149 research outputs found

    Subspace Structure Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing

    Get PDF
    Hyperspectral unmixing is a crucial task for hyperspectral images (HSI) processing, which estimates the proportions of constituent materials of a mixed pixel. Usually, the mixed pixels can be approximated using a linear mixing model. Since each material only occurs in a few pixels in real HSI, sparse nonnegative matrix factorization (NMF) and its extensions are widely used as solutions. Some recent works assume that materials are distributed in certain structures, which can be added as constraints to sparse NMF model. However, they only consider the spatial distribution within a local neighborhood and define the distribution structure manually, while ignoring the real distribution of materials that is diverse in different images. In this paper, we propose a new unmixing method that learns a subspace structure from the original image and incorporate it into the sparse NMF framework to promote unmixing performance. Based on the self-representation property of data points lying in the same subspace, the learned subspace structure can indicate the global similar graph of pixels that represents the real distribution of materials. Then the similar graph is used as a robust global spatial prior which is expected to be maintained in the decomposed abundance matrix. The experiments conducted on both simulated and real-world HSI datasets demonstrate the superior performance of our proposed method

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    ADMM-Based Hyperspectral Unmixing Networks for Abundance and Endmember Estimation

    Get PDF
    Hyperspectral image (HSI) unmixing is an increasingly studied problem in various areas, including remote sensing. It has been tackled using both physical model-based approaches and more recently machine learning-based ones. In this article, we propose a new HSI unmixing algorithm combining both model- and learning-based techniques, based on algorithm unrolling approaches, delivering improved unmixing performance. Our approach unrolls the alternating direction method of multipliers (ADMMs) solver of a constrained sparse regression problem underlying a linear mixture model. We then propose a neural network structure for abundance estimation that can be trained using supervised learning techniques based on a new composite loss function. We also propose another neural network structure for blind unmixing that can be trained using unsupervised learning techniques. Our proposed networks are also shown to possess a lighter and richer structure containing less learnable parameters and more skip connections compared with other competing architectures. Extensive experiments show that the proposed methods can achieve much faster convergence and better performance even with a very small training dataset size when compared with other unmixing methods, such as model-inspired neural network for abundance estimation (MNN-AE), model-inspired neural network for blind unmixing (MNN-BU), unmixing using deep image prior (UnDIP), and endmember-guided unmixing network (EGU-Net)

    Hyperspectral Unmixing Based on Dual-Depth Sparse Probabilistic Latent Semantic Analysis

    Get PDF
    This paper presents a novel approach for spectral unmixing of remotely sensed hyperspectral data. It exploits probabilistic latent topics in order to take advantage of the semantics pervading the latent topic space when identifying spectral signatures and estimating fractional abundances from hyperspectral images. Despite the contrasted potential of topic models to uncover image semantics, they have been merely used in hyperspectral unmixing as a straightforward data decomposition process. This limits their actual capabilities to provide semantic representations of the spectral data. The proposed model, called dual-depth sparse probabilistic latent semantic analysis (DEpLSA), makes use of two different levels of topics to exploit the semantic patterns extracted from the initial spectral space in order to relieve the ill-posed nature of the unmixing problem. In other words, DEpLSA defines a first level of deep topics to capture the semantic representations of the spectra, and a second level of restricted topics to estimate endmembers and abundances over this semantic space. An experimental comparison in conducted using the two standard topic models and the seven state-of-the-art unmixing methods available in the literature. Our experiments, conducted using four different hyperspectral images, reveal that the proposed approach is able to provide competitive advantages over available unmixing approaches
    corecore