82 research outputs found

    Beamforming management and beam training in 5G system

    Get PDF
    Massive multiple-input-multiple-output (MIMO) antenna system with beamforming technique is an integral part of upcoming 5G new radio (NR) system. For the upcoming deployment of 5G NR system in both stand-alone (SA) and non-stand-alone (NSA) structure, beamforming plays an important role to achieve its key features and meet the estimated requirement. To be employed with massive MIMO antenna structure, beamforming will allow 5G system to serve several users at a time with better throughput and spectral usage. Beamforming will also minimize the path loss due to high susceptibility of millimetre wave and provide beamforming gain. For a wide range of benefit scheme, beamforming is currently a hot topic regarding the deployment of 5G. With the advantage of both analog and digital beamforming, hybrid beamforming structure can provide better system benchmark performance in terms of cost and flexibility. Switched beam training and adaptive beam training approaches and algorithms are developed in order to reduce training time, signalling overhead and misdetection probability. Some of the approaches and algorithm are addressed in this thesis. Beamforming management ensures the initiation and sustainability of the established link between transmitter and receiver through different processes. Beam tracking helps to keep track of the receiver devices during mobility. As beamforming is related to antenna configuration, near-field spherical wave front incident problem was ignored, and all the references and examples presented in this topic was obtained with a far-field propagation perspective. To avoid mutual coupling between antenna elements and grating lobe problems in antenna radiation pattern, each element is separated by half of the wavelength. This thesis paper aims to provide a broader view into beamforming scenario, starting from the basics of beamforming to training the beams and management aspects in the hardware part of 5G structure. Another goal is to present the necessity of beamforming in a 5G system by stating different benefits scheme such as spatial diversity, interference suppression, energy efficiency, spectral efficiency and so on. These benefits are justified by evaluating various research paper and MATLAB simulations

    Massive MIMO transmission techniques

    Get PDF
    Next generation of mobile communication systems must support astounding data traffic increases, higher data rates and lower latency, among other requirements. These requirements should be met while assuring energy efficiency for mobile devices and base stations. Several technologies are being proposed for 5G, but a consensus begins to emerge. Most likely, the future core 5G technologies will include massive MIMO (Multiple Input Multiple Output) and beamforming schemes operating in the millimeter wave spectrum. As soon as the millimeter wave propagation difficulties are overcome, the full potential of massive MIMO structures can be tapped. The present work proposes a new transmission system with bi-dimensional antenna arrays working at millimeter wave frequencies, where the multiple antenna configurations can be used to obtain very high gain and directive transmission in point to point communications. A combination of beamforming with a constellation shaping scheme is proposed, that enables good user isolation and protection against eavesdropping, while simultaneously assuring power efficient amplification of multi-level constellations

    Wideband User Grouping for Uplink Multiuser mmWave MIMO Systems With Hybrid Combining

    Get PDF
    [Abstract] Analog-digital hybrid precoding and combining schemes constitute an interesting approach to millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems due to the low hardware complexity and/or low power required for its deployment. However, the design of the hybrid precoders and combiners of a wideband multiuser (MU) mmWave MIMO system is challenging because the signal processing in the analog domain is constrained to be frequency flat. Furthermore, the number of radio frequency (RF) chains limits the number of individual streams that a common base station (BS) can simultaneously serve. This work jointly addresses the user scheduling, the user precoder design, and the BS hybrid combining design for the uplink of wideband MU mmWave MIMO systems. On the one hand, user precoding and BS hybrid combining are jointly designed to minimize the impact of having frequency-flat RF components. On the other hand, a number of users larger than the number of RF chains are served at the BS by employing a distributed quantizer linear coding (DQLC)-based non-orthogonal multiple access (NOMA) scheme. The use of this encoding strategy also allows exploiting the spatial correlation between the source information. Simulation results show remarkable performance gains of the proposed approaches for wideband mmWave MIMO hardware-constrained systems.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431C 2020/15) 10.13039/501100010801-Centro de Investigación de Galicia CITIC (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de Investigación of Spain (Grant Number: RED2018-102668-T and PID2019-104958RB-C42) European Regional Development Funds (ERDF) of the EU (ERDF Galicia 2014-2020 & AEI/ERDF programs, UE) Predoctoral (Grant Number: BES-2017-081955)Xunta de Galicia; ED431C 2020/15Xunta de Galicia; ED431G2019/0

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Técnicas de equalização para MIMO massivo com amplificação não linear

    Get PDF
    The dawn of the new generation of mobile communications and the trafic explosion that derives from its implementation pose great challenge. The milimeter wave band and the use of massive number of antennas are technologies which, when combined, allow the transmission of high data rate, functioning in zones of the electromagnetic spectrum that are less explored and with capability of allocation of dozens of GHz of bandwidth. In this dissertation we consider a massive MIMO millimeter wave system employing a hybrid architecture, i.e., the number of transmit and receive antennas are lower than the number of radio frequency chains. As consequence, the precoder and equalizers should be designed in both digital and analog domains. In the literature, most of the proposed hybrid beamforming schemes were evaluated without considering the effects of nonlinear amplifications. However, these systems face non-avoidable nonlinear effects due to power amplifiers functioning in nonlinear regions. The strong nonlinear effects throughout the transmission chain will have a negative impact on the overall system performance and thus its study and the design of equalizers that take into account these effects are of paramount importance. This dissertation proposes a hybrid iterative equalizer for massive MIMO millimeter wave SC-FDMA systems. The user terminals have low complexity, just equipped with analog precoders based on average angle of departure, each with a single radio frequency chain. At the base station it is designed an hybrid analog-digital iterative equalizer with fully connected architecture in order to eliminate both the multi-user interference and the nonlinear distortion caused by signal amplification during the transmission. The equalizer is optimized by minimizing the bit error rate, which is equivalent to minimize the mean square error rate. The impact of the saturation threshold of the amplifiers in the system performance is analysed, and it is demonstrated that the iterative process can efficiently remove the multi-user interference and the distortion, improving the overall system performance.O surgimento de uma nova geração de comunicações móveis e a explosão de tráfego que advém da sua implementação apresenta grandes desafios. A banda de ondas milimétricas e o uso massivo de antenas são tecnologias que, combinadas, permitem atingir elevadas taxas de transmissão, funcionando em zonas do espectro electromagnético menos exploradas e com capacidade de alocação de dezenas de GHz para largura de banda. Nesta dissertação foi considerado um sistema de MIMO massivo de ondas milimétricas usando uma arquitectura híbrida, i.e., o número de antenas para transmissão e recepção é menor que o número de cadeias de radiofrequência. Consequentemente, o pré-codificador e equalizadores devem ser projectados nos domínios digital e analógico. Na literatura, a maioria dos esquemas híbridos de beamforming são avaliados sem ter em conta os efeitos de não linearidade da amplificação do sinal. No entanto, estes sistemas sofrem inevitavelmente de efeitos não lineares devido aos amplificadores de potência operarem em regiões não lineares. Os fortes efeitos das não-linearidades ao longo da cadeia de transmissão têm um efeito nefasto no desempenho do sistema e portanto o seu estudo e projecto de equalizadores que tenham em conta estes efeitos são de extrema importância. Esta dissertação propõe um equalizador híbrido para sistemas baseados em ondas milimétricas para MIMO massivo com modulação SC-FDMA. Os terminais de utilizador possuem baixa complexidade, equipados apenas com pré-codificadores analógicos baseados no ângulo médio de partida, cada um com uma única cadeia de radiofrequência. Na estação base é projectado um equalizador iterativo híbrido analógico-digital com arquitectura completamente conectada de modo a eliminar a interferencia multi-utilizador e a distorção causada pela amplificação do sinal aquando da transmissão. O equalizador é optimizado minimizando a taxa de erro de bit, o que é equivalente a minimizar a taxa de erro quadrático médio. O impacto do limiar de saturação dos amplificadores no desempenho do sistema é analisado, e é demonstrado que o processo iterativo consegue eliminar de modo eficiente a interferência multi-utilizador e a distorção, melhorando o desempenho do sistema.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Design and Prototyping of Hybrid Analogue Digital Multiuser MIMO Beamforming for Non-Orthogonal Signals

    Get PDF
    To enable user diversity and multiplexing gains, a fully digital precoding multiple input multiple output (MIMO) architecture is typically applied. However, a large number of radio frequency (RF) chains make the system unrealistic to low-cost communications. Therefore, a practical three-stage hybrid analogue-digital precoding architecture, occupying fewer RF chains, is proposed aiming for a non-orthogonal IoT signal in low-cost multiuser MIMO systems. The non-orthogonal waveform can flexibly save spectral resources for massive devices connections or improve data rate without consuming extra spectral resources. The hybrid precoding is divided into three stages including analogue-domain, digital-domain and waveform-domain. A codebook based beam selection simplifies the analogue-domain beamforming via phase-only tuning. Digital-domain precoding can fine-tune the codebook shaped beam and resolve multiuser interference in terms of both signal amplitude and phase. In the end, the waveform-domain precoding manages the self-created inter carrier interference (ICI) of the non-orthogonal signal. This work designs over-the-air signal transmission experiments for fully digital and hybrid precoding systems on software defined radio (SDR) devices. Results reveal that waveform precoding accuracy can be enhanced by hybrid precoding. Compared to a transmitter with the same RF chain resources, hybrid precoding significantly outperforms fully digital precoding by up to 15.6 dB error vector magnitude (EVM) gain. A fully digital system with the same number of antennas clearly requires more RF chains and therefore is low power-, space- and cost- efficient. Therefore, the proposed three-stage hybrid precoding is a quite suitable solution to non-orthogonal IoT applications

    Millimeter-Wave MIMO-NOMA based Positioning System for Internet of Things Applications

    Get PDF
    • …
    corecore