801 research outputs found

    Resource Optimization in Wireless Sensor Networks for an Improved Field Coverage and Cooperative Target Tracking

    Get PDF
    There are various challenges that face a wireless sensor network (WSN) that mainly originate from the limited resources a sensor node usually has. A sensor node often relies on a battery as a power supply which, due to its limited capacity, tends to shorten the life-time of the node and the network as a whole. Other challenges arise from the limited capabilities of the sensors/actuators a node is equipped with, leading to complication like a poor coverage of the event, or limited mobility in the environment. This dissertation deals with the coverage problem as well as the limited power and capabilities of a sensor node. In some environments, a controlled deployment of the WSN may not be attainable. In such case, the only viable option would be a random deployment over the region of interest (ROI), leading to a great deal of uncovered areas as well as many cutoff nodes. Three different scenarios are presented, each addressing the coverage problem for a distinct purpose. First, a multi-objective optimization is considered with the purpose of relocating the sensor nodes after the initial random deployment, through maximizing the field coverage while minimizing the cost of mobility. Simulations reveal the improvements in coverage, while maintaining the mobility cost to a minimum. In the second scenario, tracking a mobile target with a high level of accuracy is of interest. The relocation process was based on learning the spatial mobility trends of the targets. Results show the improvement in tracking accuracy in terms of mean square position error. The last scenario involves the use of inverse reinforcement learning (IRL) to predict the destination of a given target. This lay the ground for future exploration of the relocation problem to achieve improved prediction accuracy. Experiments investigated the interaction between prediction accuracy and terrain severity. The other WSN limitation is dealt with by introducing the concept of sparse sensing to schedule the measurements of sensor nodes. A hybrid WSN setup of low and high precision nodes is examined. Simulations showed that the greedy algorithm used for scheduling the nodes, realized a network that is more resilient to individual node failure. Moreover, the use of more affordable nodes stroke a better trade-off between deployment feasibility and precision

    An Intelligent Grey Wolf Optimizer Algorithm for Distributed Compressed Sensing

    Get PDF
    Distributed Compressed Sensing (DCS) is an important research area of compressed sensing (CS). This paper aims at solving the Distributed Compressed Sensing (DCS) problem based on mixed support model. In solving this problem, the previous proposed greedy pursuit algorithms easily fall into suboptimal solutions. In this paper, an intelligent grey wolf optimizer (GWO) algorithm called DCS-GWO is proposed by combining GWO and q-thresholding algorithm. In DCS-GWO, the grey wolves’ positions are initialized by using the q-thresholding algorithm and updated by using the idea of GWO. Inheriting the global search ability of GWO, DCS-GWO is efficient in finding global optimum solution. The simulation results illustrate that DCS-GWO has better recovery performance than previous greedy pursuit algorithms at the expense of computational complexity

    Review on electrical impedance tomography: Artificial intelligence methods and its applications

    Full text link
    © 2019 by the authors. Electrical impedance tomography (EIT) has been a hot topic among researchers for the last 30 years. It is a new imaging method and has evolved over the last few decades. By injecting a small amount of current, the electrical properties of tissues are determined and measurements of the resulting voltages are taken. By using a reconstructing algorithm these voltages then transformed into a tomographic image. EIT contains no identified threats and as compared to magnetic resonance imaging (MRI) and computed tomography (CT) scans (imaging techniques), it is cheaper in cost as well. In this paper, a comprehensive review of efforts and advancements undertaken and achieved in recent work to improve this technology and the role of artificial intelligence to solve this non-linear, ill-posed problem are presented. In addition, a review of EIT clinical based applications has also been presented

    Storage Capacity Estimation of Commercial Scale Injection and Storage of CO2 in the Jacksonburg-Stringtown Oil Field, West Virginia

    Get PDF
    Geological capture, utilization and storage (CCUS) of carbon dioxide (CO2) in depleted oil and gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery (EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be an economic approach to demonstration of commercial-scale injection and storage of anthropogenic CO2. Several critical issues should be taken into account prior to injecting large volumes of CO2, such as storage capacity, project duration and long-term containment. Reservoir characterization and 3D geological modeling are the best way to estimate the theoretical CO 2 storage capacity in mature oil fields. The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22 million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is the primary reservoir.;The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has produced over 22 million barrels of oil since 1895, are an ideal candidate for CO2 sequestration coupled with EOR. Supercritical depth (\u3e2500 ft.), minimum miscible pressure (941 psi), favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO 2-EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration of CO2 sources located along the Ohio River that could potentially supply enough CO2 for sequestration and EOR without constructing new pipeline facilities.;Permeability evaluation is a critical parameter to understand the subsurface fluid flow and reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is constructed to predict permeability using the model\u27s strong ability to recognize the possible interrelationships between input and output variables. Two commonly available conventional well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the slope of bulk density and Vsh were selected as input parameters and permeability was selected as desired output parameter to train and test an artificial neural network. The results indicate that the ANN model can be applied effectively in permeability prediction.;Porosity is another fundamental property that characterizes the storage capability of fluid and gas bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed kernels function (MKF) is utilized to construct the relationship between limited conventional well log suites and sparse core data. The input parameters for SVM model consist of core porosity values and the same log suite as ANN\u27s input parameters, and porosity is the desired output. Compared with results from the SVM model with a single kernel function, mixed kernel function based SVM model provide more accurate porosity prediction values.;Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial channel subunits. A 3-D geological model, which is used to estimate theoretical CO2 sequestration capacity, is constructed with the integration of core data, wireline log data and geological background knowledge. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated CO2 theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383 million metric tons. The estimation results of CO2 sequestration and EOR potential indicate that the Jacksonburg-Stringtown oilfield has significant potential for CO2 storage and value-added EOR

    Development of new array signal processing techniques using swarm intelligence

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 144-158.In this thesis, novel array signal processing techniques are proposed for identifi- cation of multipath communication channels based on cross ambiguity function (CAF) calculation, swarm intelligence and compressed sensing (CS) theory. First technique detects the presence of multipath components by integrating CAFs of each antenna output in the array and iteratively estimates direction-of-arrivals (DOAs), time delays and Doppler shifts of a known waveform. Second technique called particle swarm optimization-cross ambiguity function (PSO-CAF) makes use of the CAF calculation to transform the received antenna array outputs to delay-Doppler domain for efficient exploitation of the delay-Doppler diversity of the multipath components. Clusters of multipath components are identified by using a simple amplitude thresholding in the delay-Doppler domain. PSO is used to estimate parameters of the multipath components in each cluster. Third proposed technique combines CS theory, swarm intelligence and CAF computation. Performance of standard CS formulations based on discretization of the multipath channel parameter space degrade significantly when the actual channel parameters deviate from the assumed discrete set of values. To alleviate this “off-grid”problem, a novel technique by making use of the PSO, that can also be used in applications other than the multipath channel identification is proposed. Performances of the proposed techniques are verified both on sythetic and real data.Güldoğan, Mehmet BurakPh.D
    corecore