970 land-use changes (to) _,
1963 to I970 alphamuneric land-use

changes ( from )
I_)(_3to 1_)70 alphanumeric land-use

'! 'Ichanges" (to)
F

Physiographic Topographic elevation 1:24,000-scale USGS Numerical

topographic maps
Totx)graphi¢ slope Computed from elevations Numerical
Topographic aspect Computed from elevations Numerical

Surt'icial geology l:62,500-scale US(;S map Categorical
Landsat image insolation Computed from slope/aspect Numerical

Landsat MS$/insolation ratios Computed as MSS ationNumerical

Transportation Composite minor road minimum Computed from 1:45,000- Numerical
distance (MD) scale state highway map

Composite major road MD [ Numerical
Freeway MD [ Numerical
Freeway interchange MD [ Numerical
Built-up urban area MD I Numerical

Socioeconomic Total population 1970 census reports and Numerical
i :84,500-scale census

Total families tract map
Total year-round housing units

l'otal vacant housing units
Total occupied housing units
I%q mean family income
Median ilousing-unit value

Median Imusing-unit rent I
Total one-car I'am_lk_." I
Total two-car fanulies
Total three-"threc-plus car t'amilics

Total census tract acreage ('omputed
I_opulalion density per acre ('omputed
Averag,, numb¢_ of cars per family Computed
Average mlnlbcr of families per acre ('omputcd
Average lltllnl_:r of ycar-roulld housh;g ('omputed

t;l_ithper acre
fr

A_vrage [ll|llll'_el" Of t,acal|l ]lousillg ('olnputed

tlnit',, per acre
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FIGURE 4. TOPOGRAPHIC MAP OF THE DENVER STUDY AREA. The outer boundary of the Denver study area is a square

of 24 by 24 miles enclosing the Denver Metropolitan Are&
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As noted earlier,the simplest way of inputting each data plane into the landscapemodel was adopted. Gen-
erally, this requiredoverlaying a dot pattern representinga selected cell size on the map (Reference 19).
Topographicelevation data, for example, is an essential partof any landscape model (figure 5), The input
valueof each elevation aell wasestimated from 1:24,000-scale topographic mapsat the position of the sample
dot for each of the 36,864 cells that constitute the elevation data plane. Very careful procedureswere used
to ensure that the common cell pattern overlaidby handin this fashion on each new map or set of maps pro-
vided a data plane that registeredexactly, cell-by-cell, on all existing data planes(figure 6). Thishand tabula-
tion of all the map-format data for analysiswas very laborious but was more accuratefor these initial research
efforts in landscapemodeling. Whenthe basic principles of the approach arebetter understood, new landscape
modeling efforts can input the data with a variety of more sophisticated map digitizingprocedures. Many
earlierstudies of this nature dealt with more complex machineentry of map data into the computer and, as
a result, expended less effort on its constructive analysis.

A semitransparentmultipurpose overlay data form (figure 7) wasdevised to combine both the coding and the
keypunch operations. This 1:24,00e-scale data form overlaid a quadrantof a township consisting of nine
sections of landof 1.6- by 1.6-km(1- by 1-mi)squares,with 64 rectilinearly distributed samplingdots per
section representingthe 4-ha (I0-acre) square resolution sampling unit. A 4-ha (1O-acre)squarecell was
selected because it represented the smallest individualarea that could be adequately sampled from the ma-
jority of the availablel:24,000-scale source maps. Data contained on each 1:24,000-scale map were cel-
lularizedby overlaying the data form on the map to match the boundariesof the appropriatetownship
quadrant. The desired map information was next tracedonto the overlay, and the category identification
was recorded in each area(figure 8). This overlay form was the direct input to the keypunch operation, and
no further transcriptionof the datawas requited,

Compilationof the DataPlane

Each horizontal row of dots on the semitransparent overlayform represented one punch card, andthe key-
punchergenerated a deck of 24 cardsdirectly from each 23-km2 (9-mi2 ) areaof 24 by 24 cell elements
(figure 9). The effort of keypunching the data from these sheets wasminimized by punchingonly the left-
most identity of a land-usechange at the proper position on the cardrepresenting its column. The cell code
of identical row elements was identified with successivecells left blank until the left-hand boundary of a
different land-usecategory was reached. This process facilitated keypunching and subsequent verification
steps because fewer keystrokes were made, and the suppressionof identical elements aidedvisual proof-
readingby comparinga line-printerdisplay of the data deck with the originalcode form (figure 10a).
Auxiliary computer program.-were availableto fill in the blank cells in a data deck (figure 10b), to assemble
and disl_layeach total data planefrom a group of data decks (figure 11), and to display a selected group
of characteristicsin a data plane (figure 12).

When each source map has been sampled and assembled, it constitutes a data plane of the landscapemodel.
Each of these dataplanes can be selectively displayedas a computer microfilm graphic (graymap)to illus-
trate the spatial distributionof one or more categories or numeric ranges. As an example of these high-
resolution computer graphics,a 1:250,000-scale graymap can illustrate all first-orderurban and built-up
landscontained in the 1970 land-usedataplane (figure 13). A second microfilm of the same dataplane
emphasizes 'allfirst-orderagricultural land (figure 14).
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FIGURE 5. TOPOGRAPHICMAP INDEX OF THE DENVER STUDY AREA. Sixteen 1:24,000_lcele,7.§-minute
USGStopographicn_lpscoveredthe Denverstudyareaandwere Input into the elevationdata plane.
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r

! 4 I 4 ! 4 I 4

01 OJ

24 2[ 24 21 24 21 24 21
02 02

t 4 1 4 I 4 I 4

_, 03 03

24 21 24 21 24 21 24 21

OZ 04

0
U

i 4 1 4 1 4 ...... I 4

_ 05 05

0

24 21 24 21 24 21 24 21

06 06
Z

I 4 1 4 1 4 1 4

07 O7

24 21 24 21- 24 21.... 24 21

08 08

i

O! .,2 03 04 05 06 07 08
E-W Code (card columne 6 & 7)

_own._htp Reference
• >.

6 5 4 3 2 1

7 8 9 '10 11 12 Each squareahoverepresents
9 square miles - one data sheet,

1_ 17 16 [5 14 ,13 Thesection number of the
section which must occur in

19 20 21 22 23 _%.
= the upper left comer on the

30 29 28 27 26 25 data sheet is shown.

. 31 32 33 3/4 35 36 . Scale 1:2500000

FIGURE 6. GEOGRAPHIC REFERENCE OVERLAY FOR DATA FORMS. The exact location and internal grid row and

column identifiers for the data coding forms (figures7 and 8) are shownrelativeto the USGStopographicmap boundaries
(figure5). Fourdata codingformsareusedfor the four quadrantsof eachtownship.

24

:, -i' - 'V'---III ] ............. =: - ..........

O0000001-TSC09



t
i

DATAPLANECODE D [_3 DATASHEETCODE [_] [_] [] D
CARDCOLE---_ ! 2 CARDCOI.8_ 3 4 6 O

E.W N,S
DATACOMPILEDBY (INITIALS) DATE COLS ROWETRANSFERRED& EDITEDBY IINITIALS) DATE
KEYPUNCHEDBY (INITIALS) DATE

COMMENT8 FILL IN LEADINGZERO6IN
DATAFIELD8•ADJUST
HEADINGANDDATARIGHT

r--" CARDNUMBER(CARDCOLE.7&8) IN FIELD8

CARDCOLUMN8
I ss ss s7 :s 41 4s 4s 47 4a sl s3 ss s7 s9 Sl s3 6s S7 e9 71 7_ _s 77
V 34 N B. 40 42 44 U 48 50 S2 s4 sis 68 60 s2 64 68 M 70 72 74 7s 70 _lie

01 • • • • • • • • • • • • • • • • • • • • • • • • 01

04 • • • • • • • • • • • • • • • • -e • • • • • • •

10 • • • • • • • • • • • • • • • • • • • • • • • • 10

12 • • • • • • • • " • " • • • • • • • • • • • • • 12

IS • • • • • • • • • • • • • • • • • • • • • • • • 13

14 • • • • • • • • • • • * • • + • • " • • • • • • 14

4,
IS • • • • • • " • " • • • ° • • • • " • " • • , • ;S

16 • • • • • • • • • • • • - • • • • • • • • • • • 16

17 • • • . • • " • • • • • • • • • • • • • • • ' • 17

18 • • • • • • • • • • • • • • • • • • • • • • • • 18

la • • • • , • • • • • • • , • . • • • • , • , • , 19

21 • • • • • • • • • • • • • • • • • • • • • • • , 21

_13 35 37 39 41 43 46 47 49 Sl 63 56 67 69 61 63 66 6)' 69 71 73 70 77 79
34 36 38 40 42 44 48 48 60 52 54 68 68 60 62 64 66 08 70 72 74 76 78 80

FIGURE 7. OVERLAY DATA FORM USED FOR SAMPLING A 1:24,000-SCALE MAP. The nine

large squares in a three-by-three array overlay individual sectionsor square miles of land on the appro-
priate 1:24,000-scale map. The eight-by-eight array of dots in each of these nine sections representsa

sampling of each 10 acres, or 1/64 square mile per cell. The original form is printed on transparent
paper and can be drawn on while overlaying a particular source map. The form shown here has been

reduced to a scaleof about two-thirds of its original 1:24,000 scala.

25

....... "_ ...........,_-- .:,,,,, ............----7_ ........... 7: " -7. " " ", " - .,o ,:'._,_,_;_...--'.'.o_.a_ _,,,_"e,_!:,_a:"'-;&'a"v_ _-___:" ---"" ........ ' -:" "-_"-

O0000001-TSG10



DA APL^N COOE DATASH ETCODE
CASOCOLS_ _ 2 CAnDCOLS'---.-_,,..4

E-W N4
DATA COMPILED BY (INITIALS) CHT DATE S-25-75 COL8 ROWE
TRANSFERRED a EDITED BY (INITIALS( CHT DATE (_SHSo?',I
KEYPUN(_HED BY (INITIALS) _ GriT DATE O*a._

COMMENTS FiLL tN LEADfNG ZEROS IN
DATA FIELD8 ADJUST
HEADING AND DATA RIGHT

--- CARD NLm4EER(CARD COLa. 7&81 IN FI£LDS
CARD COLUMNS D.

33 SS 3"/ 39 41 43 4E 47 49 51 t_3 bb 67 59 61 S3 6b 67 09 71 73 75 77 _'9

34 36 38, 40, 4_ 44 46 1/48, 50, ..._2 94 56, 58, 60 62, 64 66 68 70 72 74 76 78 80

03 ' t ", " " " " • " " " • ' " ' • • • • • • • • • , 03

o4 -._".__, ................ o4• • 21 • • • • • • 21 • • • • 2105 * • * • • • • * • 06

07 • _e_ tar_e• • • • • • • • 'e , • • • • • • • • • • * e, • • • 07

11 • • • e, • • • • • • • • • • • • • • • • • • • •

,.:..... ............,.16 • • • • • • • • 7 • • • • • • • • • • • • • • • 16

17 • • • , . • . . ° • • • I• • • • " • ° " • " " • 17

18 .... • " * • • • * .... • • * • • 18

!iiiiii!i ..........
20 • • • • • • • • • • • • • • * • 20

I

22 " " " • " " • • • • • • • • '_ 22
23 • • " • • " • • • • • " • • " 23

24 • " • " " " • • • • • • • " " • 24

33 3S 37 39 41 43 45 47 49 51 63 55 S7 59 81 63 66 67 69 71 73 75 77 79
34 36 38 40 42 44 46 48 50 52 54 56 M 60 62 64 66 f18 70 72 74 76 78 80

FIGURE 8. COMPLETE OVERLAY DATA FORM READY FOR KEYPUNCHING• KeypunchingIs
eas|iycompleteddirectly from the form as shown.The "DATA PLANE CODE = 70" (upperJaft
cor--r) indicatesthat the data resultsfrom the 1970 land-usemaps.The "DATA SHEET CODES:
01 ,._d 03" indicatesthe uniquepositionof thisblockof 9 squaremilesof data,a townshipquadrant,
with respectto the balanceof the 576 square-mileDenverstudy area, as shownby this row and
column counterobtainedfrom the reflirencemap of figure6. Eachof the 24 linesof dots represents
twocolumnson a singlecomputercard.To comervekeypunchingeffort, onlythe cardcolumnsto the
right of any boundaryindicatingachangein landuseare punchedwith the two-digit land-usecodeof
the areato the right (figure9). The form shownherehosbeenreducedto a scaleof o' .ut two-thirds
of itsoriginal1:24,000 scale.
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FIGURE9. A BLOCKOF PUNCHEDCARDSREPRESENTINGONEOVERLAY DATAFORM. Readingfromfront to
back,these24 cardsrepresentexactlywhatIskeypunchedfromthecompleteddataformshownInfigure8. Notethatonly
a minimalamountof keypunchingandvisualverlfiCationisneededto representandcheckthemapboundaries.Simplecom-
puterroutinesexpandthe_edatato fill everylandscapecall.

CONSTRUCTION OF LAND-USE SUBMODEL

The 1970. land-use data already illustrated was obtained from 1:24,000-scaie ortl_ophotomaps photointer-
preted for thematic land use with the remote sensing-based classification scheme of Anderson, Hardy, and
Roach (Reference 10), transfe.rred to the semitr&-mparent overlay data forms, and dot-sampled and assembled
as described. When an unrepresentative classification was made on the basis of the dot designation alone in
areas of finely mixed land uses, the dominant land use was assigned with priority to rite lower-valued cate-
gorical urban codes (versus the higher-valued categorical rural codes).

Selective display graymaps of this data plane show that recent developments in land use, such as clustered
development, occurred on the periphery of existing urban lands and p)aced new pressures on adjoining i

open-space lands by providing nodes or springboards for additional urbanization (figures 15 and 16).
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nl , , . ,

700103_J,_-"-" DATA PLANECODE 15 21 17 21
7,_q'tEC-.,3 O2 15 21 17 21
7G'0_103_,3 _ DATA FORM ROW 1521

7r_OIC,305 155215 21

7n01__ DATA FORM COLUMN 15 521521
7C01_'307 2115 21

7o01P, 3_--- CARD COUNTER 21 152]
7C)01n3"09" 21 I_,21
7001C31D 21 1421
7O010311 21
7o010312 21 17 21
/')010}1} DATA C-'_,_ 1719 52 1721
70010}1 O, 19702"DIGIT '_ 21-_ 1719 171952 1721

7001031770010916 IGH _,rOF BOUNDARY _ 17 21 21
70010318 532121 17 2117 21
7001_319 5321 17 21
7001032C 21 17 21
70010321 5221 17 161721 52
70010322 21 17 21

m,. , ----'rome

(a)

"_0010301 151521212 f21212121211717i71717172. 121212121212121 170010302 151521212121212121212117172121212121212121212121 i
700103_3 152121212121212121212121212121212121212121212121
7001030.4 1"51521212121212121212121212121212121212121212121
70010305 155215152121212121212121212121212121212121212121
70010306 151552152121212121212121212121212121212121212121
70010307 211515152121212121:'12121212121212:1212121212].2121
70010306 212121152121212121212121212121212121212121212121
70010309 212121212121212121212121211421212121212121212121
70010310 212121212121212121212121211421212121212121212121
70010311 212121212121212121212121212121212121212121212121
70010312 212121212121211717171717212121212121212121212121 ..
70010313 212121212121211719191919525217212121212121212121
70010314 212121212121211719191719525217212121212121212121
70010315 212121212121211717212121211717212121212121212121
70010316 212121212121212117172121212121212121212121212121
70010317 212121212121211717171717212121212121212121212121
70010316 53212121212117172117171721212 1212121212121212121
70010319 532121212121212121 171717212121212121212121212121
70010320 212121212121212117171117212121212121212121212121
70010321 52212 lZ 121212 IZ 11717 lt_ 1"12 lZ 1>' l,t. 1Z 1.,' 1,_1.;,'12 }..a15,a b;,'

70010322,, , 2121212121212121171717172,1Z121212121212121_12121., , .

(b)

FIGURE 10. DISPLAY OF THE DATA ON ONE KEYPUNCHED OVERLAY DATA FORM. (a) A direct, offline listing of
the card deck shown in figure 9. (b) A computer listing showing thesedata expanded to fill in the intermediate 10-acre cells

with the appropriate two-digit land-usecode.
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1-25

_EDEflAL 6_ PECO8 ST, ST, ST, YOflK ST,

Z212121_121212121212121212121212121;'12121212_12121212' 111111111111111 121212121

i 212121¢121_1212121212121212121212121212121_t2152212121 111111111111111_121212121
21212 212121212121212121212121212121212121_12162212121 11111111111111 1121212121
21212 212121212121212121212121212121212121_12121111111 11111111111111 1121212121

21212 141414142121212152212121212121212121_12121212121 11111111111111 2121212121
21212 41421212121212121_1212121212121212121_121212121 11116111616161E2121212121
_1212 _1522121212121212121212121212121212121_121211121 1111111111111212121212121
212121_1522_21212121212121212121212121_/121_ 21212121 11111_11111112 2121212121
212121:Z1212121212121212121212121212_211111111 1111111 1111111"_.119192 2121212121
212121212121212121212121212121212121211111111 1111111 1111616161919212121212121
21212121212121212121212121212111212121111NORIT F'IOUBNN1 11111111119192112121212121
212121212121212121212121212121111111111111111 111111 111111111191919_2121212121
21212121212121212121211111211_161111111111131: II11111; 111111111191219 321212121

21212121212121212121211111111616115252111113131111161E 611111616111921 321212121
2121212121212121212121111111111111111111111313_11116111 111111111111921 313212121
2121212121212121212121111111111111111111111313111111111 1111111111119211313212121
212121212121212121212121212i21191911191111111119191919 22121212121212121212T2121
2121212121212121212121212121211111111111111111_4191919i21212121212121212121212121

i 2121212121212121212121212121211111111111_11111i214141421525252212121212121212121
. 2121212121212121212121212121211111111111111111_414141421212121212121212121212121

2121212121212121212121212121212121111111111111i11117172121212121?121212121212121
2121212121212121212_21212121212121111111111111!121212121212121212121212121212121
2121212121212121192121212121212121111111111152i221212121212121212121212121212121
212121212121211919191_212121212121212119111152!121212121212121212121212121212121
212121171717172121212121212121212121211917191919191919 11111111111i'1212121212i21
2121211717171721212121212111112121212119171919_919191_111_1111111111112121212121
2119191717171717212121191911112121212119191919_919191916111111_11111111111111121
2119191717171717212121191_11112121212119191919_919191_1_1616161_1616161616161621
171919191919211717191_191919191919191E1919191_I919191_11111111111111161611111117

1113131T1717521111191_l191919191919191_1919191919191912121_f_f_|_l 11616212121
111313171717211919191_91919191919191_1919191_919191212111111111111111616212121

_11'1616212121212121212119191919191'91'11_'17191919 91919121211111111111111171'7171711
1111112121212121212121191919195219111_17171719 919191211111111111111112121212121

i 1111112121212121212121191919191919191_117171212 5121212111611111111161E1717192121
1111111621212121212121Z12119191919191_191212121H2121211111111111119191717191921
111919[616161621212121 11111111111111 111111111;12121211111111111119191919212121
1119191616161621212121 11111111111111 !111111111 12171717111111111919191921212121
171517171717172121211E 61111111911111 11111111 1171717171111111919191921212121

171717 11116112121211_ 11111115219191 11119191 11117111111111919191_2121212121
1111111111111111111111 11616111619191£ 11111111 1171721212121522121212121212121

111111 111111111111111 11111111919191_ 119111111 1171721212121212121212121212151

111111 111111515111111 i 11111111111191E 919191111 1191921212121212121211121212112
111111 1111115151111111 11111111111111 1919191111 19212121212121212121Z121212112
111111 1111616111111111 91912111212111 1111111111 212121212121212121211121212151
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Dismay scale _ 1:33,000

FIGURE 11. A PORTION OF THE 1970 DENVER LAND-USE DATA PLANE. Each two-digit ._umber pair represents a
second-order land-use code (table 1) for a 10-acre cell of approximately 660 by 660 feet. The computer has aggregated or

assembled together the eight by eight set of 64 data forms keypunched tar each 9-square-mile area of the 576-square-mile

site. Each of these 64 data forms yields a data deck of 24 computer pum:h cards, and the 1536 punch cards ther0fore

represent one data plane such as the portion of the 1970 land-use map represented here.
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Dis_ay oc_le-.1:33,000

FIGURE 12. A SELECTIVE "OPEN-SPACE" DISPLAY OF A PORTION OF THE 1970 DENVER LAND-USE DATA

PLANE. Two of the second-order land-use classifications, specifically 19 '- Open and Other Urban, a subclassof U)ban and

Budt-Up Land, and 21 = Cropland and Pasture, a subclassof Agricultural Land, have been selectively displayed to represent a

rough categorization of open space.These two codes have been printed at the geometric position where they occur. The other
19 of the 21 existing second-o_der 1970 land-usecodes have been suppressedand are not printed.
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FIGURE 13. OISPLAY OF THE 1970 LAND-USE DATA PLANE EMPHASIZING ALL OF THE URBAN

AND BUILT-UP AREAS (in bllck). The microfilm displ_ of esch 10-acre square cell n_ps the 24- by 24-mile
Denver Metro_oiltan Ares.
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Display scale 1:250,000

BLACK = All egriculturai lend-use classes(codes 21 through 24 inclusive)
WHITE = All other land uses

FIGURE 14. DISPLAY OF THE 1970 LAND-USE DATA PLANE EMPHASIZING ALL REMAINING AGRI-

CULTU RAL LANDS (in black). These lands are nrime candidates for preservation as greenbelts, open space,
and parks. The microfilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metropolitan
Area.
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BLACK - Single-endmultlple-unitresidentialdwellings(code 11) 1
GRAY ,, Open_ndother urbanland uses(code19) and _roplandand pasture

aorlculturalhind(oode21) ,!
WHITE - AHothe_land uses....... i

FIGURE 1_ DISPLAY OF THE 1970 LAND-USE DATA PLANE EMPHASIZING SINGLE-AND

MULTIPLE-UNIT RESIDENTIAL AREAS (in black). The miorofilm display of each 10-acresquarecell t
mapsthe 24- by 24-mileDenverMetropolitanArea. 1
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Display stile 1:250,000

BLACK = Strip and dusterecl developn_mt (code 17)
GRAY = Urben and bullt-uporees (codes 11,12,13, 14, 15,end 10)
WHITE = All otlfer land uses

FIGURE 16. DISPLAY OF THE 1970 LAND-USE DATA PLANE EMPHASIZING THE LOCATION OF

STRIP AND CLUSTERED DEVELOPMENTS (in black) RELATIVE TO OTHER URBAN AND BUILT-UP

AREAS (in gray). The microfilm display of each 10-acre square cell maps the 24- by 24-mile Denver Metr_
politan Are&
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The 1963 land-use data reduction efforts were structured to minimize coding and keypunching duplication
of the completed 1970 land-use data plane. This was accomplished by comparatively interpreting individual,
nonstereo 1963 aerial photos to the 1970 orthophotomaps for land-use changes. Only the areas of change
were coded and keypunched into a 1963 land-use change plane, on which the areas of change were punched
as solid geometric blocks and unchanged areas were left blank. The resultant change data plane was logically
merged with the 1970 land-use data plane to generate a complete i' 3 land-use data plane (figures 17 and 18).

The USGS land-use map of Denver (figure 19) was also manually san.pied from a 1:! 00,000-scale land-use _'
classification map (figure 20) encoded in the USGS Circular 671 system (Reference 11). This USGS map was "

compiled from I:121,0000scale, high-altitude NASA U-2 color infran:d aerial photos of 1972-1973. A 900

percent minimum accuracy value for this photointerpreted land use was claimed for this product although no
verification procedures were described, A I: 100,000-scale mylar copy of this map was obtained from the
USGS Public Inquiries Office in Denver. It was run through an ozalid blueprint machine in contact with a

matching dot sampling grid on mylar to produce a dot-overprinted paper map for the keypunching operation.

Both map and reduced transparent grid were carefully registered b,'"-,t:e printing. Six major first-order cate-
gories were defined, with 21 second- and third-order land uses defi_, J in the Denver study area.

CONSTRUCTION OF PHYSIOGRAPHIC SUBMODEL

Topographic elevation data was manually sampled from sixteen 1:24,000-scale USGS 7.5-minute quadrangle
sheets (figure 5) with the data overlay form (figure 7). The elevation of each cell was estimated to the nearest
3 meters (10 feet) attd noted next to the appropriate sample dot. The 64 sheets of elevation values were
punched and assembled to provide a completely filled topographic elevation data plane (figure 21 ),

This basic elevatioft data plane was input to separate computer programs to generate additional "'derived" '
topographic slope, topographic aspect, and image insolation (solar radiation) data planes. The TOPOMAP
program (References 16 and 17) computed both slope and aspect from the uniform grid of elevation points.
This was accomplished by fitting a regression surface to three-by-three arrays of cells of the elevation data
plane and assigning the slope and aspect to the center cell of each three-by-three array (Reference 20). The
repetition of this process cell by cell over the entire elevation data plane yielded the slope (figures 22 and
23) and aspect (figure 24) data planes.

Thret,--dimensional perspective graphics provide familiar oblique viewing angles and convey the spatial
concepts and relationships represented by the topographic data planes (figure 25 I. Additional computer

graphics permit the preparation of vertical contouring ( figure 26) and perspective contouring !ligure 27 )
displays of the topographic elevation data. Physiographic relationships of landscape components to topo-
graphy may be visualized by perspective graymapping of a second data plane; for example, all 1970 urban
and built-up land (figure 13) on the oblique representation of tlie topographic data piane (figure 28 L

Potential incoming solar radiation tinsolation) was computed by program INSet,2 IReferenccs 21 and 22)
for the bandsat-I image to be subsequently introduced. This cell-by-cell computation was completed as a
function of time and date (solar altitude and azimuth), location (latitude and IongitudeL and topographic

elevation for ancillary data cells with a computed slope and aspect. This computation yielded a measure

of both direct and indirect potential insolation for each landscape cell. Tile calculated flat-surface insolation

was ratioed by an actual fiat-surface nleasuretnent froth tile Pawnee National (;rasslands just northeast of
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Displayscale1:260o000

BLACK ,. Single- and multlplo-unlt rosldontlel dwellings |code 11)
GRAY - Open end other urban land (code 19) end _ophmd alndis_u_ro

agrlcultur_lland(code21)
WHITE - AIIotherllnd we_

FIGURE 17. DISPLAY OF THE 1963 LAND-USE DATA PLANE EMPHASIZING SINGLE- AND

MULTIPLE-UNIT RESIDENTIAL AREAS (in black). The microfilm display of each 10-acre square cell
maps the 24- by 24-mile Denver Metropolitan Are&
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FIGURE 18. DISPLAY OF THE 1963 LANI_USE DATA PLANE EMPHASIZING THE LOCATION OF

STRIP AND CLUSTERED DEVELOPMENTS (in black) RELATIVE TO OTHER URBAN AND BUILT-UP

AREAS (in gray). The n.icrofilm display of each 10-acre square cell maps the 24- by 24-mila Denver Metro-
Politan Area.
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Displaysoell 1:_'_0,000

FIGURE 19. OISPLAY OF THE ORIGINAL 1972-1973USGS 1:100,000-SCALE LAND-USE SOURCE MAP.
This map providesa direct comparisonwith the cellularrepresentationof this sourcemap as a data planeih
figure20. Thismapwascompiledfrom high-altitude,NASA U-2 color ihfraredaerialphotostakenat a scaleof
1:121,000. The USGS Circular671 classificationsohemewasemployed. A 90.parcent minimum accuracyfor
manualphotointerpretattonwasclaimed(Referenc_11).
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DtlplW sale 1:280,800

BLACK - Single-andmlfllde-uait reddentteldwellinp (code11)
GRAY - Openmidother urban landuses(code i9). nontrrliCml croplmd Icode 211).

trrlpttd Wolllmtd (mode212), Immure(code 213). grab (aode31).and
dWlwll lm,d133)

WHITE " AIlcthel'_lnd ulet

FIGURE 20. DISPLAY OF THE 1972-1973 USGS LAND-USE DATA PLANE EMPHASIZING SINGLE-
AND MULTIPLE-UNIT RESIDENTIAL AREAS (in hick). The microfilm displw of each 10-acresquare
cellmapsthe 24- by 24.mile DenverMetropolitanAreashowninthe originalmapin figure19.
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DisplW_e I:_DO,O00

BLACK- LowNtelemttons(5,110feetandbelow)
GRAY - Intermwli_eelevmtom(5,110to E,780feet)
WHITE - Hilhestdemtions(5,780feetxndabove)

FIGURE 21, DISPLAY OF THE TOPOGRAPHICELEVATION DATA PLANE EMPHASIZINGTHE 'i
LOWESTAREAS (in black).Elevationdatawasmanuallysampledfrom sixteenl:24,000_caleUSGS !
quadrangle dieets for 36,884 indi_idual l(_re cells with a l(_foot vertioal resolution. The mterofilm displw 1
of eaoh10_cresquarecellmapsthe2_ by2_mile DenverMet_oi:rolitanAre_
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Displayscale1:250,000

BLACK - Flat areas(0.4 percmntand less)
GRAY - Intermediateslopeareas(0.4 to 5.8 pereent)
WHITE - Higherdope areas(5.8 pet_antandgreater)

FIGURE 22. DISPLAY OF THE TOPOGRAPHIC SLOPE DATA PLANE EMPHASIZING SHALLOW t
SLOPES (in black). Hand-codedelevationsdisplayedin figure 21 wereusedto computetopographicslope 1

for each 10-acrecell. Tho microfilm displayof each10-acresquarecell mapsthe 24- by 24-mile Denver
MetropolitanArea,

!
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Displays_le 1:250,000

BLACK,, Ht_hardopeareas(6.8percentendgreater)
GRAY - IntwmarlieteslOl_areas(0.4to 5.8percent)
WHITE - Flatareas_0.4percentandless)

FIGURE23. DISPLAYOFTHETOPOGRAPHICSLOPEDATAPLANEEMPHASIZINGSTEEPSLOPES
(in black).The graphicdisplayvaluesof figure22 weresimplyreversedto emphasizedifferentslope
components.The microfilmdisplayof each10-acresquarecellmapsthe-24-by 24-mileL_ver Metro-
politanArea.
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Displaystole 1:250,000

BLACK - Northwast-fNin9areas
GRAY - Intermediateaspeots
WHITE - Southeast-faoin9areas

FIGURE 24. DISPLAY OF THE TOPOGRAPHIC ASPECT DATA PLANE EMPHASIZING NORTHWEST-
FACING AREAS (in black). Hand-codedelevationsdisplayedin ft0ure21 were usedto computetopographic
aspectfor each l(_acre celL The readershouldinterpret the displayas illuminatedfrom the lower rlght.hand
comer (Le., from the southeast)sothat the terrainshadowsfall awaytrom the observer.The micf:)fllmdlsplav
of each 10-acresquarecell mapsthe 24- by 24-miteDenver Metropolittn Area.
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FIGURE25. THREE-DIMENSIONALPERSPECTIVEDISPLAYOF THE TOPOGRAPHICELEVATION
DATAPLANELOOKINGFROMTHE 8OUTHEAST.Thedatatn#utconsistsof theelevationdatapllm_
Theuserdefinesthelineof sightby _ecifylngthedewingpointandthepointlookedat In theruulting
perspectiveplot,thehiddenlinesareremoved.The24- by 24-mileDenverMetropolitanAm ismappedby
alternaterowsendoolumn$of l(_acresquarecells.

Fort Collins, Colorado, at the time of the August 1$, 19_/3, Landsat-I overflight. This introduced an esti-
mate of the atmospheric attenuation in the area at the iime of the Landsat overflight. This attenuation
factor was applied to derive final ground insolation estimates for each 4-ha (l 0-acre) ground data cell
(figure 29). These collateral insolation data will 5e evaluated to determine if they can be used during
mac_dne land-use classification efforts in topographically shaded areas where the lack of uniform Ulumi-
nation altered the spectroirradiance measured from otherwise identical land-cover types and/or surface
materials.

G_neralized surficial geologic data was manually sampled from a USGS map prepared in cooperation with
the Denver Board of Wa_erComm_ioners and the Colorado Water Conservation Board (Reference 23).
This 1:62,500-scale map was sampled with a reduced version of the original dot grid. Twelve categorical

geologic classes were originally defined on the map. Subsequently, a thirteenth class was added, consisting
of the prominent water bodies shown on the map (figure 30).
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Dbplay scale 1:250.000

FIGURE 26. CONTOUR MAP OF THE TOPOGRAPHIC ELEVATION DATA PLANE. ThP.5400-, 6200-,
and 7000-foot elevation contou! hnes are shown. These 800-f(x_t elevation contours of figure 21 ate viewed

m the convet_tional vettiCal map format. The 24- by 24-mik; De.vet Mettopolitat_ At ea is mapped by altett_ate

tows attd columns of |O-aL'te square cells.
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FIGURE 27. THREE-DIMENSIONAL PERSPECTIVE DiSPLAY OF THE TOPOGRAPHIC ELEVATION DATA PLANE.

The 5400,6200-, and 7000-foot elevation contour tines are shown. (a_TopoGraphic display with surf_M.'egrid lines and con-
tours. {b) Topographic display with contours but without surface grid lines. Incomplete contour lines are due to hidden line

rentoval. The 24* by 24-m_le Oenver Metropolitan Area is mapped by alternate rows and columns of 10-acre square cells. .....

CONSTRUCTION OF TRANSPORTATION SUBMODEL

A 1971 soad-classification map for the Denver Metropolitan Area was obtained from the State Highway
Department that differentiated freeways, expressways, p_ncipals_ majors, minors, collectors, and isolated
rural roads. This 1:45,000-scale map provided the point data plane for the computation of minimum
distance planes and was sampled with a reduced scale, point-sampling grid. The linear road classes were
assigned to the nearesl-neighbor grid point to provide a continuous representation in cellular form. When
multiple road classes intersected or existed in the nearest-neighbor vicinity of a dot point, the decision was
made to choose the ltighest capacity road class.

These point and linear transportation features were transformed into area l_lanes and overlaid on the land-
scape model. The locations of freeway interchanges are an example of a typical point feature that has an
important impact on specific changes in the land use surrounding them. The impact of the interchange is a

function of the distance away from the interchange and was best handled in the landscape model in terms

of a data plane representing minimum distances. The freeway interchanges were initially tabulated into a
point-type data plane that recorded their location in the nearest 4-ha (10-acre) cell (figure .II ). This initi',d
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FIGUr,E 28.THREE.DIMENSIONALPERSPECTIV,"DISPLAYOF THE TOPOGRAPHICELEVATION
DATAPLANE EMPHASIZINGALL URBANBUILTUPLANDS(inblack).Thedisplaysystemgenerated
thisplotby firstdefiningtheterrainas• statisticalsurf_eonwhichtheurbanlanduses(code11 through
19, inclusively)werethenoverlaidasgraymappedceils.Like3-D contouring(figure27), perspective_ay-
mappingis• usefulgrephictool for viwelizingthenumaricand/o_spatialrelationshipsof lend: veri-
•bias.The24-by 24-mileDenverMetropolitanAreaismappedby •it•mate rowsandcolummof l(_acre
squarecells.

data plane was subjected to ftumertc computation so that the mmtmum distance in an east-west and/or north-
south sense was computed for each cell in the data plane to the nearest cell occupied by a freeway interchange
(Reference 24).

The minimum distance computed in this t'ashion was recorded at the position of the selected cell. and the
computation was completed for each cell in the data pl'ane. This transformed the original point plane into a
useful minimum-distance area plane, which was overlaid onto the landscape model (figure 321. Similarly, the
initial data planes reprL_enting linear road features (figures 33a, 33c. and 34a; were computationally converted
to area planes for overlaying on the landscape model tfigures 33b. 33d. and 34b). An initi.,durban built-up
area classification was established in recognition of the area nature of the fully developed street network and
the established land-use patterns found in extensively developed urban areas (figure 34c). Again, an urban

built-up area minimum-dtsta.ce plane w_ numerically derived from this sourL'edata plane (figure 34d).
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BLACK - Shadowed.onhwest-f_ing areas(1132 mtibnglew randless)
GRAY., Imwmedin) sunliterm (1132 to 121.4 (mltllengleys)
WHITI._ - Fully mnUtmutheast-fadngm (121.4 amiluslleYs endgreater)

FIGURE 29. DISPLAY OF THE INSOLATION DATA PLANE EMPHASIZING AREAS OF LOWEST
INCOMING SOLAR ENERGY (in Mack). Near-instantaneoussoltr radiation for the overflighttime of
the Al,(lust 16, 1973, Lindut-I imagewasgeneratedfrom the oomput_ dope andaspectfor each10-acre
landsoepecell. The microfilm displayof each 10-acresquarecell mapsthe 24- by 24-mile DenverMetro-
potitenArea.
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DtsPlw k_de 1:250,000

BLACK - Wlnd<leposltedsilt, sand,_ oobblmon foothill dopes(Holoeene
period)

DARKEST GRAY - bnd, grovel,silt, end_ (pielsto_ne endHoloeeneperiodPast-Piney
Creek,PineyCrNk, We-PineyCreek,Broadway,and LouvtersAlluviums)

FIGURE 30, DISPLAY OF THE SURFICIAL GEOLOGIC DATA PtANE EMPHASIZING AEOLIAN !
DEPOSITS (in bleck). Thirteen generalizedsurficial geologicunits were manually sampled from e .
1:62,60_1e USGS map. The microfilm dll_ey of each lO-ecre squarecell maps the 24- by 24-mile
DenverMetropolitanAre&
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FIGURE 31. DISPLAY OF THE 1971 ROAD TRANSPORTATION DATA PLANE SHOWING FREEWAY i_
INTERCHANGES. Eight other roadaccesscategorieswerealsomanuallysampledfroma 1:45,000-scalestate i
metropolitan road classification map. Some planners have speculated that freeway development is a powerful
inducement to land-useconversions.This hypothesiswa_statisticallytestedthrough the spatial landscape
modeling process. The microfilm disNay shows each lO-acre cell containing a freeway interchange in the 24-
by 24-mile DenverMetropolitan Area.



BLACK - Minimum distancetto fmewsy interchanges(3,300 feet or less)
GRAYS - Intermediateto furthestdistanaesto freewayinterGhenges(five 3,300-

f_,ot lntenmlsfrom 3,300 to 16_00 feetor more)
WHITE : Freewayinterchanges....................................................

FIGURE 32. DISPLAY OF THE MINIMUM DISTANCE TO FREEWAY INTERCHANGE DATA PLANE
EMPHASIZING MINIMUM DISTANCE (in black). Freewayinterchangeaccessdata (figure31) was usedto
compute minimumdistancein a north-southand/or east-westt,._erse from each cell to the nearestfreeway
interchange. The microfilm displayof each 10.acresquarecellmapsthe 24- by 24-mileDenverMetropolitan
Area.

00000001-TSE08



BLACK - Minimum distanceto road type of interest(3,300 feet or less)
GRAYS - Intermediateto furthestdistances(3°300 feetor greeter)
WHITE - Roadtype of ihterast

FIGURE 33. DISPI'AY OF THE 1971 FREEWAY AND MAJOR-ROAD TRANSPORTATION DATA
PLANES AND THEIR ASSOCIATED TRANSFORMED PLANES THAT EMPHASIZE MINIMUM DI_
TARCES (in black). Freeways(a) and major roads (c) were manuallysampledas linearfeaturesfrom a
l:45,00_scale road-classtficatlonmap. Thesedata were usedto compute minimum dlst_--.n [(b} end (d}]
from each cell in the Plane in a north-southand east-westtraverseto the nearestcell coh,,.._ing the given
road type. The microfilm displayof each l(_acre cell naps the 24- by 24-mile DenverMetropolitanArea.
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(c) Built-Up UrbanAreas (d) MinimumDistanceto Built-Up UrbanAreas

Displayi_lle l:S00,000

BLACK - Minimum disten_ to roadtype of interest(3,308 feetor less)
GRAYS ,, Intwmedtateto furthestdlstnces (3,300 feet or greeter)
WHITE - Rosd/areadus of interest

FIGURE 34. DISPLAY OF THE 1971 MINOR-ROAD AND BUILT-UP URBAN AREA TRANSPORTATION
DATA PLANES AND THEIR ASSOCIATED TRANSFORMED PLANES THAT EMPHASIZE MINIMUM
DISTANCE (in black). These roac_eccessdata [(a) end (c)] were usedto compute minimum distance ((b)
and (d)] from each cell in the plane in e north-southand east-westtraverseto the nearestcell containingthe
given road class.The microfilm displayof each l(_acre squarecell mapsthe 24- by 24.mile DenverMetro-
politanArea.
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CONSTRUCTIONOF SOCIOECONOMICSUBMODEL

Socioeconomic data for the United States is tabulated by census at 10-year intervals. These data are re-
ported in a tabularform referenced to maps of the census tractsor smallertabulation units called enumera-
tion districts. These census-tractreferencemaps (figure35) were sampledby a dot pattern so that each
4-11a(10-acre) cell was assignedto a specific census tract on the resulting dataplane. This procedureper-
mitted the tabularstatistics to be input in a list format and projected into area-type,socioeconomic data
planesof population, housing,income, carownership,and census-tractacreageas follows:

Intermediate. -.
Socioeconomic Variable

Processing

Total population None
Total families None
Total year-roundhousingunits None
Total vacanthousing units None
Total occupied housing units None
1969 mean family income None
Medianhousing-unit value None
Medianhousing-unitrent None
Total one-carfamilies None
Total two-carfamilies None
Total three-/three-pluscar families None
Tot,,Jcensus tract acreage None
Population density peracre Normalization _

by census
tract acreage

Average numberof families peracre Normalization
by census
tract acreage

Average numberof year-roundhousing units Normalization
per acre by census

tract acreage

Average number of vacant housingunits Normalization
peracre by census

tract acreage

Average number of cars per family Averagevalue
computed

Unfortunately, the size of the census tracts is farcoarserthan the 4-ha (10-acre) resolution of the landscape
model. Consequently, these socioeconomic data planesare not ashighly resolvedas desired in a spatisi sense,
but they providea reasonableapproximationof the spatialvuriatioh of these census variables.
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Seventeen socioeconomic data planes were generated for the 24 ! census tracts in the Denver study area.
Tot_ number of families (figure 36), total families, total year-round housing units, total vacant housing
units, total occupied housing units, 1969 mean family income (figure 37a), median housing unit value

. (figure 37b), and median housing unit rent (figure 37c) were directly projected into the landscape model.
Census-tract acreage was computed from manual dot counts and used to normalize the population, family.
and housing totals. Thus, a preliminary data plane of total population (figure 38a) for each census tract
was divided by that tract's acreage, and the resulting population density per acre (figure 38b) was projectOd
into all of that tract's cells, yielding a meaningful population density data plane. Similarly, the initial data
planes representing the average number of families, year-round housing units, and vacant housing units per
acre were computed and projected bite density_.type, socioeconomic census data planes and were overlaid
onto the landscape model.

One- (figure 3 _a), two- (figure 39b), three-, and three-plus-car family totals (figure 39c) per census tract were
also transcribed into initial data planes, summed, and divided by tot_ number of families data plane on a cell-
by-cell basis to derive a data plane representing the average number of cars per family (figure 39d).

SUMMARY

Construction of a landscape model for the Denver Metropolitan Area involved 4-ha (10-acre) dot-grid sampling
of selected land-use, physiographic, socioeconomic, and transportation map variables to generate a total of 34
meaningful data planes. These map data planes were spatially registered to each other so that they could be
"stacked" or overlaid for subsequent computer anaiysis, modeling, and spatial/temporal prediction (figure 3).

The selection of collateral map data for inclusion in the landscape model was fundamental to the success of

this effort. The data employed were extensive, dispersed, and complex, and were obtained from many widely
varying sources. The variables ultimately chosen were selected tbr their suitability and availability.

These map variables were substantial in number and exhibited considerable diversity in the broad realms of
cultural and physical landscape components. However, they were simply only a sample of all possible variables
pertinent to landscape nlodeling. Such aspects as utilities service, domestic water supply, land ownership and
parcel size, land values, soils, and zoning regulations were among the many variables considered, but not in-
cluded in this study (Reference 1). If, by some happenstance, one or more of these data were available for

inclusion, other data equally important to the study of land-use practices in the Denver Metropolitan .Area
would still be unavailable.

Because there were no immediate limitations to enlarging the set of variables, the underlying understanding of
land-use practices constituted a limitation in the determination of which mapping variables should be included
in the data set to fully inform the landscape analysis effort. Even if this considerable problem were resolved.
the most significant remaining limitation is *.hesimple lack of data or "lack" of data in any usable form. This
is particularly true in developing countries (Reference 25), but was no less the case in regional studies such as

this, in which extensive spatial data are required and generally believed to be readily available.

The simplest way of inputting each data plane into the landscape model was adopted. This ensured that the
majority of the resources and effort would be channeled into analytical endeavors. The thrust of earlier studies

involved more complex map data entry and computer data structures, resulting in curtailed analysis efforts.

56

00000001-TSE13



t

Display scale 1:250,000

BLACK = M=ximum total families per censustract (2772 to 3080 families)
GRAYS = Minimum to intermediate total families per =msus tract (7 to 2772

families)

FIGURE 36. DISPLAY OF THE 1970 SO::IOECONOMIC DATA EMPHASIZING THE HIGHEST TOTAL

NUMBER OF FAMILIES PER CENSUS TRACT (in black). Eleven other socioeconomic parameters were

also manually sampled from l:84,500-scale census maps. The microfilm display of each 10oacre square cell
maps the 24- by 24-mile Denver Metropolitan Area.
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BLACK - Maximum mean family
ineon_ per minus tract
((f31_90 to (138,433mr
fan_ly)
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Displaysale 1:600,000. Displaysale 1:600_1)00

0b)MedianHousing-UnitValuePer OensusTrHt (e) MedianHoming-Unit Rent PerCensusTract

BLACK - kbxirnum medianhoudng_unit BLACK - Maximummedianhousinl_nit
valueperoemw tmot ($46_)00 rent pereemustraot ($270 to
to t60o000 perhousing.nit) 8300 permonth)

GRAYS - Minimumto intermediatemedian GRAYS - Minimumto IntermediatenMcli"n
homing_ndt value(87.700 to howinl-"n# rent pereemw tmet
1;46,000perhoming "nit) ($49 to $270 permonth)

t sampledfrom l:84,60040alecemus maps. The micro(ilmdis. FIGURE 37. DISPLAY OF THE 1970 SOCIOECONOMIU
- er MetropolitanArea. DATA EMPHASIZING HIGHEST 1969 MEAN FAMILY IN-

COME, MEDIAN HOUSING-UNIT VALUE, AND MEDIAN
HOUSING+UNIT RENT (in black).
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BLACK- VmJmumtotalpopuladon
peromsmtrut (11_10 to
12,,m4pmom)

GRAY,S.p, Xlinimumto intermediate
Will populationsperNnsu_
tract(39to 11,240pmom)

_le 1:600,000

b) TotalPopulationPerCemm-Trwt

BLACK- Maximumpop,laUon
demnypw oemm4reot
awe (62J to SSJ pmom
per,am)

GRAYS- Minimumto intermedtMe
popubtJondens_ p_
oemw<n_ sore(0J)04to
S2J)perwmperam)

FIGURE3_, DISPLAYOF THE 1970SOCIOECONOMICDATA EMPHASIZINGHIGHESTPOPULATIONTOTALSAND
AVERAGES(in black).Towi polxdation(el wasmanuallysampledfrom1:84.500_caleoemusmapLThesetotals were
dividedbycem_tract ImrUgJto computepopulationdensity(b). Themicrofilmdlspiayof each10-caresquareceilmaps
me24-by24.mileOenverMetropolitanArea.
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(a) Total One-CarFamiliesPerCenul l'r_t (J))Total Two-Car FamiliesPerCensusTract

BLACK ,, Maximum total snarer families BLACK ,: Maximum total two-car
percereustract (1735 to 1928 families percensustract (1584
families) to 17(10families)

GRAYS ,, Minimum to int_rmediata GRAYS., Minimum to intermediate
total one.(mrfamiliesper total two_ar families per
eemm tract (6 to 1735 censustraot (11 to 1584 families)
families)

The one-, two-, and three-carownershiptotalswere manuallysampledfrom 1:84,E
of carsperfamily wascomputed from the one-. two-. three-and three-plus<:ar(h
10-acresquarecellmapsthe 24- by 24-mile DenverMefropolitanArea.
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(c) Total Three and Three.Plus-Car Families Per CensusTract (d) Average Number of Cam PegFamilY/

BLACK - Maximum total three-, and BLACK.: Maximum averqe ,umber
three-plm_mr families per of mrs per family (2.9 to 3.2
Gensm tract (425 to 472 mn per family)
families) GRAYS - Minimum to intermediate

GRAYS p Minimum to intermediate average number of carsper family
total three-_nd three-plus<ar (0.7 to 2J cars per family)
families per _m tract (5 to
425 families)

14calecensusmaps. The average number FIGURE 39. DISPLAY OF THE 1970 SOCIOECONOMIC

planes. The microfilm display of eaeh DATA EMPHASIZING HIGHEST ONE-, TWO-, THREE-,
AND THREE-PLUS-CAR FAMILY OWNERSHIP AND AV-

ERAGE NUMBER OF CARS PER FAMILY fin black).
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The collateral data for the landscape model consisted of measurements on 34 map variables for 36,864
observations. These observations were point locations selected by a systematic 4-ha ( I0-acre) dot-grid sample.
An overlay data form was created to combine and simplify the map coding and keypunching functions for
1:24,000-s "talemaps. Simple computer routines also simplified the editing and creation of completed map
overlays or data planes.

The 34 map variables were grouped into four general land-use, physiographic, transportation, and socio-
economic submodels. The USGS Circular 671 classification system was used for manual photointerpreta-
tion of 1963 and 1970 photographic i_agery. A 1972-1973 USGS land-use map was also dot-sampled and
overlaid onto the land-use submodel.

Topographic elevation-the basic data input to the topographic submodel-was encoded from 16 USGS quad-
rangles. Slope, aspect, and insolation data planes were computed with auxiliary computer programs. Sur-
ficial geologic data were also added to the landscape model from a USGS map.

A 1971 road-classification map with eight defined road classes was the basic input to the transportation
submodel. The five original point data planes representing composite minor roads, composite major roads,
freeways, freeway interchange_, and urban built-up areas were transformed into minimum-distance area
planes by numeric computation to be overlaid in the landscape model.

Finally, the tabular socioeconomic data and maps of the 1970 Census were used to create twelve area-type
data planes of population, housing, income, car owne_hip, and census-tract acreage. Population density per

acre, average number of families per acre, average number of year-round/vacant housing unies per acre, and
average number of cars per family were computed and projected into five density-type data planes.
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CHAPTER 3

SPATIAL LAND-USE PROJECTION

INTRODUCTION ,1_:_i:lll_G _W,._ _il,,_,_..h,,_ _d/i_._

This chapter deals with the structure, testing, and.verification of the land-use projection models that were
developed and tested. The development of the full spatial projection model proceeded in three major steps.
First, an initial multivariate model was developed. The model was then refined by improving its logical
structure. Finally, the model was further refined on the basis of the results of spatial-change replications.

The development of the landscape modeling data set formed the nucleus of the initial spatial projection
model. Many potential variables were eliminated from consideration for reasons of suitability and avail-
ability. The initial projection mode! therefore consisted of all land-use change, classes and landscape variables.
This model was used as a benchmark tbr further refinements and analyses.

Detailed examination of the initial model run showed flaws in its logical structure, especially the projection
of changes into infeasible combinations that ignored a priori knowledge of prior land use. Therefore, the

second phase of spatial-model development focused on improving the logical structure of the model to
restrict its projection to those changes that could actually occur, based on their current land use.

Modeling refinements were based on the testing of alternative formulations on the basic data set, The chief
criterion used for refining the spatial model was the ability to adequately replicate its own training or cali-

bration data. This was accomplished by using the model to project 1970 land-use changes or_ the basis of
st_istics of the known 1963 to 1970 changes. The various spatial projections tested were evalttated by I

examining the total number of changes that were correctly classified over the total number tested. Each
projection was made using the training set sample of known changes on a purely statistical basis, and only
afterward was the actual land-use change status of each individual cell revealed in a classification accuracy
table.

DETERMINATION OF RECENT LAND-USE DYNAMICS

Projections for future land use in the Denver Metropolitan Area were based on observations of the changes
that. occurred it the area in the recent past. This required the overlay onto the landscape model of accurate,
detailed current and near-past land-use patterns as described in Chapter 2. Remote sensing imagery with
accurate interpretation provides[ the data for the land-use modeling process, it will be subsequently shown
how these inputs can be obtained and overlaid in a timely and accurate t:ashion through, computer analysis
of Landsat multispectral digital imagery. However, the development and initial testing of the land-use
modeling process used carefully prepared, accurate land-use maps interpreted from low-altitude black-and-
white airphotos for both a current ( 1970)* and past (1963) dates. A uniform land-use classification scheme !

covering 24 land uses was first adopted (table 1). As described earlier, a single photointerpreter analyzed

*When thi_ effort _a_ first undertaken in 19"/2.19"/,. _ _a_ tile mo_l current airphoto data available.
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the _argecollection of airphotos for each date, annotating the location of each of the 24 [and uses to a 4-ha
(10-acre) resolution. The two interpretations on the airphotos were then transferred to the sixteen 1:24,000-
scale map overlays covering the site. The 4-ha ( I0-acre} dot-grid patterns were imposed on these map overlays,
and the 24-class land-use maps were tabulated and overlaid onto the digital landscape model (Reference I).

Recent changes in land use were computed and displayed from the 1963 and 1970 land-use data planes over-

laid in the model. This employed the cell-by-cell comparison of the 24 land uses inte_reted for the two dif- !

ferent dates, which yielded a third data plane that recorded the changes in land use betwoen tile two dates. _!,
A direct visual display of this new plane can illustrate its contents by highlighting the areas of gain or loss of
each land use (figures 40 and 41 ). Summation of the ceils that changed between the two dates for each of
the 24 land uses provided a quick insight into those categories that were rapidly changing during the %year
interval (table 3).

The detailed cell-by-cell comparisons of the land-use type for each of the 36,804 cells on each date also pro-
vided a simple matrix that contained the number of 4-ha ( 10-acre} cells of each of the 24 land uses of tile
earlier date (1963), which converted to another land use by the second date (1970) (table 4). This matrix
tabulation of recent changes in Iand use provided the basis for computing the tendency for additional change
in the neat:,future. These measured tendencies wore the essence of the initial land-use trend model when con-

verted into a probability transition matrix or a square two-dimensional array of probabilities of change arranged
inrowsandcolumns.

The assumption that future changes in land use can be measured in terms of those that occurred in the recent

past permitted a simple projection of the future trends in land use (References 8 and 26). This _sumption
does not truly represent the evolution of real-world land use, which is constantly subjected to new and often
unanticipated stimuli. However, assuming no change in practices from the past, the techniques for projecting
future land use must be perfected before the impact of new, unmeasured, and unobserved trends can be
incorporated into the process.

MARKOV LAND-USE TREND MODEL

The Denver Metropolitan Area was photointerpreted into a finite number of observable states or land classes
that could be numbered l, 2, 3 ..... m. A given mapping cell originally classified as other barren land, for

example, might be considered as state i; state j might denote open and other urban land, and so forth, with
state m Iperhaps urban residential land use) representing the last state in the land-use model. In tiffs study,
the total number of states (m} was equal to 34--the number of second-order land classification types in the
USGS Circular 671 system. Although only 21 classes were found in the Denver area during photointerpre-
tation and 13 land-use classes were absent itl a geographical sense (e.g., tundra), the full 34 classes were

retained for a full conceptual application elsewhere.

The probability transition matrix contains the average probability that each of the 34 land uses will remain
the same or change to some other land use over tho.gime represented by the dates of the two input land-use
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Display scale1:250.000

BLACK = 1963urbanopenspace(code 19) that was
convertedto other landusesby 1970,

GRAY : 1963 croplandandpastureagriculturalland
(code21l that wascomerted to other land
usesby 1970.

WHITE = All other landuses,

FIGURE 40. DISPLAY OF THE LOSSIN OPEN SPACEBETWEEN 1963 AND 1970 EMPHASIZING THE
OPEN SPACE EMBEDDED IN THE URBAN AREA THAT WAS CONVERTED INTO OTHER LAND
USES (in black). The amount and characteristicsof the acreagesconvertedcanbefound in tables3 and 4,
The microfilmdisplayof each10-acresquarecell mapsthe 24- by 24-mile DenverMetropolitanArea.
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BLACK - 1963 croplandand p4ttore Igrk,dtorel land
(onde21) lhmtws convertedto other land
usesby 1970.

GRAY - 1863urbanaportspine{oodo19) thmtwas
r,onvertedto other land usesby 1970.

WHITE - All other land uses.

FIGURE 41. DISPLAY OF THE LOSS IN EMBEDDED OPEN SPACE BETWEEN 1983 AND 1970
EMPHASIZING THE AGRICULTURAL LAND THAT WAS CONVERTED INTO OTHER LAND USES
(in black). The amount and characteristicsof the acreagesconvertedcan be found in tables3 and 4.
The microfilmdisplayof earJ_10-acresquarecell mapsthe 24- by 24-mile DenverMetropolitanArea.
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TABLE 3

NET CHANGES IN 1963 DENVER LAND USE RELATIVE TO 1970. Specific net transitions, such as those illustrated in

figures 40 and 41, that occurred between various specific land-use classesare given here. Computer comparison of the land-
use data planes illustrated in figures 13 through 16 provided thesesimple comparisons.

Land-Use Type 1963 !970 1070 Acreage
Acreage Acreage (net gain (+)

or loss (-))
Im

Residential 64.2 l0 70.500 + 6.290

Commercial and services I 1.020 il.820 + 800

lndustri.,d 8.870 10.6 l0 + i.740

Extractive 4.030 6.360 + 1.730

Transportation, communications, and utilities 7.290 8.650 + 1.360

Institutional 31.250 31.590 + 340

Strip and clustered development 13.500 10.550 + 3.050

Mixed urban 40 0 -40

Open and other urban 37,410 35,620 - 1.790

Urban subtotal 178.220 191,700 + 13.480
I

Cropland and pasture 160,090 146,240 -I 3,850

Orchards, groves, and other horticultural areas 60 60 0

Livestock feeding operations 20 20 0 i
Other agricultural land 330 70 - 260

Agricultural subtotal 160.500 146,390 - 14, ! I0

Deciduous forest land 180 180 0

Streams and waterways 960 1,010 + 50

Lakes 5.930 6.4 !0 + 480

Reservoirs 1.580 1.750 + 170

Other water 50 50 0

Water subtotal 8.520 9,220 + 700
iii

Vegetated nonlbrested wetland I, 710 1.710 0
i I i •

Sand other than beaches t,40 520 - 120

Other barren land !8.870 18,920 + 50

Barren subtotal !tL510 I t),440 - 70

Grand Total 3t_8,640 3t_8,t_40 -_I t_,0t,0

73

00000001-TSG01



74

-. ";, ".. o . " '_ ,. ..... ' ° " "_, .,r.r .,._'_.. ° . ° _._' " _.. ".o _'" " .. __-_,,,_>_1_--_--',,-_ '-

" "-' .... ' ,,' ° " ° " ° _.. " " % "" ,l, '_, _.,' .... . " ' ' ..... ,, . '_ o . , <',_ <,' ';' o . o .,.o_=_--._

00000001-TSG02



data plaues• 'lllese stochastic elements aresunlmarized in a matrix of Illc form:

PPI,I PI,2 PI,,I °' ' Pl,.14 ] ..
/

P = P2.1 P2.2 P2..; '•' P2,.14 /

/• Pi.j ....

,P.;4, t P.;4,: P._;,._ "'" P._I..;4,J

wilL.re Pi._ is the average probability that a given 4-ha {10_acre) cell ill state i as of I')t_3 would evol_'e into
state j in 1_70. Altenlalely. a briefer form is

P= {Pi.j}t°ri= I._..... mahdi= t,2 ..... m

wher_ the braces indicate that Pi.j is a typical element of tile stochastic nlatrix. P, the limits of i and j being

m. Tht.'ek'ment, p_.j, is.called the i, jth element, and tile first subscript refers to the elenlem's row and tile
second subscript, to tilt."elenlcnt's colmnn.

The probability transition matrix, P = { p_.j}, between lOt_3and IO70 for the Denver Metropolitan Area. is
reproduced with non_'curring, or zero land-u,_ change, probabilities deleted for nlore convenient reference

{table 5). The elements on tile principal diagonal of the probability transition nlatrix, Pi.r are significant in
that tile)' repres,'nt tile proportion of the earlier tl_}(_,_;)land use that remained in tilt."sanle land t._, in the

later t Io701 date. Flenlents not on tile principal diagonal art."transition probabilities {or prol_rtions) t'_r a
given land use to change in the given tinle imerval. All rows tn the matrix are stochastic vectors, that is, the

entries sum to o11racross any row, or it, dot notation,

in

Pi = _ Pi, j -- !
j t

The probability transition inat_ix was input to a Markov projection process that operated on the relative

anlounts of each of the 21 land-uses present in the two nlOSt current land-use data planes {19{_3and 19701
to project future trt.'nds in land use {.figure 421. Fifteen "/-year sinlulation periods were run froln I_;{_,:IIo

20{_8 and yielded {table 01 rapid decrea,_s in two functional open-space categories-open and other urban
land {code 191 and cropland and pasture agricultural land {code 21 I. These two land uses in the Markov

model declined leon1 15,145 and 04,813 ha {37,410 and I¢_0,0o0 acres1, respectively, in It;{_3 to 1,280 and
7,753 ha {15,340 and 43,180 acres), respectively, in 20{_8. Urban residential land use {code II ) nearly
doubled, increasing from 2¢_,000 ha {04,210 acres) in 1_;{_3to 50,700 ha {121,{_00 acres_ in 20{_8.

The Markov trend nlodel was intended to augment the land Inanager's knowledge and experience of the
future implications of current actions and to pernlit more thorough searches for "'best" econlanagelnent
decisions. Although these current trends can be nlathenlatically projected as far into the future ;ISdesired,

only the first Ik'w time periods art.,reliable• A nlajor limitation of all such nlodels is the assumption of

honleostasis in Ihat the probability transition nlatrix of conversions, I' = { Pt,j }, of land fronl type i to
type j is invariant and constant during all future sinlulated time periods. A nlore serious shortconling is
tile fact that it was simply a descriptive trend model, and, although it indicated general trends over time,
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FIGURE 42. PREDICTION OF FUTURE TRENDS IN THE AMOUNT OF
OPEN SPACEAND COMPETING LAND USE IN THE DENVER METROPOLI-

TAN AREA. A constant matrix of tlanslers, P t p,.ll., horn land use,=.to
land use, j. wasassumed.Ac,eaqesdisplayedrelateto the originalareaof 24 by
24-statutemiles 576 squmestatutemiles.

i1 did not provide spatial lal_d-¢hangt, itd\_rltlatiol_ Oll a poillt-by-point basis. Finally, onl._' gro.,,._itHerprct;ititm_

can be nladc of the long-loin evolution of land use from Ihis model. New and unanticipated ¢onlrol_ Oll t11¢

u.,_"of the land can quickly occur and itllp;i¢! filttire urban growth and attendant lalld-u_¢ patterns.

MUL:r-IVARIATE LAND-USE SPATIAL PREDICTION MODEL

l he l lid*use tuod ling effort was llCXI addressed to the d siglzand Mructur of a spatial temporal latld us

change' model that could bt, us_:d for map predictions. The Markov chain proccs,_, in _'hich the probabilit._'

of Iran.qlion fronl one stak' to allolh_.r is IIiv ¢onditi "nal I_robability. p (jilt. was a usvful point of departure.

Ilowcvcr. its sintplislic matrix multildication ot" la,d-¢ovcr type's was completely izsappropriaI_' for spatial
analysis and predictim_. Likv most r_'tzionali/atiot) prol_l_:ms, this nc'_t Icvt,l _I" ¢tmHHcxit.v nltist charadvr-

i._lically be, addrvsscd to 111or_'ntn11¢rousg_'ograpllic obs_,rvaliolls wh_,r¢ _'ach COllsistsof n1_,astlrc111cntson ;i

large' nunlb_'r of variabk's. II was II1¢'r_'l'or_"appar_'nl thai auy spalial land-us_' nlodcling would bc mlpt_.qblc

without ¢on)11_it11_crltt_ ;.ifull nlultivariat_' statistical approach. ]'his approad) wa._larg_,ly a cla._ffication

¢'xvrcisc and cnlphLw'd lh¢ h,,chlliqtlvS of inod_'r11nun1_,'rical taxononly (Rcf_,1"vncc 27L
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Relatiomhip of Land-Uw Chengeto LandscapeVartablm

A particular land use can be considered as a class in a classification system, and, further, each class is defined
by its similarity to other class members and some level of differentiation from nonclas.s members. Likewise,
each type of land-use change that was observed between 1963 and 1970 was quantitatively defined by its
associated landscape parameters for the Denver Metropolitan Area. It was assumed that they exhibited some
similaflty to other cells in the change class and differentiation from nonchan_d cells.

The important assumption that cells of land use that have undergone simih'u"changes in a particular period have

some common landscape features was intuitive. Intuition was bOrneout by the subsequent analysis and was
increased by visual display. Three histograms of the cells of agricultural land use (code 21) were generated as a
function of topographic elevation from the 1963 _nd 1970 land-use data planes (figures 17 and 15) and l'or the

cells converted out of this class between 1963 and 1970 from the dmnge plane (figure 43). These graphics
were not scaled identically in the vertical plotting dimension and cannot be directly visually compared. Sta-
tistical values computed with these figures indicated that the average elevation of agricultural land use was
1.692 and 1,693.4 meters _,5,550 and 5.556 feet) for the 1963 and iq70 land use, respectively. The average
elevation of the agricultural land loss during this period was ! .670m (5.480 feet). A skewed frequency distrib-
ution in the histogram of the loss versus elevation (figure 43c) signified a higher likelihood or probability of
conversion for agricultural lands at lower, elevations. The majority of the agricultural land transition b_tween
I963 and 1970 was into urban land uses (table 4): 5,414 of 5,607 total hectares (I 3.373 of 13,850 total acres)

were lost. predominantly at the lower, more suitable elevations. It was clear that the lower agricultural lands
adjacent to existing urban lands were more prone to suburbanization processes. Thus, a multivariate rationale
foe quantifying the mathematical properties of land-use change types for all of their physiographic, socio-
economic, and transportation variables provided a basis for a sl_atial/temporal land-use projection model.

Spatial Modefing Concepts

One of the most widely used multivariate procedures is discriminant analysis t Appendix A). A priori data
in the form of sclcx'tcd samples of known identity are extracted from the entire sample space and are used
as training data to structure the discriminant fu,ction. This discriminant function is then used to classify
the remaining balance or unknown portion of the pattern space. The discriminant function is a powerful
statistical tool that can be applied completely free of statistical knowledge or assumptions. This overall
approach is commonly referred to as distribution-lh, e or nonparametric classification ! Reference 28). All
classification algorithms in discriminant-function analysis can be reduced to either fixed or varying hyper-
planes of pattern or feature spaces. These hyperplane boundarie_ may or may not have been defined in the
context of known statistical distributions (Rel\'rence 29).

A linear discriminant function transforms an origin',d set of sample measurements into a single di_criminant

,score. This score, or transformed variable, represents the sample's position on the line defined by the linear
discriminant function. Consequently. the discriminant function can be visualized as a method of telescoping
a multivariate..problem into a univariate, linearly ordered situation.

Discriminant-fimction a,_ysis seeks to find a transform that gives the minimum ratio of the difference
between a pair of class univariate means to the multivariate variance within the two classes in the simple
linear case. These two classes may be visualh,.ed as consisting of two swarms of data points in multivariate

space: the one opt'mum orientation is sought along which the two clusters have the greatest separation while
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simultaneously minimizing the spread or inflation of the distribution c :"each duster. An adequate separation

between groups A and B for the two-dimensional case cannot be made with either variable X I or X2 (figure
44L However, it is feasible to lind an orientation along which the two clusters are separated tile most and
inflated the h,,-ast,with the coordinates of this axis of orientation being tile linear di_:riminant Ihnction.

CLASSIFY was the modified BMD07M (Reference 18) stepwise linear discrirflinant-analysis program used in
this final phase of spatial land-use projection. Linear discriminant hmctions were computed by entering

ancfflary land,_ape variables with a largest F-value-to-enter criterion. The a postertori probabilities of each
land-use case Ixlonging to eacl_ of the possible change combinations in land use between 19o3 and 1o 70
were calculated using these functions and either a priori or equal (l/n) $:oup probabilities. Additional pro-
gramming changes to provide 0ape input and output features, a more useful classification matrix, and a liming

function to evaluate the cost-effectiveness of each addition'.d stepwise variable resulted in the present
CLASSIFY program.

Initial Spatial Modeling Test

The data planes of the earlier (I 963) and current (1970) land use and the derived 1963 to 1970 land-use
changes were overlaid in the landscape model with the 34 ancillary variables. The 2.039 of the 36,864 cells
in the model that were observed to have changed between the two land-use dates provided the basis for de-
termining how the landscape variables correlated with changes in land use in a multivariate sense. The 2,039 )
cells that made a transition from one land use to another over the 7-year test period provided a group of ob-
servations for eacil type of change that occurred. Tltese observations were used as a statistit,-al sample to
model liow the changes in land use will proceed in the future bused on physiographic, socioeconomic, and
transportation landscape variables.

The Denver Metropolitan Area was mapped with 2 ! land-use classes on both tile initial (1963) and subsequent
( !970) dates. Thus, 212-21 or nln- 1) clmnge combinations were possible, ttowever, only 38 of these possible
420 changes actuMiy occurred as the earlier probability transition matrix shows (table 5). Many kinds of

possible land-use changes either seldom or never occur {e.g., the backward conversion from some higher state
of land use, such as industrialized land, back to a lower state, such as agricultural landL All test cells that
had undergone a specific transition were assembled so that the 2,039 changes observed between the two dates

were grouped into the 38 observed combinations. The statistical technique of discriminant analysis was
applied to these observations to t'orm a simulation model by training it to recognize the range in a multi-
variate sense of each landscape variable associated with each of the 38 change combinations.

A single, simplified test model will serve to clarify this approach. The first spatial land-use projection model
used all 38 change combinations, together with the land,_ape variables and equal ( 1/n) class probabilities.
The seven land-use data variables of the 34 variables overlaid in the landscape model were excludL:! from the
independent variables in this and all subsequent analyses so that they represented the results being modeled.
Linear disd'iminant analysis combined the remaining 27 landscape variables for each change point by con-
strutting a linear discriminant function of the for, • i

Y = a t x i + a i x 2 + ... + an x,, (n=271

, " j
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FIGURE 44. SIMPLE LINEAR BISCRIMINANT-FUNCTION DIAGRAM. This plot of
two bivariatedistributionsshowsan overlapbetweengroupsA and B alongboth variables,

X I and X2. Discriminant-functionanalysisdeterminesa transformthat givesthe mini-
mum.ratio of the difference betweena _qir of group multivariatemeansto th, multi-
variatevariancewithin the two groups.Theorientationis computedalongwhich the two
clustersare separatedthe most and inflatedthe least.The coordinatesof thisorientation
arethe lineardiscriminantfunction,andtheclustersbecomedistinguishableby projecting
membersof the two populationsonto the discriminantfunction line (Reference30).

where x=. x: ..... x, were the landscape' variable values, and a I , a2 ..... a, were coel'fici_'nts conlputed to
determine a value forY, the linear compound, that minimi_,ed misclassification of the 2,03t_ changed cells

into the 38 change combinations. "1h_: function was checked by s_:eing how well it classified its calilwation

data s_'t of Iq(_3 to 1970 changL:d cells. The final discriminant analysis step printed a cla_,_ification malrix

showing how the 2,039 changed cells were classified into their r_:spective 38 change combinations. The

evaluation o1" this and each sul_st,,quent model's value was based _m a figt.lr_:of merit (I:(.)M). cal_'ulat_'d as

the sun1 of the correct change classification along the prillcipal diagonal t_l"the chlssil'icalion matrix divided

b_ the total nunlber of changed cells and cxpr_,sscd as a percent.

_2



The FOM for the first model was 41.9 percent (table 7). Oveiall0 it correctly identified the expected
change in land use of 854 of the 2,039 observed cells that had changed based upon the 27 landscape
variables (table 8). Because a choice was made from 38 different land-use change combinations, an

accuracy of I/n = 38 groups times 100 percent = 2.6 percent would bt; expected from random assign-
ment of the 2,039 changed cells to 38 combinations. Although, by cOral:arisen, the 41.9-percent figure-
of-merit was far from perfect, it clearly indicated the feasibility of this spatial land-use projection

approach.

The entry order of the change variables may be of some interest to planners. Examination of the order
of the "F-value to enter" also provides insight into the relative value of the landscape variables in pre-
dicting land-use change (table 9), The distance to freeways was found to be an influcntual factor and
was selected early by the classifier. HOwever, the proximity to the periphery of the urban built-up
ore_ was eve_ more important. Average number of families per acre, population density per acre, and
topograpldc elevation were also important descriptors of change for the Denver Metropolitan Area ....

Testsof Other Generi_Spatial Models

An examination of the initial test classification matrix (table 7) showed that it failed to exploit the known

a priori 1963 land use of all change cells. For-example, the land-use change code 21/19, representing 1963
cropland and pasture agricultural lar[d(code 21 ) changing to open and other urban land (code 19) in 1970,
could be classified in any of 37 other remaining land-change combinations. This specific change, in fact,
was predicted to occur in 27 other land-use change combinations, 15 of which were inconsistent with the
fact that the 1963 initial land use was cropland and pasture agriculture (code 21 ). Because the initial or

starting land use would always be known, the choice of a type of change must be made to be consistent
with the known, initial land use.

Six additional spatial land-t'.se projection models incorporating the logic of a known, beginning land use
were tested with varying degrees of improvement over the initial model (table 10). The second and third
models were derivatives of the initial full 38-class model restricted to the 1963 cropland and pasture agri-

cultural change cases, 1,437 cells, and represented 13 of the 38 change combinations under alternative a

priori and equal class occurrence probabilities.

The second model correctly reclassified 822 of the 1,437 agricultural change cases for a 57.2-percent FOM
(figure 45) with a prtori class probabilities (tables 11 and 12), a significant increase over the comparable 854
correct cases from among all 2,039 cells (41.9 percent) achieved in the initial model. The third model used
the same 1,437 agricultural change cells but differed in that it used eq.ual (l/n = 13) class probabilities and
yielded 756 correct cases for a 52.6-percent FOM.

The only difference between the second and third models was the use of the a priori versus equal-class

occurrence probabilities, respectively, which yielded a slight classificational advantage to the second model.
Equal-class likelihood was used where the actual proportion of the modeled land-use (1970) changes was

unknown. The a priori probabilities of the second model could be either estimated by remote sensing or
extrapolated from mathematical simulatl_,_l models, such as the Markov trend model. Here, the a priori

probabilities were simply derived as the ratio of the total cases of each change class to the grt,nd total of

change cases.
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INITIAL 38-CLASS 1963 TO 1970 LAND-USE CHANGE MODEL_LASSIFICATION MATI

blned physiographic, socioeconomic, and transportation characteristics of the 2,039 changed_1

to linear dlscrimlnant analysis, and 854 cells were correctly classified for an average42-percenl

Cl_ngo Number¢
Code (14 (14 (14 (14 (16 (18 (19 (19 (19 (19 (19 (19 (19 (19

/11) /131 /21) /521 /52) /17) /111 /121 /13) /14) /15) /16) /17) /21)

(14/11)2_...i
(14/13) 5,,_114/21) 3

(14n21I "_4
(1e/s2) "_15
(18/17) '_4

%..

(19/111 2 5 $ I _40 20 1 39 4 8

(19/12) 1 l 2"_16 1 4 2 1 3
%.

(19/13) 1 2_21 2 2 1

(t9114) I 2 _18 3

(19/15) 1 2 12"_19 I l

(19/16) 1 2 _14

(19/17) 1 1 l l _23 2

(19/21) 3 3 2 3 3 2 3"_8_
._ t19/51)

•._ (19/52) 1

_ (21/111 2 6 7 20 10
7 3 7

(21112) .t 1 1(21/13) l 14 2

(21/14) 2 1 4 26 3
O_

; (21/151 2 3 6 3

,_(21/16) l 2
OS

_ (_.4/17) 2 4 5 4 4 6 8 4(21/19) 2 3 3 15 3 15 5 10 2 3 $

(21/24)

(21/51) 1

(21/52) 2 1

(21/531

(21175)

(24/11)

(24/14)
'S

\ (24/15)

(24/19) ORIGINALPAGEIB

(24/211 OF POOR QU_._.
(24/52)

x_ 173/131, (73/14| I
(73/19)
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TABLE 7

;IX. The 27 com- Land-use data were not used, except for identifying the cells that had changed, On the axe;, the numerator is the

I1=were subjected 1963 land use, and the denominator is the 1970 land use. Numeric land-usecodesare Id_ntified in table 1.

accuracy,

10-A_reCeilsClassifiedInto 38 Second-OrderLand-UseCombinations

f19 (19 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (24 f24 (24 (24 (24 {24 (73 (73 (7t
51) /52) /II) /12) /13) 114) /15) /16) /17) 119) /24) /51) /S2) /53) 175) /11) /14) /15) /19) /21) /52) /13) /14) /19)

27 S 7 30 4 I 4 $ I 3 3 5 I 2

3 $ 2 4 I 3 2 2

I 2 I 3 9

9

5 ! 6 2 I

2 3 3 I

3 2 I I 2 I

5 I 4 I 2 2 I

1_4_
218 7 6 1 29 17 19 13 9 3 7 1 1 4

1 4 S _ 7 3 1 2 1

1 _57,_ 10 2 2 23 5 3
1 1 1

13 52 1 1 6 2 11 2 ' 4 5 1 2 3

I 35_ 2 2 5 1 2 1 1 8

3 1 _11_. 3 1
1

10 4 20 3 14 103 53 6 3 6 3

"_ t 330 20 10 2 11 41 llS 1 2 17 8 4 7 1 5

3

1 1 2 1 3_9,_ 1
1

17

I I _3

! _5 I !

2 3_7 I

O i

\2

J
ill
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!TABLE 8

ACCURACY OF PREDICTION BY IHE INITIAL MODEL OF FUTURE CHANGES IN LAND USE ON A

CELL.TO-CELL OR SPATIAL BASIS FOR THE DENVER METROPOLITAN AREA. Tills table ts based on

pledicting the chantlo in land use flora 1963 to 1970 lot tile 2,039 coils ill tt_ initial landse._pemodel that under.

went a ¢hang_ during this lat_!fed, The change was predicted by discrimina_t analysis from the landscape vari-

abh_ The accuracy was Lused on the humidor of cells whose future or.1970 land use was conectlv I.vedicted
(table 7).

I'_q_d I'ohd |_ledl¢llLtn

l".(t,| I ,lnd | _e l_tetltcted tit l'|l_tttl:i, to | _i ?ll | _itid tls_,' ,_dltll_le 1'¢II_ :_<¢m.i¢_
t'elI,_ t'ott¢¢'t tpetc¢'11I1

I_¢'_ld¢lllt,ll ,_ _ (_(t"

htdu,,111.11 5 _ 1011.l.I

L iopl.n1_l ,in_l p.i_lu1,, ._ 3 ILl0 LI

1 ,ik_._ 5 4 _tl.tl

|It_l ii u Iio11,iI

.3
I0 I l ,Ike_, I ,% | _ I Oil.If

i

" ._11_¢d ull,,nl ....

.%1o I ._ltlp ,ntd t.'lll_teted d¢_elol_111¢lil 4 4 llitl,(l

(.'Ii_¢11,lltd oI]1¢i iii l'_iln

I Re_idetlt1_ll ._31 40 t "..I

(.',..'tiltll'iel_ l,II illl_.l _¢t%I_.',...'_. ._I l ('_ .l_'l...'

Inthlstn,il 45 _| 4i, "

l:%lr,l¢lli¢ I1 I _ ._4 ._

l'l',lll.'il_l_tiJltlltl, i'l_111ttilltll_'_lllitll.*,, Jill| Illtlllt¢.'i _i1 I *) I ".|

Ale |tlstttilt IOtl,,ll }It 1,1 5J ,_

Stt'll_ ,tnd¢llistt'll'_l de_ elOl_llll'nl ,l_1 2.1 ._l II

L'lOIq,llltt ,nlll i_,lsliil-C 4.t _ 1_ I_

_ll¢,litl.*i ,Ind ii,ltcrwil! .,i I I I litl tl

I ,ikes 5 4 _tl tl

L'l_i_hind ,ind I_,isliilk •

R,.'._tdelllt,ll ._¢)? '_ '. I _ .".I _i

l'o111":1¢1_'1,'1|01111|_et%tl'¢_ _" ._%_1

I nlt li._i n ,11 I _.I l, * .i i, .t

1%li,iClll l' I .I_1 ,_l .l • .1

I'l,ltt.'it_t_tl,llIOll, ¢_itlllilltlI_',lliOIl.% ,lIlld utiltlt¢._ *_ .t_ -I_ (_

|il.',til lilioil,II ._.I I I ,$"

.Xlll ,fill II_ ,Ittl| l'hl._li'lCd l|¢l ch_l_lti¢lil .•l_<_ II)1. ,ll) t

Ill'i'll ,Ind ethel tlllt,lil .144 I I ._ .t| 4

lithe[ ,lttllcnltur,iI l,lud _ ._ 1till tl

, _11_,',II11_,,itl_l 10ik'i_.i_,', 4 .I "$ 0

I ri%i,l%tllll I " I " It)l.) II

I Lilllel b,lli¢ll I,Ind _i .l (_t) tl
......... , . ,= ,, , ,,

Illhi'l ,ll;liciillul,II Lind

r I_¢_ldenll,iI I i Ititl iI

i %Ii,i_.'Ii_.t" ,_ " I, ' •

| I,IIt_,tl_lli,ltlilll. I'lHlltllllllll',l|ltlll*,..111ll il|lll|li'_ ) I ',ill t_

,_itli l.ll_¢li ,illd llllll'l lllb,lli _ ) Illtl II

! I'iOlq,llld ,lliil l_,l',lill¢ l 1 Illll tlI
i | ,ik¢". I 1 t 1111I I

_,lllll _qht'i Ih,in b¢,lcli¢,_

hldtl*,llhll I i 1II0 i/
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TABLE 9
LANDSCAPI_ VARIABLE ENTRY ORDER OF THE INITIAL SPATIAL LAND.USE PROJECTION MODEL. The
numerical utility o! the landscapt_variablesas detotmined in tho initial land.use change model (table 10) _stliven it1
descendingorder, The F.valuesreportedweredetermined during the stepwisopottion of the discriminantanalysis.

,glOp F-Vahlc
Nunlbcr Ancill;Iry Landscape Variable l-nlcred to I,intcr

i i J i i

I Average number of families per acre 48.3188

2 Buill-up urban-area minimum distances 31.1547

3 Population density per acre 2(_.2t_(_O

4 Topographic elevation 1t).o47"7

5 Freeway minimum distances 17. 8388

_,', Median housing-unit rent • • 11.5o08

7 ('ofnpositc minor-road minimum distances 11.3 .'_20

8 Average number of year-round housing units per acre 10. 1748

0 Mcd iatl h ousing-tl nit value o.°oo,o_'_-.,

', (. "t10 Total occupied housing units 8. )33_

I 1 Average number of housing units per acre (_.555I

12 Total one-car hmfilics 7.0151

i 3 Topographic slope 0.3450

I-1 Freeway intcr,:hange tuiniumtn distances 5.8250

15 Landsat- 1 image insolation 5.211 i

lo Total three-car families 3.tYT"r3

17 Total year-round housing tlnits o.32t)3

18 Total ccnsus-lracl acreage t),,_015

It) Total two-car families o.4t)01

t,. ,00821.) Total vacant housing units _ '

21 Tol al families 5.0273

22 Avcragc nunlbcr of cars per family 4.4o01

23 ('onlpositc nlajor-road nlininuull distances 3, 722 I

24 Topographic aspect 3.5(_0o

25 Surficial geology 3.3t)50

20 Total populalion I. 553 !

27 It)O t) Mean family illCO|llC 1.),88-3
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IABLE 10
COMPARISON OF SEVEN IES1 LAND USE MODELS OF SPATIAL CHANGE IN THE DENVER METROPOLITAN
AREA, 19(33TO 1970. ]has tahh, ishasedon luodict n.qthe (:lan.qein I,md usefor tile cells that had tlndt:r,qolte J ch,m_le
thllil1_3 the tost l_t,riod. The ch,lllge wasDIed0chMhv dismimin,lnl analysisfrom the landscapev_Itiahles.Tile Jt',l:llI,ll'yW,lS
h,lsedo11tho llLlmhel of cells whoseltltlll00l 1970 l,llM llse w,ls lxlfroctly Ira,dieted.

Model Total l'otal Average
Model l)escriplion Salnple ('ells A¢cut'acy

Number Uells ('Ol'l'ect (per¢enll

I Full 3S-change class model with I1170 equal- 2,t)_o 854 4 I.O
change probalqlities

(Subportion of thirteen ¢roplmld and ( 1,43 71 ((_331 (44. I 1 '"
pasture agricultural cha1_gesl

' I._08 5 2.o• Se¢t._tld ¢olll|l_._site 38-change class illod¢l 2,03') " '

with I_170 a pri_,ri change probabilities

tSubportion of thirteen cropland and _ 1,4371 18221 (57.21

pasllll'e agri_lltl.lral ¢hallges)

3 l'hi rtt'en cropland and r,aslure agricul tu t'al i ,437 75(_ 52.t_

¢h;lllges o1"3_ total chilllge ¢l;.issos with IO71.)

equal-change probabilities

4 Pure 13 cropland and pasture agricultural 1.43 _ 700 55.O

change classes with I t)70 ,; l_riori-chang¢

lWObabilit ies

5 l'ure 13 cropland and pasture agricullur;tl 1.43' 74 "z 52.0

ch;.lllge classes with I tlWt) eqtl,ll-¢hilllge

probabilities

o Fourteen cropland and pasture agriculttu'al 2,347 1,241 52,o

change lion,, hallge ¢l;|sses xxith 1070 eqllal-

change probabililie_

" Fourteen cropland and pastt|re agricultural 2.34"7, I, I .S 48. I

change nonchange classes with IO"l) ,t pric_ri-

change proi_;tbilities
,r

I'hc fOlll'th ;lnd fifth models xvere sinlilar 1o the se¢Olld and third models, respe¢lixel3, ill that llle_ used the

same 1,43" agricultural change case,, tepresenting thirteen 1070 ,'hatlge conflqnations _xith ,t pri_ri arid equal-

class o¢¢tll'rence probabilities, lespe¢tix ely. llnlik¢ tile second and third luod¢ls, ho,_xe_•el". tile silnll',le ¢;is¢

files ¢otllained only Ihe 13 ;igl'i¢lJIIur;ll chilllge ¢;Ises, _llerea.,, lhe lhree tlleXiOllS models derived their di..,-

crilllin;llll l'tlllCliOllS frolll Ih¢ full ,IN-ClilSS¢h;lllge ¢OlllbillilliOllS.

Ihe fourth model corl'ectl._ i"e¢lassified "_)<);IgricullUlal, hanpe case.,, for ;I 55A_-p¢l'¢etlt I:()M t figul'¢ 45 I,

_llich _;is SOlllel_hal less Ill;in the _ ' • percenl FI.)M ' • • ¢orl•eCt ¢;ises) ;Ichieved ill the ¢Olllp;Ir,ll_),,' '_ecolld
IIIodel.
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(a) Groun_truthmapderivedfromthe 1970aerialphotointerpretationshowingonly the first-orderagriculturallanduse.
(b) Changedetectionmapderivedfroma point-to-pointcomparisonofthe1963end1970land-usedataplanes,fc,d ande)
Landscape-modeledmapsshowingonlythesecellspredictedto evolvefromagriculturallanduseasof 1970.

FIGURE45. COMPARATIVEDISPLAYSOFTHESPATIAL

OP_IG]_L_ pAGF, IS PREDICTIONSOF THREE LAND-USEMODELSEMPHA-
OF POOR (,)|TA[,]_ SIZING ALL CHANGESFROM AGRICULTURALLANDS' (inblack).
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The initial model was partitioned into seven runs. corresponding to each of the basic 1:J

cla,es. Blank entries indicate unfeasible change comblnatlonq; dashes indicate that no celli '

the feasible combinations. Land-use data were not used except to select the change cells.
identified in table 1.

I Numb=Cl_ n_,.'

L Code (14 (14 (14 (14 (16 (18 (19 (19 (19 (19 (19 (19 (19 (19/ll)/13)/21)/s2_,s2)/17)/11)/12)/13)/14)/IS_/J6,/17,./21)
|'"{14/11_ "

2_1 - -
(141'3' I - 5_; - A'sfrom 1963extraeflveland use(14121) I (code14)

(14/s2)1I - -\%1".
(16152) I_,,,_ 4x
(18117)

(19/11) * '184 6 13 8 - 2 2 8
%=_

(19/12) 16_20 2 $ - 2 1 $

(19/13) 2 3_24 11 2 1 - 1 _

,' -;:14) 2 - 1_ 27 - - - 3

()/15) A's from 1963open 2 1 4 12_20 - 1 7
•_nd othe_ urban land use

(19/16) (code 19) 18 ...... '/,.
(19/17) 3 - 3 2 - --_24 6

(19/21) 10 3 - 6 3 - 5_13

(19/51) ........

(19152)° - - - 1 ....

(21/11)"
(21112)

(21/13)

(21/14)

(21116)

(21/17) A'sfrom 1963 cropland and pasttu

(21119)(21124) _ _.__ _1[_ (code 21)
(21/51)

(21/_2)

(21/$3)

(21/75),

(24/11) i

(24/14)

(24/15)

(24/19)

(24/21)

(24/$2),
q

(73/13)

(73/14)

i (73/19)
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TABLE 11

3 to 1970 change SECOND COMPOSITE 38.CLASS 1963 TO 1970 t AND-USE CHANGE MODEL CLASSIFICATION MATRIX.

vaere classifiedinto The restriction of change predictions to feasible 1963 classesincreasedthe classifi_tion accuracy from 41,9

_.and.use codesare (tables 8 and 10) to 52.9 percent, usingthe same 27 combined physiographic, socioeconomic, and transportation
variables of the initial model,

10-Ac_e Cells Classified Into 38 Second-Older Land-Use Combinations

,"_19 (19 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (21 (24 (24 (24 (24 (24 (24 (24 (73 (73 (73
$1) /52) /111 /121 /131 /141 /15) /161 /171 /19) /24) /51) /52l /53) /751 /11) /14) /151 /19) /211 /52) /131 /141 /19} - •

184

20

24

27

3 20

7

1 24

3 13

" 314 2 3 2 - 7 22 43 - - -

9_6 - - - 3 - 8 - - I - -

6 1_42 22 - I l 4_ - 3 I - - OB/G/NAL PAGE IS
5 - i-9":-86--4-. 3 7 - 6 4 _ i QPP00RQr.I:..f_:
12 - 2 5\36 - 2 3 5 - 5 1 1

s 3 - 4 -_2\ 2 3 - 1 - - -
rmd use 28 - 8 3 - 3 - - -108 101 II -

72 - 3 12 - 5 42"_199 1 - 3 - 7

........ _2 ....

....... _3 1

- 3"_ 4 - -

2 - - 1 2 - - lO - _-71 -

""3....... I I - -
*4

_'I .....

"_5 1 1 1 -

- 3\ 9
A's from 1963 other agricultural land use - _ .- - I

.... I -q

I - -'__s from 1963 and other than beaches land use _" 6 3

(code73) L- -_ 2
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TAB LE 12

ACCURACY OF PREDICTION OF FUTURE CHANGES IN LAND USE ON A CELL-TO.CELL OR SPATIAL

BASTS FOR THE DENVER METROPOLITAN AREA. This table is based on predicting the change in land use

from 1963 to 1970 for th0 2,039 cells in the second landscape model that underwent a change during the test

period. The change was prodtoted by dlscrlmlnant m,alysls from tho landslide variables with roferen¢_ to the
initial (1963) land use. The accuracy was based an the number of colll whose future (1970) land use was mr- f

rectly predicted (table 11). t

"l'olal lIntel predi,:lion

1963 Land-Use P;edictcd to Chanse to 1970 Land.Ust_ Sttllllth., ('dk A¢¢tir,ley
('dl,, (.'orrLwl (p_'r¢_,111|

J

I'xtr.'tetivv

i R_',idential ._ 2 c,,.7
I h_dttstrial 5 5 lO0,O

to
I

I('r°plalld alld pa_lllrL' 3 3 100,0

I !_k_,, 5 4 Xo.0I

hI•tit Lllhlll.tl

_tO I L._k_'• IS 15 lO0,O

3t,, IStrip atltl ,.'hl,,l_..rudd_.,_elorml_.,IH 4 4 I00.0

0]1¢n ,llld oth_,r Urbdn

Re•ldellthll 231 I ,_4 7_).7
t'olun,:rda[ and _er_i¢¢_ 53 20 3"7.7
Industrial 45 24 53.3
I _.tr,leti_c 33 27 81.8

AlL) ]'rdll•l_t)rt,ltit)II. ¢Olllllltlnledtit)tls. and tltilttit.'._ 51 20 39.2
Ill_tittltIOIlill 2(_ 7 20.t)

Strip _.lt|d_'[il._t¢1"¢ddL'_,¢lopnl¢llt 39 24 (_1.5 ,i
('ropl,tlid and t_.l_tUn. ' 43 13 30,2

Sire,ira• dt]d tt,d|t.'lW__1_• I l I GO,t)

I.ak¢• 5 4 80.0

('nH_land Jnd I_anlllr¢

R,'•idential 3t)_ 314 7q.l
('tmullcr¢ialaltd _,cni¢¢,,, Z7 () 22.2
Indu,trl:ll 123 42 34.2
I'_ltacit',_' 13t) Xh (_1.8

['ralV,port_lI}Ol_,¢_mtltltll_ieatkm,,.,llld till|ilia.,, 72 3(_ ._I.).(1
hl,,tittltitqlal 23 2 _.7

Ale Strip and¢lu_tereddev_'lopnl_'i_l :.I,._ 108 41.8

(.1pet}al}d t)ther tlrhal} 344 |qq S'/.q
Olh,.,ragricullur;ll l,lnd " 2 ItlO.O

I SlrC;ll|l,_ anti 4 .] 75.t)
I'.;lk_'_ 2" 4 18.2

Other I_;=rrrnhind 5 3 (tO.O

OIIk,r,ipriculhlral hind
R¢_ld¢llllal I I I t_OI)
I"xlr;l¢livc _ 5 h2 5

_.._h) Jr,lll•jlortd|iOll. _:¢)llllllilnJ_.'dlJtHl•. tltltJ tlliliti¢• J3 q 1¢)."
I )pt'll ,llld _)therI,ltld _ 2 t I.)|).l)
I rtHdalzd ,llld i_,l•lUl'_ , 3 ._ I (|() O

_11"_.',1111•,lilt[ L_, IC "_._,,It,• [ () ().()

_,llld *Hh¢l" tit,Ill b¢,1_']1¢•
i
I hhhl•lrhll l 1 lifOl)

()pen ,,lid ol[it, r ItI'l_,ltl 2 _ I()lL()

l'ol.ll 2.03q 1.2()._ _: ')
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Tile fifth model correctly reclassified 747 cases for a 52.0-percent FOM, which was als¢_somewhat le._sthan

tile 52.6-percent FOM (756 correct cases)achieved in tile comparable third model.

Two additional type,_ of models were tested to determine if it were possible to include an additional class
rel+resenting those cells that did not change. Tile 1963 to Iq70 land-use change plane contained 14.624

cells of cropland and past_tre that remained unchanged, but 1,437 cells changed to 13 other land uses by
1070. A 9 ! 0-call sample of the 14,624 unchanged cells was taken lk_reconomy and consisted of every I I

row and column in tl_e 1963 to 1970 land-use change plane that represente,' the.agricu:_ .tral class. "1hesc
910 ccll._ representing a non change class, togethe! with the 1,437 cells in 13 change classes were combined

into a composite test file of 14 classes and 2,347 cells. The sixth and _wenth spatial land-use projccti,,n

models used this composit,: file and 14 agrittdtural land-use change/nonchange classes with a Itrh_ri and
equal-class occurrence probabilities, respectively.

The sixth spatial model correctly reclassified 1,241 cases tbr a 52.9-percent FOM (figure 45). Only 437 of the

known agricultural change cases were correctly reclassified tbr a 30.4-percent accuracy, whereas 804 of the

sa_alpled"nonchange agricultural cas_'s were correctly classified as unchanged for a substant! ,1 _8.4-pcrt nt
accuracy using a prit_rl class probabilities. Unfortunately, this error of I !.6 percent appe,,red.._lerablt .'
first glaoce, but, when extended to the original population of 14,624 unchanged agricultural _;,lls, i, _ ..

sented 1,638 uncl_anged cells erroneously predicted to undergo some change. This nut,,ber w;_ 1:. ,_n
the 1,437 known changes observed for cropland and pasture agricultural land.

Using equal (l/n = 1/14) class probabilities, the last model correctly '-,,::. -ca J,l _ cases for a 48.1-pt'rcent

FOM. Only 663 clmnt,.e cases were correctly classified for a 46, ! -percet_t accttracy, and 465 nonchange ca,.es

were correctly modeled for a 51. I -percent FOM that must be interpreted as lbr the sixdl model.

ProposedAdvancedSpatial M'-del

A proposed spatial land-use projection stratet,ny (figure 46) emerged as a synthesis of the Marker trend model
and the discriminant-analysis model. The most logical and successful discriminant model (model 2 of table 101

is first applied to 'all36,804 cells in the landscape model to predict the next most likely change in land use lbr

all 36,864 4-ha (10-acre) cells. The earlier Markov trend model provides the ntamber of these cells that will

convert to a different land use in a given future time increment. After the discriminant model predicts the

next change in land use and its posterior probability for each cell in the landscape, the actual changes in a

filture time period can be dctemlined by assembling all changes of each given type from the 36,8t_4 predictions

constitutipg the entire landscape. The group of cells representing each type of change can be ordered by
their posterior probability of occurrence. The correct number of transitions supplied by the Marker trend

model can be selected on the basis of the highest posterior probability at the top of each of the ordered list

of change types. ('ells not selected can be assumed to be unchanged and can be noted as such. The exact

spatial location of each cell is preserved by carrying along their respective rows and columns. The sorted
cells can be reassembled by row _mdcolumn, and a predicted map of the future distribution of each land use

lk)r a particular date can bc displayed. The total modeling process can be itcralively performed to yield a
time succession of spatial projections of future land-use maps.
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1963 PHOTO 1970 PHOTO
INTERPRETED INTERPRETED

LAND.USE LAND.USE
DATA PLANE DATA PLANE

1963 TO 1970 I

- LAND-USE
CHANGE PLANE

j-v I ooLAND.USE _ FILE FOR
TREND MODEL ALL CHANGES

1 1
CHANGE TOTALS

BY LAND-USE LINEAR
CLASSAN_) DISCRIMINANT

TIME PERIOD CHANGEMODEL _--

1
LAND-USECHANGE

PROBABILITIES
FOR EACH CELL

NUM_"c'%_RTI
PROBABILITIES j

i SELECTIONOF I

- CORRECT NUMBER
OF HIGHEST

PROBABILITIES

l
I =_c:::l

FIGUR E 46. PROPOSEDCOMBINATION MARKOV AND LINEAR DISCRIMINANT MODELS FOR IM-
PROVED SPATIAL-CHANGE PREDICTION. The Markov trend model providesthe correct number of
changecellsby type. Thesecanbe selectedfrom asortedlistof discriminant-computedposteriorprobcbili-
tiesof change.The selectedcellscanbe assembledinto a mapof future land use.SpatiallyregisteredLand-
satdigitalimagerycanserveasfuture land-useinputsin lieuof the 1963 to 1970 aerialphotography.
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CHAPTER 4

LANDSAT LAND-USE CLASSIFICATION

INTRODUCTION _K_CI_DING PAGK _ b_

The first pair of t'arth Resources Technology Satellites, designated Landsat-! and -2,* are providing une×-
celled opportunities to explore the utility of spacecraft remote ,sensing data for regional land-use mapping

and analysis. Remote sensing is the detectiol, and evaluat:.on of objects without any direct contact. A
number of devices collectively known as remote sensors have been developed for collecting and recording
the electromagnetic (EM) energy emitted, reflected, and scattered from terrestrial objects at a number of
different angl_'s, frequencies, and polarizations.

The level of energy emitted, reflected, and scattered from objects of terrain varies with wavelength through-
out the EM spectrum. The spectral signature of an object by which it is both detected and recognized is
governed by tile amount of energy transmitted to the remote sensor in the EM region in which that sensor
operates. Therefore, an identifying spectral signature can often be developed if the spectral energy observed
is partitioned into carefully selected bands for analysis. Complementary electromagnetic sensors owrating
in adjacent spectral regions art:commonly used for this purpose ( Reference 1).

Whether by man, machine, or intecactive man/machine symbiosis, remote sensing data analysis involves pat-
tern recognition, which categorizes phenomena into classes of interest front a set of measurements. The
recognition of patterns and the delineation of boundaries on an image ale tasks that a photointerpreter does

quite well on a single image. Different land-cover and land-use types a_d their patterns are recognized through

the use of nunlerous contextual and inferential titles. These include the spatial relationships of tone, texture.
and size, shape, and geometry of objects, as well as spectral information obtained by given aerial film/filter
combinations.

('onversely, a collection of images of varying spectroradiance can be input to digital compttters to adaptively

improve their numerical pattern recognition/classification eflk_rts using either supervised or unsupervised

"'learning'" algorithms. ('onsequoitly, the output from either man or machine is a series of decision,,, yielding

a map on the nature and probabilistic relation of unknown patterns to known or learned patterns.

Although an all-inchasive atttomaled remote sensing data-analysis system will not be possible lk_rsome :ime.

digital cotnputers can perform a number of specialized tasks with a large degree of success. Although these

processing functions art, relatively simple in a machine sense, they are not trivial in a mamtal interfDretation
sense. When an interpretation problem demands the sinmltaneous comparison of multil, le statistical r_atlerns,
as in multispectral remote sensing, the htlman an:dyst's capability is severely limited, whereas the comptlter

does this without difficulty. Solh:? specific justifications Ik_rdeveloping automated image processing tech-

niques ill relno[¢ sensing are:

Originall)' designated I.R IS-I ;Ind '
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• Tl_e demand for n:mote sensing inputs to real-time resource management decision-making is
rapidly growing

• The rapid changes caused by population growth and technological development necessitates change
detection at short intervals, especially in swiftly urbanizing arees.

• Tile derivation of usable information from remote sensing data is increasingly needed.

• Weather and resource satellite programs are generating an overwhehning volume of data.

• Short supplies of skilled image-analyst manpower obviate against conventional manual image
processing

• Simple human functions can be duplicated by digital computers to achieve higher input/throughput
rates, higher degrees of objectivity, and higher accuracies.

• The liberation of human analysts from routine work through the use of computers makes them

available for more challenging tasks.

• Computers can easily manipulate digital input data of high dimensionality, thereby extending the
realm of image processing beyond limited human capabilities.

Pattern recognition is concerned with tile classification of input data provided in the form of measurements.
In a remote sensing context, pattern recognition deals with the classification of pictorial/numeric data de-
scribing terrestrial phenomefla and consists of five principal steps:

1. Input of the measured patterns (e.g., multispectral imagery_ i

2. Pattern preprocessing (e.g., calibration and geometric restitution) i

3. Feature extraction (e.g., training set selection)

4: Decision/classification (e.g., identification of land use)

5. Classification output (e.b, map display)

Only the first and fifth pattern recognitio11 steps are reasonably discrete. Steps 2, 3, and 4 overlap to a
greater or h:sser extent, depending on the processing problem and the specific procedures used. However,
the sequence of these steps is generally the proper order of the analytical phases.

A dramatic new dimension for terrestrial remote sensing and automatic image analysis was added with the
launch of Landsat-I on July 23. Iq72, and was filrther enhanced with the addition of Landsat-2 on
January 23, Iq75. Both Landsats are in q20-km (572-mi) altitude Sun-synchronous polar orbits where they
complete a filil observational cycle of the F,arth between 81 degrees north and 81 degrees south latitude

every 9 days. "l]le former 18-day repetitive Landsat-I cycle was halved when Landsat-2 was launched into
a 180-degree diametrically opposite orbit. Both satellites carry a similar payload of multispectral sensors
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and return-beam vidicon (RBV)cameras for recording visible and solar infrared reflectance data to monitor
and inventory agricultural, atmospheric, geologic, hydrologic, and oceanic resources.

Landsat multispectral scanner (MSS) data are simultaneously sensed and recorded in four spectral bands:

• 0.5 to 0.(_#m (micrometer bandwidtl_ of MSS band 4 representing visible green_

• 0.6 to 0. 7/_m (MSS-5 representing visible red)

• 0.7 to 0.8/Jm (MSS-6 representing solar infrared)

• 0.8 to 1.I/Jm (MSS-7 representing solar infrared)

RBV data are recorded in three spectral bands as follows: I

• • 0.475 to 0.575 gm _,isible biue-green interval)

• 0.580 to 0.680 #m (visible red interval)

• 0.690 to 0.830/zm (solar infrared interval)

Untbrtunately, Landsat- l's RBV sensor system malfunctioned after only I month in orbit, and this device
on Landsat-2 has provided only limited coverage.

The Landsat MSS is a line-scanning device that uses an oscillating mirror to continuously scan an east-west
track peq_endicular to the spacecraft's north-to-south motion (Reference 31 ). Six lines are simultaneously
,_anned in each of the four MSS bands for each mirror sweep, with the vehicle's forward mov,:ment providing
the along-track progre_ion of the six scanning lines. Subsequently, during NASA's image data conversion.
this continuou_strip imagery is transformed into framed images with a lO-percent overlap between consec-
utive frames. As framed, each Landsat image covers a 185- by 185-kin (100- by 100-n. mi.I square and
consists of 2340 east-west scan lines of data representing 3240 north-south colunms of data. This provides
7,581,000 picture elements for the four-band image, which, with lbur spectral bands, yields more than 30
million data values per 34,22_km z ( 10,000-n. mi. 21 image. Landsat images are 'also available as photographic
prints and transparencies.

l_:achdistal Landsat image is di_eminated as a set of four 730-m 12400ofi) computer-_:ompatible tal_:s
(('CT's) that segment the scene into four vertical sections of 810 columns of data 40 km (25 n. mi. wide1

and 2340 scan lines of data repre,_nting 185 km (100 n. mi.I for all four image channels or spectral bands. The
analysis of lamdsat imagery in this study was extensively structured around machine classification of this dig-
ital MSS data. Little direct photointerpretation of the photographic form of Land_t imagery was performed,
_:xcept in a support role to the computer analysis activities, such as supervised training-,_;te selection and
general geographic reference.
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OVERLAYING LANDSAT IMAGES ON THE LANDSCAPE MODEL

Computer analysis 6f remote sensing imagery is symbiotic with the process of landscape modeling described
previously. It provides the important current and past land-cover inputs to the landscape model. The accu-
racy of the computer interpretation of the remote sensing imagery can then be improved hy including land-
scape variables, such as topographic elevation. Combining the available remote sensing imagery with map
information in the landscape model provides a basis for improvements in both activities. Coincident spatially
registered overlays of readily available map information on the Landsat multispectral imagery provides a

basis for improving the accuracy of machine-interpreted land-use or land-cover maps. These improved auto-
maticaily interpreted m_ _:of land use or land cover also "feed back" directly into the landscape model to
provide a timely measure of past and present dynamic tendencies for change in the land use or land cover.

Review of Image Processing

Image preprocessing may be defined as one or more transformations used to sample, calibrate, restructure,
or reformat the basic analog/digital scene so that it acquires new properties that facilitate subsequent man
or machine interpretation. These transformations can be either image-enhancement or image-restoration
operations. The former emphasizes certain features of the image's radiometric content: the latter compen-
sates tbr image-degradation factors. Ten general sources of image degradation and attendant factors have
been identified as follows (Reference 32):

• Illumination (luminance, terrain features, and viewing geometry)

• Terrain (geometry, lleight profile, Earth curvature, and viewing perspective)

• Atmosphere (absorption, refraction, and background illuminance)

• Spacecraft motion (orbit rates, attitude, and attitude rates)

• Sensor optics (lens, aberrations, mean time before faihlre, and boresighting)

• Sensor electronics (nonlinear sweep, scene-induced distortions, and detector response)

• Spacecraft recording (signal-to-noise ratio (SNR). nonlinear tape dynamics, and tinting signals)

• Data links (SNR, transmitter/receiver, modulation, and signal noise)

• Ground recording (SNI_ nonlinear tape dynamics, and tinting signals)

• Image processing (recording/playback, storage, and image transfomlation)

hnage translbrmation operations may beeither analog or digital. Although analog operations often achieve
speed-increasing parMlelism, they have a limited number of processing opti(ms and tend to sacrifice accuracy.
Digital preprocessing, on the other hand, has advantages in near-total flexibility and higher subsequent
accuracy hut is usually more time-consuming as currently executed on conventional serial-processing

conlpute_.
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Image smoothing and image sharpening are two local imag_-enhancing operations. The former reduces the
high-frequency content of an image, thus eliminating noise. Conversely, tho latter suppresses low frequencies
for edge or boundary enhancemertt. Digital, electronic analog, electro-optical, noncoherent optical, and
photographic media are all used to implement these operations in the spatial domain by convolving the
image-enhancing function witl_ the untransformed scene. The frequency domain can also be used for spatial

filtering operations by using digital.Fourier transforms to generate the image's frequency spectrum and then
reconstructing an image after selective suppressiofl of undesired frequency spectrum components. These
concepts of image-enhancing operations can be generalized to any form of bandpass filtering to include inter-
mediate frequencies as well.

Image-_estoring point operations seek to remove radiometric errors. Analog or digital corrections can be
applied if the errors are systematic and the causative factors, such as luminance, terrain features, and viewing
geometry are known (Reference 32).

Although these preprocessing techniques are effective in reducing the effects of image radiometric and deg-
radation factors, they were not used because the principal thrust of this study was to test a specific hypothesis.
However, to the extent that they could potentially improve land-use classification results, these techniques

should be kept in mind for future application.

Preprocessing for Geometric Rectification

The primary image preprocessing used in this study was geometric image transformation whereby a set of
picture elements collected on a geometrically distorted grid were converted to samples on another precisely
rectified grid (figure 47). This method was necessary because the digital CCT's of the Landsat images were
not geometrically corrected, and their utility for mensuration, precise location, and spati,d/temporal regis-
tration was theretbre limited. The correction of geometric errors was imperative because this study required
Landsat digital imagery that spatially matched ancillary landscape data planes derived from multivariate
maps of the Denver Metropolitan Area.

The following major sources of Landsat geometric errors have been cited (Reference 33):

• Rectangular picture element

• Spacecraft altitude variations

• Spacecraft attitude variations

• Earth rotation skew

• Orbital velocity changes

• Line-scanner time skew
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o Original [and_t Data Input X-Grid
New TransformedOutput Y-Grid

FIGURE 47. GEOMETRIC RELATIONSHIP OF ORIGINAL AND NEAREST-NEIGHBOR

TRANSFORMED LANDSAT IMAGE CELLS. The new or output grid repCesentsa counter

clockwise rotation and re$caling of the original input grid. eT is the total Euclideart error
distance introduced by the ncerest-neighbor resampllng technique (from Reference 34).

• Nonlinear line-scanner sweep

• Line-scanner viewing geometry

• Non-north-oriented image.

tO

Resampling techniques for geometric image transformation include the btlinear and cubic convolution, nearest
neighbor (NN), and various truncated versions of sine x/x. It has been shown (Reference 32) that the cubic

convolution function gave substantially higher-quality images for typically encountered scenes. Nonetheless, 1
for economy in the use of computer resources, it was decided to proceed with an NN resampling of the un- :'q
rectified digital scene. Little geometric error is introduced by using this process when the scene content i
changes slowly or when the interpolated value lies close to an initial X-grid point (figure 47). Further, errors .1
induced by NN resampling should be regarded as residual geometric errors rather than as intensity errors. ,d

Lastly, initM efforts at developing an NN resampling computer program had already produced a rudimentary it
but workable and economical piece of software, i!

!,The NN resampling program was improved to accommodate the full four-channel, 600- by 600-element image !
needed to cover the Greater Denver Metropolitan Area. These alterations also provided for square resampling
units of any specified acreage o_ rectangular sampling units representing the correct geometry for both six
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or eight vertical lines per inch displays at any given scale (figure 48). The improved software (ROTATE2)

operated in an "open-loop" geometric correction mode without feedback from any ground control points.
However, th_s initial rectification (figure 49) of three corrections (scale adjustment, Earth rotation skew, and
image rotation) was further improved with the addition of the nonlinear line-scanner sweep correction.

Landsat image height and width dimensions we _djusted to match pictorial detail on 1:24,000-scale rectified
displays to the corresponding control mosaic of four by four 7.5-minute USGS topographic map sheets
(figure 5). The rectilinear road network appeared dark on MSS-7 solar infrared graymaps, and was the chief
geometric registration factor. Major roads were located over the entire base-map mosaic to appraise the image

height and width parameters. Spot checks of the geometric fit on the extensive network of lakes, reservoirs,
and parks were also made on these distinctive features. A spatial registrar'on between the rotated MSS-7

graymaps and the base-map mosaic was finally achieved, matching the desired number of picture elements
to within one cell over the 39-km (24-mi) image height and width.

Each of the four basis MSS bands was rectified for square 0A-ha ( 1. I I l-acre) picture elements yielding nine

Landsat-1 cells in a three-by-three array exactly equal to the 4-ha (IO_acre) landscape data cell. This wa_
done one band at a time, because a somewhat larger scene was transformed to ensure that the desired study

area was enclosed, and the entire core capacity of the computer was occupied in the 600- by 600-element
rectification. Hence, four MSS single-channel files, 615 lines by 654 columns, were generated, subsequently
manipulated to produce a composite overlay of the four-band fi1_. and then trimmed to yield the exact study
area of 576 lines by 576 columns (figures 50 and 51).

100
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0 I ,,, I l
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SQUARE GRII_CELL AREA (ACRES)

FIGURE 48. RESAMPLING EFFIClENClES OF THE IMAGE GEOMETRIC TRANS-

FORMATION. The application of the nearest.neighbor approach in resampling to a

square grid transfers percentages of the samples shown from the input grid (X-grid)

to the output grid (Y-grid) as shown in figure 47.
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Displayscalenominally1:173,600 Display_la nominally1:173,600

(a) Unrectifiedred image (b) Unrectiti,_lsolarIR image
(MSSband5: 0.6 to 0.Tpm). (MSSband 7 : 0.8 to 1.1pro).

Dlspldyscale1:173,600 Displayscale1:173,0U0

(c) ReQttfiedred image (d) Reotifiedsolar IR Image
(MSSband 5: 0.6 to 0.7pro). (IVISSband 7 _ 0.8 to 1.1pro).

FIGURE 49. COMPARATIVE DISPLAY OF THE ORIGINAL UNRECTIFIED ANu THE TRANSFORMED
(RECTIFIED/RESAMPLED) MULTISPECTRAL LANDSAT IMAGERY OF THE DENVER METROPOLITAN

AREA. The raw or unrecttfied Landsatpictureelements,(a) and (b), are 192- by 259-foot inclined rectangles.
The resampledpictureelementsare rectified210.foot north-southsquares,(c) and (d), that are displayedfrom
computer-compatibletapesasmicrofilm graymapswith a cellularresolutionof exactlyninepictureelementsper
10 acres,or approximately1A acresper pictureelement.The displayscaleof (c)and (d) isnominally1i173,600.
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Display sdale1:260,000

FIGURE 60. LANDSAT-1 MSS BAND 5 VISIBLE RED IMAGE OF THE DENVER METROPOLITAN AREA.
Graymapof the Augmt 15o1973 Imageshowingb76 by 876 imagecellsexactly esthay wereoverlaidfrom the
Lendmtcon_puter_ompattbletapesto yield 1.111 acrepersquarecell. A squarethree-by-t_hreearrayof these
ImaAecellsof 10 acresexactly overlaidthe square10-acrecellsot the landscapeoata planes.
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Display scale 1:250,000

FtGUFtE 51. LANDSAT.1 MSS BAND 7 SOLAR INFRARED IMAGE OF THE DENVER METROPOLITAN

AREA. Graymap of the August 15, 1973 image showing 576 by 576 image cells exactly as tl_ey were overlaid

from the Landsat computer¢ompetible tapes to yield 1.111 acre per square cell. A square three-by-three array

of these image cells of 10 acresexactly overlaid the square 10-acre cells of the landscape data planes.
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Pmproce_]ng to Form MSS-BandFlatim

Ratioing has been advocated as a means of effectively reducing random fluctuations of MSS reflectance

values caused by source variations and changing atmospheric condition._ (References 34 and 35). Ratioi._
is simply tile division of the digital radiance value of one MSS ba'nd by that of another o, a cellqo-cell I_asis.
A r_ttioof the near-infrared and chlorophyll absorption bands proved to be well correlated with the functioning
green biomass in grasslands (Reference 3(_). The ratio of MSS band 7 to band 5 enhanced the effect of hie-
mass changes (Reference 37). The main advantage of band ratios in vegetation classification is an improved

signal-to-noise ratio ( Reference 37).

Twelvepossible ratios can be computed for the lbur primary MSS bands taken two at a time: however, six
of these are merely the inverse of the other six. Because the spatial variation in the ratio of any two speclral
bands is the sar/le as the ratio of the inverse of the two bands, except in a:* inverse sense, the inverse ratios
provided no unique d!fferences and were therelbre omitted. Six ratios between tile four original MSS band._
were thus computed and interspliced back into 'the multichannel image/landscape variable file using the LMS
programs. Each picture element in this file was represented by ten ialage values, one each for MSS bands
4, 5, 6, and 7 and for ratios 5/4, 6/4, 7/4, 5/6, 7/5, and 7/6.

Merging of Landsat and LandscapeData Planes

Digital Landsat imagery was geometrically corrected and resampled to overlay the landscape model with a

square cell resolution of 0.4-ha (1.111 acre) that nested a three-by-three array uf Landsat cells exactly into
4-ha (10 acres). It was next necessary 'totransform each of the 36,864 data cells in each of the 34 landscape

planes, the assembly of which was described in Chap'ter 2, into a three-by-three array of 0.4-ha ( 1.11 I-acre)
cells with the origin',d4-ha (10-acre) value duplicated in all nine cells. This zoom-like transformation pre-
served the spatial reg::,_"ation because the Landsat image data planes were three times larger in height/width

elements than the landscape data planes-576 picture elements to 192 landscape cells. This expansion
function was performed on the 34 landscape variables with an auxiliary program (ANCILLA RY). The

resultant expanded or zoomed landscape planes appeared. 'tobe somewhat blocky in comparison to their
original form (figure 52), but they were now in perfect one-to-one registration with the Landsat imagery
at, the 0.4-ha (I. I I 1-acre) resolution representing 331,776 cells. Subsequently, the lO-variable Landsat

imagery and the zoomed or expanded 34-variable landscape data were merged into a composite 44-variable
data file (figure 53). These 44 variables were embedded in a standardized packed binary tbnnat of the
landscape-modelir_g/image-processing system for analysis.

Prel6rocessingto RemoveTerrain Effects 1

Normalizing is proposed as a preproccssing technique lbr spedfically removing terrain effects. Normalizing

is simply the division of the digital radiance of an MSS band by the computed Landsat overflight insolation
on a celt-to-ceU basis. Although normalizing is mathematically similar to ratioing, the denominator is an

ancillary variable, and the resultant quotient is .also,n ancillary landscape variable.

Identical surface-cover ntaterials may have been imaged at diff _ent radiance values in a given MSS band
because they occurred on varying terrain (i.e., differing slope, ;,spect, or topographically shaded areas).
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Display scale 1:500,(100, Display scale 1:500,000

(a) Unexpanded slope plane (b) Unexpanded insolation plane
leach cell = 10 acre) leach cell : 10 awe)

i:

I

Display scale 1:173,600 Display scale1:173,600

(c) Thre_by-thrne expanded slope plane (d) Three-by-three expanded insolation plane
(each cell r 1.111 acre) (each cell : 1.111 acre)

FIGURE 52. DISPLAY OF THE EFFECT OF THE EXPANSION OF THE ANCILLARY MAP DATAPLANES

IN THE LANDSCAPE MODEL FOR OVERLAY ON LANDSAT IMAGE DATA PLANES. Nonimage mapdata

cells representing 10 acres each were duplicated in a three-by-three picture-element array to exactly spatially over-

lay the higher-resolution (1.111-acre) rectified/resampled Landsat picture elements (figure 50). Unexpanded an-

cillary data disp'_vs, (a) and (b), scale 1:500_000. Expanded ancillary data displays, (c) and (d), show the ex-

panded center one-ninth of (a) and (b) at a nominal scaleof 1: 173,600.
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ORIGINALPAG_ [S
OF POORQUAT,r_v

Oioplaystole 1:173,e00 Display

(o) Three-by-lhreeexpandedslope (d) Thretby-thru ImpendedInsolation
encillerydata plane ancillarydate plane

FIGUFIE 63. DISPLAY ILLUSTRATING THE OVERLAY OF SELECTED PHYSIOGRAPHIC MAP DATA ON
THE LANDSAT MULTISPECTRAL IMAGERY OF THE DENVER METROPOLITAN ARI_A. Thirty_Ight
ancillary lend-use,physiovaphlc, socioeeonomi©,tramportation, and four of MSS/imole_on retib datx planes
were thus combined with the basicfour Landsatmultispectrelchannelsano s_x0magetransformation (I.e.,
channel ratios) into | composite48x_annel Lendsatimage/ancillarydata tile for automated imagepro_ssonll.
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If these illmnination effects arc proportionally constant for both the MSS band and insolation value, the

ratio of the two parameters will negate tile tet'rain effect because it appears in both the numerator and
denominator.

The LMS programs (Appendix B) were used to create (TRANSF2) four MSS/insolation normalized bands

and to intersplice (COMBINE) them back into the composite image/landscape data file as the last four an-
cillary landscape variables. Thcrelbre, the complete 48-variable data file was cofnposed of the four original

MSS bands, six MSS band ratios, and 38 land-use, physiottraphic, socioeconomic, transportation access, and
MSS'insolation normalized ancillary landscape variables (figure 3).

MULTIVARIATE CLASSIFICATION WITH RECTANGULAR TRAINING SETS

Feature selection with muitispectral scanner' data commonly uses training sets. A training set is a subsample
whose identification is known to an acceptable level of accuracy. The training set is used to generate subpopu-

lation statistics for efficiently implementing decision rules in the following classification phase. Overall utility
of the feature extraction process is ,ntingent on the quality of samples selected to serve as a training set (i.e.,

:I

sample size. spat:'_l distribution, and efficiency). Tile basic problem is the identification and selection of

samples with the correct probability distributions in n-dimensional space, where n is the number of variables

of the multispectrai imagery. These pr-_bability distributions are then used to construct decision rules that
can be used to represent the prediction sample set.

A nut.oer of data displays are used with MSS data to facilitate feature selection, such as histograms for each

class and data plane or spectral overlay, as well as correlation and covariance matrices between classes. Para-
metric discriminants, such as Bayesian probabilities or maximum likelihood functions, are usually used with

training-set data to develop the classification algorithms. Here, linear-discriminant analysis was used as in

('hapter 3 to reduce a multivariate problem to a univariate situation.

Others have tested many alternative procedures because of the great amount of computational time required
l',,r the maximum-likelihood ratio. For example, it is possible to reduce the number of data through sampling

and to save time with the decision rule itself (Reference 38). The decision rule commonly used is founded
on two assumptions: ( 1) that the data are (;aussian or normally distributed: and (2) that the training data for

each class adequately represents the entire class. Under these assumptions, the maximum-likelihood decision

rule becomes a quadratic rule. This rule requires many multiplications for each decision, especially when
many channels of data and many desired identification classes are used. The linear-decision rule also compared

favorably in accuracy and was 50 times faster than the maximum-likelihood function (Reference 38).

Very fast nonparametric procedures have been developed (Reference 39). These linear-discriminant limctions
achieved satisfactory results with multiclass,'multisl_ectral data as long as the order of class separability was

ohscrved during the classification process. Their algorithm took 5 minutes for one area, as compared to 70

minutes for six channels and 5 hours for 12 channels with the maximum-likelihood algorithm. Economies

like these will be important in making the computer more available land acceptable) Ik_rfuture machine
processing of multispectral imagery.

Other nOnl_arametric classification sttttlics that either cited increased speed or satisfactory predictions tlsed

a composite sequential chtstering algorithm (Reference 40), an elliptical boundary ¢onditiot_ model (Reference

41 ). and a lookup table procedure that was 30 times faster than the maximtml-likelihood .atio and generally
as accurate ( Reference 42 I.
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Initial feature-extraction activities in this study included careful selection of 72 rectangular training sets
totaling 2,413 picture elements, or three rectangles each to represent the 24 second- and third-order USGS

land-use classes to be mapped. Geometrically rectified and resampled MSS-5 and -7 8raymaps overlaid on
the l:24,000-scale topographic/land-use maps facilitated the entire process of selection and identification.
Stepwise linear-discriminant analysis was again used to test machine recognition and mapping of the 24 land-
use categories.

The initial or baseline rectangular training_set classification used only the original four MSS channels and
no other information to correctly reclassify 65. 2 percent of the t,,.ining sample back into their correct land
use (table 13). This percentage (FOM) will be referred to hereafter as training-set accuracy. An overall FOM
or training-set accuracy is defined as the total number of cells correctly classified, divided by tile total number
of cells, times I00 to obtain a percentage (Reference 34). A second baseline classification used the original
four MSS bands plus the six transformed image channels consisting of the ratios of the basic four bands to
yield an improvement of 2.1 percentage points to an overall average training-set accuracy of 67.3 percent.
This indicated that the six ratios of the basic four spectral bands contributed little to this particular land-use
classification (table 14).

Next, the 31 landscape data planes, exclusive of any categorical-type land-use data planes, were included with
the ten image bands, raising the accuracy of the correct training-set identification to 99.7 percent for the 24
classes (table 15). Therefore, 99.7 percent of the 2,413 test image cells could be correctly assigned to their
known land-use category. The random assignment of these cells to the 24 land-use categories would have
yielded 1/n = 24 classes times 100 percetlt = 4. l-percent accuracy. Thus, this represented a significant in-
crease in the accuracy of automatically interpreted Landsat imagery with the symbiotic inclusion of spatially
overlaid ancillary map information. Only 40 variables were included in the final model because total year-
round housing units tailed the stepwise tolerance tesf for inclusion in the function at step 23.

TABLE 13
TRAINING-SETACCURACYOF AUTOMATEDINTERPRETATIONOF THE FOUR ORIGINALMSSBANDSOF A
LANDSATIMAGE(August15, 1973)OF THE DENVERMETROPOLITANAREA. Thistableisbasedonidentifying24
landuses(table1) withthreerectangulartrainingsetsperlandusethat alsoprovidedthe testsampleof 2,413pictureele.
ments.The Landsat-1imagevariableswereaddedin a freestepwisefashionandwereclassifiedusinglinear-discriminant
analysis.

"rrainins-Set ('orrect Pt_ints/C-P

(lassification (..p, Second Fxpended
Fotal ('orrect Time

Srep Landsat F-Value
Number Variable I-ntered (free) Points Points Expended Step Average to l_nter

(.'orreet t'; ) (seconds)

I MSS-7 (solar infrared) 1,20t,1 50.0(_ 8,74 138,.. 138,._ I,o40.13

2 MS_5 (visible red) 1,518 (_2.ql t).o8 15(,.82 147.q¢) 5(,2.87

3 hiSS4 (visible green) 1,585 (,5.(_q ! 0.48 15I.24 14q. 17 II5.q(,

4 MSS-o (solar IR) 1.573 t,5. I_) 24.78 (_3.48 10').(_1 10.(_7

*('-P = central _rt_:_sor.
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TABLE 14
'-TRAINING.SET ACCURACY OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL LANDSAT MSS BANDS
•,AND SIX RATIOS OF A SINGLE-DATE LANDSAT IMAGE (August15, 1973) OF THE DENVER METROPOLITAN
.-AREA. This table is basedon identifying24 landuses(table 1) with threerectangulartrainingsetsper land usethat alsopro-
=videdthe test sampleof 2,413 pictureelements,The Landsat-1imagevariableswere addedin a free stepwisefashionandwere
II:lassifiedusinglinear-discriminantanalysis,

Training-Set CorrectPoints/('-P
(lassification (..p, SecondExpended

Total Correct Time
Step Landsat F-Value

Number VariableF.nteted(tree) Points Points Expended Step Average to EnterCorrect ('; ) (seconds)

I MSS-7(solarinfrated) L208 50.0b 11.49 105.13 105.13 I.(_40.13

2 MSS-5/MSS-4ratio 1,479 (d.29 12.12 121.93 113.70 573.23

3 MS_7/MS_t_ratio 1,522 (_3.08 12.83 ! 18.(_3 115.47 227.78

4 MSS-5(visible ted) 1,552 t_4.32 13.63 113.87 I15.04 93.8_)

5 MSS-4(,visiblegreen_ l.t_07 (_1b.60 14.42 11!.44 114.23 192.b3

_ MSS-bIMSS-4ratio 1,62! (_7.18- 15.30 105.95 112.64 108.88

7 MSS-7/MSS-4ratio 1,623 t_7.21_ 10.22 100.06 I I0.19 54.01)

8 MSS-5/MSS-t_ratio l.t_15 66.93 10.93 95.39 108.25 28.q0

_) MSS-6(solarinfrated) 1,624 t_7.30 17.45 93.07 106.22 10.!5

10 MSS-7/MSS-5ratio 1,624 "67.30 34.30 47.35 93.t)t_ t,.05

_'-P=central_roce_or.

--he stepwise linear-discriminant analysis algorithm automatically added each landscape variable in the order

--'1 which it added the most to the land-use classification accuracy achieved at that step. Clearly, the addition

J f many of the less sensitive landscape variables did not measurably increase the final accuracy achieved, but

ignificantly increased the total cost and decreased the cost-efficiency of the test classification {figure 54).

-hose accuracy and cost-performance values were used as the basis for selecting three optimal MSS spectral

ands and lbur landscape variables from the 41 initial variables for a final test of a more efficient and economic

rocedure. These seven optimal variables served to correctly assign all 24 land uses with an average training-

.-'t accuracy of OO.(_percent (table 16), as compared wifll the tj9.7.percent accuracy achieved with 40 variables

•"t almost two times the cost in central-processor time.

-he utility of the landscape data planes overlaid on the L-andsat spectral data base was evident in all classifi-

-ttion tests, tlowever, a potential time bias problem was inherent in most of the ancillary data planes. Spe-

fically, it was felt that the time-related cultural data (i.e., 1970 Census data) might unduly influence the

dgr_riminant functions toward the historical date represented by these landscape variables, particularly in

ew of their high F-vahtes. Therelbre, it was considered appropriate to statistically force in the current (Iq73)

andsat intagery variables in their free order belore the totally tree stcpwise entry of ancillary variables to

-duce the ancillary data time bias and to generate a more representative land-use map.
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TABLE 15

IMPROVEMENT IN THE TRAINING-S_.T ACCURACY OF AUTOMATED INTERPRETATION OF A SINGLE-DATE

LANDSAT-I IMAGE OF THE DENVER METROPOLITAN AREA BY ADDING 30 ANCILLARY VARIABLES, Thls table

is basedon identifying 24 land uses(table 1) with three rectangular training sets per land use that atso provided the test sample

of 2,413 picture elements. The Landsat.1 Image variables werA forced in the predetermined order (table 14) and the landscape
variables were added in a free stepwlse ration arid were classified ushlg l inear-disorimlnant analysis.

Training-Set Correct Points/('.P

(lsssiflcatton (,.We _,cond Expended

Step Total Correct Time F-Value
Number Variable l'n _.¢red Ppint_ Points Expended Step Aver_

Correct ('_) (seconds) to Enter
• iz

Lands'R fforeed)

I MSS-7 (solar infrared) 1,208 50.Oh 24.22 49.88 49.88 1,640.13

2 MSS*7/MSS-4 ratio 1,479 ol.29 24.08 59,21 M.ol 573.23

3 MSS-7/MSS-6 ratio 1.522 03.08 25.70 59.08 5o. 15 227.78

4 MSS-5 1visible red) 1.552 64.32 26.5| 5&54 .%.78 93.89

5 MSS.4 _vls|bte _reen_ 1.607 66.60 27.27 58.93 57.23 t92.63

6 MSS.o/MSS-4 ratio 1,621 o7.18 28.01 57.87 57.35 108.88

7 MS&7/MSS-4 ratio 1.623 67.20 24.00 55.97 57.13 54.06

8 MSS-5/MSS-6 ratio 1.615 o6.93 24.82 54.1o ._.72 2&40

4 MSS-o tsolar infrared1 1,624 07.30 30.36 53.44 56.32 10.15

!0 MSS-7/MSS-5 ratio ........... 1.624 o7.30 31.14 5_15 55.85 6.05

Landscape(ft_e)

11 Total census-t ract acreage 2.030 84.38 31.72 64.14 5o.71 1.13.372.71

12 Built-up urban area MD_ 2.1B2 8'_.60 32.49 6o.54 57.04 i.2o,4.12

13 Toposraphic elevation 2.278 94.41 33. l "7 6&o8 58.o2 1.060.76

t4 Freeway inteTchan$e MD Z343 _7. I0 34.OO 68.41 54.48 344. 27

15 Ftx'ewa¥ MD Z353 q'_.51 34.'_3 67//5 _0,13 620.O0

16 Median housinlPu nit rent Z344 ¢'.35 35.51 bt..l 5 o0.57 34%55

17 Composite major.mad MD 2.353 o7.,.I 31_.2"* o4.8 "_ (_0.88 221.08

18 Median housing-unit value 2.371 o8.26 3o.¢8 64.12 61.0 t_ 224.90

14 Total vacant housin_ units 2.380 4&03 37.75 a3.05 ol.22 182.63

20 Average number of ea_ per family 2.37o 48.47 38.50 ol.o2 ol.24 I Iq.81

21 Average number of vacant housing 2.387 t)&q2 30.33 _O.oq. O! .2! 110.39
units per aere

22 Population demity pet acre 2.382 ¢&72 3¢.86 5').?a o1.13 07.27

23 Total population 2.383 48. 70 40.o I 58.08 o 1.OO O_. 18

24 1404 mean family income Z37t_ 48.5'.) 41.34 57.55 00.82 103.80

25 rural two-car families 2,384 ¢8.80 42.08 5O.05 60.o0 135.20

20 Total thret_:ar families 2.3_0 9405 42.77 55.88 a0.37 102.20

27 Total year-round housing units 2.3_6 _ 30 45.73 52.34 54.98 105.41

28 Average number of year-round hi, sing 2.403 _q.54 45.17 53.20 5%66 _'/.3"1
units per acre - -_

24 Tot-',l fanfilies 2.3¢8 ¢_.38 45.10 53.17 5_.37 102.18

30 Total one.car famtlk.s 2.3_5 o_.25 45.77 52.33 5_.(h_ 142.24

31 Average number of families per acre 2.345 4_.25 4¢*.84 51.13 5873 Ol.&t

32 Landsat- I tmalg, instdation 2.39_ _.42 47.55 50.45 58.34 o3.71

33 Topolwaphic slope Z405 _).(0 48. I0 50.00 58.05 100.84

._4 Surt3ci_ geohYtty 2.405 qq.67 48,Oq 49.39 5"L71 38.35

35 Con_posite minor*mad MD 2.405 0,4.(s7 4u.oO 48.40 5"_3_ 35,28

30 Landsat-I MgS-5/msolatton ratio 2,405 oq.(_7 50.31 47 tit) 57.00 q.45

37 Landsat-I MS._4 insolation ratio 2.405 4,t t,7 51.01 47.15 5(,.¢.4 24.72

38 Landsat-I MS_7'insolatton ratto 2.405 tin.b7 51.7_ 46.4(, 5(,28 &30

3_ rop_raphw a'_pect 2.405 4t_.b7 52.54 45.'_7 55.OI 7.43

40 Landsat-t MSS-*,,m_dation ratto 2.405 04.t,7 53.35 45.0N 55 54 3?)6

*('-P -"central pa_x_sor,

tMD = minimum d_stance.
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FIGURE 54. TRAINING-SET ACCURACIES AND COSTS OF PROCESSING SINGLE-DATE LANDSAT
IMAGERY OF THE DENVER METROPOLITAN AREA WITH 30 ANCILLARY LANDSCAPE VARIABLES.

This figure is based on identifying 24 land uses (table 1) with three rectangular training sets per land use that also
provided the test sample of 2,413 picture elements. The Landsat-1 image variables representing the first ten variables

were forced in the predetermined order (table 14), and the ancillary variables were next added in a free stepwise
fashion and were classified using linear-dlscriminant analysis. The variable numUers shown coincide with step
numbers and data-plane identities in table '15.
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TABLE 16
HIGH TRAINING-SET ACCURACIES AND ECONOMY ACHIEVED BY AUTOMATED INTERPRETATION OF A SELEC-
TION OF THREE MSS BANDS OF A SINGLE-DATE LANDSAT IMAGE (August15, 1973) OF THE DENVER METRO-
POLITAN AREA WITH OVERLAYS OF FOUR LANDSCAPEVARIABLES. This table is basedon identifying24 landuses
(table 1) with three rectangulartrainingsetsper land use that alsoprovidedthe testsampleof 2,413 pictureelements. The
•bandsatvariableswere forced in the predeterminedorder (table13), andthe ancillarylandscapevariableswereaddedin afree

stepwisefashionandwereclassifiedusinglinear-dtscdmtnantanalysis.

Training-Set CorrectPoints/C-P

Classification C-P* Second Expended ....
Total Correct Time

Step VariableEntered Points Points Expended Step Average F-Value
Number Correct (':_) (seconds) to Enter

Landsat(forced)

I MSS-7(solar infrared) 1.208 50.06 10.17 !18.78 118.78 1,640.13

2 MSS-5(visible red) !,518 6_91 11.04 137.50 128.52 562.87

3 MSS-4(visible green) 1,585 65.69 I i,70 135.47 130.99 115.96
T

Landscape(free)

4 Tofalcensus-tractacreage 1,992 8_55 I..3. 161.69 132.35 113,029.23

5 Built-upurban area MDt 2,143 88.81 13.19 162.47 146.96 !,33_26

6 Topographicelevation 2,242 92.91 13.77 162.82 149.98 2,007.72

7 Freeway interchangeMD 2,332 96.64 27.57 84.58 131.91 356.92

•C-P= centralprocessor.

t MD= minimum distance.

It has been carefully observed that, by the use of the term "training-set accuracy," these classification tests

indicated only the rectangular training-set accuracy for the use of Landsat and landscape or ancillary data

variables for mapping land use. Further testing was done to determine how accurately these feature extraction

procedures extended to the mapping of the entire Denver study site-the "verification" accuracy. The verifi-

cation test was performed by classifying the 36,864 cells of a larger one-ninth sample image with the discrim-

inant function develoPed from the 72 rectangular training sets for each variable added in the stepwise fashion

previously determined (table 15). This one-ninth training set was generated by rectilineady sampling every

third row and third colutnn for a total sample of 192 rows and 192 columns from the full 576- by 576-picture

element composite image. The accuracy of each successive map produced by this function in the step-by-step

fashion was then verified on a cell-by-cell basis by comparison with the known 1972-1973 USGS land-use

map stored in the landscape model (figure 55). The cost of computing and comparing a total classification

map at each step prevented the continuation of this process for all 40 steps. The average image-verification

accuracy was a surprisingly low 24.1 percent at the addition of the 28 t_ step (figure 56 and table 17), as

compared to the predicted training-set accuracy of 99.6 percent at the same step (table 15). The rectangular

training sets, carefully selected to statistically represent the 24 land-use classes by 2,413 points, were clearly

inadequate samples to represent the total sampled image of 36,864 points. Apparently, a fortuitous choice

of tr,dning-set samples gave extremely high training-set accuracies in this restricted pattern space. However,

the training sets were statistically insufficient descriptors for classifying the larger image sample and, for that

matter, the full image because the one-ninth sample image statistically represented the fidl image.

119

00000002-TSC08



i

i

This exercise clearly indicated that extreme care must be used in interpreting the many examples of training-
set accuracy in the technical literature. Similarly, this caution extends to test-set accuracy when the test fields
are selected in much the same way as the training sets and do not represent a truly random sample of the image
that will be subsequently classified. Judicious selection of training sets can be used to manipulate the final
training-set accuracy to be anywhere from very poor to very good, depending on the desired results. Better
methods must be developed tbr selecting training sets if the most accurate end product is desired, and a true

verification test on randomly sampled points must be included with the map produced.

MULTIVARIATE CLASSIFICATION WITH GRID-SAMPLED TRAINING Su.TS

Demonstration of the potential bias in conventional rectangular training-set selection (i,e., the wide disparity
between the feature extraction and the one-ninth sampled image.classification accuracies) led to tile develop-

ment of a self-veofying grid-sampled training_point approach. The search for the essence of the features of the
multivariate data set centered on the 1972-1973 USGS land-use data plane that identified the same 24 land-use

classes already tested. Proper use of this data plane provided control of training-set selection and gave a repre-
sentative sampling of all multivariate variables from the entire image for each of the 24 land uses.

At first glance, it may appear that using a map that represented a sample of the final desired output of tile
classification effort was self-defeating in that the "answer" was necessary for solving the problem. The col-
lection of training-set data for Landsat image processing has invariably been the one step that the ultimate
user of the classification maps undertakes: it is not the skilled image interpreter who completes this task.
It is just as easy, if not easier, to instruct the user to prepare a sample map of one or more subportions of
the total areas to be classified. He can prepare this map with conventional ground and airphoto methods with
which he is usually familiar. He can prepare it to represent the type of final product desired, conditioned by
what is reasonable to expect from Landsat image classification. These sample maps might be two or three USGS
7.5-minute quadrangles that are representative of the materials that occur in 2600- to 5200-kin 2 ( 1000- to
2000-mi 2) area to be mapped. It is claimed that this procedure is more clearly understood and completed than
instructing the user to collect illush ative training sets for each surface-cover type sought. This is especially true

if the image analysts are not certain of the exact nature of the training sets desired or their subsequent impact
on the classification accuracy of the final map products sought.

The test of the hypothesis employed a grid-sampled point training set that was created by resampling every
third row and third column of the one-ninth sample image. This yielded a one-ninth times one-ninth (1/81-
sampled) image of 4,100 training points of known land use by reference to the overlay of 1972-1973 USGS
land use. This systematic point-sampling process represented an efficient statistical distillation of the data set
while providing uniform coverage of the study area. Further. the systematic sample chose land-use sample
points in proportion to their representation in the entire image. Hence, the probability of the selection of
points was proportional to land-use type frequency. This assumed, of course, that the user was proportionally
interested in all final classes roughly in proportion to the amount of their occurrence in the sample map.
Specific interest in locating a given surface cover or covers in the context of all other materials constituting

a background would require the reexamination of this sampling approach.

Machine recognition and mapping of the 24 land-use classes was again tested by stepwise linear-discriminant
analysis. The 4,100 grid-sampled points were grouped into a training set to represent the 24 of !972-1973
USGS mapped land uses. The first classification with this training data employed the four basic MSS bands
with no other information. The 4,100 samples grouped in the tra aing set were used to compute the dis-
criminant function in a stepwise fashion. The samples were then test-classified using the same function and
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FIGURE 55. VERIFICATION OF THE MAP AC-
CURACY FOR THE DENVER METROPOLITAN
AREA FOR ALL 1972-1973 USGS LAND-USE
CLASSES (August 15, 1973 Landsat-1 image). A
point was plotted in black if the individual cell
was correOtly classified when checked against the
correspondingcell on the digital 1972-1973 USGS
land-usereference map. The linear-discriminantal-

gorithm developed from the rectangular training
setswas usedto classifythis one-ninth rectilinearly
sampledimage. It usedthe first 20 variablesandcor-
rectly classified9,740 points into 24 second-and
third-ordarclass6sfor a 26A-percent accuracy.

step order. A total of 1,554 points were correctly classified after the four steps, yielding an FOM,* or

overall accuracy of 37.9 percent (figure 57 and table 18). Since the one-,dnth by one-ninth rectilinear-point

training-set sample of 4, ]00 points constituted _ stat,stical sample of the points in the final map, this accuracy

closely represented the final map accuracy that might be expected. It therefore directly represented map or

verification accuracy in lieu of the training-set accuracy usually achieved by this type of activity. The repre-
sentative nature of the verification accuracy achieved here with the ]/8 l-sample re'lative to the final, total

accuracy achieved by using the same discriminant function will subsequently be clearly established.

Tile second test made use of the ten-band combination of four original MSS bands and six transformation

ratios and achieved a slightly improved 38.4-percent verification accuracy. Again, the six MSS ratios contrib-
uted little to the improv,merlt of the classification ffigure 58 and table 19).

The full array of landscape variables, lessthe land-use data planes, were next included with the ten image
bands. Verification accuracy was raised 16 percentage points to 53.9 percent by using these 31 nonland-use

*The FOM-tbe average cbssification acc_acy-is defined as the total number of correctly cla_fled celb, divided by the total number of cells
times 1 O0 to obtain a percentage value.
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FIGURE 56. LOW VERIFIED LAND-USE ACCURACY FOR AUTOMATED INTERPRETATION USING REC-

TANGULAR TRAINING-SET STATISTICS. The dtscriminant function was derived from the three rectangular

training sets of each land use representing a 20413-point sample. It was applied in the same stepwise fashion aspre-
viously determined (table 15) to classify a rectilinearly sampled one-ninth image of 36,864 points. This sample image-

classification accuracy was only 24.1-percent correct, basedon a point-to-point comparison to th,. s972-1973 USGS

land-use reference map, whereas 99.6-parcent accuracy was achieved on the rectangular training-set samplP at step
number 28. The potential bias of manual training-set selection was clearly evident in this case.The variable numbers
coincide with step numbers in table 15. Intermediate variables were included in the classification, but their accur.
acieswere not checked.
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TABLE 17
LOW VERIFIED LAND-USE ACCURACY FOR AUTOMATED INTERPRETATION USING RECTANGULAR TRAINING.
SET STATISTICS (August 15, 1973, image).The fortuitous selectionof rectangulartrainingareasyieldedunrepresentative
statitlticsthat could sharply separatethe sample blocks (table 15), but that were inapplicableto the rectlllnearlysampled
image (figures55 and _]). This table is b=sedon Identl_lng 24 land uses(table 1) of 36,864 pictureelementson a polar.to-
point comparisonwith the digital 1972-1973 USGS land-usereferencemap. The variableswere addedin the predetermined
order of table 15, usingthe discrlmlnantfunctiondevelopedfrom the 2,41&point samplerectangulartrainingset. The image
accuracywas a disappointing24.1 percentafter 28 variable=addedversusa predicted99.6 percent. Intermediatevariables
were included,but their accuracieswerenot checked in the classification.

Training-Set C-P* Correct Pomts/C-P
Step Classification Time Second,Expended F-Value

Number Variable Entered Total Correct Expended, to Enter
Points Points (Seconds) Step Average

Correct (%)

Landsat (forced)

2 MSS-5/MSS-4ratio l 1,185 30.34 378.81 29.53 29.53 573.23

4 MSS-5 (visible red) 10,708 29.05 403.74 26.52 27.98 93.89

6 MSS-b/MSS-4ratio 10,598 28.75 426.92 24.82" 26.86 108.88

"_ 22.448 MSS-5/MSS.6 ratio 10,365 .8.1, 461.85 25.64 28.90

10 MSS-7/MSS-5ratio 10.369 28.13 478.69 21.66 24.76 6.05

Landscape(free)

12 Built-up urban areaMI:H" 12,075 32.76 499.91 24.15 24.64 I,.94._ 1,

14 Freeway interchange MD I 1A25 30.99 527. Ib 21.67 24.15 34q.27

Ib Median housing-unit rent I 1.445 31.05 554.67 20.63 23.63 349.55

!8 Medianhousing-unit value 10,417 28.26 580.60 17.04 22.86 224.90

20 Average number of cars per family 9,740 26.42 599.09 16.26 22.06 119.81

24 1969 mean family income 9,162 24.85 638.01 14.36 21.17 163.80

28 Averagenumber of year-round 8,870 24.06 682.75 12.09 20.28 97.37
housing units per acre

*C-P= centralpro_essor.
tMD = minimum distance.

landscape variables to classify the 24 land uses sought. Although not as spectacular as the increase in training-

set accuracy achieved when using the rectangular training sets, the 53.9-percent verification accuracy was

realistically representative of larger-scale image-classification results (figure 59 and table 20).

Verification

The discriminant function for each step was saved from the 41-va:dable discriminant analysis of the 4,100

grid-sampled point-training set for verification testing on the one-ninth sampled image. The clarification

resuits and resultant step-by-step display maps confirmed the utility of the 1/81-grid-sampled training set

as a valid and representative sampling of the larger image and illustrated a successfid display product of the

new systematic, point-feature extraction process. The 52.9-percent verification accuracy for this one-ninth
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FIGURE 57. VERIFICATION ACCURACIES AND COSTS OF PROCESSING SINGLE+DATE (August 15, 1973)

LANDSAT IMAGERY OF THE DENVER METROPOL ITAN AREA WITH FOUR MSS BANDS. This figure is based

on identifying the24 land uses (table 1} with 40100 grid_ampled picture elements and the 1972-1973 USGS land use
data plane. The Landsat channels were added in a free stepwise fashion. The variable numbers coincide with the step
numbers in table 18.

124

. ++

,.,. .....+_ .+++..++-..++,_+. .+..+.,.,,.,+, . ............... O0000002_TSCI_



TABLE 18
VERIFICATION ACCURACIES OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL MSS BANDS OF AN
IMAGE (August15, 1973) OF THE DENVER METROPOLITAN AREA. This table is basedon identifying 24 land uses
(table I) with a test sampleof 4,100 picture elements. Theseelementswere systematicallysampledfrom the centerof each
nine.by-ninearrayof pictureelementsand identified and groupedby the land.usacodesspecifiedby the 1972-1973 USGS
lend.usedata plane. The Landsat.1 irneg_variableswere added in a free stepwise fashion and classifiedusing linear-
dtscrlmlnantanalysis,

Traininl_-Set Corrcct-Points/C-P
(lassifieation (,.p, Second Expended

Total Correct Time
Step Landsat F-V=due

Number VariableEntered(free) Points Points Expended Step Awr,tge (o Enter
Correct (','_) (seconds)

"13 "1_I MSS-7(solarinfrared) 1.290 31.46 14.70 87.,. 87.,, b8.5o

2 MSS-4tvisiblegreen) 1.35b 33.07 10.32 83.09 85.05 33.21

3 MSS-5(visibler_d) 1,554 37.90 18,54 83,82 84,59 35.41

4 MSS-(_(solarinfrared) 1,554 37.90 19.95 77.89 82.67 1.23
. .,

*C-P= eentr,dprocessor.

sampled image after the 41 st step was substantially the same as the 53.9-percent verification accuracy achieved

with the l/Sl point-sampled training set (figure 60 and table 21).

Classification maps of the oat-ninth sampled image were preserved for each of the variables tested as they

were entered in the predetermined stepwise order (table 19) into the discriminant function. The accuracy

of each successive map produced in this stepwise fashion was verified on a point-to-point basis (36,864

points) by comparison with the known six first-order USGS classes* (figure 61 ) and 24 second- and third-

order USGS class_,=s(figure 62). These verified classification maps displayed urban, agricultural, and combined

agricultural/urban land-use themes for every fourth variable added. The incremental verified accuracy con-

tributed by the stepwise-added variables (table 2 l), together with its spatial distribution, can be visually

assessed in this fashion relative to the 1972-1973 USGS reference theme maps (figures 61 and 62). I

Finally, two additional verified classification maps were displayed for the last or 41 st step results for the one-

ninth sample image. The average composite second- and third-order verified accuracy was 53.9 percent for

the 19,482 correctly classified points(figure 63a). Tile average first order* verified accuracy was 78.3
percent for the 28,871 correctly classified points(figure 63b) out of a population of 36,864 picture elements.

MAXIMUM-LIKE LIHOOD CLASSI FICATION WITH GR ID-SAMPLED TRAIN ING SETS i

The solution of the feature-extraction probl.=m provided an opportunity, to compare parametric versus non-

parametric classification algorithms for both accuracy and time using the maximum-likelihood ratio and the

linear-discriminant function respectively,

*Classified at tile _..eond- or third-order US(;S _tegories. but checked or verified against the correct first order of six-gross land uses onh,
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FIGURE58. VERIFICATION OF ACCURACIESAND COSTSOF PROCESSINGSINGLE-DATE(August15,
1973)LANDSATIMAGERYOF THEDENVERMETROPOLITANAREAWITHTHE FOURPRIMARYANDSIX
MSS-BANDRATIOS.Thisfigureis basedon identifyingthe 24 landuses(tableI) with4,100grid-sampledpicture
elementsandthe 1972-1973USGSland-usedataplane.TheLandsatvariableswereaddedinafreestepwisefashion.
ThevariablenumberscoincidewiththestepnumbersandMSS-band/ratioidentitiesintable19.
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TABLE 19 '_

VERIFICATION ACCURACIES OF AUTOMATED INTERPRETATION OF THE FOUR ORIGINAL MSS BANDS AND !

THEIR SIX RATIOS FOR A SINGLE.DATE LANDSAT IMAGE (August 15, 1973) OF THE DENVER METROPOLITAN

AREA. This table is based on identifying the 24 land uses (table 1) with a test sample 4,100 picture ele_hents. These ale.

rnents were systematically sampled from the center of each nine-by.nine array of picture elements and identified and grouped

by the land-use codes specified by the 1972-1973 USGS land.use data plane. The Landsat-1 image variables were added in a
free stepwise fashion and were classified mine linear-disctiminant analysis.

Training-Set Corro:t Points/C-P

(-'l_sification (:p, _'¢ond Fxpendcd
l"otal ('orreet Time

Step Landsat F-Value
Numlx.r Variable Entered (free) Points Points Fxpended Step Average to Enter

C'orrcct (";,) t_¢ontis_
J ......

i MSS-7 (solar infrared) l. 2')0 31.4t_ !% 14 b7.40 b?.40 b8.50

2 MS_5/MSS-4 ratio 1.417 ._. 5t_ 20.50 ¢_o.12 08.20 37.02

3 MSS-7/MSS-5 ratio 1.4o5 3o.4tl 2 I. 70 08. 70 o8.44 38.01

4 MSS-4 (visible green) 1,551 37.83 23.15 07.00 08.04 25.46

5 MSS-5 (visible _d) 1,570 38,2q 24.41 04,32 07,21 52 5o

o MSS-7/MSS-4 ratio 1.5o2 38.10 25.75 bO.bo (,5.06 10.54

7 M,_S-5/MS_O ratio 1,562 38.10 2o.8tl 58.15 o4.o(_ o. I0

8 MSS*7/MSS-I_ratio 1,570 38.2q 28.00 55.8q b3.3b 3.34

q MSS-tl (solar infrared) 1.575 38.4 ! 20.3 t) 53,5q 02.05 i.08

I0 MSS-tl/MSk%4ratio 1.575 38.41 30.77 5 I. IO o0.71 .._.8_

*C-P = central prtk:essor.

l'he same 4.100 entities of tile 1/81 grid-sampled lx_int-training set were used to generate tile mean and

covariance tnatrices for classifying tile one-ninth sampled image by nlaximum-liklihood ratioing with four. ,,

six, and 22 variables. The four-variable combination was tile basic four MSS bands. The six-variable set included i

MSS-4, MSS-7, MSS-7/MSS-5 ratio, MSS-5/MSS-4 ratio, topographic elevation, and urban built-up nlinitnttnl i

distances. The 22-variable run contained tile tnaximunl nutnber of tile 41 variables that could be used (that

is, those variables with nonzero variance in all classes and therefore capable of matrix inversion). These were

the four basic MSS bands, six MSS ratio_ four MSS/insolation ratios, topographic elevation and aspect, in-

solation, and five transportation tnininmnl-distance variables.

These three combinations were applied !o the one-ninth sanlple in(age using nlaxitntnn-likelihood ratioing and

were checked for first- and composite second-/third-order accuracy on a point-to-point basis for the 3o,8o4
poitllS against tile 1972-1973 LIS(;S land-use data platte. These map, erification accuracies checked and dis-

played to tile first order were 53.0, 68. I, and o1.5 percent, respectively, for four, six. and 22 vitriables

(figure o4). whereas tile cotnposite second- alld third-ordor accuracies were 4.3, 15.4, i|nd 2.4 percent.

respectively (figure o5).

Tile 1/81 grid-sampled-point data set was classified by stepwise discriminantanalysis for the gnne Colubi-
nation of variables to provide comparative results at both tile first-and composite second- and third-order
levels for tile nonparantetric COlnparison liable 22). Although these linear-discrintinattt analyses were run

oll a snlallet data g't than that of tile ntaxilnunl-likelihood ratio tests, tile close correspondence of the I/S I

data mt to tile one-ninth mnlple-inlage results has already been docunlented.
L:
t
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Tile poor perfomlance of tile maximnm-likelihood ratio, especially for the second- and third-order classe_
was surprising. A detailed explanation for tills occurrence is not currently possible, However, the fact that
the first-order accuracies were comparatively high relative to the composite seoond- and third-order accuracies

may provide a clue. it is believed that the capability for specifying a priort class probabilities for discriminant
analysis materially improved all its classifications. No such capability existed in the maximum-liltelihood
algorithm used. Hence, it could achieve comparable results to discriminant analysis for only six first-order
classes: howt,wer, the statistical similarity of 24 second- and third-order USGS land-use classes proved too
much for it to handle.

A prerequisite for the use of the maximum-likelihood ratio algorithm is that the data are multivariate nor-
really distributed (Appendix D). The non-Gaussian distributions of the 4, I00 grid-sampled training-set points
could have conceivably accounted for the poor performance of the maximum-likelihood ratio in classifying
the 24 land-use clasps of the one-ninth image sample, However, the central limit theorum essentially states
that the distribution of either the sums of averages of n measurements drawn from any population tend to

possess, approximately, a normal distribution in repeated sampling when n is large (Reference 43). The
exact form of the distribution of the grid-sampled points is not now known, but the normal approximation

was justifiable in the four- and six-variable combinations in which the Landsat image bands were numerically
dominant.

This presented the perennial problem of equal versus weighted probabilities for predicting from a training
set to an unknown image seethe. The use of equal a priori class probabilities presumes equal likelihood of
each land use in the larger scene, whereas weighted probabilities presume that the image analysis has "a

priori" knowledge of the approximate amount of each land use within the classification set. Some knowl-
edge of the amount of each land use in the scene is invariably available or could be achieved by a cursory
inspection of Landsat imagery in the photographic form. Tile 1/81 point-sampled training set represented
a probability sampling proportional to total land-use area in the larger sampled image. These a priori class
probabilities were used for both training-set and image-classification efforts. The statistical benefits of
inputing this a pri(_ri knowledge to the linear-discriminant analysis, versus the assumption of equal proba-
bilities, was also tested and verified here for the different combinations and at both the first- and composite
second- and third-order levels (table 22).

Finally a clear econom/c advantage was also illustrated irrespective of classification accur._,:ics _ the
nmximum-likelihood ratio algorithm took 321.2, 583.7, and 1,574.0 seconds, respectively, for the
four-, six-, and 22-variable combinations. A computatiotml time adva.ntage emerged for the linear-discrin:inant

analysis flmction, which took 417.6, 441.4, and 624.0 seconds, respectively, for fivt,,-,seven-, and 22-variable
combinations (table 2 ! ). Clearly, the linear-discriminant function was much less sensitive to the increasing
number of channels. A further cost advantage emerges if cost is weighted by classificational accuracies for

a comparative analysis.

PRODUCTION OF LAND-USE MAPS

After the fcature-extraction step is completed, the fourth step in the pattern-recognition process is that of

decision and classification. All cells of interest are tested against all features selected t_r representation in
the t_,ature-extraction step. A probabilistic decision is then made to determine into which class each cell is

placed.
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FIGURE 59. VERIFICATION ACCURACIES AND COSTS OF PROCESSINGSINGLE-DATE (August15, 1973) I
t,ANDSAT IMAGERY OF THE DENVER METROPOLITAN AREA WITH TEN MSS-BAND/RATIO VARIABLES
AND 31 ANCILLARY LANDSCAPE VARIABLES. This figure is basedon identifving the 24 land uses(table 1)
with 40100grid-sampledpictureelementsandthe 1972-1973 USGSland-usedata plane.The Landsatimagevariables t
were forced in a predeterminedorder (table 19), and the landscapevariableswere addedin afree stepwisefashion. __
The variablenumberscoincidewith the stepnumbersandMSS-bendanddata-planeidentitiesin table20. _
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TABLE 20
IMPROVEMENT' IN THE VERIFICATION ACCURACIES OF AUTOMATED INTERPRETATION BY THE ADDITION
OF 31 ANCILLARY VARIABLES FOR A SINGLE-DATE (August 15, 19731 LANDSAT IMAGE OF THE DENVER
METROPOLITAN AREA. This table is basedon identifying 24 land uses(table 11with a testsampleof 4,100 pictureele.
ments. Theseelementsweresystematicallysampledfrom the centerof eachnine-by-ninearrayof pictureelementsand Identi.
fled andgrouped by the land-usecodesspecifiedby the 1972-1973 USGS land-usedata plane.The Landset-1variableswere
forced in a predetefrdinadorder (table 19), andthe landscapevariableswere added in a freestepwisefashionandwereclas.
siftedusinglincar-discriminantanalysis.

Training-Set ('orrcct Polnt_/('P

( laq_ifltation (:p, .%¢ond Expended ('; )

Total ('orru¢t" "lime

Step Vuriahl¢ Entered Prant._ PumP, l.xpended Step AveraBe I:-V;due
Number ('orr_t 1'; ) (,_.*cond_) to I'_ter

i
l.und.,,at t forced )

1 MSS-7 (solar in t'rared I 1.2qO 31.46 42.45 30.39 30.39 h&$6

2 MSS*5:MS_4 ratio 1.417 34,5(_ 43.84 32.32 31.3"/ 3%02

3 MSS-7 MSS*5 ratio IA_5 3¢_.46 42.25 35,38 3_69 3&61

4 MSS*4 (vbihle 8_'en I 1.55.* 37343 46.$2 33,34 3_80 25.46

S MSS-5 (visible rt*dl 1.570 3&2¢7 47.48 33,0-/ 32.91 5"*56

¢_ MSS-7:MSS*4 ratio 1.5¢+2 38.10 4&48 32.22 32.78 10.54

7 _1SS-5, MSS-(_ ratio 1.5(+2 38.10 49.37 3 I.(_4 32.fil 9.10

x MSS-? MSS*(_ ratio 1.520 3&2q ';0.52 31.08 32.40 3.44

9 MSS.<+ t,,olaf int+rared I 1.575 3++.41 51.25 30.73 3_40 1.08

I0 MSS-¢_;MS_4 ratw 1.575 3&41 52.ll0 2q.q4 31.95 2.28

Landscape IIrt'tt I

11 "h+poxraphic ele_ ation I.'q2 43.71 53.88 33.26 32.08 259.4(_

12 Average ,uml_,r .1 car_ tx'r fitmd_, I.l_ I _ 41+.?l, 55.24 34.70 32,33 "M,34

13 Built*up urhan art',+ MI) + 2.1)% 50.15 51+.52 31+.38 32.(_9 65.53

14 [opoltraphlc ,,Iop_" 2.(M(I 4_*_."¢, _%h7 35.3 '_ 32.qi 5(_.t17

15 Averse number t_l lamlhe_ tx.r acre 2.12ll <H._'I _8.'15 35.0h 33. l._ 32,3Q

II* I t_t_9mean lamd) inctnne ;, 1 Ix _ I.*,, hi1. I" 3¢.21) 33.30 25. I I

I ? Median hou,,in_-unlt _ahtv 2. | 2 "_ _,1._<_ l, 1.44 ._4 .it 2 33.3tl 30.21

I X Surlic_al _.'t )lol_ 2. I 15 _ I+_,l *,2. ?2 33,'_ 2 33,41 It,.(_h

19 ( ¢]nI|ltIMIC mln,r-road MI) 2. I ._,l %i._tI 1+3)Ill _3.2" 33.4() lit,50

20 l.and_at- I Image in._ola(ion 2.136 _ 2. l I) lift.23 32.25 33,3 _ 14.3ll

21 I-levta) ilt(¢rullangv MI) 2.1 _1 _1 '_x I#.._l 31 Ill _3,211 11,2l+

25 I.IwV, a) MI) 2. ltllt _ I.+_" ttX.(l(I 311.o? 33A1? 13, t_¢)

23 Median IIotlqIlgatml refit 2, I I ? _1.I. :t (.% 2 ! I0.5+_ 32.tM I (I.4 _)

54 [.alld_at- I MS_5 m_olatltm latll) 2.122 _ I.?f+ 7¢I.4+1 30 I(I 32.7q 8.(t2

25 hdal (v.tPcar lalnlht _, 2.12<; _ I.X3 "_1.2X 29 Xl 15.¢14 X. 14

5¢+ Land_t- I MS._4 in_,td_ttlou re(lit 2.121 _.1 "_ "3. Ill 2'_02 .12.4l_ l_.45

2'; lotal on@car lalnllle_. 2.140 ¢2.20 "4._|1 2_t "3 _2.28 1_.45

28 [ tit at pt)p_tlatl_t'_ 2. I .¢'-4 _2. _4 "8. _3 2? 5(I 3 '.(Ill (_.(ttl

2 tl I ¢ltdl laulllle_, 2.1 _ 2 _2.4'_ "X. 71} ?', 14 I l _ "_.t/3

3tl I ota| lllree-car lallllhe _, 2. I h 2 ¢12._ t_ _N _l) _ "_It | _ I.lilt H..t)h

"11 I*oIM teII'+U_etla_ I a+lvage -+.l¢ttl _2 '10 811.114 2" Ill .HAl, _._?

35 ('HInplPdte maj,r-rtmd _,II) 2.1¢,4 _2.'_ XI I<; +_ltIdl ll,2fi _ _._

3.1 lcttal (Irrupted IItUl_Illg Ullll_ 2.1l,_t <_+._ Xl li_ .+_ "X II ll-I 4 <UI

.;14 '_._.'r,l_e llUllIl+_"l ill _,d+JIll ]lilllslllff * I * " '_t I11 s,'; I .' ?_ <_P+ _ll N._ I IN

UIllh per a_ re

35 loI+ll xJ+,llll h,ttP, llll_ UUlls _ I_.4 . | ytl .%1,12 +_ +s_ l(l Idl I + +

3h l,ll_,tgl,ilsltI_ ,l%p_'tI "+1'11 _ ; • I ._ ' ' t ", I • ill Ill t llJ
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FIGURE 60. MAP-VERIFICATION ACCURACIES AND COSTS OF PROCESSINGSINGLE-DATE LANDSAT I
IMAGERY OF THE DENVER METROPOLITAN AREA WITH TEN MSS-BAND/RATIO VARIABLES AND 31 '_
ANCILLARY LANDSCAPE VARIABLES. This figure is basedon identifying 24 land uses(table 1) for 36,864 ,

J
grid-sampled picture elements representing the 1972-1973 land-usedata plane.The Landsatimagevariableswere
forced in a predetermined order (table 19) andthe landscapevariableswere added in a free stepwisefashionand
were classifiedusing linear.discriminamanalysis.The variablenumberscoincidewith the step numbersand MSS- t

ibandanddata-planeidentities intable21.
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TABLE 21
MAP.VERIFICATION ACCURACY ACHIEVED WITH THE GRID-SAMPLING APPROACH TO ASSEMI_LINGTRAINING-
SET STATISTICS (August15, 1973, image),The one-ninthmap accuracyof the sampleimageclassificationdetailedbelow
used the 4,100-point samplestatisticsand was in closeagreementwith the 41-variabletraining-setresults(table 20). This
table isbasedon Identt_ing the 24 landuses(table1) wlth a sampleof 36,864 pictureelementssystematicallyselectedasthe
centerof each three.by-threearray of picture elementsandcheckedby direct cell-by-cellcomparisonwith the 1972-1973
USGSland-usedataplane.The41 variablesworeenteredin exactlythe samestepwlseorderasdeterminedby the grid-sampled
trainingset(table20).

Training-Set CorrectPoints/C-P
Classification C-P* Second Expended

Total Correct Time F-Value
Step Vadal_leEntered Points Points Expended Step Average

NumUer Correct (_) (seconds) to Enter

Landsat(forced)

I MSS-7(solar infrared) 11,246 30.31 368.55 30.51 30.51 68.56

3 MSS-7/MSS-5ratio 12,939 35.10 395.10 32.75 31.07 38.61

5 MSS-5(visible red) 13,687 37.13 417.55 3_78 32.06 52.56

7 MSS-5/MSS,6ratio 13,652 37.03 441.35 30.93 31.75 9.10

9 MSS-6(solar infrared) 13,645 37.01 467.69 29.18 3I. 18 1.08, i i ,

Landscape (free)

11 Topographicelevation 16,027 43.48 499.18 32.76 31.48 259.46

13 Built-upurbanareaMDt 18,161 49.26 514.49 35.30 3ZI i 65.53

!5 Averagenumberof familiesper acre 18,664 50.63 530.46 35.18 3_ 56 32.39 !

i 7 Medianhousing-unitvalue 18,786 50.96 55_37 34.01 32.75 30,21

19 Compositeminor-roadMD. 18,920 51.32 576.98 32.79 32.79 16.50

23 Medianhousing-unitrent 18,849 51.13 623.99 30.21 3Z46 10.49

27 Total ono-carfamilies 18,986 51.50. 672.05 28.25 31.99 6.45

31 Total census-tractacreage 19,210 52.1 [ 721.17 26.64 31.42 5.52

36 Topographicaspect 19o405 52.64 772. !8 25.!3 30.78 3.02

41 Landsat-lMSS-7/insolationratio 19,482 52.85 825.90 23.59 30.07 0.96

*OP = centralprocessor.

4"MD= minimumdistance.
e

Selection of Optimal Mapping Variablm

Before the full 576. by 576-cell image/landscape scene was actually classified, a search was made for an

efficient subset of the 41 possible classification variables. This optimization was made necessary by the

combination of the large number of variables and the size of the image. It was predetermined Sat a number

of image variables would be included in this subset so that the resultant classification map would not be

unduly influenced by the ancillary landscape variables mapped 2 to 3 years earlier.

Examination of results achieved with the 1/81 grid-sampled point-training set were also useful in this

capacity (figures 57, 58, and 59), Only four bands (MSS-7, MSS-5/MSS-4 ratio, MSS-7/MSS-5 ratio, and

MSS-4) accounted for practically all of the accuracy in the ten-image channel test (figure 58 and table 19).

Likewise, the first six to ten ancillary variables contributed the greatest accuracy gains to the 41-channel
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VariableI Added Variable5 Added Variable9 Added V4_iable13 Added ]
land useverifiedat the first order 1

Variable I Added Variable5 Added Variable9 Added Variable13 Added _,

;]ltural landusevarifiedat the first order t

I
I

l"
_-L/alriable1 Added Variable5 Added Variable9 Added Variable13 Added
lural (gray)andurban(black) landuseverifiedat the first order

gray point wasplotted on the displayif the individualcellwascorrectlyclassifiedfor the variable added. The
_orrectnesswasmadeagainstthe correspondingcellon the 1972-1973 USGSland-usedata plane.The classification
-for the 24 second-and third-order land-useclassesand wasthen checkedat the six first-ordercategoriesonly.

-_hichwereusedinthe classificationare identified in table21. Displayscaleis 1:650°000.
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FIGURE 61. STEP-BY-STEPCLASSIFICATION OF THE
LAND USE OF THE DENVER METROPOLITAN AREA
VERIFIED AT THE FIRST ORDER (August 15, 1973,
Landsat-1image).
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cultural (gray)andurban(black) land useverifiedat the secondandthirdorders

or gray point was plotted on the display if the individual cell was correctlyclassifiedfor the variable added. The
_r correctnesswasmadeagainstthe correspondingcell on the 1972-1973 USGS land-usedata plane. Variableswhich
_d in the classificationare identified in table 21, Displayscaleis -,-1:650,000.
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FIGURE 62. STEP-BY-STEP CLASSIFICATION OF THE,

LAND USE OF THE DENVER METROPOLITAN AREA;
VERIFIED AT THE SECOND AND THIRD ORDERS

J

(August15, 1973oLandsat-1image). 1
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Displaywale 1:500,000 Displayse_te1:500,000 '

(e) Original24 Second-and (b) CompositeSix First-Order
Third-OrderUSGSClams USG$ Classes

FIGURE 63. VERIFIED MAP ACCURACY FOR THE DENVEH METROPOLITAN AREA FOR ALL USGS
LAND-USE CLASSESAT THE 4'1st STEP (August15, 1973, Landsat-1image).TheIlnear-di,crtmlnantclassi-
fication testedhereemployed the 41-image/mapvariablesexclu4iveof land usa.A point wasplotted inblack
if the individualcellwascorrectlyclassifiedwhencheckedagainstthe correspondingcell on the 1972-1973
USGSland-usedata plane.This image(b) representsthe same24 classesbut wascheckedfor correctnessat the
sixfirst-order classesonly.

training-set test (figure59 and table 20). Five test runs with no forced variableswere made on the l/81
trainingset with the four imagebands and the six, seven, eight, nine, and ten landscapevariables,progres-
sively adding anot;lerlandscapevariablefor each successivetest. The ten-channelcombilmtion using six
landscapevariables provedto be the most accurate, correctly classifying 2,091 points for a 5l-percent
verified accuracy (figure66 and table 23).

The use of the ten channelsachieved 94 percent of the maximum accuracy that could have been obtained
with at141 variables. However, it represented an expenditure of only 34 percent of the processingtime
that would have been needed.

ORIGINAL PAGE IS
First-OrderThemeMap OF POOR QUAL/Ty

Each of the following f'_st-orderclassification displays that resulted is composed of three thematic maps:
(1) the 1972-1973 USGS land-usedata plane for reference; (2) the verified discriminant-classifiedmap
showing only correctly mapped 0.4-ha (l.l I l-acre) picture elements; and (3) the actual discrintinant-
classified map. Unfortunately, the lack of an appropriate color-display device necessitated the cumber-
some display of each separate first-ordertheme map in black-and-white. Using this generalapproach, the ]
six agsregate first-ordercategories were displayed for the zoomed USGS reference data plane, the verified 1

classification map, and the machine-processedland-use map (figure 67). 1
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TABLE22
COMPARATIVEACCURACIESOFMAXIMUM-LIKELIHOODANDLINEAR-DISCRIMINANTIMAGE-CLASSIFICATION
ALGORITHMS.Theaccuracyof eachofthesetwoautomatedimageclarificationswascheckedpoirtt-by.pelntata firstand
compositesecondandthirdorderagainstthedigital1972-1973USGSland.usedataplaneforthreedifferentcombinationsof
Landsat.1imageand/orancillarymapvariables.Themaximum-likelihoodclassificationwasperformedonthesampledimage
of 36°864points,andfor economy,the llnear.discrlmlnanttestswererunon the4,100l|ystematlcally_mpledpaintsonly.

First-Order Verification (percent) Second-Order Veflflcation (percent)

Number Maximum- L!near-Discriminan t Analysis Maximum- Linear-Discriminant Analysis
of Likelihood Equal A Priori Likelihood Equal A Priori 1

Variables Ratio Probabilities Probabilities Ratio Probabilities Probabilities I
iJ

Four* 53.6 50.9 65.2 4.3 19.1 37.9

Sixi" 68.1 70.6 73.1 15.4". -. 32.3 46.3

Twenty-
Two # 61.5 73.1 75.6 2.4 37.2 48.3

*Four original Landsat-I MSS.bands.

_'Six channels: MSS-4, MSS-7, MSS-7/MSS-5 ratio, MSS-5/MSS-4 ratio, topographic elevation, and
built-up urban-area minimum distance.

#Twenty-two channels: four original Landsat-1 MSS bands, six Landsat-1 band ratios, four Landsat-1

MSS/insolation ratios, Landsat-1 image insolation, topographic aspect, topographic elevation, composite ]
minor-road MD, composite major-road MD, freeway MD, freeway interchange MD, and built-up urban- i
area MD (MD = minimum distance).

Second. and Third-Order Theme Maps

The eleven second- and third-order urban land-use classes were displayed for the USGS land-use reference
data plane, the point-ve-ified discrin__ssified land-use map, and the actual discriminant-classification
map (figure 68).

The three third-order agricultural land-use classes were displayed for the USGS land-use reference data plane,

the point-verified disctiminant-classified land-use map, and the actual discriminant, classification map (figure
69).

The three second-order water land-use classes were displayed for tt, e USGS land-use reference data plane,

the point-verified discriminant-classified land-use map, and tile actual discriminant-cllssification land-use
map (figure 70).

The two second-order range land-use classes were displayed for the USGS land-use reference data plane, the
point-verified discriminant-c!assified land-use map, and the actual discriminant-classification land-use map
(figure 71).
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FIGURE66. TEST OF FINAL TEN-CHANNELCOMBINATIONOF LANDSATANDLANDSCAPEVARIABLES
FORTHE FULL IMAGECLASSIFICATION.Thisfigureisbasedon identifying24 landuses(table1)with4.100
grid-sampledpictureelements.Thisten-veriablecombinationwasselectedasanoptimalsubsetof the41 available
image/ancillaryvariables.It realizedover94 percentof the maximumaccuracythatcouldhavebeenobtainedwith ";
all41variables,butrepresentedanexpenditureof only34 percentof theprocessingtime.Allvariableswereaddedin _
a freestepwisefashionandwereclassifled.usinglineer-discrtminantanalysis.
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TABLE 23
TEST OF FINAL TEN-CHANNEL COMBINATION OF LANDSAT Ai_ID LANDSCAPE VARIABLES FOR FULL IMAGE
CLASSIFICATION (August 15, 1973 image). This table is basedon identifying 24 land uses(table 1) with 4,100 grid-
sampled picture elements.This ten-variablesubset retained over 94 percentof the full 41.variabletraining-setaccuracy
while expending only 34 percentof the eomputertime, All variableswere added in a free stepwlsefashionand were clas-
sifiedusingIlnear-dlscrlmlnantanalysis.

1

Training-Set CoirectPolnts/C-P

Classification C-P* SecondExpended(_:;)
Total Correct Time

Step Landsat andLandscape Points Points Expended Step Average F-ValueNumber VariablesEntered to Enter
Correct (C_) (seconds)

I Topographicelevation 1,428 34.83 19.51 73.19 73.19 315.73

2 Built-upurban-areaMDt 1,701 41.49 20.92 81.31 77.39 88.79

3 Averagenumberof familiesperacre 1,892 46. i5 22.26 85.00 80.00 75.(_6

4 Landsat-IMSS-7(solar infrared) 1,921 46.85 23.7t_ 80.85 80.30 61.53

5 Topographicslope 1,911 46.61 25.66 74.47 78.97 57.42

6 Averagenumberof year-roundhousing 2,038 49.71 25.95 78.54 78.89 40.50
unitsperacre

7 Landsat-IMSS-5/MSS-4ratio 2,035 49.63 27.16 74.93 78.24 29.75

8 Medianhousing-unitvalue 2,059 50.22 28.2(, 72.86 77.45 26.33

9 Landsat-IMSS-7/MSS-5ratio 2,063 50.32 29.55 69.81 76.44 20.44

I0 Landsat-1MSS-4(visiblegreen) 2,091 51.00 31.66 66.05 75.15 2 I.77

*C-P= centralprocessor.
tMD = minimumdistance.

The second- and third-orderbarren land-use classeswere displayed for the USGS land-usereference data plane,

the point-verifieddiscriminant-classifiedland-usemap, and the actualdiscriminant-classfiicationland=usemap
(figure72).

The three third-orderforest land-useclasseswere displayed for the USGS land-usereferencedata plane, the
point-verifieddiscriminant-classifiedland-usemap, and the actual discriminant-classifieationland-use map
(figure 73).

Verification

Theverificationof classificationresultsin thisstudywasa highlystructuredprocedure.Anadvantageof the
quantitativeorientationtakenthroughoutthisendeavorwasthe explicitquantitativeverificationof results.
Thegreatutility of thecomputerlay not only in thecapabilityof massivedatamanipulation,but alsoin the
facc-to,faceconfrontationof theuncertaintiesin the resultsand in a conscientiousexaminationof thevarious
sourcesof possibleerrors.
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Display scala_1:2_,000

(e) Six first-oraer lane-use classes0dentlfied by U_U_urph6to 0nterpretation.

BLACK : All water areas

DARKEST GRAY = All range areas
DARK GRAY = All agriculture! areas

GRAY - All forest areas
LIGHT GRAY _ All barren areas

LIGHTEST GRAY _ All urban areas
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Display scale 1:250,000

(b) Verification map of the six first-order ©la,tftcations (¢) where points are plotted
only if they check with USGS map (e).

BLACK - All w_lterareas (62.0% correct)
DARKEST GRAY = All range areas (56.3% correct)

DARK GRAY ,, All agricultural areas (56.7% correct)
GRAY a All forest areas (66.3% correct)

LIGHT GRAY - All barren areas (36.0% correct)
LIGHTEST GRAY - All urban areas (89.3% correct)
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(C) Six first-order lend-useclassesidentified usingdiscriminant analysis with
four imageend six ancillary variables.

BLACK = All water areas
DARKEST GRAY = All range areas

DARK GRAY = All agricultural areas
GRAY = All forest areas

LIGHT GRAY = All barren areas
LIGHTEST GRAY : All urban areas

FIGURE 67. COMPARATIVE DISPLAYS OF THE DIS-

CRIMINANT CLASSIFICATION, A VERIFICATION OF

THAT CLASSIFICATION, AND THE USGS MAP OF THE

SIX FIRST-ORDER LAND-USES OF THE DENVER AREA.

Scale 1:250,000.
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mm (c) (_) Elevanse_oncl-endthird-orderurbanland-useclassesidentifiedusingdlscrlmlnant
analysiswith four imageendsix andlmty vlmdmbles.

BLACK - Indu_ial/tmml_ion
DARK GRAY - Oemtep//re_wtionml/open Imnd

MEDIUM GRAY - Utlllty/publtoand tmtltutlonel _ _)AG_

GRAY - _Id.wmte dump/exIB'a81_n 00_,_i0_ Q_,]_,_r_
LIGHTGRAY - Re=Ide_l=I/_m=td_l m_¢lfvl¢=

FIGURE 68. COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASo FICATION, AND THE USGS MAP OF THE URBAN
LAND USES OF THE DENVER AREA. Scale1:250,000.
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(a) Three second_rderagriculturalland-useclassesidentifiedby USGSairphotointerpretation. (b) V_

BLACK _ Irrigatedcropland
DARK GRAY - Pasture
I.IGI4T.GRAY - Nonlrrigatedcropland ..........
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(b) Verification map of the three second-order agricultural land-use classifications (c) (c) Tit
where points are plotted only if they check with USGS map (a).

BLACK = Irrigated cropland (65.4% correct)
DARK GRAY = Pasture (28.5% correct)

LIGHT GRAY : Nonirrillated cropland (38.8% correct)
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"ls (©) (c) Three second-orderagricultural land-usedanes identified using discrlminant
analysis wl_ four imageand six ancillary vartnblos, i

Z

BLACK " Irrigated oroldand
DARK GRAY - Pasture
LIGHT GRA.'_. ,R..Noni_rigatecLeloplancl__ ....

FIGURE 69. COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT +

CLASSIFICATION, AND THE USGS MAP OF THE AGRI-

CULTURAL LAND.USESOF THE DENVERAREA. Scale I
1:250,000.
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(b) Verificationmapof the threesecond-orderwater.typeolassiflutions(o) (i
wherepointsare plotted only if they checkwi_ USG$ map (a).

BLACK - Streamsand waterways(0.35% eorreQt)
DARK GRAY - Lakes158.0%_orre,,'t)
LIGHT GRAY.-,-..Reservoirs(58.1% _orraot)
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1o1 Three second-order water-_ype deues identified usingdis_rlminant
e_lyds with four i_e and six 8ncill8_ verisblu.

BLACK - Streams and waterways

DARK GRAY " Laku ORIG_T.A._ P_G_ IS

LIGHT GRAY " Reservoirs _._ Q_T_,_,_ _. :

FIGURE 70. COMPARATIVE DISPLAYS OF THE DISCRIM"

INANT CLASSIFICATI0_- A VERIFICATION OF THAT
CLASRIFICATION_ ANI_ THE USGS MAP OF THE WATER-

TYPE CLASSES OF THE DENVER ARE/_ Scale 1:2500000.
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(a) Two moon.order rangelanddams Identifiedby USGSalrphotointerwetatiorL

BLACK - Chapparal(takenasbrmhhmd)
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(b) Verificationmapof the two second.orderrahgelandclassifi_stions(c)
wherepointsare plottedonly if they checkwith USGSmap (a).

BLACK : Chapparal(takenasbrushland)(40.9% correct)
DARK GRAY : Grassland(54.9% correct)
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"" scale1:250,000 -Display-scale1:250,000

(c) Two second-orderrangelandclams identifiedusingdiscriminant
analysiswith four imageand sixancillaryvariables

BLACK : Chapparal(taken asbrushland) ORIGINAL P.k-G]_ ]_DARK GRAY : Grassland
or POORQUALITY

FIGURE 71. COMPARATIVE DISPLAYS OF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, AND THE USGS MAP OF THE RANGE.
LANDS OF THE DENVER AREA. Scale1:250,00(1
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(b) Vm'ifioationmapof the two second-ardorbarrenlendclassifications(©)
wherepointsare plottedonly if they cheoKwith USGSmap (e).

BLACK - Exposedrock (8.7% correct)
DARK GRAY = Htllslopes(38.5% correct)
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•,ons (¢) (c) Two second-ordesbarreniandclassesidentifiedusingdtscrlminant
_)- analysiswith four imageandsixancillaryvariables.

BLACK = Exposedrock
DAR K_ RA.Y,-.:..HilJslopes...........

FIGURE 72. COMPARATIVE DISPLAYS OF THE DISCRIM."
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, AND THE USGS MAP OF THE BAR.
RENLANDS OF THE DENVER AREA. Scale 1:250,000.
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|a) Three second_rder forestland classesidentified by USGS airphoto interpretation.

BLACK - Deciduous/intermediate crown
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Display scale1:250,000

(b) Verificationmapof the three second-orderforestlandda,ift_tions (c)
wherepointsare plottedonly if they checkwith USG8 map (a).

BLACK = Deciduous/intsrmedtatecrown (0.0% correct)
DARK GRAY : Coniferous/intermediatecrown (2.8%correct)
LIGHT GRAY ,, Conlferous/solidcrown (81.3% correct)
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-'is (©) (e) Two second<)rderford_tlandohiuesIdentifiedusingdiscrlminant
analysiswithfour imageandsix ancillaryvariables.

BLACK - Deciduous/intermediatecrown
DARK GRAY : Coniferous/Intermediate_own
LIGHT GRAY., Coniferous/mildclown O_,_G]_J_J I)AGi'_ '"

-,_-_,_1,$,,_G_.:- OFPOORQUALr:L":_.lr JiJ.'_

,_OOR 0,'_'L_TL_'} FIGURE 73. COMPARATIVE DISPLAYSOF THE DISCRIM-
INANT CLASSIFICATION, A VERIFICATION OF THAT
CLASSIFICATION, AND THE USGSMAPOF THE FOREST.
LANDS OF THE DENVER AREA. Scale1:250,000.
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The final ten-channel discriminant function-classified land-use map was checked cell-by-cell against the ex-
panded 1972-1973 USGS reference map (Appendix C). The average verification accuracy for all second-
and third-order land u._s was 50. ! percent, whereas the average verification accuracy for all first-order land
uses was 76.3 percent (table 24). The 50.l.percent final verification accuracy was in close agreement with

the 5 I.O-perccnt verification accuracy achieved with the I/8 I-grid sample of 4, !00 points during the de.
velopment of the discriminant function (table 23).

The first-order classificatiori results were, in order of decreasing accuracy:

• Urban land use (89.3 percent)

• Forest land use (66.3 percent)

• Water land use (62.0 percent)

• Agriculture land use (56.7 percent)

• Rangeland use (56.3 percent)

• Barren land use (35,0 percent)

The second-order classification results were, in order of decreasing accuracy:

• Residential (84.9 percent)

• Reservoirs (58. l percent)

• Lakes (56.0 percent)

• Grassland (54,9 percent)

• Institutional (5 I, 1 percent)

• Transportation (45.3 percent)

• Chapparal (taken as brushland) (40.9 percent)

• Industrial (40,5 percent)

• Commercial and services (25.3 percent)

• Bare exposed rock (8.7 percent)

• Open and other urban (7.4 percent)

• Streams and waterways (0.4 percent)

• Extractive (0.I percent)

" TSG1200000002-



TAB LE 24

FINAL TEN.CHANNEL LINEAR-DISCRIMINANT CLASSIFICATION RESULTS USING FOUR

LANDSAT AND SIX ANCILLARY LANDSCAPE VARIABLES. The verification accuracy of the

machtrte,processed single-date Landsat-1 image (figures 67 through 73) are given, The tabulations

wore based on checking 24 land uses on a point.to-point comparison with the 1972.1973 USGS land-

use data plane. The composite _cond. and third,order average classification accuracy of 50.1 percent

substantially agreed with the 51.0.percent value predicted by the 4,100,point grld.samptlng rralntrrg-

set =ample (table 23),

Flint-Order Land Us_/LImd ('twit Tolal Tolal ('la,slflcMion

,%tend-Order Land U_e/La,d C'¢w_,r USC;S ('_lls Accuracy
"l'ldrd-Ord_rLand Use/Land ('over (\.lls Correct tpvr¢¢,ntI

Urhan and Built-tip I.and
Residential OH,OTh 83, 7h I IN.tit{
('omnzercia| and servic¢,s 12,t12S 3,:3S 2S,2S

Recrcathmal 13, I I 3 2,073 15,8 I
Industrial I _.,330 4,qq7 40,53
Extractive 4,824 b O.12

Transportation 5,'422 2.h85 45.34
tltllltk_, I. I I o 0 0,00

Inst.itutkntal 2"4,313 14,'4(_8 5 I.O(_

Open and other urban 22,23tt I,b42 7.38
Solid-waste dump 2.14 0 0,00

Cemetery I,q71 0 O,O0

Sol, total/Average 202,5o3 180.781 8_}.25
Subtotal/Average 18o, 12q I I 1,2q7 59.80

Subtot el/Average l(_A 34 2.073 | 2.b I

Agricultural I.and
Nonirrigated cropland 4(_,q2o 18,228 38.84
Irrillated cropland 72 t) 477 b5,43
Pasture 34,_42 '4.tt_O 28.52

Sohtot'M/Averaw 82,107 4b.o Iq St,. 72
Subtotal'Average 82,1'47 28,555 34.74

Rangetand
(;rassland 25,2ttl 13.87b 54.8'4

('happaral 2.7o3 1.129 40.8(',

Subtotal/Average 1t_.044 15.788 5h.30

Subtotal, Average 28,044 15,005 53.50

Forest Land

Deciduous' intermit ten t crown 1410 O O.OO

('oniferous, solid crown 4,O1_8 3,30 t) 81.34
('onil'L'rous,'int ennit tant crowtt 144 4 2.78

Sublet el{Average f022 3.328 tie. 27
Subtotal. Average 5.022 3.313 o5.'47

Water

SI_.anls and watcrv.a_.s 288 I 0.35
Lakes 4?)50 2,773 50.02
Resets,oirs [ .521 883 58.05

SUblot all Averag,: h. "_5q 4.190 (_I.'4q

Subtotal. Average h,75q 3.h57 54. I l

Barton Land

Bart.,exposed rock 1.710 !4'4 8.7 I
}lillslopes 5,481 2, l |2 38, 53

Subtotal,Average I, lt) l 2,513 34 '45

Sul_total Average I. 7 I0 14q 8.71
Sul_total,Avrrage 5.481 2,112 38.53

.....

Aggregate t;rand Total,' Average 33 _,7_1_ 253.21 q 7_. 32
• 't'l t •Aggregate t;r.md l'otal:A_ erage .... ( 4. 130.108 58.44

Aggregate (;rand Total A_erag¢ It}q. 134 Io.05.; 33.04
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The third-order classification results were, in order of decreasing accuracy:

• Coniferous/solid crown (81.3 percent)

• Inigated cropland (65.4 percent)

• Nonirrigated cropland (38.8 perwnt)

• Hillslopes (38.5 percent)

• Pasture (28.5 percent)

• Recreational ( 15.8 percent)

• Conlferous/intermittent crown (2.8 percent)

• Cernotery (0.0 percent)

• Dec_duous/intermlttent crown (0.0 percent)

• Solid-waste dump (0.0 percent)

• Utilities (0.0 percent)

Several problem areas influenced the potential class;.fication accuracy. One substantial difficulty was finding
an image or ancillary larrdscape variable to adequately represent some of the USGS land uses as land-cover
types.

Another major problem involved the dual use of the 1972-1973 USGS land-use reference data plane for bo th
training-set feature selection and classification verification. It should be recognized that this m.p was not
10P-percent correct. The stated 90-percent minimum accuracy of the map may be true for the first-order
classes, but it was nat verified for any level and therefore is doubtful. A 90-percent accurate USGS reference
map checked point-Dy-point against an equally accurate classification map would yield an 8 l-percent accurate
output m_/f_ this hypothetical 8 l-percent verification value is close to the actual first-order verified classifica-
tion accuracy of 76.3 percent. A random-point field check of the final classification maps is the only sure
_¢rification technique; in using the USGS map solely as a training data source, a I0- or 20-percent error m_',

be statistically forgiven by the statistical nature of the classification procedure, but it cannot be overcome

in a final point-to-point comparison.

However, the most ser;ous question about the 1972-1973 USGS map accuracy arose from a companion
USGS study in which a l : 100,000-scale Imld-use map was similarly prepared from 1 :120,000-scale high-
altitude color-infrared imagery. Land use was subsequently verified by observation from a low-flying air-
craft, and the average photoclas_ification accuracy was found to be 77.4 percent for I8 second-order classes
of the USGS Circular 671 syst¢,m (Reference 44).

Total classification time for the ten-vari:Jble discriminant fimction was 2,517.97 central-processor (C-P)

seconds to map the 331,776 picture elements into 24 USGS land-use classes, which averaged "- 132 points

163

.... . . . . ,-
'- __"_i ' ,, 'I: _,_,'., ' o<].,',,,_','I:.,_ ,_,,'!,.,: ',,_:_'1,:'..,_',I,,_ :,:,",.,,_. ,._'_':_.,l '_¢!_10'_.,':/.;,'..:,:/,;" ';"_.' ,,_.11(- .. "....... _ ' " '.... '"

• '....... ".....' '""" .........'""" ""......... 00000002-TSG14



processed per t,.? second. An accuracy-weighted classification rate would be ~ 52 correct second-order

points per C-P second ik_rtile 130.108 second-order points correctly classified. Similarly, a rate of _" 101
c_u'rect first-order points per C-P second was realized for the 253,21 t) points correctly classified at the first
order.

Direct Cost/Time Analysis

A.detailed anal! sis was performed to assess tile various direct computer, labor, and material costs and times

(table 25). Th,'se parameters werc hrokell down by submodel and task area as accurately as possible. Direct
computing cosi,: repi_,.sented $5,509.05 of tile total $6,981.55, or almost 79 percent of the entire direct-

analysis co._ts. Otlly $1.472.50 (21 percent) was expended for direct labor and materials. More important,
the equivalent _,verage cost per unit area for 48-variable nmltivariate image classification, verification, and

display was calcu: deal as t'ither 1.9 cents per acre, 4.7 cents per hectare, $12.12 per square statute mile, or
S 704. 19 per I :2¢,000-s_:ale US(;S quadrangle.

It was not consid -d appropriate to allocate direct or indirect labor costs other than those reflected because

of the extensive iterative nature of any research effort. The time consumed in searching for, examining, and

dL,;carding potential imagery or maps, for example, was considerable, as was tile computer program coding,
tLebuggmg, and development. A production land-use mapping mode using these estimates would assume

that :dl input dat;, _¢ereon hand and that the computer software was tully implemented.

These costs al. ?otentially represent tile development, assembly, and testing of a very large data base on one

or more )itnited map areas in order to optimize the selection of specific Landsat/landscape data planes. The
cx ten_, _l oF this classification to a larger area involves the smaller costs represented by analysis of the ten
variable,, ttn.dly cla._sified here. Total costs for the classification used can be assembled for the same area

as ;:subset of d,',elopment costs (table 25). These panuneters are also broken down by submodel and task

area and represent direct computer, labor, and material costs and times (table 26). The equivalent average
cost per unit area for ten-variable multivariate image classification, verification, and display was calculated
as either !.:" cents per acre, 3.2 cents per hectare, $8.21 per square statute mile, or $477.17 per 1:24,000-
scale US(;S quadrangle.

SUMMARY

The focus of this phase of the research investigation was tile autonmted identification and mapping of the
various land-use/land-cover types that m:;ke up the l)enver, Colorado hmdscape. This endeavor u._d digital
Landsat imagery and ancillary hmdscape variables to test different feature.extraction procedures and machine-
classification algorithms on a 4N-va,'iable data base. The grid-sampled-point feature-selection process made use

of an existing ground-truth rel_'rc,tce map and proved to be superior to tile conventional rectangular super-
vised field selection procedure.

A t.mpara,.ctr!," classific::iton technique, linear-discriminant analysis with a prh_ri class probabilities, clearly

proved to be superior to the tnaxitntlm-likelihood ratio method in conlmon use today. These two algt_rithnls
_ere !_'ded lk_ridentical combinations of four. six, and 22 variables. The 4,100-point 1/81 grid-sanlpling
image was used ;.isthe _;lati,_ticaltrainint..,,el for both approaches.

The incremental contrjbulJotl of ancillary spatial landscape variables to tile classification of Landsat spec-
tral data was quantified with a stepwise linear-dis,'rilninant filnction. A ten-ch:mnel combination of Land_t
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TAB LE 26

COST/TIME TABULATION FOR SINGLE.DATE, TENVARIABLE LANDSAT/ANCILLARY LANDSCAPE

VARIABLE CLASSIFICATION Of THE DENVER METROPOLITAN AREA. Tht, se figt, es are based on the

Contlol Data Corpo, ation 6400 compute= and system used ill Colmado State University at the basic campus re-

sealclt tare o! $290 poe machine houl and an hourly woik rate of $5 pm man-hour. Quoted figures repiesent only

direct conlptltel, label0 and nlate.lial costs/times. They account |Ol ollt'_-tilrlo costs only and do not represent redoing

anything° Only the steps that wmdd actually be employed in extending the concepts lea='nod with the 48-vat|able

tests wele costed. For eas¢_of comparison, the area analyJed.ho_e was assumed to be the same size.

I'ime

I.l.sk liescripllon M_ln-li_tirs t'-P* Second,_'--_- Cost

[ _lnd-tist., stlblltq._|t,I %l).tlt)

l'h._stogral_hi¢ Sliltlltotlt, l

I'opogl,l|_hi¢ ¢lcvilllott coding 74.8 S 3"4.00
I'OPt )MAP sl_pc ,ispect cotttl_tlt.itiotl_ _._t} It ]. | 4

l'ot ;ll 43 5,l'----_--_

]'rililSl'_Ol l,lliOil sUi'lilll.'Id¢l

l'rililsr,.'Irlillion rOtll¢ coding l ]/4 5_.)l_t)

llin;u3 ro,td d,tl,t-l',l.tne l'ilhnlz I (, 1.31
|l'_lX._ 41tilliitliltli-distlinL'¢ i.olill_lil,ition 2 [ _ | -. _l)

I'ol,il -- :X. ;_
_ Ot" IOt,'CO ilO ill|*," ,'itilMllOIIC i

('Cilllls-ltik'l I_olind,lr.% _'Odill_,: ._i_." I l 1.._0

('eil_is-li',il'l ,icr_',ll_" dot sliinl_liitl,_ 14. l _ll.._ll
t'eliSiis d,il,i-pI.ine Iillilil_ i,ilioinl,' $o 4.$4

Iol,il }tit_.$4

I ,inds,il III1AIC slilHitOdel

I lily'|1,11I ,ilidS,il d,ll,i ,icqliisilio n ( I I i ,|lilt I ,_tlll. Iltl
|tll.it¢ |_i-ci_roce._.,,iti_

I:ROS IlStlS d.il,i ieloiill,lllliil_' 't} 4_.,i ?

I",%OIAI_I , lilt.llc.rilc ilil, lttlitl_ (i._k _ti. I I

I_tl I'A 1I.._ iiii,it;e i¢¢111it,ilion iOl.lliOn I q, ._s._ 1.._._.t.._"
t'tl,%llllNI iitl.il_C ,liicill,ii) d,il.i oteil,i.% int', i_l .|.q.l

I'RANSF: iill,ll:l'-_'h,lilil¢l i.tliolilll _. 4tl.l .l?._}
A,NI'II ! .'lIR_l d,il,i r¢lOlill.illiill_ .Sl•' .I..4_*"

Silbloi,il 1.ll _ll tl.l

I 'e,iliile I:%li.i¢liOll

llil,iltc t "1,i._._il'k',i i ioii

I \ I'RAC 1'7 ini,il_'c-l'l,i_siftl',itiOll l'ile _'ie,ilioil I .t,$._o 1,0o._.tll
I'l ASSII '%' full-illi,it,.e ¢l,i._._ili_'.ilion ",o._lt ol I_,"3

Silbiol,il I. "(IS. "4

I 'l,iS._llk',ilion I lli[lilil

ANI.'II I ,.%R_ihi.ill-hie d,ii,i ielollil,illlill_ 411 33.1 I
I'llASI I I,iliil-ti*_e lllenle lllli'iollhil I_i,I) ill,ll_._ 4,_ IS .lJq. "S

_tiblol,il ,l-_.,40

J'ot ,il I I .illil_,i I illi,il'l' _il I_iliodcl ) 4.tl I tl°l_ "

I'ol,i' , fit ¢ ,lll,.liodc,, I ...................1 l 4,730.._._

*l"l_ l'Cll[1.11I_ioi'l,_t li.

00000003-TSA04



basic bands and ratios produced an average verification accunlcy of 38.4 percent. The addition of three

ancillary variables (topographic elevation, aventge number of cars per l_tnily, and built-up urban-area

minimum distance) increased thi. verification accuracy to over 50 percent, hut the successive 28 nonland-
use spatial variaP_lesraised the final average accuracy to only 53._) percent.

An optimal ten-channel combination of four Landsat image bands and six ancillary landscape variables was
used to classify the fldl 57(_- by 57¢_.element image into 24 land-use categories. Point-by-point comparison

with the 1o72-1973 USGS lalld-us¢ reference data plane showed an overall accuracy of 70.3 percent l\w the
six aggregate first.order classes. Average accuracy for the 24 se_ond- and third,order classes was 58.4 and

33.0 percent, respectively, but three urban and one forest third-order categories received no correct
classifications.

A detailed cost]time tabulation for the multivariate data compilation, registration, classification, verification.
and display showed the average cost of devdoping the model to be i.q cents per acre, 4.7 ctmts per hectare,

$12.12 per _luare mile, or $704. Iq per 7.5-minute USGS quadrangle. Actual production application of the
selected optimal channels and signatures yielded costs of 1.3 cents per acre. 3.2 cents per hectare. $8..2"I

per _luare statute mile, or $477.17 per 7.5-minute" USGS quadrangle.

...... t ¢_7
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CHAPTER $

CONCLUSIONS

SUMMARY

Significant findings were made in the related study of spatial land-use projection and Landsat image classifi-

cation. The first line of investigation was an attempt to estimate land-use changes using multivariate map i
variables and known points of change from aerial photointerpretation. Statistical relationships were developed !
for both change and nonchange land-use types with 27 physiographic, socioeconomic, and transportation ...................
variables.

The general land-use change model was formulated as a linear-discriminant function using 4-ha (10-acre)
square cells as prediction units. Map-derived independent variables were numerically related in the multi-
variate structure of this model to known imagery-derived cells of change.

Seven models were tested for focusing upon cropland and pasture agricultural land-the primary 1963
land-use change class. Change prediction accuracies ranged from 42 .*o57 percent. Although these results
were encouraging, they were difficult to assess because of the scarcity of similar studies. Although the cur-
rent analysis was tentative and exploratory, nonetheless it indicated the feasibility of developing spatial
land-use project.'on models. Clearly, their application could be of considerable utility in future improved
land-use planning activities.

The parallel application of linear-discriminant analysis for Landsat multivariate image classification has con-
firmed the value of this flexible statistical tee ;que. Various feature-extraction methods and supervised
machine-classification algorithms were tested oh a singl_date Landsat image augmented by 38 additional
channels of ancillary map data spatially registered to the spectral-image data base. The overall objective
was to systematically test these factors in producing a land-classification map, using a current USGS
land-use map as a reference.

The comparison of two sampling methods for statistical feat.are extraction indicated a wide variation in
trial classification test results and applicability to image p_ocessing (Appendix E)_ The conventional

rectangular training field selection process resulted in a very high test-classification accuracy, but was
invalidated after poor classification results on a larger one-nitith image sample. However, the systematic
point-grid sampling gave highly repeatable results. This 1/81-image sample provided not only sample
points distributed over the entire image, but also useful a priori land-use probabilities.

These a priori cla_ probabilities enabled the linear-discriminant function to far outclassify the widely
used maximum-likelihood ratio algorithm. Both procedures were compared on three test sets of image and
ancillary landscape variables using the same point-training set developed earlier.

Verification of the 576- by 576-point Landsat image classification with the US(;S reference map showe_

an average accuracy of over 76 percent at the generalized first-order categories. The ten-variable discrim-
inant function used also classified the 24 second- and third-order classes at accuracies of 58.4 and 33.0

percent respectively.
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A signilicant achievement of this study was the creation of a composite Landsat image file consisting of

ten spectral bands and ratios _; 'rlaid by 38 map-derived ancillary land-use. :_hysiographic. socioeconomic,
transportation, and MSS/insolation ratio variabtes. Statistical testing showed these collateral variabk's

(excluding land-use data variables) increased classification accuracy by over 40 percent; however, just ..........
three selected additional ancillary variables added over 30 percent of the increased accuracy.

The USGS Circular t_71 scheme, developed for high-altitude aircraft and satellite data inputs, worked
reasonably well as a hierarchical classification system at both the first- and second-order levels in this

supervised machine-interpretation effort. However, it appeared that much more detailed ancillary data
will be needed for accurately interpreting the third-order urban classes. The inherent remaining problem

in urban settings is the repetitive use of manmade building materi',ds in a diversity"of urban land uses.
Fortunately, the USGS land-use classification system is predominately land-cover oriented and is therefore .-
useful for remote sensing discrimination. The ancillary data compensated, in large part, for the land-use
versus land-cover confusion factor in the seven secorld-order urban classes but did not do well for the four

third-order urban classes. Average classification accuracy .was 59.8 percent for the second-order urban

classes but only 1_..6 percent for the third-order urban classes. Lastly, the fixed a prtort elates of the
USGS system t! enable the results of its application to be intercompare: from area to area pose a
potential problem for the unsupervised clustering algorithms coming into general use (Reference 45).

The average direct cost for the optimized model for 24-class land-use mapping of the Landsat scanner
imagery and associated ancillary map overlays was $0.0468 per hectare ($0.0189 per acre). Based on these
costs, the mapping of a 7.5-minute USGS quadrangle would be $704.19. These unit-area costs included

extensive geometric correction preprocessing, ancillary data registration, feature extraction, clarification,

verification, and display operations. The production costs of employing this approach were $0.0128 per

acre, $0.0317 per hectare, $8.21 per square statute mile, or $477.17 per 7.5-minute USGS quadrangle.
Computer time was billed at $290 per hour, and personnel wages were set at $5 per man-hour, i

RELATED APPLICATIONS AREAS

A considerable quantity of landscape data'was assembled during this study. An increasingly important.
facet of land-use planning is facilities siting, particularly fossil fuel, hydroelectric, geofllermal, and nuclear-
power plants. Thus, a new, comprehensive, land-use planning data base must encompass even more

ecological, environmental, hydrological, land-use, and natural resource data. ]

These long-term construction projects are enormously costly, heavily regulated by governmental agencies,
s_'rutinized by citizen watchdog groups, and vulnerable to location errors. Inadequate dat_, may result in
structures of the wrong size or scope with consequent losses from destruction or damage, failure to take

advantage of economic potential, or excess capacity (Reference 25). Consequently, these engineering
projects are planned with consummate knowledge and care, and they provide an even more logical place
to apply the landscape assessment and modeling methods developed here.

More appropriate planning data and modeling of this type could be used to avoid agricultural investment
where the climate is inappropriate or in designing dams, bridges, and irrigation works more in accord with
the true characteristics of the site (Reference 25).
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Most important, ho_vevcr, these comprehensive data bast, s will permit full develolunCnt of thc computer

modeling techniques necessary for predicting how the landscape will spatially evolve in response to various

scenarios of anticipated alternatives I Refcrcn¢cs 8 and 41_1. The scenarios simulated and rvahtalcd could

include diverse objectives, such as rite control of shifting cultivation in underdeveloped countries, new

/oning I_oumhtries for urban land planning, alternate sites for a new power plant, or tile environmental

impa¢l of siting a new dam. Land management in general, and hind-use phmning in parlieuhtr, wouhl bc

substantially improved if the future spatial impacts of a contemplated action could he ;;¢¢uralely modeled

before all.V ¢OlnlllJllll¢lll hi a h_llg-lernl, rigid course of a¢liOlh

t

RECOMMENDATIONS

When _,his5-yearstudy was completed,sixrecommendations appearedto be appropriate.The firslthree

deal with anctllary data inputs, and the reu:aindcr deal with machine interpretation and processing. &ll six

recommendations impact on the landscape modeling approadi to land-use planning outlined in this sludy.

Socioeconomic Census Data Demification

l'he usc of ccnsus tracts in preparing socioccononli¢ data phtncs produced reasonable results in both the

spalial land-use l,rojcetion modeling and the Landsat land-use/land-cover classification efforts. Unt\)rtunatcly.

although a 4-ha [ 10--acre) ancilla_' data mapping cell was superimposed, these data planes were not as highly

resolved ira a spatial sense as desired I\w urban planning applications. The use of the smaller cnumeratiotl

districts for enumerating densely populated urban areas would improve the data resolution lllree- to five-

I\_ltl.

Topographic Elevation Data Digitization

iopograplfic clevation has becn shown to be a primary constitucnt of the hmdscape mtxtcl. Derivative

data planes included topographic slope, tOl_ographic aspect, and sohlr radiation t_r insolation. Fxperimcnta-

lion with l_cfcnse ,Mappirlg Agency IDMAI digital terrain tapes" showed glaring deficiencies in the i ,ter-

polated _ I-m (200-ft) ,.'ontours (Rcl_,rcnce Iol. Thus. the only alternative was to tediously hand-

eelhtlari/c tile tol_ographi¢ nlaps for tile precise elevation data needed for this stttdy. Considerable savings

in both time and nloney can bc realized if the digital terrain nlodcls created by the LISGS in construe-

ling the l:24.0t)tl-scalc, 7.5-nlintHc topographic maps were saved on magnetic tape.

Collateral Soils Data Inl_uts

A soil survey i,, a detailed phy,sical in_cntol3 of the soil. showtng its depth, tcxtttrc, strltctttrc, drainage,

stoniness, slope, crt_sioll, lind other land fcall.lrcs 111;1Iare hclpftll ill dctcrmini _ its list' and capability. I'hcsc

l_itdlly uscftd data _crc 11ot available for the DetI_ er study area. Soil type is certainly one of the pritwipal
determinants of hind use I Rcfcrcttcc 251. Its illehlsiOll il1 the data base would be a ttseful ;idtlilion to Ihc

ancillary pii:,'siographic submodel for predicting spatial h, nd-u.,,e changes under given circulltslilnccs ;ind

for illlprovillg the I allttsi11 imagc-cla,,,;if'i¢;Ition results.
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Multidate Land-UseChangeDetection

Land-use changedetection involves tile compari_n of remote sensing imagew or other inventory data for
two different points in time_ Change detection on a spatial basis provides important planning data in
managing tile various landscape components. The use of high-altitude or orbital remote sertsing data
provides a near-ortllogralbhic view with attendant synoptic large-area overview. These images must be in
point geometric congr_ence if multiple images are to be processed in a digital computer and point clas-
sifications are to be n_: _¢using statistical pattern recognition techniques. Thus, a principal advantage of
Landsat digital imagery is that time-differing scenes call be transformed to usable congruence much easier
and at less cost per unit area than any type of aircraft imagery. It is therefore recommended that continued
effort be expended to supply geometrically corrected data at various selected cell sizes. Because this need
is common to all users, it should be centrally addressed for all data distributed.

Symbiotic Useof Ancillary Map Data

The use of remote sensing images in generating chang_.,.detection data can provide metropolitan areas with
the necessary information for structuring viable planes for the guidance and development of the evolution

of these areas. However, for maximizing potential utility, remote sensing sllould be used with ancillary

data sources. Although spectral Landsat data alone has worked well on natural cover types, spatial map

data has proved its value in urban settings in which a single land use encompassed a plethora of artificial
cover materials. It appears, therefore, that any reliable machine interpretation system will have to embody

spectral, spatial, and temporal discriminants to function well for all anticipated urban land uses and con-
ditions. The basic input to trtese automatic techniques is, and will continue to be, spectral data. However,
both spatial and multitemporal map data must be incorporated into the spectral data base on all increas- ..

ingly larger basis for further improvement in classification accuracy.

Future Info,mation SystemsDevelopment

Proper use of available data, as well as new methods of data collection and analysis, are required for defining
and quantifying the capabilities and limitations of the landscape components for local or regional level
control and management. Electronic data processing (EDP) provides extensive computational power for
storing, manipulating, retrieving, displaying, and updating resource data (Reference 9). Automated resource

intbrmation systems, which spatially identify resource data, increasingly appear to be the most fe'_sible
means of providing complete, objective, and consistent information and analyses (Reference 47). These

systems will pro',ide file basis for enlightened land-management decisions relative to the tbllowing questions:

• What is the current land use?

• ttow is the land use defined and evaluated?

• What are its characteristics, dynamics, and limitations?

• Itow much single- versus multiple-purpose land use is there?

• What are the evolving socioeconomic spatial patterns':
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• Ilow much open space exists and how is it preserved?

• How can land-use data be efficiently collected and used?

A common natural-resource inventory data system is needed, as well as an automated resource-information

system fi_r keepirig the inventory current, inventory and benchmark data components for such a system
lbr improvivlg land planning include map and other spatial data to srecify tl_ £ollowing (Reference I ):

Climate

Demography
Economics

Geology
Land Use
Minerals

Population
Recreation

Soils

Topography
Vegetation
Water
Wildlife

The need for more timely and higher quality land-use data for evaktating, managing, and planning shrinking
natural resources is clear. The perfection and application of automated resource-information systems is
needed for interfacing the multiple souro,_s of physiographic, remote sensing, socioeconomic, and trans-
portation data into a coherent analytical machine structure. The computational power thus achieved can
be used to store, manipulate, display, and update the resulting resource information and to enable the

effective transfer of spatial landscape models and related operations research methods it,to improved land
resource-management decisions.
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APPENDIX A

MULTIPLE DISCI_IMINANT ANALYSIS

Multiple discriminant analysis finds the transform that yields the minimum ratio of the difference between
group multivariate means to the multivariate variance within the groups. The statistical algorithm embodied

in program CLASSIFY* (Appendix B) computes a discriminant function for each of the land-use classes by
selecting the independent variables-the 48 Landsat image and ancillary map variables-in a stepwise fashion.
The new variable entered at each step is selected on the basis of largest F-value to enter. An original set of
observations on a picture element or cell, for example, is transformed into a single discriminant score by the
discriminant function. The score represents the position of the picture element along the line defined by
the linear-discriminant function. It is seen, then, that the discriminant function reduces a multivariate
problem down into a univariate situation.

The discriminant function is found by solving an equation of the form

where [s_] is an m-by-m matrix of pooled variances and covariances of the m variables. The co,.'fficients
of the discriminant function are represented by a column vector of the unknown lambdas. Lowercase Greek
lambdas (X's) are used by convention to represent the coefficients of the discriminant function. These are

I

exactly the same as the betas OYs) also used by convention in regression equations. These should not be con-
fused with the lambdas used to represent eigenvalues in principal components or factor analyses, nor the
lambdas used to represent wavelength in a remote sensing sense.

The right-hand side of the equation consists of the column vector of m differences between the means of

the two groups in the simple discriminant-analysis case. The equation can be solved by inversion and multi-

plication, such as t

Iol I
or by use of a simultaneous equation solution, t

J

equation must be determined in order to compute the discriminant function, tThe various entries in the matrix

The mean differences are simply found as _t

i1a 11b t

Ai j v BI j ]
Z

i = 1 t---1

Ha llb 1

*CLASSIFY occurs in the LMS package and is tile modffkxl version of BMD97M, which is part of the UCLA biomedical statistical package

available on most major computers (Reference 1). The stepwtse lineat-dtscriminant anaiysi_ remains unmodified; however, the input/output
and internal control code was modified to handle the much larger data bases of remote sen_n_ imagery.
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In this notation, Aij is the iu' observation of variable j in group A; Aj is the mean of variable j in group A. or
the aw,rage of na observations. Similarly. these conventions apply to group B. The multivariate means of
groups A and B can be regarded as forming two vecton_. Tile difference between these multivariate means.
therefore, also forms the vector

II)jl = IAil -I_jl

A matrix of sums of squares and cross-products of all variables in group A, as well as a similar matrix for
group B. is computed in order to construct the matrix of pooled variances and covariances. This is done by
conventional means for group A as

II II

na i_IAH i_ IAik
SPAjk --_ _ (AHAik)-

il n
II

ltere, Aij denotes the i th ol_ervation of variable j in group A as before, and Atk denotes the im observation
of variable k in the same group. Whenever j = k, this quantity becomes the sum of squares of variable k.

Similarly, a matrix of sums of squares and cross-products is found for group B as

ll b n b

na i _lBij i_lBik

SPBj k = x_ (BIjBik) -
i- I rl b

Tile sums of products matrix lYom group A is denoted as I SPAI, and that from group B as [SPBI. The
matrix of pooled variance is now Ibund as

[s_ = ISPAI + ISPB]
l! �nb2

This equation for pooled variance is exactly tile same as that used in a-tests for the equality of multivariate
means. Although the number of calculations itwolvcd iA deriving the cocl'fic;e:tts of a discriminant fimction

appear to bc large, they are less fi_rmidable than at first glance. The set of X coefficients arc entries in the
discriminant-function equation of the lbnn

R = X, _l + X. _2 + "" " + X,. ¢J.,

Tiffs is a linear function whose terms are stmuned to yield a single number, tile discriminant score. Ill this
two-dimensional example, the discriminant function can be plotted as a line tilt tile scatter diagram of the
Iwo original variables (figure 44 of the main text1. It is a line through the plot whose slope, t_, is

a = X:/Xt ._
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Substitution of the midpoint between the two group means in this equation yields the discriminant index.

R0. Specifically. for each value of _r the following terms are inserted

q,j=

The discriminant index, Ro, is the:point along the discriminant-function line that is exactly halfway between
the center of group A and the center of group B. Next, the multivariate mean of group A can be substituted

into the equation to obtain RA (that is, ¢/1= _jl, and the mean of group B to obtain Ra (_kj = kljl. Those
define the centers of the two original groups along the discriminant function for group A,

g A = X,7,,+ X2_,_

and forgroupB,

R B = X,fi,+ X2B2

The members of group A that are located on the group B side of Ro and the members of group B lhat are

located on the group A side of Ro are misclassified by the discriminant function. ::

The significance of the separation between the two groups can be tested if certain assumptions are made
regarding the nature of the data used in the discriminant function. These five basic test assumptions arc:

1,1) The observations in each group are randomly chosen.

(2) The probability of an unknown observation belonging to either group is eqtral.

(3) The variables are nomlally distributed within each group.

1,4) The varianc_._-ovariance matrices of the groups are tqual in size.

1,5) None of rite observations used to calculate the function were misclassified.

The most difficult assumptions to justify are t.2), 1`3),and 1,4). However, tile function is not seriously affected

by limited departurc.s from normality or by limited inequality of variances. The justification of 1,2)depends

on an a prh)ri assessment of the relative abundance of the groups under examination 1,R_'c.rence 2).

A test lbr the significance of the discriminant function is developed from the T-statistic mentioned earlier.

A "distance" measure between the two multivariate means can be calculated by simply subtracting R x from

R,. This is equivalent to substituting the vector of differences between the two group means into the dis-

criminant equation, or setting the individual values of _j equal to l)j. This distance measure is called
"Mahalanobis' distance," or generalized distance, D:, It is a measure of the separation between the two
multivariate means expressed in units of the pooled variance. The T-test of this distance ha._ the form

n o n b

T2 = _ D2
110 "F II b
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The T-test can be transformed into an F-test, becoming

(na +nb- m-l) nanb
F = .... D;

(n_L+ nb"2) m na + n b

_¢ith m and ( ha* nb .m- t ) degrees of freedom. The null hypothesis tested by this statistic is that the two
multivariate n_eans ate equal or that the distance between them is zero: that is,

He: [Djl = 0

against

Hi: [Dj] >0 I

The utility of this as a test of a discriminant function should be clear. If the means of the two groups are
very close together, it will be diffioult to separate them, especially if both groups have large variances. On
the other hand, if the two means are well-separated and scatter around the means is small, discrimination

is relatively easy.

Not all of the variables included in the discriminant function are equally useful in distinguishing one group
from another. Those variables that are not particularly useful can be isolated and eliminated from future

analyses. Because discriminant analysis is so closely related to multiple regression, most of the procedures
for selecting the most effective set of predictors can also be used to find the most effective set of discrim-
inators. For example, the relative contribution of variable j to the distance between the two group means

may be me._sured by a quantity, Er

where Dj is the difference between the jth means of the two groups. This is only one measure of the direct
contribution of the variable j, and it does not consider interactions between variables. If two or more of the

variables in tile discriminant function are not independent, their interactions may contribute to D2 to a

greater extent than tile v',flue of Ej suggests. This measure serves roughly the same purpose as standardized
partial-regression coefficients in multiple regression. Values of Ej may be simply converted to percentages
by multiplying by 100.
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APPENDIX B

LANDSAT MAPPING SYSTEM

The Landsat Mapping System (LMS) represents a total rewrite of the RECOG or RECOGnition Mapping
System (References 1 through 3).* RECOG was intended principally for instruction at Colorado .;tate Univer-
sity, and the new LMS software is compatible with it. However, the new system is specifically structured for
both Landsat imagery inputs and composite mapping. Advantages cited for LMS include economy of opera-
tion, flexibility, exportability to other CDC computers, and high-volume production (Reference 4).

Tile LMS software is subdivided into fovr major image-processing steps. The first step prep,,res geometrically
rectified digital scenes in a given scale or picture-element ground area with Landsat computer-compatible
tape inputs (figure 13-1). The second step interleaves multitemporal Landsat images, with the added option
of overlaying multiple ancillary data planes derived from maps onto the multidate/multitemporal spectral
data base (figure B-2). The third phase performs feature extraction computatiot_ and optimization of the
mapping materials' statistical signatures (figure B-3). The fourth and final step maps the spatial distribution
of each desired material as rectified and scaled displays (figure B-4).

The computer cost of LMS for preparing a single classification map of a 1:24,000-scale quadrangle was es-
timated at $200. (See table B-1.) The LMS cost example involved three multidate images (twelve bands
of multispectral data), but no ancillary data was involved. Significant additional economies of scale were i
realized in theapplication of many of these LMS modules to the larger-scale Denver land-use/land-cover 1

inventory effort reported here. Forty-eight Landsat image and ancillary map variables were overlayed, i

classified, and displab,ed for an average cost of $704.19 per 7.5-minute USGS quadrangle, i
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Sciences, Colorado State University, Fort Collins, 1972, 86 pp.

2. Ells, T., L. D. Miller, and J. A. Smith, User's MamtalJbr RECOG (Pattern RECOGnition Programs).
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216 pp.

*The LMS software package was a joint effort of L. D. Miller. E. L Maxwell. and R. L. Rlggs at Colorado State University.
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_::'.'i!::'_i_:'.".%. UP TO 4 TAPES, REPRESENTING _'25 MILE

_:_i_4._._-.'._ E-W SEGMENTS OF A GIVEN LANDSAT IMAGE,

**s:_.."_ MAY BE INPUT SIMULTANEOUSLY.

"CONVERTS" THE LANDSAT FORNLa.T TAPE(S) INTO THE

INTERNAL, SINGLE RECOG TAPE. ON_.._.__YYTHE PORTION
OF THE IMAGE NEEDED TO OVERLAY THE SELECTED
MAP IS CONVERTED AND POOLED TOGETHER.

"ROTATE" RESAMPLES THE ORIGINAL IMAGE CELLS TO

REPRESENT ANY SIZE RECTANGULAR OR SQUARE CELL
AS SELECTED BY THE USER. ADJUSTS FOR ORIGINAL

IMAGE DISTORTIONS. SCALES IMAGE.TO MAP SCALE ......

(E.G., 1:24,000).

"FILTERS" THE IMAGE.

"DISPLAYS" 1, 2, 3 . • • OR ALL OF THE INDIVIDUAL
SPECTRAL BANDS IN THE ORIGINAL OR MAP OVERLAY

FORMAT. DISPLAY OPTIONS INCLUDE LINEPRINTER

AND MICROFILM GRAYMAPS.

"LANDSAT" COMPUTER COMPATIBLE TAPE (CCT) AS SUPPLIED BY EROS

DATA CENTER.

O °°RECOG" FORMATTED TAPE (OR DISK) FILE - AS STANDARD FORMAT TAPE

USED THROUGHOUT THE IMAGE PROCESSING ACTIVITY. (n = 1 to 4)

FIGURE B-1. STEP 1: IMAGE PREPARATION/MAP OVERLAY.
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/" '::::":':i:::_ UP TO 10 RECOG FORMATTED TAPES
_i!ii:i:Ri .!:!:i_ OF A VARYING NUMBER OF SPECTRAL

4: .... "'" BANDS ARE INPUT.

"TRIMS" EACH RI=COGFORMATTED TAPE
(OR FILE) TO A SELECTED NUMBER
OF LINES AND COLUMNS DESIGNATED

TRIM TRIM BY THE USER, 1JSUALLY THOSE
NEEDED TO COVER MAP SELECTED.
LINES AND COLUMNS ARE RENUM-
BERED, BEGINNING AT 1, 1.

"COMBINES" RECOG FORMATTED DATA FROM THE 1

COMBINE TO 10 SEPARATE INPUT TAPES (FILES) INTO 1
COMPOSITE RECOG TAPE (FILE) REPRESENTING
A MULTIDATE, MULTISPECTRAL IMAGE.

"DISPLAYS" 1,2,3 ... OR ALL OF THE IN.

DISPLAY DIVIDUAL SPECTRAL BANDS IN COMBINED
IMAGE. DISPLAY OPTIONS INCLUDE LINE-
PRINTER AND MICROFILM GRAYMAPS.

GRAYMAP ---

(i + j are any integers)

CELLU' "IISTEP 2. AUXILIARY PROGRAMS. | MA__)"ANCILLARY" CREATES RECOG FORMATTED DATA FROM
CELLULARIZED MAP DATA PLANES INPUT IN CARD OR |

IMAGNETIC TAPE FORMAT. MAP CELLS MUST BE THE ANCILLARYSAMESIZEORSOMEINTEGERMULTIPLEOFTHECELLS
ON THE RECOG FORMATTED DATA WITH WHICH THE

ANCILLARY DATA WILL BE COMBINED.

FIGURE B-2. STEP 2: INTERLEAVES IMAGES FROM VARIOI.IS DATES.
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i
"EXTRACTS" TttE TRAINING FIELD DATA IDENTIFIED

EXTRACT BY THE USER (RECTANGLES, IRREGULAR AREAS,
AND POINTS) FROM THE RECOG IMAGE FORMAT.

"TRANSFORMS" THE TRAINING FIELD DATA. FORMS

TRANS- RATIOS OF SPECIFIED SPECTRAL BANDS, USES
FORM ELEVATION OVERLAYS TO ADJUST SPECTRAL

BANDS FOR TERRAIN SHADOWING, EYC.

"CLEANS" OUT TRAINING FIELD DATA POINTS WITH

CLEAN LOW PROBABILITY OF BEING THE SELECTED
MATERIAL OR HIGH PROBABILITY OF BEING
SOME OTHER MATERIAL, ETC. i

"GROUPS" TRAINING SETS 1OGETHER WHICH WERE

GROUP ORIGINALLY SELECTED |N EXTRACT TO REP-
RESENT SEPARATE MATERIALS BUT ARE NOW
DETERMINED TO BE STATISTICALLY SIMILAR .........

"CLASSIFIES" THE TRAINING FIELDS USING
CLASSI FY MAXIMUM.-LI KELIHOOD APPROACH (STEP-

WISE DISCRIMINANT ANALYSIS). OTHER
DECISION RULES CAN BE SUBSTITUTED HERE,

"OVERLAYS" ANY VAI_IABLE
OR RESULT IN POIN_r FILE

SIGNA- PRINT/ INTO A RECOG FORMAT FOR
OVERLAY TURES PUNCH DISPLAY AND MAP OVERLAY.

"SIGNATURES" COMPUTES STA-
TISTICAL REPRESENTATION OF

DISPLAY CELL EACH MATERIAL SPECIFIED BYTHE USER FOR USE IN MAPPING
TFIESE MATERIALS ON ANY
DATA TAKEN FROM THE SAME

( I_ ORIGINAL IMAGE.CELL "PRINTS" OR "PUNCHES" OUT

MATRICES [VARIABLES_I ANY VARIABLE(S) IN THE
POINT FILE FOR FURTHER

(i is any integer) ANALYSIS IN ADDITIONALPROGRAMSWRITTEN BY
THE USER.

O "POINT ° BY POINT TAPE (OR DISK) FILE. - AN INTERNAL TAPE, DISK, AND/OR

CARD FILE FORMAT WHICH CONTAINS ONLY THE EXTRACTED TRAINING
FIELD DATA AND DOES NOT M_INTAIN ITS CORRECT MAP OVERLAY
POSITION.

FIGURE B-3. STEP 3: COMPUTESSTATISTICAL "SIGNATURES" OF
MATERIALS TO BE MAPPED.
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"TRANSFORMS" DATA FOR EACH IMAGE CELL AS
TESTED AND SELECTED IN STEP 3.

"MAPS" OUT THE DISTRIBUTION OF EACH SURFACE
MATERIAL SPECIFIED BY THE USER,

"DISPLAYS" THE SELECTED IDENTIFICATION OF EACH

(or i+k+2) IMAGE CELL AND/OR PROBABILITY THAT IT IS THE
MATERIAL DESIGNATED. DISPLAY OPTIONS INCLUDE
LINEPRINTER AND MICROFILM GRAYMAPS AND ]

LINEItRINTER COLOR SYMBOL MAPS. ""7

t
i

(i andk areany int

/ STEP4. AUXILIARY PROGRAM. }
"ZOOMS" OR ENLARGES THE RECOG FORMATTED

TAPE(OR FILE) BY ECHOING EACH IMAGE CELL ZOOM
"N" TIMES ON A LINE AND REPEATING EACH

LII_ : "M" TIMES. I
t

Q
FIGURE B-4. STEP4: MAPSDISTRIBUTION OF EACH MATERIAL.
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TABLEB-1
COSTESTIMATESFOROPERATINGTHE LANDSATMAPPING..S.YSTEM

Item Cost Estimate*

CONVERT $5/date
ROTATE $7/date
FILTER $6/date
DISPLAY $ I/band/date X 2 bands = $2/date

Step I $20/date

Assuming three dates involved gives $20/date X 3 = $60

TRIM $3/date
COMBINE 3 dates combined -': $1

DISPLAY $ I/band/date × .1 band = $ I

ANCILLARY optional
Step 2

Assuming three d._tes gives $3/date X 3 dates + $1 + $i = $11

EXTRACT $10 (approx.)
TRANSFORM $5 (approx.) _:

CLEAN $2/iteration X 3 iterations = $6 (approx.)
CLASSIFY $8/iteration X 3 iterations = $24 (approx.)
SIGNATURES $2 (approx.)
OVERLAY optional

GROUP optional
PRINT/PUNCH optional

Step 3

Based on 2,000 points = $5._.O0(approx.)

TRANSFORM $5 (approx.)

MAP Based on mapping 30 $73 (approx.)
material types

DISPLAY Black-and-white lineprinter $1 (approx.)
s,:,nbol map

ZOOM optional

Step 4

Based on 30 classes mapped = $7..99(approx.)

STEP TOTAL* $200 (approx.)

*Estimated computer costs for 1 of 1:24,000 quad map with "- l-acre cells, three dates ( 12 spectral
bands), 2,000 cells defining training fields, 30 material types, and black-and-white lineprinter display.
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APPENDIX C

MACHINE CLASSIFICATION ERROR-RATE ESTIMATION

The knowledge of the error rate of a machine classifier is desirable for two principal reasons. One is to
evaluate its performance relative to other classifiers; the other is to verify the utility of the classifier. Both
rationals have been explored in this endeavor.

One approach to error-rate estimation is to compute it from an assumed parametric model. However, this
approach presents three problems (Reference 1). First, error-rate estimates of this nature are almost, always
overoptimistic because characteristics that make the design samples peculiar or unrepresentative will not be
revealed. Second, the validity of an assumed [,. •ametric model is always suspect. Lastly, it is difficult to
compute the error rate exach/, even if the probabilistic structure is completely known.

An empirical approach that obviates these questions is the experimental testing of the classifier. In practice,
this is generally done by evaluating the classifier on a test data set and using the proportion of the samples

• " that are misclassified as an estimate of the error rate. The use of the 1972-1973 USGS land-use data plane
as a ground-truth surrogate permitted error-rate estimation to be performed on the full Landsat- 1 image
itself in this endeavor.

The linear-discriminant approach used throughout this study converts an n-dimensional problem to a more

manageable, one-dimensional problem. This many-to-one mapping, at least in theory, cannot reduce the
minimum achievable error rate. However, in general, some of the theoretically attainable accuracy can be
sacrificed for the advantages of working solely in one dimension.

The classification algorithm just described is subject to two types of errors prevalent itl any multiclass yes-no
decision problem. The correct class may be rejected when it is actually correct or when a picture element is
designated a particular class when it is not and some other category is correct. These statistical errors are
called type I and type II errors, respectively. More commonly, they are referred to as omission and commission
errors, respectively, in pattern-recognition literature. The two states for the category (thaf is, true or false)
in a multiclass situation, along with the two decisions that the classifier can make, are indicated in a two-way
decision table (table C-I ).

TABLE C-1

MACHINE CLASSIFICATION DECISION TABLE. The outcomes fbr given machine actiom in e two-
choice decision problem are outlined. (After Reference 2).

Test Hypothesis
i

Decision True False

Reject Omission (type l} error Correct Decision

Accept Correct decision Commission (type li)
error
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TABLE C.2
FIRST-ORDER LAND-USE CLASSIFICATION MATRIX USING FINAL TEN-VARIABLE LINEAR.DISCRIMINANT
ANALYSIS. The verified omission/commissionerrorsof the machlne-processedsingle-dateLandsat-1imageare given, The
tabulationsare basedon identifying24 second-and third-orderland uses,and checkingonly at the firstorderon a point-to-
point comparisonwith the 1972-1973 USGSland-usedata plane. Land-usecodesare identified Intable 1of the maintext.
Correctlyclassifiedclasstotalsare italicized. Verificationaccuraciesare summarizedin table 24 of the main text.

CommissionOmi_tonNumberof Picture Elements Errors
Errors(type !1 ttype II)

US(;S I
Land-Use Urban Agriculture Range Forest Water Barren Total Total Pen:ant Total P.e.r_mt
Classes

Urban 180,7,'H 13,563 6,287 175 I,.q. 465 ,n, _;., •.u.,. u._ .1,78. 10.75 35,383 16.37

IAgriculture 29,2gg 4¢).619 5,20(_ 0 826 157 82.197 35.578 43.28 20,603 30.71

!Range 4.005 5,q68 15.7S8 307 • -53 -- -.-1,o23 28.044 12.15(_ 43.70 I(_.683 51.38

[Forest 246 4t_2 780 3.328 2 204 5,0., I.t_94 33.73 006 21.40

Water 1,830 607 72 0 4.190 0 t_,75o 2.569 38.01 2,173 34. i 5

Barren 3 3 4,248 424 0 2.513 7,1Ol 4.678 65.05 2,749 5...4
....

Total 216,164 07.282 32.471 4.234 6.363 5,.o,_ • 331,7"76 78,557 23.68 78,557 23.68
Elements

Classification matrices for the ten-variable image analysis of the 576- b_ e76-element August 15, 1973,

Landsat scene of the Denver Metropolitan Area were generated for the six first-order classes (table C-2) and

for the 24 second- and third-order categories (table ('-3).

REFERENCES

I. Duda, Richard O., and Peter E. Hart, Pattern ClassiJTcation and Scene Anal.t'sis. John Wiley and Sons,

New York, 1973, 482 pp.

2. Mendenhall, William, lntrodu,.tkm to Linear Models and t/w Design and A nalysis oJ"Experiments,

Wadsworth Publishing Company, Belmont California, 1968, 465 pp.
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COMPOSITE SECOND- AND THIRI_
LINEAR-DISCRIMINANT ANALYSIS
Lendsat-1imageare given.The tabular;
comparisonwith the 1972-1973 USGg
rectly_ciauified.classtotals are italieiz

USGS Number of
Land.Use
Classes 11 12 121 13 14 15 151 16 19 19I 192 21

I1 83,761 2,140 1,428 1,670 25 783 0 378 2,102 3 0 I,,

12 6,891_3,238 50 1,544 7 132 0 299 496 1 0

121 6_129 181"2,073 156 24 36 0 185 586 0 0

13 3,797 949 37 4,997 12 606 0 610 350 6 0

14 1,529 119 34 1,I 19''_ 6 9 0 13 269 2 0

15 442 199 7 405 30 2,685 0 950 4 I0 0

151 486 35 3 177 I 133_'" 0 _ 87 35 I 0
16 8,316 498 196 646 12 36 0 14,968 279 20 0

19 15,027 266 327 971 9 792 0 585 1,642 0 0

191 61 6 0 37 1 0 0 0 0 TM 0 0

192 1,192 3 357 16 0 0 0 0 46 0 0

211 8,637 45 1,665 657 14 2,151 0 1,160 1,890 2 0 18,_

212 20 0 25 0 0 0 0 0 0 0 0

213 7,841 17 910 148 26 1,854 0 1,278 959 0 0 6,,

31 1,630 21 70 7 10 864 0 1,107 276 0 0

33 15 0 2 1 2 0 0 0 0 0 0

411 141 0 1_) 21 0 0 0 54 11 0 0

421 0 0 0 0 0 0 0 0 0 0 0

422 0 0 0 0 0 0 0 0 0 0 0

51 78 30 1 83 0 0 0 11 0 0 0

52 780 66 64 239 I0 9 0 151 29 0 0

53 153 2 1 0 16 0 0 84 23 0 0

74 3 0 0 0 0 0 0 0 0 0 0

741 0 0 0 0 0 0 0 0 0 0 0

Total
Elements 146,929 7,815 7,269 12,894 205 10,090 0 21,920 8,997 45 0 30,

Itm.uo

•_., ,_.._.".'r__..a,.........
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TABLE C-3

ORDER LAND-USE CLASSIFICATION MATRIX USING FINAL TEN.VARIABLE
. The verified omission/commissionerrors of the machine-processed,single-date
onsare basedon identifying24 second-andthird-orderlend useson a point-to-point
land-usedata plane.Land-usecodesare identified in table 1 of the haalntext. Cor-

_. Verification accuraciesare summarized in table 24 of the main text.

Picture Elements Omission Commission
Total Errors(Type I) Errors(Type ll)

L 212 213 31 33 411 421 422 51 52 53 74 741 Elements
Total Percent Total Percent

401 0 3,337 1,100 11.7 0 87 0 26 235 21 51 11 98,676 14,915 15.12 63,168i 42.99

l I 0 109 8 0 O 0 0 8 24 7 0 0 12,825 9,587 74.75 4,5771 58.57

356 8 2,348 364 154 0 46 0 2 176 58 119 112 13,113 11,040:84.19 5,196 71.48i

_11 0 155 98 18, 0 0 0 1 65 1 8 9 12,330 7,338- 59.47 7,897 61.25

300 3 372 480 45 0 42 0 8 177 51 9 37 4,824 4,818 99.88 199 97.07

282 0 702 140 17 0 0 0 11 I0 9 19 01 5,922 3,237 54.66 7,405 73.39

51 0 30 36 0 0 0 0 0 41 0 0 01 1,116 1,116 100.00 0 0.00

1_5 0 788 3,058 108 0 0 0 102 74 3 28 26 21,920 14,345 48.94 6,952 31.72

)41 0 1,145 343 9 0 0 0 I0 125 11 35 1 22,239 20,597 92.62 7,355 81.75

5 5 I 117 0 0 0 0 0 I 0 0 0 234 234 I00.00 45 I00.00

89 0 158 75 0 0 0 0 ""0 34 1 0 0 1,971 1,971 100.00 0 0.00

728x_327 6,436 1,266 18, 0 0 0 88 294 48 0 0 46,926 28,698 61.16i 11,796 39.29

Z07 477 0 0 0 0 0 0 0 0 0 0 0 729 252 34.57 4,984 91.27
;59 635 9,850--3,862 150 0 0 0 28 305 63 157 0 34,542 24,692 71A8 21,947 69.02

_21 0 5.646 13.876 307 0 0 0 0 27 26 562 531 25,281 11,405 45.11 13,618 49.53

0 0 I 47"_6 1,129 0 307 0 0 0 0 204 626 2,763 1,634 59.14 3,848 77.32

121 6 335 100 0"_ O 0 0 0 2 0 0 0 810 810 I00.00 0 0.00

0 0 0 22 572 0 3,300 0 0 0 0 12 153 4,068 759 18.66 917 21.70

0 0 0 0 86 0 15""4 _ 0 0 0 0 0 144 140 97.22 4 50.00

69 0 0 0 0 0 0 0 1_ 15 0 0 0 288 287 99.65 286 99.65

]62 0 337 66 0 0 0 0 2 2.773,_262 0 0 4,950 2,177 43.98 1,859 40.13

55 0 44 6 0 0 0 0 0 254 883_ 0 0 1,521 638 41.94 561 38.85

0 0 3 633 729 0 64 1 0 0 0 149,,,_ 128 1,710 1,561 91.29 1,328 89.91
0 0 0 1,368 1,518 0 356 3 0 0 0 124 2.112 5,481 3,369 61.47 1,673 44.20

::)24 5,4bi 31.797 27.494 4,977 0 4,..6"_'_ 8 287 4,632 1,444 1,477 3,785 331,776 !t,5,615 49.92 165,615 49.92
•,= I , ,
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APPENDIX D

MAXIMUM-LIKELIHOOD RATIO

The maximum-likelihood ratio classifier, such as the classification subroutine (;LIKE in CSU's RECOG system
(Reference I ), assumes that the data are multivariate normally distributed, it utilizes a Bayesian decision
rule of tile form

I

p (Xli)= ¢.(u2)(x-Ai)lzil(x.Ai)

(2frNI2JY-|II/2

where

p (X Ii) = the likelihood of occurrelu:e of the feature vector. X. if it belongs to the i th class

Xi = the covariance m',aa_ for the im class

I_tl "- the determinant of X_

X"t = tile inverse of 2;i

At = the mean feature vector f__rthe ia' cl.',ss

These conditional probabilities for classes are taken two at a time. ratioed, and evaluated to assign each picture-

element vector to the class for which the likelihood, p ( X t i). of the unknown vector is the highest, or

gilX) = p(Xli)

The class probabilities, p (i), are assumed to be equal in the naaximum-likelihood n,.tio (Reference 2). llowever.

the modified maximum-likelihood ratio can exploit a priori class probabilities by taking
J

i

gt(X) = plilpIXli) i

i
The benefits of having a priori class probabilities versus equal class probabilities were significant, as pointed i

out by comparative tests using the 4, IO0-point training set (tahle 22l of the main text. 1

1

t
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APPENDIX E

CORRELATION MATRICES FOR

RECTANGULAR/POINT-SAMPLED TRAINING SETS

The CLASSIFY Itnear-discriminant analysis program operates on a single, within-groups, variance-covariance

matrix to compute diseriminant functions and for optional canonical analyses. Another useful table generated

and printed by this Landsat Mapping System (LMS) program is the d-by-d correlation matrix, R ffi[pij], where
the correlation coefficients, Plj' are related to the covariances (or sample covarianccs) by

%
pij ffi

Because -1 _ p_j _ 1, with p_j = 0 for uncorrelated features and p_j= ±I for completely correlated features,
the correlation matl'ix can be useful, particularly in a nonstepwise analysis in which many variables are con-

sidered. The presence of two features,for which p_j is relatively large, provides redundant information and
creates possibilities for dimensionality reduction.

Even ;',ith the stepwise variable-entry feature of CLASSIFY, the correlation matrix is useful for perceiving
numerical relationships between variables. Therefore, correlation matrices were prepared for the four original
MSS bands (table E-I ), the ten MSS bands/ratios (table E-2), and the seven-variable optimal classifier (table
E-3), using the rectangular training-set concept tested and disca_'ded as being.unrepresentative. It was also

instructive for comparison to include corresponding correlation matrices for the four original MSS bands

(table E-4) and the ten MSS I_ands/ratios (table E-5) derived from the 1/81 grid-sampled point training set.
as well as for the final ten-variable correlation matrix (table E-6) used to classify the 576- by 576-element
Landsat/ancillary variable scene. The size of the 48-variable correlation matrices precluded their inclusion
here.

TABLEE-1
WITHIN-GROUPSCORRELATIONMATRIX FOR THE FOUR ORIGINAL MSS
BANDS DERIVED FROM RECTANGULARTRAINING SETS.This setof varia-
blescorrectlyclassified65.19 percentof the 2,413 total samples,but the rectan-
gulartrainingsetslaterprovedto be unrepresentativeof the largerscene.Onlythe
lowerdiagonalof the matrixisshownbecausethe upperandlowerdiagonalsof the
matrixaresyr_metrical.The Landsat-1imagevariableswereaddedina freestepwtse
fashion.Theentryorderisindicatedbysuperscriptnumbersonthevariablenames.

B_nds

Bands 43 52 64 7 l
,,ll • i , i i i

4 1.000 ,,
5 0.89 ! 1.000 ../

6 0.457 0.423 1.000 ':

7 0.255 0.201 0.635 1.000
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TABLE E-2 :

WITHIN.GROUPS CORRELATION MATRIX FOR THE FOUR ORIGINAL MSS BANDS AND SIX RATIOS DERIVED

FROM RECTANGULAR TRAINING SETS, This set of variables correctly classified 67,30 percent of the 2,413 total

samples, but the rectangular training sets later proved to be non.representat,ve of the larger scene. Only the lower diagonal
of the matrix is shown because the upper and lower diagonals are symmetrical. The Landsat.1 Imagevariables were added in
a free stepwise fashion. The entry order is indicated by superscript numbers on the variable names,

Bands/Ratios

Bands/ 4s 5_ 60 7' 7/6 a 7/5to 7/4 7 5/4 = 5/6 a 6/4 6Ratios

4 1.00O

5 9.891 1.000

6 0.456 0.423 1.000

7 0.255 0.201 0.635 1.000

7/6 -0.195 -0.233 -0.17g 0.452 1.000

7/5 -0.289 -0.418 0.179 0.507 0.394 1.000

7/4 -0.377 -0.382 0.301 0.731 0.517 0.732 1.000

5/4 0.368 0.719 0.137 .0.04() -0.193 -0.514 .0.302 1.000

5/6 0.249 0.358 -0.365 -0.238 -0.082 -0.336 -0.374 0.391 1.000

6/4 -0.320 -0.297 0.642 0.496 0.027 0.537 0.755 -0.197 -0.578 1.000
| .... r

TABLE E-3

WITHIN-GROUPS CORRELATION MATRIX FOR THE OPTIMAL SET OF THREE MSS SPECTRAL BANDS AND FOUR

LANDSCAPE VARIABLES DERIVED FROM RECTANGULAR TRAINING SETS. This set of variables correctly classified

96.64 percent of the 2,413 total samoles, but the rectangular training sets later proved to be unrepresentative of the larger
scene. Only the lower diagonal of the matrix is shown becausethe upper and lower diagonals are symmetrical. The Landsat-1

image variables were forced in the predeternlined order (table 13 of the main text), and the ancillary landscapevariables were
added in a free stepwise fashion. The entry order is indicated by superscript numbers on the variable names. ACRES = total

censustract acreage. ELEVS = topographic elevation, INTER = freeway interchange minimum distances; and URBAN = built- • •
up urban-area minimum distances.

.1 i

Variables

Variables MSS-43 MSS-52 MSS-71 ACRES 4 ELEVS 6 INTER 7 "'URBAN s

MSS-4 1.000

MSS-5 0.891 i.000

MSS-7 0.255 0.201 1.000

ACRES -0.035 -0.034 -0.01 ! 1.O00

ELEVS -0.032 0.015 -0.001 0.057 1.000
0

INTI_R O.1O0 O.I I I 0.042 0.396 -0.089 !.000

URBAN 0.026 0.049 O.017 0.508 O.O14 O.7131 1.000
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TABLEE-4
WITHIN-GROUPSCORRELATIONMATRIX FOR THE FOUR ORIGINAL MS5
BANDSDERIVED FROM GRID-SAMPLEDTRAINING POINTS,This setof vari-
ablescorrectlyclassified37.90 percentof the 4,100 total samples.Only the lower
diagonalof thematrixisshownbecausetheupperandlowerdiagonalsaresymmetrical,
The I.andsat.1imagevariableswereaddedIna free=tepwisefashion.Theentryorder
Is indicatedbysuPersarlptnumbersonthevariablename_,

Bands ,__
Bands 42 5_ 64 7 I

4 1.000

5 0.914 1.000

6 0.492 0.439 1.000

7 O.169 O.101 0.770 1.000

TABLE E-5
WITHIN-GROUPSCORRELATIONMATRIX FOR THE FOUR ORIGINAL MSSBANDSANDSIX RATIOSDERIVED
FROM GRID-SAMPLEDTRAINING POINTS.This set o¢variablescorrectlydassltied38.41 percentof the 4,100total
points.Onlythe lowerdiagonalof thematrixisshownbecausetheupperandlowerdiagonalsaresymmetrical.TheLandsat-1
imagevariableswereaddedin a freestepwisefashion.Theentryorderisindicatedby superscriptnumberson thevariable
names.

Bands/Ratios !

Bands/ 44 5s 69 71 7/6 a 7/5 a 7/46 5/42 5/67 6/4 l° I
Ratios

i
4 1.000

5 0.914 1.000

6 0.492 0.439 1,000

7 O.169 (3.I01 0.770 1.000

7/6 -0.172 -0.180 0.105 0.256 1.000 !

7/5 -0.530 -0.626 0.233 0.626 0.305 1.000

7/4 -0.482 -0.496 0.359 0.758 0.334 0.934 l.O00

5/4 0.557 0.834 0.226 -0.047 -0.139 -0.639 -0.416 1.000

5/6 0.350 0.449 -0.151 -0.425 -0.103 -0.608 -0.601 0.460 l.O00

6/4 -0.382 -0.375 0.595 0.683 0.282 0.794 0.871 -0.294 -0.534 l.O00
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TABLE E-6
WITHIN-GROUPS CORRELATION MATRIX FOR THE TEN-VARIABLE COMBINATION OF LANDSAT AND LAND-
SCAPE VARIABLES FOR FULL-IMAGE CLASSIFICATION DERIVED FROM GRID-SAMPLED TRAINING POINTS.
This set of variablescorrectly classified51.00 percentof the 4,100 total points. Only the lower diagonalof the matrix is
shown becausethe upper and lower diagonalsare symmetrical. The Landsat.1imagebandsand the ancillary landscape
variableswere added in a free stepwisefashion.The entry orderis indicatedby superscriptnumberson the variablenames.
CDP10 = medianhousing.unitvalue;CDP18 = averagenumberof familiesper acre; CDPlg = averagenumberof year-round
housingunits per acre;SLOPE = topographicslope;ELEVS = topographicelevation;andHI9 = built-upurban-areaminimum
distances.

Variables

Variables MSS-41o MSS.74 CDPI0 a CDP!83 CDPI96 SLOPE s ELEVS 1 HI92 7/59 5/4 _
, , ,....

MSS-4 1.000

MSS-7 0,169 l.O00

CDPIO -0.128 -0.015 1.000

CDP 18 0.069 0.059 0.447 1,000

CDPI9 -0.057 -0.084 -0.120 0.016 1.000 t

SLOPE -0.035 -0,026 O. 100 0.072 -0.064 1.000

ELEVS -0.042 _-0.057 0.259 0.166 '0.218 0.319 1.000 !

HI9 -0.022 -0.041 -0.030 -0.076 -0.196 (3.103 0.099 1,000

7/5 -0.527 0.626 0.055 -0.011 0.038 -0.014 -0.055 -0.023 1.000

5/4 0.557 -0.047 -0.059 0.014 -0.140 0.006 0,064 0.060 -0.639 1.000
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