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ADMM-Based Hyperspectral Unmixing Networks
for Abundance and Endmember Estimation

Chao Zhou, Miguel R.D. Rodrigues

Abstract—Hyperspectral image (HSI) unmixing is an increas-
ingly studied problem in various areas, including remote sensing.
It has been tackled using both physical model-based approaches
and more recently machine learning-based ones. In this paper, we
propose a new HSI unmixing algorithm combining both model-
and learning-based techniques, based on algorithm unrolling
approaches, delivering improved unmixing performance. Our
approach unrolls the Alternating Direction Method of Multipliers
(ADMM) solver of a constrained sparse regression problem
underlying a linear mixture model. We then propose a neural
network structure for abundance estimation that can be trained
using supervised learning techniques based on a new composite
loss function. We also propose another neural network structure
for blind unmixing that can be trained using unsupervised
learning techniques. Our proposed networks are also shown to
possess a lighter and richer structure containing less learnable
parameters and more skip connections compared with other
competing architectures. Extensive experiments show that the
proposed methods can achieve much faster convergence and
better performance even with a very small training dataset size
when compared with other unmixing methods such as MNN-
AE&BU, UnDIP and EGU-Net.

Index Terms—Hyperspectral unmixing, unfolding, learning,
ADMM, ISTA.

I. INTRODUCTION

HYPERSPECTRAL Imaging (HSI) has been largely
adopted in remote sensing in order to acquire infor-

mation about an object or scene with no physical contact.
It relies on the fact that different materials within a scene
reflect electromagnetic radiation differently, so that, when the
radiation captured by sensors is measured at each wavelength
over a sufficiently broad spectral band, the resulting spectral
signature can be used to uniquely identify and characterize the
constituent materials within the scene [1].

The common linear mixture model (LMM) [2] assumes the
spectral signature associated with each scene pixel corresponds
to a linear mixture of spectral signatures corresponding to
each material present within such pixel. This then calls for
methods capable of quantitatively decomposing, or unmixing,
the captured spectral signature onto its spectral constituents –
also known as “endmembers” – and their proportions within
the mixture – also known as “abundances” [3].

In general, HSI unmixing involves three key operations [4]:
(a) dimensionality reduction (b) endmember extraction and
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(c) abundance estimation. 1 Endmember extraction algorithms
focus on identifying endmember spectral signatures present
within the HSI image. There are various endmember extraction
methods such as Vertex Component Analysis (VCA) [5]
and simplex volume maximization (SiVM) [6], where VCA
assumes that there are pure pixels for each endmember in the
HSI data, and SiVM assumes that endmembers are located
in the vertex of the maximum simplex encompassing the HSI
data. Subsequently, abundance estimation algorithms identify
the proportion of each endmember within each pixel in the HSI
image. There are popular methods such as fully constrained
least square (FCLS) [7] which assumes the endmembers are
extracted by the aforementioned methods. Sparse unmixing by
variable splitting and augmented Lagrangian (SunSAL) [8] is
also a popular sparsity driven abundance estimation method
by referring to a rich endmember spectral library.

On the other hand, blind unmixing methods perform end-
member extraction and abundance estimation simultaneously.
For example, nonnegative matrix factorization (NMF) [9] and
nonnegative tensor factorization (NTF) [10] are very popular
blind unmixing methods that map the HSI unmixing problem
onto a matrix/tensor factorization problem by imposing various
constraints, such as total-variation constraint, on endmember
signatures or their abundances. However, these model-based
algorithms tend to be computationally complex, because they
rely on iterative solvers such as alternating direction method
of multiplier (ADMM) [11], making them unsuitable to real-
time unmixing scenarios. Thus, the unmixing problem is still
a challenging problem in literature.

More recently, with the surge of interest in machine
learning, especially neural networks, many learning-based
approaches (in lieu of above model-based ones) have been
proposed to tackle the HSI unmixing challenge [12], [13],
[14], [15], [16], using both supervised or unsupervised learn-
ing algorithms. Supervised learning-based approaches assume
access to a set of pairs of HSI reflectances and the correspond-
ing abundances [17], [18], [19]. Whereas, in unsupervised
learning-based approaches, the machine learning algorithm
attempts to learn a function to extract both the endmembers
and abundances based on HSI reflectance data alone. In
general, these unmixing methods [12], [16], [20], [21], [22],
[23], [24], [25], [26] are based on an auto-encoder network
structure that is capable of delivering both the endmembers

1Dimension reduction is a typical pre-processing operation in image
processing problems to reduce the data into a low-dimensional space, so
we mainly focus on developing the endmember extraction and abundance
estimation algorithms. In this paper, we assume the number of endmembers
is known.
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(via the corresponding decoder) and their abundances (via the
corresponding bottleneck). However, without proper guidance
or initialization, the network could yield meaningless estima-
tions. Recently, some unmixing works have been proposed
to utilize the existing unmixing algorithms to provide guid-
ance for the training of unmixing networks. For example,
UnDIP [27] depends on a simplex volume maximization
algorithm to extract the endmembers, which are then used
to guide the training of an abundance estimation network
using a deep image prior. EGU-Net [28] propose a two-
stream deep network that learns an additional network from
the (nearly) pure endmembers obtained from HSI data via
certain endmember extraction methods. To further improve
unmixing performance, adversarial autoencoder [13], [14] is
introduced to train an unmixing autoencoder in an adversarial
manner with an additional discriminator. However, despite the
fruitful developments, the machine learning techniques still
have several drawbacks. First of all, there are no principled
approaches to guide the design of network architectures,
especially the encoder network. Secondly, neural networks
such as the encoder network often lack interpretability. Thus
it is difficult to incorporate any prior information about the
tasks into the design of network architecture. Thirdly, current
machine learning approaches generally rely on a huge training
dataset size , lots of learning parameters and a very long period
of training time to achieve satisfactory performance.

Notably, algorithm unrolling or unfolding techniques [29],
[30] have emerged as a potential solution to design inter-
pretable network structures. With these techniques, the unmix-
ing task is firstly mapped onto an optimization problem, which
is usually solved by an iterative solver. Then each step in the
iterative solver could be converted to a network operation.
Finally, the network is constructed by concatenating several
iterations (or layers in network language) of such operation. It
has been shown in [31], [32], [33] that the network unfolded
from an iterative algorithm can achieve better performance
than the original iterative algorithm.

Recently, [19], [34] have proposed ISTA based unmixing
networks, MNN-AE and MNN-BU, which use the unfolding
technique for HSI unmixing purposes. In particular, building
upon an ISTA solver of a constrained sparsity linear regression
unmixing problem, they design a deep network architecture
that can be further trained in a supervised or unsupervised
manner to solve the unmixing challenge. Similarly, [15] has
proposed an unmixing network by unrolling an alternating
optimisation algorithm of a sparsity constrained nonnegative
matrix factorisation model. These approaches have delivered
state-of-the-art results surpassing existing methods such as
pixel-based CNN [18], DAEN [25] and uDAS [22].

However, the ISTA based unmixing networks [19], [34] are
not very efficient and there are many iterative solvers other
than ISTA. It is therefore relevant to understand whether the
unmixing performance can be further improved by leveraging
other iterative algorithms in algorithm unrolling approaches to
deliver state-of-the-art unmixing neural network architectures.

In this paper, in light of the fact that ADMM is a very pow-
erful optimization problem solver that can lead to sufficient
accuracy with fast convergence [11], [35], we propose two

new networks for abundance estimation and blind unmixing,
respectively, both of which are derived by unfolding ADMM.
In particular, we make these contributions:

1) Building upon the sparsity-driven HSI linear unmixing
model, we propose a novel neural network architecture
derived from unrolling an ADMM algorithm, which
can be trained using supervised principles, in order to
estimate the abundances from HSI data. Through a de-
tailed analysis of network structure and complexity, we
show that the proposed network has a much richer (i.e.,
more skip-connections) and lighter (i.e., less learnable
parameters) structure. The experiment comparisons with
state-of-art algorithms such as MNN-AE [34] also show
our proposed methods achieve 3X faster convergence
speed, 4X better performance when the size of the
training dataset is small, and better robustness (along
with interpretability).

2) Likewise, we also propose an autoencoder-like neural
network that can be trained using unsupervised princi-
ples in order to yield both the endmembers and their
abundances from the HSI data directly. The experiments
showcase that the proposed blind unmixing networks
offer improved performance in comparison to state-
of-art algorithms, such as MNN-BU [34], uDAS [22],
UnDIP [27], and EGU-Net [28].

3) We also propose new ways to improve the network’s
parameters tuning process. In view of the fact that a
typical MSE loss has implicit Gaussian assumption, we
propose to train the supervised network with a novel
composite loss function incorporating additional terms
such as an abundance angle distance (AAD) and an
abundance information divergence (AID) term, which
are usually used as unmixing performance evaluation
metrics instead of training loss terms. The experiments
show that the proposed loss function can provide better
performance.

The rest of this paper is organized as follows. Section II
introduces related background. Section III elaborates about
how to leverage the ADMM algorithm to unfold constrained
sparse regression problem leading up to our first unfolding
network for abundance estimation, whereas Sections IV con-
centrate on the development of our unfolding ADMM based
blind unmixing networks. Section V analyses the network
structure and parameters complexity. Section VI offers a
number of results showcasing the performance of the proposed
approaches. Finally, we draw a number of conclusions and
future research directions in Section VII.

Throughout this paper, we use lower-case letters to denote
scalars, bold lower-case letters to denote column vectors, and
bold upper-case letters to denote matrices. We also denote the
ith element of a vector x by xi and the ith column of a matrix
X by xi. We denote the vector x at kth iteration/layers as
xk. We let 1 denote a vector with all ones. The matrix inverse
and matrix transpose operators are represented by (·)−1 and
(·)T , respectively. The ℓ1-norm and ℓ2-norm of a vector are
represented by || · ||1 and || · ||2, respectively.
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II. RELATED BACKGROUND

We concentrate on popular HSI LMM, which entails that
the reflectance spectrum corresponding to a particular pixel
is a linear weighted combination of the spectrum of the
endmembers associated with such pixel [2], [3]. This model
can be described as follows:

y = Ax+ n (1)

where y = [y1, . . . , yp]
T ∈ Rp×1 is a vector containing the

reflectance spectra across p bands associated with a given pixel
in the scene, x = [x1, . . . , xr]

T is a vector containing the
abundances of r different endmembers present in the pixel
of the scene, and n = [n1, . . . , np]

T is a vector modelling
additive noise. The matrix A = [a1, . . . ,ar] ∈ Rp×r contains
the spectral signatures of the endmembers present in the HSI
data, i.e. am ∈ Rp×1 models the spectral signature of the mth

endmember (m = 1, . . . , r).
There are also two physical constraints associated with the

abundance vector: (1) First, the different elements within the
abundance vector must be nonnegative, i.e. xm ≥ 0,m =
1, . . . , r; (2) Second, the different elements within the abun-
dance vector also sum to one, i.e.

∑r
m=1 xm = 1. These

physical constraints are usually known as ANC and ASC,
respectively. Moreover, the endmember matrix is also con-
strained to have non-negative entries.

When the endmember matrix A is available in the form of
a spectral library [36], one can adopt a fully constraint least
square (FCLS) optimization problem to recover the abundance
vector from the reflectance vector as follows:

min
x

1

2
||y − Ax||2, s.t.,x ≥ 0, and1Tx = 1 (2)

Alternatively, in view of the fact that the recovered vector
tends to be sparse, one can also adopt a constrained sparse
regression (CSR) based optimization problem in order to
recover the abundances from the reflectance as follows: 2

min
x

1

2
||y − Ax||2 + λ||x||1, s.t.,x ≥ 0 (3)

where λ ≥ 0 is a regularization parameter that controls the
sparsity of solutions.

The CSR optimization problem in (3) can be solved using
a range of solvers. In particular, one of the most popular
solvers to CSR problem is the ADMM algorithm, which leads
to the well-known SunSAL algorithm [8]. In particular, by
introducing an auxiliary variable z such that x = z along
with a dual variable d, ADMM leads to an iterative scheme
to compute the solution of the constrained sparse regression
problem appearing in (3) as follows:

xk+1 = (ATA+ µI)−1(ATy + µ(zk + dk)) (4)

zk+1 = max

(
soft

(
xk+1 − dk,

λ

µ

)
, 0

)
(5)

dk+1 = dk −
(
xk+1 − zk+1

)
(6)

2Note that one does not enforce the ASC constraint in (3), because
otherwise, the CSR problem would reduce to the FCLS one.

where xk is the value of variable x at kth iteration (same
for zk,dk) and µ ≥ 0 is a parameter that is usually chosen
to be an upper bound to the largest eigenvalue of ATA. The
operator Soft in (5) is the soft-threshold operator given by,
soft(x, θ) = sign(x)(|x| − θ)+.

It is clear that this iterative scheme can be mapped onto
different layer components of a neural network architecture
using algorithm unrolling techniques [29]. In the next section,
we will show our approach to supervised and unsupervised
HSI unmixing building upon unfolding ADMM.

III. ADMM BASED ABUNDANCE ESTIMATION NETWORK

We first construct our ADMM based network structure for
abundance estimation. We also introduce our new composite
loss function underlying the optimization of our abundance
estimation network.

A. Unfolding ADMM into a Neural Network Layer

The neural network layers consist of three distinct com-
ponents deriving from unrolling the three different ADMM
iterative operations appearing in (4), (5), and (6).

1) X-Update Component: The X-update component of the
(k + 1)th neural network layer is derived by unfolding (4).
Concretely, we can write (k+1)th iterate xk+1 given the kth

estimates zk and dk along with y as follows:

xk+1 = fX(zk,dk,y;W ,B)

= W Ty +BT (zk + dk)
(7)

where
W T = (ATA+ µI)−1AT

BT = (ATA+ µI)−1µ
(8)

However, in order to have greater flexibility, we will use
learnable parameters W k+1 ∈ Rr×p and Bk+1 ∈ Rr×r in
this (k+1)th layer to replace the fixed parameter W and B.
The key idea is that these parameters W k+1 and Bk+1 can
differ from the original ones W and B associated with the
model in (3), in order to better adapt to the characteristics of
the data.

It is interesting to note that the operation performed by the
X-update component can also be viewed as a typical linear
layer [37] within a neural network. The X-update component
of a neural network layer is shown in Fig. 1.

2) Z-Update Component: The Z-update component of the
(k + 1)th neural network layer is derived from unfolding (5).
Concretely, the (k + 1)th iterate zk+1 is obtained from the
(k+1)th estimate xk+1 and the kth estimate dk by performing
a soft-thresholding operation (with parameter λ/µ) followed
by a max operation. We propose instead to re-express (5) as
follows:

zk+1 = fZ(x
k+1,dk; θk+1)

= max
(
soft

(
xk+1 − dk, θk+1

)
, 0
) (9)

where θk+1 ∈ R is a learnable parameter. The parameter
θk+1 – which can differ from layer to layer – plays the role
of the parameter λ

µ , with the advantage that it can also be
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learnt in a data-driven manner in order to better adapt to the
characteristics of the unmixing problem.

It is also interesting to note that the operation performed by
the Z-update component can also be re-expressed as follows:

zk+1 = ReLU(xk+1 − dk − θk+1I) (10)

where ReLU(·) is a component-wise rectified linear unit
operation [37]. Therefore, the Z-update component – which
also guarantees that one satisfies the ANC constraint – plays
the role of a ReLU operation in a standard neural network. The
Z-update component of a neural network layer is also shown
in Fig. 1.

3) D-Update Component: Finally, the D-Update Compo-
nent of the (k + 1)th neural network layer is derived from
unfolding (6). In particular, the (k+1)th iterate dk+1 is simply
the difference between the kth iterate dk and the (k + 1)th

iterates xk+1 and zk+1. We propose however to re-express (6)
as follows:

dk+1 = fD(xk+1, zk+1,dk; ηk+1)

= dk − ηk+1(xk+1 − zk+1)
(11)

where ηk+1 is also a learnable parameter offering additional
flexibility. Such a learnable parameter plays the role of a
step-size that can be further adjusted in order to adapt to
the characteristics of the unmixing problem. The D-update
component of a neural network layer is shown in Fig. 1.

4) Overall Neural Network Layer: By intertwining the X-
update, Z-update, and D-update components, one immediately
obtains the structure of a neural network layer shown in Fig.
1. Note that each network layer corresponds to an iteration of

X-Update

  eq. (7)

D-Update

eq. (12)

Z-Update

eq. (10)

(k+1)th layer

Fig. 1. The neural network layer consists of X-update, Z-update and D-
update components, which performs eq.(7), eq.(9) and eq.(11) respectively. It
mimics one iteration of the ADMM algorithm. There are four shortcuts: one
from dk to Z-update and D-update components, one from xk+1 to the D-
update component, one from zk+1 to the X-update component in next layer,
and one from the input y.

the original ADMM algorithm. However, as discussed above,
each layer is associated with learnable parameters Θk =
{W k,Bk, θk, ηk}, whereas each iteration in the ADMM
algorithm is associated instead with hand-coded parameters
{A, µ, λ}. One of the advantages of using such a learnable
parameterization is that the number of layers in the resulting
network architecture can be much lower than the number of
iterations associated with the original ADMM algorithm in
order to achieve the desired performance level.

It is interesting to note that in Fig.1, there are four shortcuts:
one from dk to Z-update and D-update components, one from
xk+1 to the D-update component, one from zk+1 to the X-
update component in next layer, and one from the input y.
Whereas in a conventional neural network, the output of the
previous component is only connected directly to the next
component and the network input y is usually only connected
to the first layer of the network.

B. Abundance Estimation Network Structure

We have previously suggested that each iteration block –
corresponding to one iteration of the ADMM algorithm – can
be seen as a neural network layer. We have also previously
suggested that the model parameters {A, µ, λ} associated with
the ADMM algorithm can be replaced by learnable ones in
each neural network layer. Therefore, we can construct two
different feed-forward neural networks by concatenating K
iteration blocks, in order to mimic K iterations of the ADMM
algorithm.

Our first network (designated U-ADMM-AENet-I) results
from concatenating K iteration blocks/layers – consisting of
X-Update, Z-Update, and D-Update components – where the
learnable parameters Θk = {W ′,B′, θ′, η′},∀k ∈ [1,K] are
tied/shared across the network. A K-layer U-ADMM-AENet-I
is shown in Fig.2a.

Our second network (designated by U-ADMM-AENet-II)
also results from concatenating K iteration blocks/layers, but
the learnable parameters are now not shared across layers but
are rather layer-specific (i.e. Θk = {W k,Bk, θk, ηk},∀k ∈
[1,K]). Note that one potential advantage of U-ADMM-
AENet-II in relation to U-ADMM-AENet-I relates to its in-
creased capacity and flexibility, leading to improved unmixing
results. A K-layer U-ADMM-AENet-II is shown in Fig.2b.

In both cases, the network takes as input the HSI spectrum
y, accompanied with the pseudo inputs z0 and d0, which we
both set to 0 in line with the standard approach in ADMM
algorithms. Then these inputs will go through K network
layers with learnable parameters Θ = {Θk}Kk=1. We also
let the network output to be derived from the Z-Update
component in the last iteration block because this component
guarantees compliance with the ANC constraint. We also
further normalize the network output using l1 normalisation to
meet the ASC constraint. Suppose the network output before
normalisation is z, then the normalised output x̃ is computed
as follows:

x̃i =
zi∑
j zj

(12)

Note that z is guaranteed to be non-negative because it is
the output of the ReLU operator. We add this normalisation
because ASC is not directly imposed within the optimization
formulation.

C. Abundance Estimation Network Initialization and Training
strategies

1) Initialization Approach: The neural networks are trained
by adopting warm instead of random initialization of the
parameters in order to speed up the training procedure. In
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ReLU

X-Update Z-Update D-Update

Norm
1st layer Kth layer

ReLU

X-Update Z-Update D-Update

+ + - - - + + - - -

(a) A K-layer U-ADMM-AENet-I.

ReLU

X-Update Z-Update D-Update

Norm
1st layer Kth layer

ReLU

X-Update Z-Update D-Update

+ + - - - + + - - -

(b) A K-layer U-ADMM-AENet-II.

Fig. 2. The structures of U-ADMM-AENet. (a) a K-layer U-ADMM-AENet-I, of which the learnable parameters in each layer are same/tied/shared,
Θk = {W ′,B′, θ′, η′}, ∀k ∈ [1,K]. (b) a K-layer U-ADMM-AENet-II, of which the learnable parameters in each layer are different/untied/unshared,
Θk = {W k,Bk, θk, ηk}, ∀k ∈ [1,K].

particular, we propose to initialize the different network pa-
rameters by leveraging the original parameters associated with
the ADMM algorithms as follows:

• The parameters W k and Bk corresponding to the X-
update component of each layer are initialized by using
(8). The endmember signature matrix A can be chosen
to correspond to some adequate spectral library – where
it is known – or else one can estimate it using an existing
algorithm such as VCA [5], which is then concatenated
with any candidate signatures that are related.

• The parameter θk corresponding to the Z-update com-
ponent of each layer is initialised using λ/µ, where λ
and µ relate to parameters associated with the ADMM
algorithm.

• Finally, the parameter ηk associated with the D-update
component of each layer does not have an immediate
counterpart in the ADMM algorithm. We set, however,
this parameter to be equal to one for initialisation pur-
poses.

Note that with this initialisation strategy, an K-layer U-
ADMM-AENet corresponds exactly to K iterations of the
ADMM algorithm.

2) Training Approach: The neural networks are trained
using a supervised learning approach, by leveraging access
to a training set D = {yi,xi}Ni=1 consisting of N reflectance
spectra yi and corresponding abundances xi.

Instead of commonly used MSE loss function[34], we
propose a new composite loss function to train the neural
networks, which is given by:

LΘ = α1 · L1 + α2 · L2 + α3 · L3 (13)

where α1, α2, and α3 are hyper-parameters controlling the
contribution of each loss function components L1, L2, and

L3, respectively.
The first component of the loss function derives from the

standard mean-squared error (MSE) given by:

L1 = MSE({xi, x̃i}Ni=1)

=
1

N

∑
{yi,xi}∈D

∥xi − x̃i(yi)∥22 (14)

where yi is the ith reflectance spectrum within the training
set, xi is the corresponding ith abundance vector within the
training set, and x̃i(yi) corresponds to the network estimate
of xi given yi. This loss function is often adopted to train
neural networks for unmixing purposes [19].

The second component of the loss function derives from the
abundance angle distance (AAD) [18], [22], [38], [39], [40],
as follows:

L2 =
1

N

∑
{yi,xi}∈D

AAD(xi, x̃i(yi))

=
1

N

∑
{yi,xi}∈D

cos−1

(
xT
i x̃i(yi)

∥xi∥2∥x̃i(yi)∥2

)
(15)

The third component of the loss function derives instead
from the abundance information divergence (AID) [22], [39]
as follows:

L3 =
1

N

∑
{yi,xi}∈D

AID(xi, x̃i(yi))

=
1

N

∑
{yi,xi}∈D

KL(xi|x̃i(yi)) +KL(x̃i(yi)|xi) (16)

where

KL(xi|x̃i(yi)) =

r∑
m=1

(
xi,m log

(
xi,m

x̃i,m

))
(17)
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Note that the second and third components of the loss
functions are additional dissimilarity measures, enabling to
gauge how different the recovered abundance is from the true
one.

We introduce these two additional components for two
reasons: (1) the MSE loss implicitly assumes [41] that the
abundance vectors estimated by neural networks are sampled
from a Gaussian distribution, which is obviously not suitable
as abundance vectors have ANC and ASC constraints. On the
other hand, the AAD does not have such an assumption, as it
corresponds to a high-dimensional generalization of an angle
between vectors. (2) abundance vectors, given the ANC and
ASC constraints, have a natural probabilistic interpretation.
The Kullback-Leibler distance is often used to measure the
distance between two probability distributions (such as two
abundance vectors). AID is a symmetric version of the KL
divergence that can also be used to capture the distance
between two abundance vectors. Note that in [20], [24], the
authors use the SID and SAD losses respectively within their
overall loss function to measure HSI reflectance reconstruction
performance. Instead, we use a richer combination of loss
functions within our overall loss in order to capture abundance
estimation performance. The experiments shown later indicate
that this richer combination leads to improved performance.

3) Parameter Update Rule: We finally learn the parameters
Θ of the proposed neural networks U-ADMM-AENet-I and
U-ADMM-AENet-II via minimizing the loss function LΘ

using the stochastic gradient descent algorithm ADAM [42],
while the hyper-parameters are optimised via cross-validation
techniques, leading to α1 = 1.0, α2 = 10−7, α3 = 10−5. The
stochastic gradient algorithm updates the learnable parameters
Θ as follows:

Θnew = Θold − l
∂LΘold

∂Θold
(18)

where, l is the learning rate. The gradient for each learnable
parameter in Θ can be calculated via the back-propagation
algorithm [37]. While the forward computation of a K-layer
network, which starts from the input to the output, follows
the path y → Θ1 → · · · → Θk → · · · → ΘK → x̃,
the back-propagation algorithm calculates the gradient for the
parameters in each layer in a reverse path as follows:

∂LΘ

∂Θk
=

∂LΘ

∂x̃

∂x̃

∂ΘK
· · · ∂Θ

k+1

∂Θk
, k = 1, · · · ,K − 1 (19)

For example, the gradient for parameter θK in the last layer
can be calculated as follows:

∂LΘ

∂θK
=

∂LΘ

∂x̃

∂x̃

∂θK
(20)

where,
∂LΘ

∂x̃
= α1

∂L1

∂x̃
+ α2

∂L2

∂x̃
+ α3

∂L3

∂x̃
(21)

∂x̃

∂θK
=

∂

∂θK
fZ(x

K ,dK−1; θK) (22)

according to eq.(13) and eq.(9). Note that on the right side of
eq.(22) is fZ instead of fX because the network output x̃ is
derived from the Z-Update component in the last layer. The

gradient for the remaining parameters can be calculated in a
similar way.

This stochastic gradient algorithm then will run until pre-
defined conditions are met. After training, the network can
perform fast estimation of the abundance vector given a new
HSI spectrum as input, because it only requires one forward
network computation.

IV. ADMM BASED BLIND UNMIXING NETWORK

We can likewise also construct a neural network that can
be trained (in an unsupervised manner) to estimate both
endmembers and their abundances based on HSI reflectance
data.

A. Blind Unmixing Network Structure

Our ADMM based blind unmixing network is inspired by
the previously proposed abundance estimation network. In
particular, the network architecture follows from the previous
U-ADMM-AENet by appending an additional linear layer,
yielding a reconstruction of the original HSI spectrum from
the estimation of the abundances as follows:

ỹ = Ãx̃ (23)

where x̃ represents the estimated abundance by U-ADMM-
AENet and ỹ represents the reflectance spectrum reconstruc-
tion. The matrix Ã – corresponding to the additional linear
layer – models the endmember signatures; this matrix is
also non-negative because of physical constraints. Note that
such an auto-encoder like structure has also been adopted
in, e.g. uDAS [22] or MNN-BU [34]. However, uDAS is a
conventional auto-encoder structure with a black-box encoder,
and MNN-BU is an auto-encoder with the encoder derived
from ISTA, while ours is a network structure derived from
unfolding ADMM.

We can also construct two different blind unmixing net-
works corresponding to the two previous abundance estimation
networks. When the network parameters are shared across the
different network layers, we name the network as U-ADMM-
BUNet-I and when the parameters are unshared, we name it
as U-ADMM-BUNet-II (BU stands for blind unmixing). A
K-layer U-ADMM-BUNet structure is shown in Fig. 3.

B. Blind Unmixing Network Initialization and Training strate-
gies

1) Initialization Approach: The neural networks are also
trained by adopting warm instead of random initialisation of
the parameters. The parameters associated with the X−update
component, Z − update component and D− update compo-
nent of each layer in the U-ADMM-BUNet are initialised by
adopting the strategy used to initialise the same parameters
in U-ADMM-AENet. In contrast, the extra decoding layer in
U-ADMM-BUNet is initialised by taking it to correspond to
some estimate of the endmember signature matrix, which can
be obtained in the same way in III-C1.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Decoder

ReLU

X-Update Z-Update D-Update

Norm
1st layer

ReLU

X-Update Z-Update D-Update

Kth layer

+ + - - - + + - - -

(a) A K-layer U-ADMM-BUNet-I.
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(b) A K-layer U-ADMM-BUNet-II.

Fig. 3. The structures of U-ADMM-BUNet. (a) a K-layer U-ADMM-BUNet-I, which is constructed by appending U-ADMM-AENet-I with a linear decoder
layer. (b) a K-layer U-ADMM-BUNet-II, which is constructed by appending U-ADMM-AENet-II with a linear decoder layer.

2) Training Approach: The proposed networks, which are
akin to well-known auto-encoders, can be trained in a com-
pletely unsupervised way. By assuming access to a training
set D = {yi}Ni=1 consisting of N reflectance spectra yi. We
can then construct a loss function given by:

LΘ = MSE({yi, ỹi}Ni=1) =
1

N

∑
{yi}∈D

∥yi − ỹi∥22 (24)

Note that this loss function is simpler than the previous one
since we cannot use either AAD or AID due to the absence
of abundance in the training set.

After learning, the U-ADMM-BUNet would output a re-
construction of reflectance spectra ỹi. Note that U-ADMM-
BUNet is constructed by concatenating U-ADMM-AENet with
a linear decoder layer with parameter Ã, as a result, ỹi can
be expressed as follows:

ỹi = ÃfAE(yi) (25)

where, fAE(yi) is the output of U-ADMM-AENet, which
is the abundance estimation corresponding to the spectra yi,
x̃i = fAE(yi). The parameter Ã then would correspond to
the estimation of the endmember matrix.

3) Parameter Update Rule: Like the previous case, the
network parameters are optimised using stochastic gradient
descent algorithm ADAM [42], where the gradient for each
parameter can be calculated via the back-propagation algo-
rithm. In particular, the gradient of loss function with respect
to the decoder parameters Ã and encoder output x̃i are as
follows,

∂LΘ

∂Ã
=

2

N

∑
{yi}∈D

(Ãx̃i − yi)x̃
T
i (26)

∂LΘ

∂x̃i
=

2

N
Ã

T
(Ãx̃i − yi) (27)

The remaining gradients are calculated in the same way as
U-ADMM-AENet. Note that during each update, the decoder
parameter Ã is enforced to be non-negative in line with the
physical constraints.

V. NETWORK STRUCTURE/COMPLEXITY ANALYSIS

In this section, we will discuss the network complexity from
both structure and parameter perspectives.

A. Network Structure
It is interesting to contrast the structure of the resulting

ADMM based layer with the structure of layers in other
unfolded networks used to solve the CSR problem. Fig.4
depicts the structure of various network layers including, (1) a
typical ResNet [43] which is well-known for its performance
improvement by using skip connections, (2) a network layer
deriving from unfolding the CSR problem using the ISTA
solver [19], and (3) the network layer deriving from unfolding
the CSR problem using the proposed ADMM method. In par-
ticular, it is interesting to note that our proposed network layer
can contain far many more shortcuts and skip connections in
comparison with the competing layers. For example, ResNet
only introduces shortcuts between adjacent operations, and the
ISTA based layer includes skipping connections only from the
input, whereas our ADMM based layer contains both types
of connections. It will be shown that the proposed network
can therefore lead to better unmixing results compared to
competing ones, since such richer connections can improve
neural network performance in various tasks [44], [45], [46],
[47].

B. Network Complexity
It is also interesting to comment on the number of learnable

parameters of the proposed architecture in relation to existing
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(a) ResNet. (b) Unfolding ISTA. (c) Unfolding ADMM.

Dense operation

X-update and its output

Z-update and its output

D-update and its output

Nonlinear operation

Fig. 4. Comparison of layer structures of various networks. (a) ResNet layer structure, which introduces shortcuts between adjacent operations. (b) ISTA based
layer structure, which includes skipping connections only from the input. (c) Our ADMM based layer structure, which contains both types of connections.

state-of-the-art ones. This acts as a proxy to gauge the com-
plexity of the proposed networks. As it has been shown in [34]
that unfolding networks generally have much less learnable
parameters compared to conventional networks, we now will
briefly compare our proposed U-ADMM-AENet-I &II derived
from unfolding ADMM to other architectures derived from
unfolding ISTA [34].

In U-ADMM-AENet-I, where the different parameters are
shared across layers, the total number of parameters is (r2 +
rp+2) where r2 correspond to the matrix B′, rp correspond to
the matrix W ′, and the remaining ones relate to the two scalars
θ′, η′. In U-ADMM-AENet-II, where the different parameters
are specific to each layer, there are (r2 + rp+ 2)K learnable
parameters, where K is the number of iteration blocks/layers
in the network. In contrast, in similar networks derived from
unfolding ISTA such as MNN-AE-1 (where parameters are
shared across layers) and MNN-AE-2 (where the parameters
are specific to each layer), the number of learnable parameters
is (r2 + rp+ 1) and (r2 + rp+ 1)K, respectively. We report
the number of learnable parameters of various abundance
estimation networks and blind unmixing networks in Table
I and Table II respectively.

In summary, the number of learnable parameters in the
proposed network is much less than most state-of-art unmixing
networks such as UnDIP and EGU-Net. One advantages of the
lighter (i.e., less learnable parameters) machine learning model
is that it is less likely to suffer from overfitting [41]. It will be
seen that the proposed network can lead to better performance
than competing ones.

TABLE I
NUMBER OF LEARNABLE PARAMETERS: ABUNDANCE ESTIMATION

method MNN- MNN- U-ADMM- U-ADMM-
AE-1 AE-2 AENet-I AENet-II

♯ 1.3× 103 2.7× 103 1.3× 103 2.7× 103

VI. EXPERIMENTS

We now conduct extensive experiments on both synthetic
data and real hyperspectral data to demonstrate the effec-
tiveness of the proposed methods. Table III lists our various
methods, their abbreviations, and their succinct description.

TABLE II
NUMBER OF LEARNABLE PARAMETERS: BLIND UNMIXING

method MNN-BU-1 MNN-BU-2 U-ADMM-BUNet-I

♯ 2.7× 103 5.4× 103 2.7× 103

method U-ADMM-BUNet-II UnDIP EGU-Net-pw

♯ 5.4× 103 1.3× 106 1.9× 105

TABLE III
PROPOSED METHODS, INCLUDING ABBREVIATION AND SUCCINCT

DESCRIPTION

U-ADMM ADMM based abundance estimation network,
-AENet-I(II) I(II) represents (un)shared parameters
U-ADMM ADMM based blind unmixing network,

-BUNet-I(II) I(II) represents (un)shared parameters

A. Performance Metrics

We employ various metrics to gauge the performance of our
unmixing algorithms. In particular, we use the well-known
root mean square error (RMSE) and mean absolute error
(MAE) [27] between the ith true abundance vector xi and
the estimate of the ith abundance vector x̃i to quantify the
abundance estimation quality. This is given by:

RMSEi =

√√√√1

r

r∑
m=1

(xi,m − x̃i,m)2 (28)

MAEi =
1

r

r∑
m=1

|xi,m − x̃i,m| × 100 (29)

The RMSE and MAE are then further averaged over different
instances within a test set.

We also use AAD (see (15)) and AID (see (16)) between
the ith true abundance vector xi and the estimate of the ith

abundance vector x̃i to quantify the abundance estimation
quality. These quantities are also further averaged over dif-
ferent instances within a test set.

We employ the spectrum angle distance (SAD) [22] to mea-
sure the dissimilarity between a true endmember signature am

and its estimate ãm, where SAD has the same mathematical
formulation as AAD. This metric is averaged instead over the
different endmembers.
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B. Data

We also employ various datasets, including synthetically
generated and real ones, to gauge the performance of the
various unmixing algorithms.

1) Synthetic Data: We adopt the well-known procedure
in [9] to generate a dataset containing synthetic HSI spectral
data as follows:

1) Endmember generation We generate the endmembers
underlying the HSI spectral data by selecting mineral
signatures from the well-known USGS spectral library
denoted as splib06 [36]. This library contains spectral
reflectance values associated with different minerals
spanning the range 0.4 µm to 2.5 µm over 224 channels.
We randomly select six spectral signatures. This process
results in a 224 × 6 endmember matrix. The signature
of these 6 endmembers is shown in Fig. 5.

2) Abundance generation. We then generate the different
abundances underlying the HSI spectral data as follows.
First, we extract a2 disjoint patches of size a× a pixels
from a synthetic image of size a2 × a2 pixels. Second,
for all pixels of a given patch, we assign a spectral
signature corresponding to a mixture of two randomly
selected endmembers with fractions γ and 1−γ. Finally,
in order to generate highly mixed synthetic HSI data,
the abundance map is convolved with a Gaussian filter
of size (a + 1) × (a + 1), whose variance is equal
to 2, followed by further re-scaling to meet the ASC
constraint per pixel. We set a = 10 and γ = 0.8.

3) Noise contamination. Finally, to understand the robust-
ness of the unmixing algorithms against noise, we also
contaminated the generated HSI data with additive white
Gaussian noise (AWGN). We define the signal-to-noise
ratio (SNR) of the corrupted signal as follows:

SNR = 10 log10
E[xTATAx]

E[nTn]
(30)

where E[·] is the statistical expectation operator.
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Fig. 5. Endmember signatures for synthetic data.

Then, the training pixels will be randomly picked from the
synthetic HSI data, while the remaining data will be used for
evaluation.

2) Real Data: We also adopt two commonly used real HSI
datasets.

1) Jasper Ridge. We adopt the widely used Jasper Ridge
HSI dataset [48]. This dataset contains 512×614 pixels
images recorded using 224 channels ranging from 380
nm up to 2500 nm with a spectral resolution of 9.46 nm.
There are also four different endmembers in the scene:
Road, Soil, Water, and Tree. We consider 100 × 100
pixels sub-images of the original images in order to
reduce computational burden and deploy faster experi-
mental studies. We also only consider 198 out of the 224
channels for unmixing purposes: channels 1-3, 108-112,
154-166 and 220-224 are removed due to dense water
vapour and atmospheric effects. A representative image
– associated with the 80th channel image – is shown in
Fig. 6a.

2) Urban. We also adopt the widely used Urban HSI
dataset [49], [50]. It contains 307 × 307-pixel images
with a spatial resolution of 2 × 2m2 sensed using 210
channels ranging from 400 nm to 2500 nm with a
spectral resolution of 10 nm. There are three versions of
the ground truth coupled with this dataset, but we use the
one containing four endmembers: Asphalt, Grass, Tree,
and Roof. We also process the data further, whereby
we only use 162 out of the original 210 channels by
discarding channels 1-4, 76, 87, 101-111, 136-153 and
198-210 due to the dense water vapour and atmospheric
effects. A representative image – associated with the
80th channel image – is also shown in Fig. 6b.

(a) Jasper Ridge (b) Urban

Fig. 6. HSI image at 80th channel. (a) Jasper Ridge. (b) Urban.

C. Experiments on Synthetic Data
We now evaluate the performance of our approaches on the

synthetic data. For the abundance estimation case, we compare
our proposed U-ADMM-AENet-I & II with a traditional
sparse unmixing algorithm, SunSAL [8], as well as unfolding
based learning algorithms MNN-AE-1 & 2 [34]. We do not
compare our proposed approaches to state-of-the-art learning-
based methods, such as pixel-based CNN [18], because it has
been verified in [34] that the performance of MNN-AE is
better than pixel-based CNN. Unless explicitly mentioned, the
experiments are conducted under the default setting, where
we use a training set consisting of 1000 randomly selected
pixels (signatures) extracted from the synthetic HSI dataset.
We also contaminate these spectral signatures with AWGN
with SNR = 15 dB. We use U-ADMM-AENet and MNN-
AE consisting of two layers (iteration blocks) only because
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we have found empirically that additional layers do not result
in significant performance improvements (see also [34]). We
train the networks using Adam optimizer with a learning rate
set to 1e−4, a batch size set to 64, and the number of epochs
set to 300.

For the blind unmixing case, we compare our proposed un-
supervised U-ADMM-BUNet-I & II with learning-based blind
unmixing algorithms (uDAS [22], MNN-BU [34], UnDIP [27]
and EGU-Net-pw [28]) and traditional nonnegative matrix
factorization (NMF)-based algorithms such as matrix-vector
nonnegative tensor factorization (MV-NTF) [10]. We also use
the default experiment setting, where we use a training set con-
sisting of 1000 randomly selected pixels (signatures) extracted
from the synthetic HSI dataset that are further contaminated
with AWGN with SNR = 25 dB. We use U-ADMM-BUNet
and MNN-BU networks consisting of two layers (iteration
blocks) followed by a linear (decoding) layer. We also train
the networks using Adam optimizer with a learning rate set to
1e − 4, a batch size set to 64, and the number of epochs set
to 300.

Our proposed methods use the training strategies, initializa-
tion strategies, and hyper-parameter settings reported in earlier
sections. In turn, competing methods use the default hyper-
parameter settings proposed in their original papers.

1) Effect of proposed composite loss: In this experiment,
we evaluate the impact of the new proposed composite loss
function in the abundance estimation case. We also compare it
with other combinations of loss functions, such as MSE+AAD,
MSE+AID and AAD+AID to better illustrate the improvement
induced by the proposed composite loss function. We broadly
use the default experimental settings, except that we set the
number of training data to be 256 and the training epochs
varying from 100 to 500.

We here report the MAE result in Fig. 7 to better show
the superiority of the new loss. We do not report it using
other metrics such as AAD because it would be an unfair
comparison as those metrics are included in the proposed
loss function. It can be seen that for both network structures,
the new proposed composite loss function provides better and
more stable performance. This is because that the MSE loss
function has the implicit assumption [41] that the abundance
estimated by the network follows a Gaussian distribution,
which is incompatible with ASC and ANC constraints. The
proposed new loss function, on the other hand, has reduced
the impact of such implicit assumptions.

2) Performance vs. number of layers: We now evaluate the
performance of the various approaches as a function of the
number of layers. Note that both abundance estimation case
and blind unmixing case show a similar trend thus we only
report the result of the former to save space. We use the afore-
mentioned default experiment setting except that we now vary
the number of layers from 1 to 7. The results are shown in Fig.
8. It is clear that for an unfolding based unmixing network, the
number of layers does not have a significant impact on the final
performance, whereas a conventional neural network would
typically benefit from a deeper structure [51]. We attribute
this observation to the fact that unfolding networks architecture
comes with a strong inductive bias, so that strong performance
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Fig. 7. The impact of different composite loss on abundance estimation
performance: MAE. (a) U-ADMM-AENet-I. (b) U-ADMM-AENet-II.

can be achieved with a small number of layers. For this reason,
we choose the number of layers to be 2 for the remaining
experiments.
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Fig. 8. The impact of number of layers on abundance estimation performance.

3) Performance vs. Training Epochs: We now assess the
convergence performance of the various approaches as a
function of the number of training epochs. For the abundance
estimation case, we use the default experiment setting except
for the number of epochs varying from 0 to 500. For the blind
unmixing case, we set the number of epochs ranging from 0
to 1000.

We report abundance estimation performance vs. the number
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(a) Abundance estimation: RMSE versus epochs.
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(b) Blind unmixing: abundance RMSE versus
epochs.
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Fig. 9. The impact of training epochs on the performance. (a) Abundance estimation case: RMSE. (b) Blind unmixing case: RMSE. (c) Blind unmixing case:
SAD in degree.
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(b) Blind unmixing: abundance RMSE versus train-
ing dataset size.
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(c) Blind unmixing: endmember SAD versus train-
ing dataset size.

Fig. 10. The impact of size of training dataset on the performance. (a) Abundance estimation case: RMSE. (b) Blind unmixing case: RMSE. (c) Blind
unmixing case: SAD in degree.

of epochs in Fig. 9a for U-ADMM-AENet and MNN-AE,
respectively. Note that we only show RMSE results because
other metrics trends are akin to RMSE ones. We also report
blind unmixing performance vs. number of epochs in Fig.
9b and Fig. 9c. It is evident that our proposed methods
can achieve faster convergence than MNN-AE and MNN-BU.
Specifically, in the abundance estimation case, we observe
that U-ADMM-AENet converges around 100 training epochs,
while MNN-AE networks only converge after 300 training
epochs. In the blind unmixing case, we also observe a similar
performance. Specifically, in terms of SAD, the proposed U-
ADMM-BUNet achieves impressive performances at around
200 epochs while MNN-BU needs around 600 epochs. We
attribute this to the fact that ADMM based solvers typically
converge faster than ISTA based ones [35]. We also attribute
this to the fact the weighted loss function adopted in our
learning algorithms is more complex than that adopted in
competing ones (see [34]), allowing to promote additional
dissimilarity. On the other hand, although the state-of-art
UnDIP and EGU-Net achieve a similar convergence speed,
the proposed networks have better unmixing performance.
In particular, in terms of SAD, the proposed network is
around 2.5 while both UnDIP and EGU-Net is around 5.0.
Thus we can achieve 2X better performance than the state-

of-art UnDIP and EGU-Net because they rely on existing
endmember extraction algorithms to provide a guidance.

4) Performance vs. Training Data: We now assess the
performance of the various approaches as a function of the
number of training data points. Both for abundance estimation
and for blind unmixing scenarios, we use a training set con-
sisting of a number of randomly selected pixels (signatures)
ranging from 256 up to 4096 whereas the other experiment
settings are in line with the default setting.

We report abundance estimation performance vs. training
size along with endmember estimation performance vs. train-
ing size in Fig. 10. It is clearly apparent that our proposed
methods can achieve better performance than competing ones
in the presence of smaller training datasets. Specifically, for
the abundance estimation case, when the size of the training
dataset is very small (e.g. 256), both types of U-ADMM-
AENet are superior to MNN-AE in terms of abundance estima-
tion performance. This may be due to the fact that the network
deriving from ADMM has much more residual connections
in relation to networks deriving from ISTA. For the blind
unmixing case with small training datasets, U-ADMM-BUNet
is also superior to competing ones both in terms of abun-
dance estimation (RMSE) and endmember estimation (SAD)
performance. Naturally, the performance of most networks
improves with the increase in the size of the training set.
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(b) Blind unmixing: abundance RMSE versus SNR.
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(c) Blind unmixing: endmember SAD versus SNR.

Fig. 11. The impact of SNR on the performance. (a) Abundance estimation case: RMSE. (b)Blind unmixing case: RMSE. (c) Blind unmixing case: SAD in
degree.

Furthermore, the state-of-art algorithms such as UnDIP and
EGU-Net, in general, have worse unmixing performance. For
example, the SAD of both UnDIP and EGU-Net is around
5.0, while that of the proposed method is around 2.5. This
is because both UnDIP and EGU-Net rely on the existing
endmember extraction algorithms to provide an estimation of
endmembers as a guidance.

5) Performance in Presence of Noise: It is also illustrative
to gauge the robustness of the proposed approaches against
noise contamination. We retain the default experimental set-
tings except that we contaminate the spectral signatures with
different noise levels leading up to SNR values ranging within
the set [15, 20, 25, 30, inf ] dB.

Fig. 11 suggests that our proposed approaches seem to be
much more immune to noise in relation to competing ones. In
particular, for the abundance estimation case, with a relatively
noisy setting corresponding to a SNR = 15 dB, the RMSE
pertaining to U-ADMM-AENet is lower than that pertaining
to MNN-AE. As the traditional sparse unmixing algorithm
SunSAL is a direct application of ADMM, it acts as a baseline
in this comparison.

For the blind unmixing case, with noisy data, the proposed
U-ADMM-BUNet also achieves better RMSE (for abundance
estimation) and SAD (for endmember estimation) performance
in relation to MNN-BU, UnDIP and EGU-Net. The proposed
methods also achieve much better RMSE and SAD perfor-
mance in relation to MVNTF.

6) Run Time Comparison: In this experiment, we compare
the run time of various algorithms performing unmixing over
synthetic data. The experiments are conducted in a Linux
server with Intel XEON GOLD 5120 CPU at 2.2GHz, 251GB
RAM and TESLA V100 GPU. All algorithms are implemented
using python and MATLAB. We again use the default exper-
imental settings. The results are summarized in Table IV and
V.

It is clear that the proposed methods achieve faster unmixing
compared to traditional model-based unmixing methods such
as SunSAL and MVNTF. This is due to the fact that machine
learning-based methods only require one forward computation
in the prediction/unmixing phase while traditional methods
usually require many iterations. On the other hand, com-
pared to conventional machine-learning based methods such

as uDAS, UnDIP and EGU-Net, the unfolding-based networks
perform faster because of their highly efficient architecture.
Finally, in line with our discussion about network complexity,
our proposed networks have a similar unmixing speed as the
unfolding ISTA-based networks, i.e., MNN-AE & MNN-BU.

TABLE IV
RUN TIME COMPARISON: ABUNDANCE ESTIMATION

method SunSAL MNN- MNN- U-ADMM- U-ADMM-
AE-1 AE-2 AENet-I AENet-II

time (s) 1.44 0.14 0.14 0.21 0.25

TABLE V
RUN TIME COMPARISON: BLIND UNMIXING

method uDAS MV-NTF MNN-BU-1

time (s) 11.67 66.49 0.19

method MNN-BU-2 U-ADMM-BUNet-I U-ADMM-BUNet-II

time (s) 0.27 0.22 0.21

method UnDIP EGU-Net-pw

time (s) 26.76 0.44

D. Experiments with Real Data

We now evaluate the performance of our approaches on real
hyperspectral datasets, including Jasper Ridge and Urban.

1) Abundance Estimation: We first concentrate on abun-
dance estimation. We train the network with two iteration
blocks using 256 pixels randomly chosen from the data while
evaluating on the remaining pixels. The algorithms are run five
times in order to report average metrics. In this case, we use
the initialization strategy where the true A is known, which
is provided by the real dataset. All learning-based algorithms
that require such true A are also trained with this true value.

The performance of various algorithms using a number of
metrics is reported in Table VI. It can be seen that overall our
proposed U-ADMM-AENet achieve the best RMSE, AAD and
AID performance.

The abundance maps of various algorithms on Jasper Ridge
and Urban are illustrated in Fig. 12 and Fig. 13. It can also
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TABLE VI
MEAN AND STANDARD DEVIATION OF ABUNDANCE RMSE, AAD (IN DEGREES), AID BY DIFFERENT ABUNDANCE ESTIMATION ALGORITHMS ON

JASPER RIDGE AND URBAN. THE BEST RESULTS ARE IN BOLD.

Dataset Metrics SunSAL MNN-AE-1 MNN-AE-2 U-ADMM-AENet-I U-ADMM-AENet-II

RMSE 0.0612±0.0001 0.1285±0.0021 0.1262±0.0008 0.0212±0.0005 0.0214±0.0004

Jasper Ridge AAD 7.9068±0.0001 17.9929±0.3719 17.4182±0.1998 2.6742±0.0660 2.7447±0.0669

AID 0.4564±0.0001 2.1823±0.0358 2.1215±0.0444 0.1765±0.0126 0.1630±0.0197

RMSE 0.1679±0.0001 0.2416±0.0007 0.2387±0.0003 0.0431±0.0019 0.0417±0.0017

Urban AAD 25.1087±0.0001 36.2268±0.1561 35.6648±0.0573 5.8625±0.2702 5.6651±0.2415

AID 4.5491±0.0001 4.7990±0.0110 4.7601±0.0281 0.3625±0.0552 0.3090±0.0491

(a) SunSAL (b) MNN-AE-1 (c) MNN-AE-2 (d) U-ADMM-
AENet-I

(e) U-ADMM-
AENet-II

(f) Reference
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Fig. 12. Results of abundance estimation by different methods on Jasper Ridge dataset. From top to bottom: Tree, Water, Soil and Road. (a) SunSAL. (b)
MNN-AE-1. (c) MNN-AE-2. (d) U-ADMM-AENet-I. (e) U-ADMM-AENet-II. (f) Reference.

be seen that overall our proposed U-ADMM-AENet lead to
abundance maps closer to the ground truth in comparison to
competing algorithms.

2) Blind Unmixing: In this case, we use the initialization
strategy where the true signatures A are unknown.

We now concentrate on blind unmixing. We train and
evaluate the network with two iteration blocks on the whole
pixels. The algorithms are run five times in order to report the
performance mean and standard deviation.

Table VII shows the SAD mean and standard deviation asso-

ciated with various algorithms. For the Jasper Ridge dataset,
it can be seen that the performance of different algorithms
depends on the specific endmember. In particular, MNN-BU-2
offers the best spectral signature estimates for Road. However,
it can also be seen that the performance mean and standard
deviation of our proposed approaches (i.e. U-ADMM-BU-Net-
II) tend to be better on average than that of competitors. For
the Urban dataset, we can also observe that the performance of
the different algorithms depends on the specific endmember;
likewise, we can observe that the mean and standard deviation
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(a) SunSAL (b) MNN-AE-1 (c) MNN-AE-2 (d) U-ADMM-
AENet-I

(e) U-ADMM-
AENet-II

(f) Reference
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Fig. 13. Results of abundance estimation by different methods on Urban dataset. From top to bottom: Asphalt, Grass, Tree, and roof. (a) SunSAL. (b)
MNN-AE-1. (c) MNN-AE-2. (d) U-ADMM-AENet-I. (e) U-ADMM-AENet-II. (f) Reference.

TABLE VII
MEAN AND STANDARD DEVIATION OF ENDMEMBER SAD(IN DEGREES) BY DIFFERENT BLIND UNMIXING ALGORITHMS ON JASPER RIDGE AND

URBAN. THE BEST RESULTS ARE IN BOLD.

Dataset Endmember uDAS MV-NTF UnDIP EGU-Net-pw MNN-BU-2 U-ADMM-BUNet-II

Tree 10.0032±0.8436 15.3062±4.3640 8.5545±0.0000 8.1393±0.0006 5.0530±0.0017 5.0308±0.0037

Water 7.6166±0.5672 15.1020±0.7648 14.4877±0.0000 6.5646±0.0019 16.4420±0.0276 13.4348±0.0931

Jasper Soil 6.6608±0.1950 19.0967±13.5871 6.5558±0.0000 5.407±0.0020 2.2163±0.0037 1.2418±0.0049

Ridge Road 3.6029±0.1044 27.3426±2.7321 15.7991±0.0000 4.3562±0.0013 0.9679±0.0029 1.0425±0.0058

Mean 6.9709±0.2659 19.2119±1.9248 11.3493±0.0000 6.1168±0.0015 6.1698±0.0057 5.1875±0.0240

Asphalt 12.3003±0.1118 13.5129±1.0604 53.1045±0.0000 5.9649±0.0027 12.3451±0.2343 8.1085±0.3008

Grass 63.6797±3.8035 19.3200±3.9887 61.1254±0.0000 17.599±0.0009 11.9362±0.0504 9.0528±0.4471

Urban Tree 7.6825±1.2857 7.8657± 0.3075 64.4102±0.0000 84.6801±0.0103 7.9079±0.0376 8.8417±0.2107

Roof 14.4911±3.0348 27.7510±2.6030 32.0613±0.0000 20.6919±0.0022 9.7467±0.0549 11.6299±0.1128

Mean 24.5384±2.0074 17.1124±1.4393 52.6754±0.0000 32.2340±0.0041 10.4840±0.0690 9.4082±0.1626

of the performance metric tends to be better on average
for our proposed approaches in relation to competing ones.
In particular, the endmember extraction algorithm used in
UnDIP fails to properly extract the endmembers, as a result,

it would also fail to estimate the abundance. Figs. 14 and
15, which illustrate the recovered endmember signatures along
with reference signatures using various algorithms for the
Jasper Ridge and Urban datasets, respectively, also corroborate
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(f) U-ADMM-BUNet-II

Fig. 14. Estimated endmember signatures of blind unmixing by different methods on Jasper Ridge dataset. Solid line indicates the true value, while dot line
indicates the scaled estimated value. From top to bottom: Tree, Water, Soil, and Road. (a) uDAS. (b) MV-NTF. (c) UnDIP. (d) EGU-Net-pw. (e) MNN-BU-2.
(f) U-ADMM-BUNet-II.

TABLE VIII
MEAN AND STANDARD DEVIATION OF ABUNDANCE RMSE, AAD (IN DEGREES), AID BY DIFFERENT BLIND UNMIXING ALGORITHMS ON JASPER

RIDGE AND URBAN. THE BEST RESULTS ARE IN BOLD.

Dataset Metrics uDAS MV-NTF UnDIP EGU-Net-pw MNN-BU-2 U-ADMM-BUNet-II

RMSE 0.1228±0.0067 0.2114±0.0103 0.1748±0.0252 0.1169±0.0073 0.0773±0.0009 0.0720±0.0012

Jasper Ridge AAD 15.4408±0.9854 29.5696±1.7837 25.3249±4.4570 15.3437±0.0019 9.8228±0.1362 9.1563±0.1625

AID 0.9564±0.0932 2.0981±0.1082 3.6022±0.6558 0.9444±0.0040 0.4974±0.0088 0.4604±0.0153

RMSE 0.2919±0.0111 0.2617±0.0056 0.3112±0.0069 0.2571±0.0031 0.2203±0.0003 0.2196±0.0013

Urban AAD 44.9756±2.6502 38.8271±1.3656 51.2773±1.5093 37.1957±0.0009 33.4093±0.0276 32.5843±0.2192

AID 2.4992±0.2185 1.9328±0.0499 6.8164±0.1329 2.2176±0.0017 2.2413±0.0018 2.2301±0.0168

these observations.

Finally, the abundance maps associated with the various
algorithms on the Jasper Ridge and Urban Datasets are shown
in Figs. 16 and 17. We also report the various performance
metrics in Table VIII. It is clear that our proposed approaches
lead to abundance maps closer to the reference than competing
ones. It should be noted that the RMSE of U-ADMM-AENet
is 0.02 on Jasper Ridge and 0.04 on Urban, while the RMSE of
U-ADMM-BUNet is 0.07 on Jasper Ridge and 0.22 on Urban.
This is because U-ADMM-AENet assumes the access to both
the spectral reflectances and the corresponding abundances in
the training dataset, while U-ADMM-BUNet only assumes the
access to the spectral reflectances.

VII. CONCLUSION

We have proposed new hyperspectral unmixing networks
deriving from unfolding procedures. In particular, building
upon a traditional constrained sparse regression approach to
the linear unmixing challenge, we have shown how ADMM
leads to a neural network architecture consisting of various in-
terpretable learning modules with a counterpart in the machine
learning literature.

Our proposed approach combines the advantages of model-
based and learning-based unmixing methods. It leads to archi-
tectures that can be trained both in a supervised, or unsuper-
vised manner using newly proposed weighted loss functions.
It also leads to neural network architectures that possess very
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(f) U-ADMM-BUNet-II

Fig. 15. Estimated endmember signatures of blind unmixing by different methods on Urban dataset. Solid line indicates the true value, while dot line indicates
the scaled estimated value. From top to bottom: Asphalt, Grass, Tree, and roof. (a) uDAS. (b) MV-NTF. (c) UnDIP. (d) EGU-Net-pw. (e) MNN-BU-2. (f)
U-ADMM-BUNet-II.

rich structures, including skipping connections and residual
blocks, which offer superior performance in image analysis
and processing tasks.

Our approach also offers state-of-the-art performance in
comparison to existing approaches. Of particular relevance,
extensive numerical results showcase that our approach out-
performs state-of-the-art ones such as ISTA based network
MNN-AE and MNN-BU, uDAS, UnDIP, EGU-Net and MV-
NTF, in terms of unmixing quality, convergence speed, and
training data needs both on real and synthetic HSI data. The
improved performance potentially comes from four aspects:
First of all, the ADMM solver can lead to sufficient accuracy
with fast convergence compared to ISTA solver [11], [35].
As a result, the proposed network unfolded from ADMM
could potentially inherit such advantages. Secondly, it has been
shown in [31], [32], [33] that the network unfolded from an
iterative algorithm can achieve better performance than the
original iterative algorithm. Thirdly, as we discussed in Section
V, the proposed network has less learnable parameters and
richer skip connections, which can improve neural network
performance in various tasks [41], [44], [45], [47], [46].
Finally, as we show in Section VI, the proposed loss function
can also improve the network performance.
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