57 research outputs found

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Tightly-coupled manipulation pipelines: Combining traditional pipelines and end-to-end learning

    Get PDF
    Traditionally, robot manipulation tasks are solved by engineering solutions in a modular fashion --- typically consisting of object detection, pose estimation, grasp planning, motion planning, and finally run a control algorithm to execute the planned motion. This traditional approach to robot manipulation separates the hard problem of manipulation into several self-contained stages, which can be developed independently, and gives interpretable outputs at each stage of the pipeline. However, this approach comes with a plethora of issues, most notably, their generalisability to a broad range of tasks; it is common that as tasks get more difficult, the systems become increasingly complex. To combat the flaws of these systems, recent trends have seen robots visually learning to predict actions and grasp locations directly from sensor input in an end-to-end manner using deep neural networks, without the need to explicitly model the in-between modules. This thesis investigates a sample of methods, which fall somewhere on a spectrum from pipelined to fully end-to-end, which we believe to be more advantageous for developing a general manipulation system; one that could eventually be used in highly dynamic and unpredictable household environments. The investigation starts at the far end of the spectrum, where we explore learning an end-to-end controller in simulation and then transferring to the real world by employing domain randomisation, and finish on the other end, with a new pipeline, where the individual modules bear little resemblance to the "traditional" ones. The thesis concludes with a proposition of a new paradigm: Tightly-coupled Manipulation Pipelines (TMP). Rather than learning all modules implicitly in one large, end-to-end network or conversely, having individual, pre-defined modules that are developed independently, TMPs suggest taking the best of both world by tightly coupling actions to observations, whilst still maintaining structure via an undefined number of learned modules, which do not have to bear any resemblance to the modules seen in "traditional" systems.Open Acces

    Developmentally deep perceptual system for a humanoid robot

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 139-152).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity.(cont.) This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.by Paul Michael Fitzpatrick.Ph.D

    From First Contact to Close Encounters: A Developmentally Deep Perceptual System for a Humanoid Robot

    Get PDF
    This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally

    Articulation estimation and real-time tracking of human hand motions

    Get PDF
    Schröder M. Articulation estimation and real-time tracking of human hand motions. Bielefeld: Universität Bielefeld; 2015.This thesis deals with the problem of estimating and tracking the full articulation of human hands. Algorithmically recovering hand articulations is a challenging problem due to the hand’s high number of degrees of freedom and the complexity of its motions. Besides the accuracy and efficiency of the hand posture estimation, hand tracking methods are faced with issues such as invasiveness, ease of deployment and sensor artifacts. In this thesis several different hand tracking approaches are examined, including marker-based optical motion capture, data-driven discriminative visual tracking and generative tracking based on articulated registration, and various contributions to these areas are presented. The problem of optimally placing reduced marker sets on a performer’s hand for optical hand motion capture is explored. A method is proposed that automatically generates functional reduced marker layouts by optimizing for their numerical stability and geometric feasibility. A data-driven discriminative tracking approach based on matching the hand’s appearance in the sensor data with an image database is investigated. In addition to an efficient nearest neighbor search for images, a combination of discriminative initialization and generative refinement is employed. The method’s applicability is demonstrated in interactive robot teleoperation. Various real human hand motions are captured and statistically analyzed to derive low-dimensional representations of hand articulations. An adaptive hand posture subspace concept is developed and integrated into a generative real-time hand tracking approach that aligns a virtual hand model with sensor point clouds based on constrained inverse kinematics. Generative hand tracking is formulated as a regularized articulated registration process, in which geometrical model fitting is combined with statistical, kinematic and temporal regularization priors. A registration concept that combines 2D and 3D alignment and explicitly accounts for occlusions and visibility constraints is devised. High-quality, non-invasive, real-time hand tracking is achieved based on this regularized articulated registration formulation

    Control and Learning of Compliant Manipulation Skills

    Get PDF
    Humans demonstrate an impressive capability to manipulate fragile objects without damaging them, graciously controlling the force and position of hands or tools. Traditionally, robotics has favored position control over force control to produce fast, accurate and repeatable motion. For extending the applicability of robotic manipulators outside the strictly controlled environments of industrial work cells, position control is inadequate. Tasks that involve contact with objects whose positions are not known with perfect certainty require a controller that regulates the relationship between positional deviations and forces on the robot. This problem is formalized in the impedance control framework, which focuses the robot control problem on the interaction between the robot and its environment. By adjusting the impedance parameters, the behavior of the robot can be adapted to the need of the task. However, it is often difficult to specify formally how the impedance should vary for best performance. Furthermore, fast it can be shown that careless variation of the impedance can lead to unstable regulation or tracking even in free motion. In the first part of the thesis, the problem of how to define a varying impedance for a task is addressed. A haptic human-robot interface that allows a human supervisor to teach impedance variations by physically interacting with the robot during task execution is introduced. It is shown that the interface can be used to enhance the performance in several manipulation tasks. Then, the problem of stable control with varying impedance is addressed. Along with a theoretical discussion on this topic, a sufficient condition for stable varying stiffness and damping is provided. In the second part of the thesis, we explore more complex manipulation scenarios via online generation of the robot trajectory. This is done along two axes 1) learning how to react to contact forces in insertion tasks which are crucial for assembly operations and 2) autonomous Dynamical Systems (DS) for motion representation with the capability to encode a family of trajectories rather than a fixed, time-dependent reference. A novel framework for task representation using DS is introduced, termed Locally Modulated Dynamical Systems (LMDS). LMDS differs from existing DS estimation algorithms in that it supports non-parametric and incremental learning all the while guaranteeing that the resulting DS is globally stable at an attractor point. To combine the advantages of DS motion generation with impedance control, a novel controller for tasks described by first order DS is proposed. The controller is passive, and has the properties of an impedance controller with the added flexibility of a DS motion representation instead of a time-indexed trajectory

    Tactile Perception And Visuotactile Integration For Robotic Exploration

    Get PDF
    As the close perceptual sibling of vision, the sense of touch has historically received less than deserved attention in both human psychology and robotics. In robotics, this may be attributed to at least two reasons. First, it suffers from the vicious cycle of immature sensor technology, which causes industry demand to be low, and then there is even less incentive to make existing sensors in research labs easy to manufacture and marketable. Second, the situation stems from a fear of making contact with the environment, avoided in every way so that visually perceived states do not change before a carefully estimated and ballistically executed physical interaction. Fortunately, the latter viewpoint is starting to change. Work in interactive perception and contact-rich manipulation are on the rise. Good reasons are steering the manipulation and locomotion communities’ attention towards deliberate physical interaction with the environment prior to, during, and after a task. We approach the problem of perception prior to manipulation, using the sense of touch, for the purpose of understanding the surroundings of an autonomous robot. The overwhelming majority of work in perception for manipulation is based on vision. While vision is a fast and global modality, it is insufficient as the sole modality, especially in environments where the ambient light or the objects therein do not lend themselves to vision, such as in darkness, smoky or dusty rooms in search and rescue, underwater, transparent and reflective objects, and retrieving items inside a bag. Even in normal lighting conditions, during a manipulation task, the target object and fingers are usually occluded from view by the gripper. Moreover, vision-based grasp planners, typically trained in simulation, often make errors that cannot be foreseen until contact. As a step towards addressing these problems, we present first a global shape-based feature descriptor for object recognition using non-prehensile tactile probing alone. Then, we investigate in making the tactile modality, local and slow by nature, more efficient for the task by predicting the most cost-effective moves using active exploration. To combine the local and physical advantages of touch and the fast and global advantages of vision, we propose and evaluate a learning-based method for visuotactile integration for grasping
    • …
    corecore